Sample records for reverse hexagonal mesophases

  1. Spectroscopic characterizations of a mixed surfactant mesophase and its application in materials synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Limin

    A viscous lyotropic crystalline mesophase containing bis (2-ethylhexyl) sodium sulfosuccinate (AOT), alpha-phosphatidylcholine (lecithin), with comparable volume fractions of isooctane and water was characterized by Fourier-transform 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. Shear alignment on the reverse hexagonal mesophase was reflected through both 31P NMR and 1H NMR spectra. A complicated 31P spectrum was observed as a result of superposition of chemical shifts according to the distribution of crystalline domains prior to shear. The initially disordered samples with polydomain structures became macroscopically aligned after Couette shear and the alignment retained for a long period of time. 31P NMR chemical shift anisotropy characteristics were used to elucidate orientation of the hexagonal phase. Interestingly, 1H NMR of the water, methyl and methylene groups exhibited spectral changes upon shear alignment closely corresponding with that of 31P NMR spectra. A reverse hexagonal to lamellar phase transition was manifested as an expanding of the expressed 31P NMR chemical shift anisotropy and an apparent reversal of the powder pattern with increasing water content and/or temperature. Correspondingly, 1H NMR spectra also experienced a spectral pattern transition as the water content or temperature was increased. These observations complement the findings of mesophase alignment obtained using small angle neutron scattering (SANS) and imply that 31P and 1H NMR spectroscopy can be used as probes to define microstructure and monitor orientation changes in this binary surfactant system. This is especially beneficial if these mesophases are used as templates for materials synthesis. The mesophase retains its alignment for extended periods allowing materials synthesis to be decoupled from the application of shear. Highly aligned string-like silica nanostructures were obtained through templated synthesis in the columnar hexagonal structure of the viscous lyotropic crystalline mesophase. A two-step procedure was used to first shear-align the surfactant mesophase, and then conduct synthesis under quiescent conditions in the mesophase. Polystyrene was post-grafted to the silica surface without disturbing its nanostring morphology. The coupling of materials synthesis in surfactant mesophases with processing techniques (e.g. extrusion) may result in functional materials, such as new catalyst support and membrane nanoarchitectures.

  2. Transitions induced by solubilized fat into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Garti, Nissim

    2005-06-25

    Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.

  3. The role of glycerol and phosphatidylcholine in solubilizing and enhancing insulin stability in reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Azulay, Doron; Mishraki, Tehila; Aserin, Abraham; Garti, Nissim

    2011-12-15

    The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross β-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min). Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  5. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications.

    PubMed

    Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-04-15

    Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Osmotically Induced Reversible Transitions in Lipid-DNA Mesophases

    PubMed Central

    Danino, Dganit; Kesselman, Ellina; Saper, Gadiel; Petrache, Horia I.; Harries, Daniel

    2009-01-01

    We follow the effect of osmotic pressure on isoelectric complexes that self-assemble from mixtures of DNA and mixed neutral and cationic lipids. Using small angle x-ray diffraction and freeze-fracture cryo-electron microscopy, we find that lamellar complexes known to form in aqueous solutions can reversibly transition to hexagonal mesophases under high enough osmotic stress exerted by adding a neutral polymer. Using molecular spacings derived from x-ray diffraction, we estimate the reversible osmotic pressure-volume (Π-V) work needed to induce this transition. We find that the transition free energy is comparable to the work required to elastically bend lipid layers around DNA. Consistent with this, the required work is significantly lowered by an addition of hexanol, which is known to soften lipid bilayers. Our findings not only help to resolve the free-energy contributions associated with lipid-DNA complex formation, but they also demonstrate the importance that osmotic stress can have to the macromolecular phase geometry in realistic biological environments. PMID:19348739

  7. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    PubMed

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Exploring the Phase Behavior of Monoolein/Oleic Acid/Water Systems for Enhanced Donezepil Administration for Alzheimer Disease Treatment.

    PubMed

    Ruela, André Luís Morais; Carvalho, Flávia Chiva; Pereira, Gislaine Ribeiro

    2016-01-01

    Donepezil is a drug usually administered by oral route for Alzheimer disease treatment, but several gastric side effects have been reported as diarrhea, nausea, and anorexia. We explored the phase behavior of lyotropic liquid crystalline (LLC) mesophases composed by monoolein/oleic acid/water for enhanced administration of donepezil. Polarized light microscopy suggested that these systems ranged from isotropic inverse micellar solutions (L2) to viscous and birefringent reverse hexagonal (HII) mesophases according to the amount of water in the ternary systems. Phase transition was observed from a L2 phase to HII mesophase after swelling studies, an interesting property to be explored as a precursor of LLC mesophases for mucosal administration that increases its viscosity in situ. Mucoadhesive properties of LLC mesophases were characterized using a texture analyzer indicating that these systems can have an increased residence time in the site of absorption. Donepezil-free base was incorporated in the evaluated formulations, and their in vitro release was controlled up to 24 h. The phase behavior of the systems demonstrated a great potential for enhanced donepezil administration once these mucoadhesive-controlled release formulations can incorporate the drug and prolong its release, possibly reducing its side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-09-01

    Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.

  10. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery.

    PubMed

    Fonseca-Santos, Bruno; Dos Santos, Aline Martins; Rodero, Camila Fernanda; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G″), as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.

  11. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    PubMed

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  12. Molecularly Imprinted Microrods via Mesophase Polymerization.

    PubMed

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  13. Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases

    NASA Astrophysics Data System (ADS)

    Doshi, Dhaval A.; Huesing, Nicola K.; Lu, Mengcheng; Fan, Hongyou; Lu, Yunfeng; Simmons-Potter, Kelly; Potter, B. G.; Hurd, Alan J.; Brinker, C. Jeffrey

    2000-10-01

    Photosensitive films incorporating molecular photoacid generators compartmentalized within a silica-surfactant mesophase were prepared by an evaporation-induced self-assembly process. Ultraviolet exposure promoted localized acid-catalyzed siloxane condensation, which can be used for selective etching of unexposed regions; for ``gray-scale'' patterning of refractive index, pore size, surface area, and wetting behavior; and for optically defining a mesophase transformation (from hexagonal to tetragonal) within the film. The ability to optically define and continuously control both structure and function on the macro- and mesoscales is of interest for sensor arrays, nanoreactors, photonic and fluidic devices, and low-dielectric-constant films.

  14. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi

  15. Phase states and thermomorphologic, thermotropic, and magnetomorphologic properties of lyotropic mesophases: Sodium lauryl sulphate-water-1-decanol liquid-crystalline system

    NASA Astrophysics Data System (ADS)

    Özden, Pınar; Nesrullajev, Arif; Oktik, Şener

    2010-12-01

    Phase states in sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system have been investigated for different temperature ranges. The dependence of triangle phase diagram types, phase boundaries, and sequence of lyotropic mesophases vs temperature has been found. The thermomorphologic, thermotropic, and magnetomorphologic properties of hexagonal E, lamellar D, nematic-calamitic NC , nematic-discotic ND , and biaxial nematic Nbx mesophases have been studied in detail. Dynamics of transformations of magnetically induced textures has been investigated. Peculiarities of typical and magnetically induced textures have been investigated in detail. Triangle phase diagrams of sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system for different temperatures and typical and magnetically induced textures of E, D, NC , ND , and Nbx mesophases are presented.

  16. Phase diagram of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system with application of mechanical deformation

    NASA Astrophysics Data System (ADS)

    Yavuz, Aykut Evren; Masalci, Özgür; Kazanci, Nadide

    2014-11-01

    Morphological properties of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system in different concentrations have been studied. In the process, isotropic phase (L1) and nematic calamitic (NC), nematic discotic (ND), hexagonal E and lamellar D anizotropic mesophases have been determined by polarizing microscopy method and partial ternary phase diagram of the system set up. Textural properties of the anisotropic mesophases of the system have been discussed and their birefringence values measured. Mechanical deformation has been applied to the mesophases. The textural properties and the birefringence values have been observed to be changed by the deformation, after and before which changes have been compared.

  17. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  18. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, Deborah A.; Rokhlenko, Yekaterina; Marine, Jeannette E.

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometrymore » in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.« less

  19. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    PubMed

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Columnar to Nematic Mesophase Transition: Binary Mixtures of Unlike Copper Soaps

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-10-01

    Copper (II) soaps are known to produce columnar mesophases at high temperature. The polar groups of the soap molecules are stacked over one another within columns surrounded by the alkyl chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. The present work studies the mesomorphic behaviour of binary mixtures of copper soaps using differential scanning calorimetry, polarizing microscopy, and X-ray diffraction. When the soaps are of comparable molecular sizes the mixtures are homogeneous and columnar at all compositions. The columns of the two soaps, remaining intact in the mixture, are distributed randomly on the nodes of a hexagonal Bravais lattice. Crystallographic homogeneity is obtained by transfer of methylene groups from cell to cell. When, on the other hand, the soaps are different enough in molecular sizes, the columnar structure of the mixtures is interrupted in the middle range of compositions for the benefit of a nematic one. The transfer of methylene groups gets indeed harder to achieve and the distortion of the hexagonal units cells becomes important. The columnar to nematic phase transition is discussed on a molecular and a topological level.

  1. Photonic mesophases from cut rod rotators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu; Avendano, Carlos

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magneticmore » polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.« less

  2. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  3. Self-assembly approach toward magnetic silica-type nanoparticles of different shapes from reverse block copolymer mesophases.

    PubMed

    Garcia, Carlos B W; Zhang, Yuanming; Mahajan, Surbhi; DiSalvo, Francis; Wiesner, Ulrich

    2003-11-05

    In the present study poly(isoprene-block-ethylene oxide), PI-b-PEO, block copolymers are used to structure iron oxide and silica precursors into reverse mesophases, which upon dissolution of the organic matrix lead to well-defined nanoparticles of spheres, cylinders, and plates based on the original structure of the mesophase prepared. The hybrid mesophases with sphere, cylinder, and lamellar morphologies containing the inorganic components in the minority phases are characterized through a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). After heat treatments the respective nanoparticles on mica surfaces are characterized by scanning force microscopy (SFM). X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) magnetometer measurements are performed to demonstrate that the heat treatment leads to the formation of a magnetic gamma-Fe2O3 crystalline phase within the amorphous aluminosilicate. The results pave the way to functional, i.e., magnetic nanoparticles where the size, shape, and iron oxide concentration can be controlled opening a range of possible applications.

  4. The structures of the crystalline phase and columnar mesophase of rhodium (II) heptanoate and of its binary mixture with copper (II) heptanoate probed by EXAFS

    NASA Astrophysics Data System (ADS)

    Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.

  5. In Situ GISAXS investigation of low-temperature aging in oriented surfactant-mesostructured titania thin films

    DOE PAGES

    Nagpure, Suraj; Das, Saikat; Garlapalli, Ravinder K.; ...

    2015-09-11

    In this study, the mechanism of forming orthogonally oriented hexagonal close packed (o-HCP) mesostructures during aging of surfactant-templated titania thin films is elucidated using in situ grazing incidence small-angle x-ray scattering (GISAXS) in a controlled-environment chamber. To promote orthogonal orientation, glass slides are modified with crosslinked Pluronic P123, to provide surfaces chemically neutral towards both blocks of mesophase template P123. At 4 °C and 80% RH, the o-HCP mesophase emerges in thin (~60 nm) films by a direct disorder-to-order transition, with no intermediate ordered mesophase. The Pluronic/titania o-HCP GISAXS intensity emerges only after ~10-12 minutes, much slower than previously reportedmore » for smallmolecule surfactants. The Avrami model applied to the data suggests 2D growth with nucleation at the start of the process with a half-life of 39.7 minutes for the aging time just after the induction period of 7 minutes followed by a period consistent with 1D growth kinetics. Surprisingly, films that are thicker (~250 nm) or cast on unmodified slides form o-HCP mesophase domains, but by a different mechanism (2D growth with continuous nucleation) with faster and less complete orthogonal alignment. Thus, the o-HCP mesophase is favored not only 2 by modifying the substrate, but also by aging at 4 °C, which is below the lower consolute temperature (LCST) of the poly(propylene oxide) block of P123. Consistent with this, in situ GISAXS shows that films aged at room temperature (above the LCST of the PPO block) have randomly oriented HCP mesostructure.« less

  6. Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers

    DOE PAGES

    Perez-Sanchez, German; Chien, Szu -Chia; Gomes, Jose R. B.; ...

    2016-04-04

    A detailed theoretical understanding of the synthesis mechanism of periodic mesoporous silica has not yet been achieved. We present results of a multiscale simulation strategy that, for the first time, describes the molecular-level processes behind the formation of silica/surfactant mesophases in the synthesis of templated MCM-41 materials. The parameters of a new coarse-grained explicit-solvent model for the synthesis solution are calibrated with reference to a detailed atomistic model, which itself is based on quantum mechanical calculations. This approach allows us to reach the necessary time and length scales to explicitly simulate the spontaneous formation of mesophase structures while maintaining amore » level of realism that allows for direct comparison with experimental systems. Our model shows that silica oligomers are a necessary component in the formation of hexagonal liquid crystals from low-concentration surfactant solutions. Because they are multiply charged, silica oligomers are able to bridge adjacent micelles, thus allowing them to overcome their mutual repulsion and form aggregates. This leads the system to phase separate into a dilute solution and a silica/surfactant-rich mesophase, which leads to MCM-41 formation. Before extensive silica condensation takes place, the mesophase structure can be controlled by manipulation of the synthesis conditions. Our modeling results are in close agreement with experimental observations and strongly support a cooperative mechanism for synthesis of this class of materials. Furthermore, this work paves the way for tailored design of nanoporous materials using computational models.« less

  7. Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.

    PubMed

    Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N

    2011-12-06

    A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society

  8. Wet powder processing of sol-gel derived mesoporous silica-hydroxyapatite hybrid powders.

    PubMed

    Andersson, Jenny; Johannessen, Espen; Areva, Sami; Järn, Mikael; Lindén, Mika

    2006-08-01

    This paper describes a method by which a porous silica coating layer can be obtained on different apatite particles through a simple sol-gel synthesis route. Sol-gel derived powders of hydroxyapatite (HAP) and beta tricalciumphosphate (beta-TCP) were coated with a mesoporous silica using C16TAB (hexadecyltrimethylammonium bromide) as a template in order to induce mesophase formation. Further calcination of the material removes the template from the mesophase and leaves a highly ordered hexagonal arranged mesoporous silica structure with a core of HAP/beta-TCP. The phase purity of the SiO2/apatite composites has been thoroughly investigated by the means of FT-IR, XRD, and solid state 31P MAS NMR. The phase purity of these materials is shown to be dependent on the solubility properties of the used apatites. The hybrid materials are suitable as a multifunctional biomaterial where osteoconductive properties can be combined with drug delivery.

  9. Supramolecular aggregates of metallo-organic acids with stilbazoles. Formation of columnar mesophases and Langmuir films.

    PubMed

    Domínguez, Cristina; Donnio, Bertrand; Coco, Silverio; Espinet, Pablo

    2013-11-28

    Supramolecular metal complexes formed through hydrogen bonding between tris(3,4,5-decyloxy)stilbazole and several metallo-organic acids of the type [Au(R)(CNC6H4CO2H)] (R = C6F5, C6F4OC10H21), [cis-[MCl2(CNC6H4COOH)2] and [trans-[MI2(CNC6H4COOH)2] (M = Pd, Pt) have been synthesized. All the supramolecular palladium and platinum polycatenar aggregates display a hexagonal columnar mesophase at temperatures close to room temperature. Most of the supramolecular trisalkoxystilbazole complexes exhibit luminescent behaviour. Aggregates of [Au(C6F4OC10H21)(CNC6H4CO2H)] and [trans-[MI2(CNC6H4COOH)2] (M = Pd, Pt) form stable Langmuir films at the air-water interface.

  10. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    PubMed

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. Copyright © 2011. Published by Elsevier Ireland Ltd.

  11. Monodisperse mesoporous silica nanoparticles of distinct topology.

    PubMed

    Luo, Leilei; Liang, Yucang; Erichsen, Egil Sev; Anwander, Reiner

    2017-06-01

    Monodisperse and uniform high-quality MCM(Mobil Composition of Matter)-48-type CMSNs (Cubic Mesoporous Silica Nanoparticles) are readily prepared by simply optimizing the molar ratio of ethanol and surfactant in the system TEOS-CTAB-NaOH-H 2 O-EtOH (TEOS=tetraethyl orthosilicate, CTAB=cetyltrimethylammonium bromide, EtOH=ethanol). In the absence of ethanol only hexagonal mesoporous silica with ellipsoidal and spherical morphology are obtained. The presence of ethanol drives a mesophase transformation from hexagonal to mixed hexagonal/cubic, further to purely cubic, and finally to a mixed cubic/lamellar. This is accompanied by a morphology evolution involving a mixture of ellipses/spheres, regular rods, uniform spheres, and finally a mixture of spheres/flakes. Preserving the three-dimensional (3D) cubic MCM-48 structure, use of a small amount of ethanol is beneficial to the improvement of the monodispersity of the CMSNs. Moreover, the quality of the CMSNs can also be controlled by changing the surfactant concentration or adjusting the stirring rate. All MSNs were characterized using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and N 2 physisorption, indicating highly long-range ordered pore arrays, high specific surface areas (max. 1173 m 2 g -1 ) as well as high pore volumes (max. 1.14 cm 3 g -1 ). The monodispersity of the CMSNs was verified by statistical particle size distribution from SEM (scanning electron microscopy)/TEM (transmission electron microscopy) images and DLS (dynamic light scattering). The mesophase transformation can be rationalized on the basis of an ethanol-driven change of the surfactant packing structure and charge matching at the surfactant/silicate interface. The corresponding morphology evolution can be elucidated by an ethanol-controlled hydrolysis rate of TEOS and degree of condensation of oligomeric silicate species via a nucleation and growth process. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system

    PubMed Central

    Rathee, Vikram; Krishnaswamy, Rema; Pal, Antara; Raghunathan, V. A.; Impéror-Clerc, Marianne; Pansu, Brigitte; Sood, A. K.

    2013-01-01

    We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature in weakly swollen isotropic and lamellar mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below , which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the phase to an phase induced by shear flow, before the nucleation of the phase. Shear diagram of the phase constructed in the parameter space of shear rate vs. temperature exhibits and transitions above the equilibrium crystallization temperature , in addition to the irreversible shear-driven nucleation of in the phase below . In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems. PMID:23986497

  13. Hard Pd Nanorods in the Soft Surfactant Mixture of CTAB and Pluronics: Seedless Synthesis and Their Self-Assembly.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I

    2018-04-10

    Seedless synthesis of Pd nanorods and their self-assembly into the layered smectic ordering are described. Aqueous Pluronic triblock copolymers (14.3-35.7%) are used as a soft template along with cetyltrimethylammonium bromide for inducing one-dimensional growth of Pd nanorods. Pluronic triblock copolymers are probably the most used polymer surfactants, and they are composed of poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblocks. Neither pH adjustment nor AgNO 3 and other additives, such as poly(vinyl pyrrolidone) and ethylene glycol, are required to obtain Pd nanorods. Sonochemical synthesis at 43 °C, followed by thermal annealing for 1 h at 65 °C produces Pd nanorods with the aspect ratio from 3.1 (17.9%, Pluronic L-64) to 6.7 (35.7%, Pluronic P-123). Two-dimensional self-assembly of the nanorods is observed, and both nematic ordering between the mesogens and smectic ordering between the layers is identified. Micellar hydrophobic PPO with hydrated PEO coronas are known to self-assemble into many crystalline orders, including cubic, hexagonal, lamellar, and inverse hexagonal mesophases, which extend into cylindrical micelles with increasing temperature. Relatively small size of Pluronic copolymers with regard to general polymers, but rather large size of their micelles and their tendency to organize into crystalline mesophases are thought to contribute to the anisotropic growth of Pd nanorods.

  14. Volumetric and x-ray investigations of the crystalline and columnar phases of copper (II) soaps under pressure

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.

    1992-12-01

    Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.

  15. Large PAMAM Dendron Induces Formation of Unusual P4332 Mesophase in Monoolein/Water system.

    PubMed

    Kumar, Manoj; Patil, Naganath G; Ambade, Ashootosh V; Kumaraswamy, Guruswamy

    2018-05-18

    Compact macromolecular dendrons have been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome C. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3d and discontinuous micellar mesophases. In this unusual phase, every third rod junction of the Ia3d mesophase is replaced with a spherical micelle. We present a detailed investigation of the phase behaviour of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the L to Ia3d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. Thus, incorporation of G5 yields a qualitatively different phase diagram when compared with incorporation of lower generation PAMAM dendrons (G2 - G4) in monoolein/water, where the reverse micellar Fd3m phase forms. PAMAM dendrons of all generations, G2 - G5, bear terminal amine groups that interact with the monoolein head group. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2 - G4, this results in the formation of the Fd3m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3d and discontinuous micellar phase, the P4332 mesophase forms instead.

  16. Isomorphism Within the Hexagonal Columnar Mesophase of Molecular and Macromolecular Self- and Co-Assembled Columns Containing Tapered Groups

    DTIC Science & Technology

    1994-06-30

    benzyloxylbenzoic acid , their corresponding polymethacrylates , and of 4’- methyl (benzo- 15-crown-5)-3,4,5-tris[4-(n-dodecan- 1 -yloxy)benzyloxylbenzoate within...l-yloxy)benzyloxy]benzoic acid , of their corresponding polymethacrylates , and of 4’-methyl(benzo- 15-crown-5)-3,4,5-tris[4- (n-dodecan- 1-yloxy...benzyloxylbenzoic acid , of their corresponding polymethacrylates ,18a and of 4’-methyl(benzo-15-crown-5)-3,4,5-tris[4-(n-dodecan-l- yloxy)benzyloxy]benzoate 1 7

  17. Influence of chirality on the thermal and electric properties of the columnar mesophase exhibited by homomeric dipeptides

    NASA Astrophysics Data System (ADS)

    Parthasarathi, Srividhya; Shankar Rao, D. S.; Prabhu, Rashmi; Yelamaggad, C. V.; Krishna Prasad, S.

    2017-10-01

    We present the first investigation of the influence of chirality on the thermal and electric properties in a biologically important homomeric dipeptide that exhibits a hexagonal columnar liquid crystal mesophase. The peptide employed has two chiral centres, and thus the two possible enantiopures are the (R,R) and (S,S) forms having opposite chirality. The measurements reported the span of the binary phase space between these two enantiopures. Any point in the binary diagram is identified by the enantiomeric excess Xee (the excess content of the R,R enantiopure over its S,S counterpart). We observe that the magnitude of Xee plays a pivotal role in governing the properties as evidenced by X-ray diffraction (XRD), electric polarization (Ps), dielectric relaxation spectroscopy (DRS) measurements, and the isotropic-columnar transition temperature. For example, XRD shows that while other features pointing to a hexagonal columnar phase remain the same, additional short-range ordering, indicating correlated discs within the column, is present for the enantiopures (Xee = ±1) but not for the racemate (Xee = 0). Similarly, an electric-field driven switching whose profile suggests the phase structure to be antiferroelectric is seen over the entire binary space, but the magnitude is dependent on Xee; interestingly the polarization direction is axial, i.e., along the column axis. DRS studies display two dielectric modes over a limited temperature range and one mode (mode 2) connected with the antiferroelectric nature of the columnar structure covering the entire mesophase. The relaxation frequency and the thermal behaviour of mode 2 are strongly influenced by Xee. The most attractive effect of chirality is its influence on the polar order, a measure of which is the magnitude of the axial polarization. This result can be taken to be a direct evidence of the manifestation of molecular recognition and the delicate interplay between chiral perturbations and the magnitude of the polar order, a feature attractive from the viewpoint of devices based on, e.g., remnant polarization—a currently hot topic. To add further dimension to the work, the DRS measurements are also extended to elevated pressures.

  18. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties.

    PubMed

    Zhang, Lei; Maity, Sourav; Liu, Kai; Liu, Qing; Göstl, Robert; Portale, Giuseppe; Roos, Wouter H; Herrmann, Andreas

    2017-09-01

    Over the last decades, water-based lyotropic liquid crystals of nucleic acids have been extensively investigated because of their important role in biology. Alongside, solvent-free thermotropic liquid crystals (TLCs) from DNA are gaining great interest, owing to their relevance to DNA-inspired optoelectronic applications. Up to now, however, only the smectic phase of DNA TLCs has been reported. The development of new mesophases including nematic, hexagonal, and cubic structures for DNA TLCs remains a significant challenge, which thus limits their technological applications considerably. In this work, a new type of DNA TLC that is formed by electrostatic complexation of anionic oligonucleotides and cationic surfactants containing an azobenzene (AZO) moiety is demonstrated. DNA-AZO complexes form a stable nematic mesophase over a temperature range from -7 to 110 °C and retain double-stranded DNA structure at ambient temperature. Photoisomerization of the AZO moieties from the E- to the Z-form alters the stiffness of the DNA-AZO hybrid materials opening a pathway toward the development of DNA TLCs as stimuli-responsive biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carrier transport property of truxene discotic liquid crystals with three different ring substituents

    NASA Astrophysics Data System (ADS)

    Monobe, Hirosato; Ni, Hai-Liang; Hu, Ping; Wang, Bi-Qin; Zhao, Ke-Qing; Shimizu, Yo

    2016-03-01

    In this study, the charge carrier transport property of 3,8,13-trioctyloxytruxene [Trx(OC8)3] and its analogues, to which two different ring substituents of hydroxyl [Trx(OH)3(OC8)3] and methoxy [Trx(OMe)3(OC8)3] groups are introduced, has been studied relative to mesomorphism. Three analogues exhibit a hexagonal columnar (Colh) mesophase and their thermal stability increases with the introduction of hydroxyl and methoxy groups. The drift mobility measurements of Trx(OC8)3 and Trx(OH)3(OC8)3 reveal that the drift mobility is on the order of 5 × 10-2 cm2 V-1 s-1 in the Colh phase and it increases to 10-1 cm2 V-1 s-1 at the Colh-metastable phase transition, although Trx(OMe)3(OC8)3 shows a drift mobility of 1 × 10-2 cm2 V-1 s-1 in the Colh phase with temperature dependence. These results indicate that truxene with three alkoxy chains is an interesting molecular core for mesophase semiconductors.

  20. Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein-Capric Acid-Phospholipid Nanoparticulate Systems.

    PubMed

    Zhai, Jiali; Tran, Nhiem; Sarkar, Sampa; Fong, Celesta; Mulet, Xavier; Drummond, Calum J

    2017-03-14

    We report here the lyotropic liquid crystalline phase behavior of two lipid nanoparticulate systems containing mixtures of monoolein, capric acid, and saturated diacyl phosphatidylcholines dispersed by the Pluronic F127 block copolymer. Synchrotron small-angle X-ray scattering (SAXS) was used to screen the phase behavior of a library of lipid nanoparticles in a high-throughput manner. It was found that adding capric acid and phosphatidylcholines had opposing effects on the spontaneous membrane curvature of the monoolein lipid layer and hence the internal mesophase of the final nanoparticles. By varying the relative concentration of the three lipid components, we were able to establish a library of nanoparticles with a wide range of mesophases including at least the inverse bicontinuous primitive and double diamond cubic phases, the inverse hexagonal phase, the fluid lamellar phase, and possibly other phases. Furthermore, the in vitro cytotoxicity assay showed that the endogenous phospholipid-containing nanoparticles were less toxic to cultured cell lines compared to monoolein-based counterparts, improving the potential of the nonlamellar lipid nanoparticles for biomedical applications.

  1. Influence of the liquid crystal behaviour on the Langmuir and Langmuir-Blodgett film supramolecular architecture of an ionic liquid crystal.

    PubMed

    Pérez-Gregorio, Víctor; Giner, Ignacio; López, M Carmen; Gascón, Ignacio; Cavero, Emma; Giménez, Raquel

    2012-06-01

    A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains.

    PubMed

    Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja

    2018-05-22

    Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally packed cylinders. The achieved periods are as small as 3.0 and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the detailed phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers. The simulations reveal that the behavior of these HCBOs is a product of an interplay between both "surfactant factors" (headgroup interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored toward particular desired morphologies.

  3. Phase behavior and transitions of self-assembling nano-structured materials

    NASA Astrophysics Data System (ADS)

    Duan, Hu

    Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.

  4. Hybrid photoluminescent materials containing a benzobisthiazole core for liquid crystal and gel applications.

    PubMed

    Díaz, E; Elgueta, E; Sanchez, S A; Barberá, J; Vergara, J; Parra, M; Dahrouch, M

    2017-03-01

    Tetra- and hexacatenar amide compounds containing a linear centrosymmetric benzobisthiazole core were synthesized with good yields. These compounds were characterized and their structures confirmed by elemental analysis, and FT-IR, Maldi mass and NMR spectroscopy. All compounds exhibited excellent thermal stability up to 330 °C. The tetracatenar series containing a double substitution in the meta positions did not show mesomorphic behaviour, whereas the hexacatenar and tetracatenar series having a double substitution in the meta and para positions showed liquid crystal properties with optical textures typical of columnar mesophases corroborated by POM analysis. The mesomorphic properties were dependent on the length, number and position of alkoxy chains attached at the end of the rigid core. XRD studies of the hexacatenar series showed the hexagonal columnar structure of the mesophases. Photoluminescence properties in solution were observed in the visible region, with good quantum yields. In the solid state, these compounds behave as blue emitters and they are able to change colour with acid or base addition. The hexacatenar benzobisthiazole compound with an alkoxy chain of 14 carbons presented properties of a supergelator in chloroform, leading to the formation of a fluorescent organogel material with fluorescence emission in the blue region.

  5. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    PubMed Central

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  6. Pore orientation effects on the kinetics of mesostructure loss in surfactant templated titania thin films

    DOE PAGES

    Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.; ...

    2016-12-17

    The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.« less

  7. Pore orientation effects on the kinetics of mesostructure loss in surfactant templated titania thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.

    The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.« less

  8. Structure and physical stability of hydrates and thermotropic mesophase of calcium benzoate.

    PubMed

    Terakita, Akira; Byrn, Stephen R

    2006-05-01

    The aim of this study is to investigate the hydration and the dehydration processes of calcium benzoate hydrates (trihydrate and monohydrate), thermotropic mesophases (dehydrated mesophase and lyophilized mesophase) and amorphous state, and the influence of their molecular order on those processes. X-ray analysis revealed that trihydrate has a planar structure composed of two types of planes-one from benzoic acid, water, and calcium ion and another from benzoic acid and water-and that both planes are linked by three water molecules. It was found that calcium benzoate was able to exist as thermotropic mesophases by dehydration of trihydrate and lyophilization. These mesophases were characterized by polarizing-light microscopy (PLM), X-ray powder diffraction (XRPD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Both mesophases prepared by two procedures showed some similar physical properties, but lyophilized mesophase seemed to have molecular structure with higher order than dehydrated mesophase. The mesophases exhibited different hydration behavior. The dehydrated mesophase showed a stepwise rehydration process where it became monohydrate first and then trihydrate. The lyophilized mesophase became trihydrate without appearance of monohydrate. An amorphous form could also be prepared and it rehydrated first to the monohydrate and then trihydrate. The results suggest that the more disordered dehydrated mesophase and amorphous state change to monohydrate whereas the more ordered lyophilized mesophase cannot change to monohydrate but only to trihydrate.

  9. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides.

    PubMed

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O

    2013-07-02

    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  10. PS-b-PEO/Silica Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales Prepared by Solvent Evaporation-Induced Self-Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.

    2000-11-22

    Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore,more » templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through EISA. It is believed that the present system is the first to yield amphiphile/silica films with regular and reverse mesophases, as well as curved multi-bilayer mesostructures, through EISA. The ready formation of the diblock/silica films with multi-bilayer vesicular mesostructures is discussed.« less

  11. Molecular dynamics approach to water structure of HII mesophase of monoolein

    NASA Astrophysics Data System (ADS)

    Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim

    2012-02-01

    The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.

  12. Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets.

    PubMed

    Seddon, Annela M; Richardson, Sam J; Rastogi, Kunal; Plivelic, Tomás S; Squires, Adam M; Pfrang, Christian

    2016-04-07

    We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research.

  13. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    PubMed

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f < 1 kHz) measured in the range 10 Hz to 5 MHz, which is attributed to the collective motion of the molecules within cybotactic clusters. The formation of local polar order in these clusters leads to a ferroelectric-like polar switching in the nematic mesophase. Of particular interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  14. Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2017-01-24

    Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.

  15. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    PubMed

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim

    2008-02-15

    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  16. Crystallizing Membrane Proteins Using Lipidic Mesophases

    PubMed Central

    Caffrey, Martin; Cherezov, Vadim

    2009-01-01

    A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:19390528

  17. Effects of Detergent β-Octylglucoside and Phosphate Salt Solutions on Phase Behavior of Monoolein Mesophases

    PubMed Central

    Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.

    2013-01-01

    Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861

  18. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases

    PubMed Central

    Khvostichenko, Daria S.; Kondrashkina, Elena; Perry, Sarah L.; Pawate, Ashtamurthy S.; Brister, Keith

    2013-01-01

    Lipidic mesophases are a class of highly ordered soft materials that form when certain lipids are mixed with water. Understanding the relationship between the composition and the microstructure of mesophases is necessary for fundamental studies of self-assembly in amphiphilic systems and for applications, such as crystallization of membrane proteins. However, the laborious formulation protocol for highly viscous mesophases and the large amounts of material required for sample formulation are significant obstacles in such studies. Here we report a microfluidic platform that facilitates investigations of the phase behavior of mesophases by reducing sample consumption, and automating and parallelizing sample formulation. The mesophases were formulated on-chip using less than 40 nL of material per sample and their microstructure was analyzed in situ using small-angle X-ray scattering (SAXS). The 220 μm-thick X-ray compatible platform was comprised of thin polydimethylsiloxane (PDMS) layers sandwiched between cyclic olefin copolymer (COC) sheets. Uniform mesophases were prepared using an active on-chip mixing strategy coupled with periodic cooling of the sample to reduce the viscosity. We validated the platform by preparing and analyzing mesophases of lipid monoolein (MO) mixed with aqueous solutions of different concentrations of β-octylglucoside (βOG), a detergent frequently used in membrane protein crystallization. Four samples were prepared in parallel on chip, by first metering and automatically diluting βOG to obtain detergent solutions of different concentration, then metering MO, and finally mixing by actuation of pneumatic valves. Integration of detergent dilution and subsequent mixing significantly reduced the number of manual steps needed for sample preparation. Three different types of mesophases typical for monoolein were successfully identified in SAXS data from on-chip samples. Microstructural parameters of identical samples formulated in different chips showed excellent agreement. Phase behavior observed on-chip corresponded well with that of samples prepared via the traditional coupled-syringe method (“off-chip”) using 300-fold larger amount of material, further validating the utility of the microfluidic platform for on-chip characterization of mesophase behavior. PMID:23882463

  19. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, X.; Kinoshita, Kimio

    1999-02-23

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.

  20. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, Xi; Kinoshita, Kimio

    1999-01-01

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.

  1. Swollen hexagonal liquid crystals as smart nanoreactors: implementation in materials chemistry for energy applications.

    PubMed

    Ghosh, Srabanti; Ramos, Laurence; Remita, Hynd

    2018-03-29

    Materials are the key roadblocks for the commercialization of energy conversion devices in fuel cells and solar cells. Significant research has focused on tuning the intrinsic properties of materials at the nanometer scale. The soft template mediated controlled fabrication of advanced nanostructured materials is attracting considerable interest due to the promising applications of these materials in catalysis and electrocatalysis. Swollen hexagonal lyotropic liquid crystals (SLCs) consist of oil-swollen surfactant-stabilized 1D, 2D or 3D nanometric assemblies regularly arranged in an aqueous solvent. Interestingly, the characteristic size of the SLCs can be controlled by adjusting the volume ratio of oil to water. The non-polar and/or polar compartments of the SLCs can be doped with guest molecules and used as nanoreactors for the synthesis of various metals (Pt, Pd, Au, etc.), conducting polymers and composite nanostructures with controlled size and shape. 1D, 2D and 3D mono- and bimetallic nanostructures of controlled composition and porosity can also be fabricated. These materials have demonstrated impressive enhancements of their electrochemical properties as compared to their bulk counterparts and have been identified as promising for further implementation in energy harvesting applications. In this review article, recent research materials are described regarding the development of functional materials with much improved performances for catalysis applications. This review addresses a brief overview of swollen hexagonal mesophases as nanoreactors, describes examples of nanostructured materials synthesized in these nanoreactors, shows several examples of the energy conversion applications in solar light harvesting, fuel cells etc. and also summarizes the associated reaction mechanisms developed in the recent literature for enhanced catalytic activity.

  2. Influence of boiling point range of feedstock on properties of derived mesophase pitch

    NASA Astrophysics Data System (ADS)

    Yu, Ran; Liu, Dong; Lou, Bin; Chen, Qingtai; Zhang, Yadong; Li, Zhiheng

    2018-06-01

    The composition of raw material was optimized by vacuum distillation. The carbonization behavior of two kinds of raw material was followed by polarizing microscope, softening point, carbon yield and solubility. Two kinds of mesophase pitch have been monitored by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), elemental analysis and 1H nuclear magnetic resonance (1H-NMR). The analysis results suggested that raw material B (15wt% of A was distillated out and the residue named B) could form large domain mesophase pitch earlier. The shortened heat treat time favored the retaining of alkyl group in mesophase pitch and reduced the softening point of masophase pitch.

  3. Synthesis and energy applications of oriented metal oxide nanoporous films

    NASA Astrophysics Data System (ADS)

    Wu, Qingliu

    This dissertation mainly addresses the synthesis of well-ordered mesoporous titania thin films by dip coating with PEO-PPO-PEO triblock copolymer surfactant template P123. Because P123 is composed of poly(ethylene oxide) [PEO] and poly(propylene oxide) [PPO] blocks, concentrations of ingredients are adjusted to tune the films' wall thickness, pore size and mesophase. Structural changes are consistent with partitioning of species among PEO blocks, PPO blocks, and the PEO/PPO interface. Titanates localize near PEO and increase wall thickness (by 5 nm to 7 nm). Depending on aging temperature, PPG either swells the PPO cores (when it is hydrophobic) or introduces large (>200 nm) voids (when it is hydrophilic but phase separates during heating). 1-butanol localizes at the PEO/PPO interface to favor a 3D hexagonal mesostructure. In another approach, anodizing Ti foils yields vertically aligned titania nanotubes arrays with exceptional stabilities as anodes in lithium ion batteries; they maintain capacities of 130-230 mAhg-1 over 200 cycles. No microstructural changes are induced by battery cycling and good electrical contact is maintained. A diffusion induced stress model suggests that thin-walled nanotubes arrays should be stable under testing conditions, and that ordered hexagonal columnar pore arrays should have both high charge/discharge rates and low stress development. KEY WORDS: materials synthesis, porous, thin film, alternative energy, self-assembly

  4. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems.

    PubMed

    Yariv, Doron; Efrat, Rivka; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2010-07-01

    In this paper we examined feasible correlations between the structure of different lyotropic mesophases and transdermal administration of three diclofenac derivatives with varying degrees of kosmotropic or chaotropic properties, solubilized within the mesophases. It was found that the most chaotropic derivative of diclofenac diethyl amine (DEA-DFC) interacted with the polar heads of glycerol monooleate (GMO), thus expanding the water-lipid interface of the lamellar and cubic mesophases. This effect was detected by an increase in the lattice parameter of both mesophases, enhanced elastic properties, and increased solid-like response of the systems in the presence of DEA. Potassium diclofenac (K-DFC), a less chaotropic salt, had less pronounced effect on the structural features of the mesophases. Kosmotropic Na+ salt (Na-DFC) had only minor influence on both lamellar and cubic structures. The locus of solubilization of the molecules with the host mesophases was correlated with their delivery. It was suggested that transdermal delivery of kosmotropic Na-DFC was accelerated by the aqueous phase and less constrained by the interaction with monoglyceride. On the other hand, the chaotropic cations (K+ and DEA+), presumably entrapped in the water-lipid interface, interacted with monoglyceride headgroups, which is likely to be the key cause for their sustained administration. 2010 Elsevier B.V. All rights reserved.

  5. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  6. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shrestha, Lok Kumar; Strzelczyk, Karolina Maria; Goswami Shrestha, Rekha; Ichikawa, Kotoko; Aramaki, Kenji; Hill, Jonathan P.; Ariga, Katsuhiko

    2015-05-01

    Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

  7. Improvements to quality of needle coke by controlled carbonized conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Lou, Bin; Yu, Ran; Chen, Qingtai; Li, Zhiheng; Zhang, Yadong

    2018-06-01

    In this study, the selected aromatic-rich fraction derived from hydrocracking tail oil was carbonized and further improvement in the quality of resultant coke was achieved by promoting temperature at the solidification stage. In comparison with conventional process carried out isothermally and isobarically, the coupling analysis between formation and subsequent uni-axial orientation of mesophase textures during the controlled process was systematically discussed on the basis of the mutual relevance among mesophase texture evolution, gas evolution rate and solidification rate of intermediates. The results show that on the premise that formation of bulk mesophase, appropriate rate of gas evolution at a right time of solidification contributes to fine produces fine fibrous mesophase aligned uni-axially and less pores. Moreover, the intermediates with solidification index of 2˜6 are suitable for deformation induced by gas evolution.

  8. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE PAGES

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan; ...

    2016-06-02

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  9. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  10. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  11. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  12. Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.

  13. Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation.

    PubMed

    Tavano, Lorena; Nicoletta, Fiore Pasquale; Picci, Nevio; Muzzalupo, Rita

    2016-03-01

    Cromolyn sodium, or disodium cromoglycate (CS), is a surface active drug: a pharmacologically active compound with an amphiphilic nature. At certain conditions it is able to self-associate in several kind of supramolecular aggregates. Since CS could play the role of both carrier and drug, bypassing the use of additional excipients and increasing the system biocompatibility, the effects of cromolyn self-aggregates on diffusion and percutaneous permeation across rabbit ear skin were investigated. Niosomes (vesicular systems, 0.5wt% of CS), monomeric and isotropic solutions (0.5 and 5wt% of CS), nematic (15wt% of CS) and hexagonal phases (30wt% of CS) were selected as supramolecular systems and tested as transdermal delivery systems. Results demonstrated that CS was able to form vesicular structures of about 500nm of diameter and this formulation gave the higher percutaneous permeation profile (systemic action), while isotropic solution and liquid crystals mesophases acted as slower release reservoir of drug on the skin surface (local action), as confirmed by diffusion coefficients. Diffusion rates through a synthetic membrane were dependent both on CS concentration present into the formulations and on its structural organization: maximum diffusion was noticed with isotropic solution, a lower amount of diffused cromolyn sodium was achieved by hexagonal phase. Consequently, CS appears as a versatile surfadrug as, depending on the disease degree, it is possible to modulate its permeation profile by choosing the most appropriate formulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    PubMed

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties

    NASA Astrophysics Data System (ADS)

    Qurashi, Ahsanulhaq; Faiz, M.; Tabet, N.; Alam, Mir Waqas

    2011-08-01

    The growth of hexagonal ZnO nanorods was demonstrated by low temperature chemical synthesis approach. X-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure of the ZnO nanorods. The optical properties were measured by UV-vis spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) confirmed high purity of the ZnO nanorods. The hydrogen sensor made of the ZnO nanorods showed reversible response. The hydrogen gas tests were carried out in presence of ambient air and the influence of operation temperature on the hydrogen gas sensing property of ZnO nanorods was also investigated.

  16. New nanoparticles obtained by co-assembly of amphiphilic cyclodextrins and nonlamellar single-chain lipids: Preparation and characterization.

    PubMed

    Nguyễn, Cảnh Hưng; Putaux, Jean-Luc; Santoni, Gianluca; Tfaili, Sana; Fourmentin, Sophie; Coty, Jean-Baptiste; Choisnard, Luc; Gèze, Annabelle; Wouessidjewe, Denis; Barratt, Gillian; Lesieur, Sylviane; Legrand, François-Xavier

    2017-10-15

    This work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C 10 ), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C 10 /MO) and ternary (β-CD-C 10 /MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis. The β-CD-C 10 units were shown to self-organize into nanoparticles with a hexagonal supramolecular packing that was significantly modulated by the molar ratio of the constituents and the presence of a steric or electrostatic stabilizer (DOPE-PEG 2000 or DOPA/POPA, respectively). Indeed, nanoparticles differing in morphology and in hexagonal lattice parameters were obtained while the co-existence of multiple mesophases was observed in some formulations, in particular for the β-CD-C 10 /MO/DOPA and β-CD-C 10 /MO/POPA systems. The mixed β-CD-C 10 /MO/DOPE-PEG 2000 nanoparticles (49:49:2 in mol%) appeared to be the most suitable for use as a drug delivery system since they contained a very low amount of residual solvent and showed a low level of complement C3 activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ethyl 7-hydroxycoumarin-3-carboxylate derivatives: Synthesis, characterization and effect of liquid crystal properties

    NASA Astrophysics Data System (ADS)

    Srinivasa, H. T.; Palakshamurthy, B. S.; Mohammad, AbdulKarim-Talaq

    2018-03-01

    Two sets of new ethyl 7-hydroxycoumarin-3-carboxylate derivatives were synthesized and characterized to study the liquid crystalline properties. Chemical structures were confirmed by IR, NMR, CHN analysis techniques. Mesomarphic properties were accomplished by DSC, POM and X-ray studies. Density functional theory calculations and photophysical studies also performed. In the first set, smaller homologues of alkoxybenzoic acid derivatives exhibit monotropic smectic A (SmA) and higher homologous exhibit enantiotropic smectic A mesophase. The second set alkyl biphenyl derivatives exhibit stable SmA and nematic (N) mesophases. The well defined focal conic texture for SmA and threaded texture for nematic mesophases have been observed.

  18. Aqueous Lyotropic Liquid Crystalline Frank-Kasper Mesophases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    Amphiphilic molecules undergo water concentration-dependent self-assembly to form lyotropic liquid crystal (LLC) mesophases. LLC morphology selection is directed by cooperative optimization of preferred molecular packing arrangements, which stem from a subtle balance of local, non-covalent interactions. We recently discovered a class of amphiphiles that form a progression of discontinuous micellar LLCs, including two tetrahedrally-closest packed Frank-Kasper phases that exhibit exceptional long range order. This discovery complements recent reports of their formation in thermotropic liquid crystals, neat diblock and tetrablock polymers, and in lyotropic mesophases of block polymers in ionic liquids. Using a combination of MD simulations and experiments, we provide new insights into the mechanisms of formation for these low symmetry micelle phases.

  19. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  20. A Systematic Study on the Mesomorphic Behavior of Asymmetrical 1-Alkyl-3-dodecylimidazolium Bromides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mei; Mallick, Bert; Mudring, Anja-Verena

    2014-04-02

    To determine the essential parameters for mesophase formation in imidazolium-based ionic liquids (ILs), a library of 1-alkyl-3-dodecylimidazolium bromides was synthesized, abbreviated as CnC12, where 0 ≤ n ≤ 13, as the general notion is that a dodecyl side chain would guarantee the formation of an ionic liquid crystal (ILC). All salts were fully characterized by NMR spectroscopy and mass spectrometry. Their thermal properties were recorded, and mesophase formation was assessed. An odd–even effect is observed for 5 ≤ n ≤ 10 in the temperatures of melting transitions. While the majority of this series, as expected, formed mesophases, surprisingly compounds C2C12more » and C6C12 could not be classified as ILCs, the latter being a room temperature IL, while C2C12 is a crystalline solid with melting point at 37 °C. The single crystal structure of compound 1-ethyl-3-dodecylimidazolium bromide (C2C12) was successfully obtained. Remarkably, the arrangement of imidazolium cores in the structure is very complicated due to multiple nonclassical hydrogen bonds between bromide anions and imidazolium head groups. In this arrangement, neighboring imidazolium rings are forced by hydrogen bonds to form a “face-to-face” conformation. This seems to be responsible for the elimination of a mesophase. To conclude, the general view of a dodecyl chain being a functional group to generate a mesophase is not entirely valid.« less

  1. (13)C NMR Studies, Molecular Order, and Mesophase Properties of Thiophene Mesogens.

    PubMed

    Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T

    2015-12-03

    Three-ring mesogens with a core comprising thiophene linked to one phenyl ring directly and to the other via flexible ester are synthesized with terminal alkoxy chains to probe the mesophase properties and find the molecular order. The phenyl thiophene link in the core offers a comparison of the mesophase features with the molecular shape of the mesogen. The synthesized mesogens display enantiotropic polymesomorphism and accordingly nematic, smectic A, smectic C and smectic B mesophases are perceived depending upon the terminal chain length. For some of the homologues, monotropic higher order smectic phases such as smectic F and crystal E are also witnessed. The existence of polymesomorphism are originally observed by HOPM and DSC and further confirmed by powder X-ray diffraction studies. For the C8 homologue, high resolution solid state (13)C NMR spectroscopy is employed to find the molecular structure in the liquid crystalline phase and using the 2D SLF technique, the (13)C-(1)H dipolar couplings are extracted to calculate the order parameter. By comparing the ratio of local order of thiophene as well as phenyl rings, we establish the bent-core shape of the mesogen. Importantly, for assigning the carbon chemical shifts of the core unit of aligned C8 mesogen, the (13)C NMR measured in mesophase of the synthetic intermediate is employed. Thus, the proposed approach addresses the key step in the spectral assignment of target mesogens with the use of (13)C NMR data of mesomorphic intermediate.

  2. Cascade synthesis of a gold nanoparticle-network polymer composite

    DOE PAGES

    Grubjesic, Simonida; Ringstrand, Bryan Scott; Jungjohann, Katherine L.; ...

    2015-11-02

    In this paper, the multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO 117-PPO 47-PEO 117 and [AuCl 4] -. The reaction sequence begins with the auto-reduction of aqueous [AuCl 4] - by PEO 117-PPO 47-PEO 117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate endderivatized PEO 117-PPO 47-PEO 117 to yield a network polymer. Optical spectroscopy andmore » TEM monitored the reduction of [AuCl 4] -, formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multilamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Finally, optical spectroscopy shows a notable red shift (Δλ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.« less

  3. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    PubMed

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  4. Switching behavior and novel stable states of magnetic hexagonal nanorings

    NASA Astrophysics Data System (ADS)

    Yasir Rafique, M.; Pan, Liqing; Guo, Zhengang

    2017-06-01

    Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named "tri-domain state". The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new "tri-domain" state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and "states size" are discussed in term of geometrical parameter of ring.

  5. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-01

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  6. Self-organization of dendritic supermolecules, based on isocyanide-gold(I), -copper(I), -palladium(II), and -platinum(II) complexes, into micellar cubic mesophases.

    PubMed

    Coco, Silverio; Cordovilla, Carlos; Donnio, Bertrand; Espinet, Pablo; García-Casas, María Jesús; Guillon, Daniel

    2008-01-01

    First- and second-generation dendrimers with an isocyanide group as the focal functional point (CN-G(n); n: 1,2) and their corresponding organometallic complexes [MCl(CN-G(n))] (M: Au, Cu), [{CuCl(CN-G(n))2}2], and trans-[MI2(CN-G(n))2] (M: Pd, Pt) have been synthesized. The free ligands and the first-generation complexes do not show mesogenic behavior, but all of the second-generation complexes display a thermotropic micellar cubic mesophase, over a large temperature range, and some of them directly at room temperature. The structure of the mesophase consists of the packing of two, discrete polyhedral micellar aggregates in a three-dimensional cubic Im$\\bar 3$m lattice.

  7. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility.

    PubMed

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-07

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  8. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  9. The Molecular Design of High-Performance Carbon Materials

    DTIC Science & Technology

    2008-06-30

    Thies MC. Control of mesophase pitch properties by supercritical fluid extraction. Carbon 1998; 36(7-8):953-61. 7] Zhuang M, Gast K, Thies MC...pitch with supercritical toluene. J Supercrit Fluids 1991; 4(1):7-14. 16] Herod AA, Bartle KD, Kandiyoti R. Characterization of heavy...MALDI, mass spectrometry, mesophase, extraction, supercritical , fractionation. 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT u c. THIS

  10. Synthesis and characterization of gold nanoparticles in a self-assembled ionic liquid polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Magurudeniya, Harsha; Ringstrand, Bryan; Jungjohann, Katherine; Firestone, Millicent

    Incorporation of nanoparticles(NPs) into polymer matrices has attracted interest, offering a means to create multi-functional materials combining the attributes of polymers (flexibility, processability, mechanical durability) with the opto-electrical properties of NPs. Synthesis of a self-supporting, hierarchically structured Au NP-network polymer was accomplished via a ``one-pot'' reaction employing a mesophase of AuCl3 and an imidazolium based-ionic liquid (IL) containing a acrylate group. In-situ generation of NPs was achieved by reduction of Au3+which in turn yields concomitant initiation of the polymerization of the mesophase. FT-IR and thermal analysis confirmed acrylate cross-linking. X-ray scattering confirms preservation of the mesophase within the NP composite. TEM showed a distribution of the NPs within the composite of primarily non-spherical morphologies. The co-integration of a macromer, PEG diacrylate, served as a reducing agent for the Au and the amount incorporated into the mesophase allowed for manipulation of the swelling factor of the resultant nanocomposite in a ethanol, providing means to modulate the plasmonic resonance of the NPs. This methodology provides means for organizing NPs within the structured regions of the poly(IL) matrix. Such composites may be of interest for photonic/sensing applications.

  11. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    PubMed

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  12. Molecular Dynamics in a Liquid Crystal with Reentrant Mesophases

    NASA Astrophysics Data System (ADS)

    Sebastião, P. J.; Ribeiro, A. C.; Nguyen, H. T.; Noack, F.

    1995-11-01

    It is well known that liquid crystalline compounds with a cyano terminal group can present peculiar polymorphisms in particular different types of smectic A mesophases and a reentrant behaviour for both nematic and smectic A mesophases. In this work we study by proton NMR relaxation the influence of these features on the molecular dynamics of the compound 4-cyanobenzoate-4'-octylbenzoyloxyphenyl (DB8CN Sym) in its nematic (N), partial bilayer smectic A (SAd), reentrant nematic (Nre) and reentrant smectic A (SA1) mesophases. Standard and fast field-cycling techniques were used for our spin-lattice relaxation's study over a broad frequency range of 6 decades (200 Hz up to 300 MHz). It was found that the molecular dynamics in the nematic mesophases is rather different from the molecular dynamics in the smectic A mesophases. However, the reentrant aspect present in both nematic and smectic A states is not associated to a major difference on the molecular dynamics of the nematic and reentrant nematic or smectic and reentrant smectic A mesophases. Order director fluctuations and rotations/reorientations are the most important relaxation mechanisms in the nematic mesophases in the lower and higher frequency limits, respectively, while self-diffusion has a very small contribution to the overall relaxation. As for the smectic A mesophases, self-diffusion and rotations/reorientations are the predominant relaxation mechanisms for frequencies above 20 kHz. The collective motions, which for these mesophases have to be associated with layer undulations with the frequency law T_1sim ν, are only important to the spin-lattice relaxation on the low part of the frequency spectrum (ν<10 kHz). The inclusion in the relaxation study of a contribution from the cross-relaxation between protons and nitrogen nuclei improves the quality of the 1/T_1 data fits in both kinds of mesophases. The combined study of the molecular dynamics in the N, SAd, Nre and SA1 mesophases of DB8CN Sym reveals that it is necessary to consider one more contribution to the relaxation in the analysis of the 1/T_1 data in the SAd and high temperature N mesophases. This contribution is associated with a dynamic process of dissociation and recombination of molecules in groups that could be present in this kind of systems as predicted in the literature to explain the layer thickness detected in the SAd mesophases. The characteristic time for this process was estimated. Les composés cristaux liquides à groupe terminal cyano peuvent présenter de curieux polymorphismes, en particulier différents types de mésophases smectiques A et un compotement réentrant pour les mésophases nématiques et smectiques A. Dans ce travail nous étudions par RMN l'influence de ces caractéristiques sur la dynamique moléculaire du composé 4-cyanobenzoate-4'-octylbenzoyloxyphenyl (DB8CN Sym) dans ces phases nématique (N), smectique partiellement bicouche A (SAd), nématique réentrant (Nre) et réentrant smectique A(SA1). Nous avons utilisé dans notre étude de la relaxation spin-réseau des techniques classiques et de champ cyclique rapide sur un intervalle de fréquence de 6 décales (200 Hz à 300 MHz). Nous avons trouvé que la dynamique moléculaire des mésophases nématiques est particulièrement différente de celle des mésophases smectiques A. Toutefois, l'effet de réentrance présent dans les états nématique et smectique A n'est pas associé à une différence majeure de la dynamique moléculaire des mésophases nématique, nématique réentrante ou smectique et smectique A réentrante. Les mécanismes de relaxation les plus importants dans les mésophases nématiques à basse et haute fréquences sont respectivement les fluctuations du vecteur d'ordre et des rotations/réorientations, alors que l'auto-diffusion apporte une très faible contribution à la relaxation totale. Dans les mésophases smectiques A l'auto-diffusion et les rotations/réorientations sont les mécanismes de relaxation dominants pour des fréquences au dessus de 20 kHz. Les mouvements collectifs (qui doivent dans ce cas être associés à des ondulations de couche avec une loi de dispersion T_1sim ν) ne doivent être pris en compte pour la relaxation spin-réseau que pour les basses fréquences de Larmor (ν<10 kHz). L'inclusion d'une contribution de la relaxation croisée entre protons et noyaux d'azote dans le modèle de relaxation augmente la qualité des fits de 1/T_1 dans les deux sortes de mésophases. L'étude combinée de la dynamique moléculaire dans les mésophases N, SAd, Nre et SA1 du DB8CN Sym montre qu'il faut en fait considérer une contribution supplémentaire pour la relaxation dans l'analyse des données 1/T_1 dans les mésophases SAd et nématique à haute température. Cette contribution est associée à un processus dynamique de dissociation et recombinaison de molécules en groupes qui pourraient être présentes dans ces types de systèmes, ce qui permettrait d'expliquer l'épaisseur observée pour les couches dans les mésophases SAd, comme prévu dans la littérature. Le temps caractéristique de ce processus a été estimé.

  13. Columnar to nematic mesophase transition in mixtures of rhodium or copper soaps with hydrocarbon solvents

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    This paper describes observations of the mesomorphic behaviour of mixtures of rhodium eicosanoate or copper dodecanoate with solvents such as toluene, decahydronaphthalene, and (+) camphene. The mesophase found with these compounds at high temperatures turns from columnar to nematic when the weight fraction of the solvent (toluene, decahydronaphthalene is increased beyond a value of about 50%. The binary phase diagram of the copper compound with toluene was experimentally determined using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. The novel feature of the nematic phase is that the basic physical object which align parallel to the nematic director are not individual molecules, but columns of molecules (one-dimensional supramolecular assemblies) which have lost the long-range lateral positional order characteristic of the columnar mesophase. These observations are discussed on the grounds of recent theoretical calculations. Cholesteric-like textures are observed for mixtures of rhodium eicosanoate with the chiral solvent (+) camphene.

  14. Self-Consistent Field Theory for the Design of Thermoplastic Elastomers from Miktoarm Block Copolymer - Homopolymer Blends

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew Lawrence

    We have used self-consistent field theory to study the morphological characteristics of blends of miktoarm block copolymers and homopolymers. More specifically, we have studied the effects of segregation strength, miktoarm block copolymer composition, and homopolymer size and volume fraction on the phase diagrams of these systems. A15 domains with discrete A-monomer spherical domains were found to be stable with A-monomer loading fractions of at least as high as 52%. Hexagonally-packed cylindrical domains were found to be stable at A-monomer loadings of at least as high as 72%. These findings represent a significant improvement from the loading fractions of 43% and 60% reported by Lynd et al. for spherical and cylindrical domains in neat miktoarm block copolymers, respectively. It is also quite possible that even greater loading fractions are achievable in systems too large for our simulations. These results predict exciting new materials for next-generation thermoplastic elastomers, since the ideal TPE has a large loading of A monomers in discrete, crystalline or glassy domains, surrounded by a continuous matrix of elastomeric B domains. Additionally, we have performed SCFT simulations modelled after experimental blends of polystyrene and polyisoprene-based miktoarm block copolymers and homopolymers. Certain experimental samples showed fascinating new "bricks and mortar" phases and swollen asymmetric lamellar phases. In both cases, the A domains are highly swollen with homopolymer, forcing the miktoarm block copolymer to segregate near the interface and adopt the role of a surfactant. The resulting structures maintain separate A and B domains, but lack long-range order. While it is not possible to study these mesophases using SCFT, since they lack long-range order and therefore well-defined symmetry, our SCFT results show the onset of macrophase separation at similar homopolymer loadings, for both the bricks and mortar phases and the highly swollen lamellae. This supports the theory that both phases are fluctuation-induced mesophases, similar to microemulsions in character, that lie in between the typical ordered structures and full macrophase separation.

  15. Triply Periodic Multiply Continuous Lyotropic Liquid Crystals Derived from Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Sorenson, Gregory P.

    A subtle balance of non-covalent interactions directs the self-assembly of small molecule amphiphiles in aqueous media into supramolecular assemblies known as aqueous lyotropic liquid crystals (LLCs). Aqueous LLCs form many intricate, ordered nanoscale morphologies comprising distinct and structurally periodic hydrophobic and hydrophilic domains. Triply periodic multiply continuous (TPMC) LLC morphologies, which exhibit continuous hydrophobic and aqueous domains that percolate in three-dimensions, are of particular interest by virtue of their potentially wide ranging technological applications including advanced membranes for electrical energy storage and utilization, therapeutic delivery, and templates for new organic and inorganic mesoporous materials. However, robust molecular design criteria for amphiphiles that readily form TMPC morphologies are notably lacking in the literature. Recent reports have described the increased propensity for quaternary ammonium and phosphonium gemini surfactants, derived from dimerization of traditional single-tail surfactants at or near the hydrophilic headgroups through a hydrophobic linker, to stabilize TMPC mesophases. The generality of this surfactant design strategy remains untested in other amphiphiles classes bearing different headgroup chemistries. In this thesis, we describe the unusual aqueous LLC phase behavior of series of gemini dicarboxylate amphiphiles as a function of the alkyl tail length, hydrophobic linker length, and the charge-compensating counterion. These dicarboxylate surfactants unexpectedly exhibit a strong propensity to form TPMC LLCs over amphiphile concentration windows as wide as 20 wt% over a temperature range T = 25--100 °C. Through systematic modifications of the length of the hydrophobic linker and alkyl tails, we use small-angle X-ray scattering to demonstrate that these surfactants adopt new LLC mesophases including the first report of a single-gyroid phase (I4132 symmetry) and a new, tetracontinuous hexagonal network phase ( P63/mcm symmetry). Additionally, we probe the role of the linker position in the surfactant architecture. These data taken together indicate the sensitive dependence of the LLC phase behavior on counterion-headgroup correlations. Based on these molecular design criteria, we demonstrate the synthesis of a polymerizable gemini surfactant that may be self-assembled into a TPMC LLC phase and covalently fixed by a crosslinking photopolymerization. Comprised of aqueous nanochannels lined with metal carboxylates, the resulting LLC membranes exhibit high ionic conductivities.

  16. Grain size constraints on twin expansion in hexagonal close packed crystals

    DOE PAGES

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less

  17. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  18. Diketonylpyridinium Cations as a Support of New Ionic Liquid Crystals and Ion-Conductive Materials: Analysis of Counter-Ion Effects.

    PubMed

    Pastor, María Jesús; Cuerva, Cristián; Campo, José A; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes

    2016-05-12

    Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO R(n)pyH ]⁺ and BF₄ - , ReO₄ - , NO₃ - , CF₃SO₃ - , CuCl₄ 2- counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO R(12)pyH ][ReO₄] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl₄ 2- salts exhibit the best LC properties followed by the ReO₄ - ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO₄ - , and CuCl₄ 2- families, and for the solid phase in one of the non-mesomorphic Cl - salts. The highest ionic conductivity was found for the smectic mesophase of the ReO₄ - containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.

  19. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    NASA Astrophysics Data System (ADS)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  20. Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer

    NASA Astrophysics Data System (ADS)

    Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng

    2018-03-01

    Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.

  1. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution.

    PubMed

    Tran, Nhiem; Bye, Nicole; Moffat, Bradford A; Wright, David K; Cuddihy, Andrew; Hinton, Tracey M; Hawley, Adrian M; Reynolds, Nicholas P; Waddington, Lynne J; Mulet, Xavier; Turnley, Ann M; Morganti-Kossmann, M Cristina; Muir, Benjamin W

    2017-02-01

    Engineered nanoparticles with multiple complementary imaging modalities are of great benefit to the rapid treatment and diagnosis of disease in various organs. Herein, we report the formulation of cubosomes and hexosomes that carry multiple amphiphilic imaging contrast agents in their self-assembled lipid bilayers. This is the first report of the use of both near infrared fluorescent (NIRF) imaging and gadolinium lipid based magnetic resonance (MR) imaging modalities in cubosomes and hexosomes. High-throughput screening was used to rapidly optimize formulations with desirable nano-architectures and low in vitro cytotoxicity. The dual-modal imaging nanoparticles in vivo biodistribution and organ specific contrast enhancement were then studied. The NIRF in vivo imaging results indicated accumulation of both cubosomes and hexosomes in the liver and spleen of mice up to 20h post-injection. Remarkably, the biodistribution of the nanoparticle formulations was affected by the mesophase (i.e. cubic or hexagonal), a finding of significant importance for the future use of these compounds, with hexosomes showing higher accumulation in the spleen than the liver compared to cubosomes. Furthermore, in vivo MRI data of animals injected with either type of lyotropic liquid crystal nanoparticle displayed enhanced contrast in the liver and spleen. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oil and drug control the release rate from lyotropic liquid crystals.

    PubMed

    Martiel, Isabelle; Baumann, Nicole; Vallooran, Jijo J; Bergfreund, Jotam; Sagalowicz, Laurent; Mezzenga, Raffaele

    2015-04-28

    The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries.

    PubMed

    Sada, Krishnakanth; Senthilkumar, Baskar; Barpanda, Prabeer

    2017-07-27

    Reversible electrochemical potassium-ion intercalation in P2-type Na x CoO 2 was examined for the first time. Hexagonal Na 0.84 CoO 2 platelets prepared by a solution combustion synthesis technique were found to work as an efficient host for K + intercalation. They deliver a high reversible capacity of 82 mA h g -1 , good rate capability and excellent cycling performance up to 50 cycles.

  4. Diketonylpyridinium Cations as a Support of New Ionic Liquid Crystals and Ion-Conductive Materials: Analysis of Counter-Ion Effects

    PubMed Central

    Pastor, María Jesús; Cuerva, Cristián; Campo, José A.; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes

    2016-01-01

    Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOOR(n)pyH]+ and BF4−, ReO4−, NO3−, CF3SO3−, CuCl42− counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOOR(12)pyH][ReO4] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl42− salts exhibit the best LC properties followed by the ReO4− ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO4−, and CuCl42− families, and for the solid phase in one of the non-mesomorphic Cl− salts. The highest ionic conductivity was found for the smectic mesophase of the ReO4− containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure. PMID:28773485

  5. Rheological investigation of self-emulsification process.

    PubMed

    Biradar, Shailesh V; Dhumal, Ravindra S; Paradkar, Anant

    2009-01-01

    Aim of this study is to investigate the mechanism of self-emulsification through rheological analysis of intermediate liquid crystalline (LC) phase formed during self-emulsification process. Binary system of tween 80 (T80) and imwitor 742 (I742) was used and different SES were prepared with I742 at 10, 30, 50, 70 and 90% w/w concentration levels. Self-emulsification was monitored by visual observations and droplet size measurement. Mesophases obtained by 50% v/v hydration of SES were utilized for polarizing microscopy, differential scanning calorimetry and rheological studies. Good emulsification with nano sized droplets was observed for SES 30% as compared to micron sized droplets for other SES. In polarizing microscopy, formation of intermediate LC phase was observed in all SES. Lamellar phase was evident in 30% SES while other SES exhibited micellar cubic phase. Presence of high level of structurally bound water in thermal analysis confirmed mesophase formation in all SES. In frequency sweep, decrease in elastic modulus, and an increase in phase degree and loss tangent was observed for 30% SES. Exactly opposite trend was seen in other SES. Thus, rheological studies concluded presence of weak and fragile mesophase structure in 30% SES while LC phase structure with little structural buildup was observed in other SES. This weak mesosphere structure in SES 30% presented no or very little resistance against strain induced deformation. Therefore, during emulsification, weak mesophase in SES 30% ruptured with ease and released jet of nanosize droplets compared to coarse droplets for other SES. This study signifies the effect of viscoelastic properties of intermediate LC phase on self-emulsification performance.

  6. Molecular Order and Mesophase Investigation of Thiophene-Based Forked Mesogens.

    PubMed

    Reddy, K Rajasekhar; Lobo, Nitin P; Narasimhaswamy, T

    2016-07-14

    Thiophene-based rodlike molecules constructed from a three phenyl ring core and terminal dialkoxy chains recognized as forked mesogens are synthesized, and their mesophase properties as well as the molecular order are investigated. The synthesized forked mesogens would serve as model compounds for tetracatenar or biforked mesogens. On the basis of the position of the thiophene link with the rest of the core, 2-substituted and 3-substituted mesogens are realized in which the length of the terminal alkoxy chains is varied. The mesophase properties are evaluated using a hot-stage polarizing microscope and differential scanning calorimetry. For both homologues, the appearance of either nematic phase alone or in conjunction with smectic C phase is noticed depending on the length of the terminal alkoxy chains. The existence of layer ordering characteristic of the smectic C phase is confirmed for a representative mesogen using variable-temperature powder X-ray diffraction. High-resolution solid-state (13)C NMR measurements of C12 homologues of the two series reveal orientational order parameters of all rings of the core as well as terminal chains in the liquid crystalline phase. For both homologues, because of the asymmetry of ring I, the order parameter value is higher in contrast to ring II, ring III, and the thiophene ring. The chemical shifts and (13)C-(1)H dipolar couplings of OCH2 carbons of the terminal dodecyloxy chains provide contrasting conformations, reflecting the orientational constraints. Furthermore, the investigations also reveal that the mesophase range and the tendency for layer ordering are higher for 3-substituted mesogens compared to 2-substituted homologues.

  7. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  8. Pseudonematic order fluctuations of the director in the smectic phase of thermotropic liquid crystals.

    PubMed

    Acosta, R H; Pusiol, D J

    1999-08-01

    The NMR spin-lattice proton relaxation dispersion in the smectic mesophase of two liquid crystals, 4cyano-4'-8-alkylbiphenyl and 4,4'-bis-heptyloxyazoxybenzene, are studied over several decades of Larmor frequencies. The results show that the order fluctuation of the local smectic director contribution to T1(nu(L)) undergoes a transition between two power regimes: from T1(nu(L)) proportional, variantnu(1)(L) to nu(1/2)(L) on going from low to high Larmor frequencies. We explain this behavior by assuming, in the smectic mesophases, short coherence length nematiclike cooperative molecular reorientations.

  9. Impact of structural symmetry on magnetization properties in SrCo0.95Mn0.05O3 prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Meenakshi, Mahto, Rabindra Nath

    2018-04-01

    We have investigated magnetization properties of the sol-gel prepared SrCo0.95Mn0.05O3 (SCMO) sample with respect to change in structural symmetry. The X-ray diffraction patterns show the crystal structure changes from nH-hexagonal, showing trigonal symmetry (SCMO1), to 2H-hexagonal phase (SCMO2). The trigonal crystal symmetry was obtained at lower annealing temperature (less than 1100 °C), however, the 2H-hexagonal symmetry was obtained at higher annealing temperature. The crystallite size calculated using Debye Scherer formula is found to be ˜ 46 nm and ˜ 33 nm for SCMO1 and SCMO2 samples respectively. The temperature dependence zero field cooled (MZFC) and field cooled (MFC) magnetization curves measured under the applied magnetic field of 500 Oe show magnetic reversibility for the SCMO1 sample. However, MZFC and MFC curves in hexagonal phase show magnetic irreversibility with onset temperature, Tirr ˜ 150 K, exhibits weak ferromagnetic ordering. The temperature variation of magnetization in paramagnetic region was analyzed by following Curie-Weiss law fitting. The χ-1(T) curve shows complete linear behavior with single slope for SCMO1 sample, whereas, the SCMO2 curve exhibit the linear behavior with two distinct slopes. Interestingly the sample in hexagonal phase shows small hysteresis loop at 2 K and 100 K respectively.

  10. Effects of alkyl chain length and anion size on thermal and structural properties for 1-alkyl-3-methylimidazolium hexafluorocomplex salts (C(x)MImAF6, x = 14, 16 and 18; A = P, As, Sb, Nb and Ta).

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2012-03-28

    A series of 1-alkyl-3-methylimidazolium hexafluorocomplex salts (C(x)MImAF(6), x = 14, 16 and 18, A = P, As, Sb, Nb and Ta) have been characterized by thermal analysis, X-ray diffraction and polarized optical microscopy. A liquid crystalline mesophase is observed for all the C(16)MIm and C(18)MIm salts. The C(14)MIm(+) cation gives a liquid crystalline mesophase only with PF(6)(-). The temperature range of the liquid crystalline mesophase increases with an increase in alkyl chain length or with decrease in anion size. Single-crystal X-ray diffraction revealed that all the C(18)MImAF(6) salts (A = P, As, Sb, Nb and Ta) are isostructural with each other in the crystalline phase and have a layered structure. The interdigitated alkyl chain of the cation has a bent shape like a spoon near the imidazolium ring in the crystalline phase at -100 °C and is tilted with respect to the sheets of the imidazolium headgroups and anions. An increase of temperature increases the ratio of an all-trans conformation to the bent conformation in the crystalline phase. X-ray diffraction and polarized optical microscopy suggested that the liquid crystalline mesophase has a smectic A(2) structure. The interlayer distance increases with a decrease in the anion size since the smaller anion has a stronger coulombic interaction with the imidazolium headgroup, resulting in the decrease of the interdigitated part to give a larger layer spacing.

  11. Direct fabrication of ordered mesoporous carbons with super-micropore/small mesopore using mixed triblock copolymers.

    PubMed

    Li, Peng; Song, Yan; Tang, Zhihong; Yang, Guangzhi; Yang, Junhe

    2014-01-01

    Ordered mesoporous carbons (OMCs) have been prepared by the strategy of evaporation-induced organic-organic self-assembly method by employing a mixture of amphiphilic triblock copolymers poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) and reverse PPO-PEO-PPO as templates, with soluble in ethanol, low-molecular-weight phenolic resin as precursor, followed by carbonization. It has been found that the as prepared OMCs with porosity that combines super-micropore and small mesopore size distributed from 0.8 to 4 nm, which bridges the pore size from 2 to 3 nm and also for the diversification of the soft-templating synthesis of OMCs. Furthermore, the results showed that the OMCs obtained have mesophase transition from cylindrical p6 mm to centered rectangular c2 mm structure by simply tuning the ratio of PPO-PEO-PPO/PEO-PPO-PEO. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene.

    PubMed

    Uchida, Emi; Sakaki, Kouji; Nakamura, Yumiko; Azumi, Reiko; Hirai, Yuki; Akiyama, Haruhisa; Yoshida, Masaru; Norikane, Yasuo

    2013-12-16

    Photoinduced phase transitions caused by photochromic reactions bring about a change in the state of matter at constant temperature. Herein, we report the photoinduced phase transitions of crystals of a photoresponsive macrocyclic compound bearing two azobenzene groups (1) at room temperature on irradiation with UV (365 nm) and visible (436 nm) light. The trans/trans isomer undergoes photoinduced phase transitions (crystal-isotropic phase-crystal) on UV light irradiation. The photochemically generated crystal exhibited reversible phase transitions between the crystal and the mesophase on UV and visible light irradiation. The molecular order of the randomly oriented crystals could be increased by irradiating with linearly polarized visible light, and the value of the order parameter was determined to be -0.84. Heating enhances the thermal cis-to-trans isomerization and subsequent cooling returned crystals of the trans/trans isomer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    PubMed

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  14. Active Gating, Molecular Pumping, and Turnover Determination in Biomimetic Lipidic Cubic Mesophases with Reconstituted Membrane Proteins.

    PubMed

    Speziale, Chiara; Zabara, Alexandru Florian; Drummond, Calum John; Mezzenga, Raffaele

    2017-11-28

    Understanding the mechanisms controlling molecular transport in bioinspired materials is a central topic in many branches of nanotechnology. In this work, we show that biomolecules of fundamental importance in biological processes, such as glucose, can be transported in an active, controlled, and selective manner across macroscopic lipidic cubic mesophases, by correctly reconstituting within them their corresponding membrane protein transporters, such as Staphylococcus epidermidis (GlcP Se ). Importantly, by duly exploiting the symporter properties of GlcP Se of coupled glucose/H + transport, the diffusion of glucose can further be tuned by independent physiological stimuli, such as parallel or antiparallel pH gradients, offering an important model to study molecular exchange processes in cellular machinery. We finally show that by measuring the transport properties of the lipidic mesophases with and without the GlcP Se membrane protein reconstituted within, it becomes possible to determine its intrinsic conductance. We generalize these findings to other membrane proteins from the antiporters family, such as the bacterial ClC exchanger from Escherichia coli (EcClC), providing a robust method for evaluating the turnover rate of the membrane proteins in general.

  15. Influence of the counteranion on the ability of 1-dodecyl-3-methyltriazolium ionic liquids to form mesophases

    DOE PAGES

    Stappert, Kathrin; Unal, Derya; Spielberg, Eike T.; ...

    2014-11-25

    The influence of the counteranion on the ability of the mesogenic cation 1-methyl-3-dodecyl-triazolium to form mesophases is explored. To that avail, salts of the cation with anions of different size, shape, and hydrogen bonding capability such as Cl –, Br –, I –, I 3 –, PF 6 –, and Tf 2N – [bis(trifluorosulfonyl)amide] were synthesized and characterized. The crystal structures of the bromide, the iodide, and the triiodide reveal that the cations form bilayers with cations oriented in opposite directions featuring interdigitated alkyl tails. Within the layers, the cations are separated by anions. The rod-shaped triiodide anion forces themore » triazolium cation to align with it in this crystal structure but due to its space requirement reduces the alkyl chain interdigitation which prevents the formation of a mesophase. Rather the compound transforms directly from a crystalline solid to an (ionic) liquid like the analogous bis(trifluorosulfonyl)amide. In contrast, the simple halides and the hexafluorophosphate form liquid crystalline phases. As a result, their clearing points shift with increasing anion radius to lower temperatures.« less

  16. Facile preparation and formation mechanism of Sr2Si5N8:Eu2+ red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Yunli; Wang, Ming; Shao, Yiran; Zhu, Yingchun

    2018-05-01

    The red-emitting Sr2Si5N8:Eu2+ phosphors have been synthesized in a new facile process using (oxy)nitride precursors by inductive calcination under N2 atmosphere at ordinary pressure. Different from the prevailing methods, lower cost raw materials, simpler pretreatment, without harsh conditions and a shorter reaction time are achieved. It was found that red-emitting Sr2Si5N8:Eu2+ phosphors were synthesized with high crystallinity and purity after 1 h inductive calcination. The formation mechanism was characterized by XRD, SEM, TEM and Fluorescence microscopy. It was demonstrated that a hexagonal mesophase of Sr-doped α-Si3N4 was primarily formed in the reaction process, which transformed into the final product of the orthorhombic Sr2Si5N8:Eu2+ phosphors. During the reaction process, the color of the samples transforms from greenish-yellow to orange and eventually to red. The as-prepared phosphors have a wide excitation in the range of 250 ∼ 570 nm which matches blue light chips and give a red-light emission peaking at 610 nm. The results indicate a promising prospect for a simple, efficient and inexpensive way to prepare Sr2Si5N8:Eu2+ phosphors for blue/UV-based warm-white LEDs and other fluorescent applications.

  17. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zeng, Chao; Qu, Deyu; Tang, Haolin; Li, Yu; Su, Bao-Lian; Qu, Deyang

    2016-07-01

    Nitrogen-doped ordered mesoporous carbons (OMCs) have been synthesized via aqueous cooperative assembly route in the presence of basic amino acids as either polymerization catalysts or nitrogen dopants. This method allows the large-scale production of nitrogen-doped OMCs with tunable composition, structure and morphology while maintaining highly ordered mesostructures. For instances, the nitrogen content can be varied from ∼1 wt% to ∼6.3 wt% and the mesophase can be either 3-D body-centered cubic or 2-D hexagonal. The specific surface area for typical OMCs is around 600 m2 g-1, and further KOH activation can significantly enhance the surface area to 1866 m2 g-1 without destroying the ordered mesostructures. Benefiting from hierarchically ordered porous structure, nitrogen-doping effect and large-scale production availability, the synthesized OMCs show a great potential towards supercapacitor application. When measured in a symmetrical two-electrode configuration with an areal mass loading of ∼3 mg cm-2, the activated OMC exhibits high capacitance (186 F g-1 at 0.25 A g-1) and good rate capability (75% capacity retention at 20 A g-1) in ionic liquid electrolyte. Even as the mass loading is up to ∼12 mg cm-2, the OMC electrode still yields a specific capacitance of 126 F g-1 at 20 A g-1.

  18. Functional nanocomposites prepared by self-assembly and polymerization of diacetylene surfactants and silicic acid

    NASA Technical Reports Server (NTRS)

    Yang, Yi; Lu, Yunfeng; Lu, Mengcheng; Huang, Jinman; Haddad, Raid; Xomeritakis, George; Liu, Nanguo; Malanoski, Anthony P.; Sturmayr, Dietmar; Fan, Hongyou; hide

    2003-01-01

    Conjugated polymer/silica nanocomposites with hexagonal, cubic, or lamellar mesoscopic order were synthesized by self-assembly using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. By tailoring the size of the oligo(ethylene glycol) headgroup of the diacetylene-containing surfactant, we varied the resulting self-assembled mesophases of the composite material. The nanostructured inorganic host altered the diacetylene polymerization behavior, and the resulting nanocomposites show unique thermo-, mechano-, and solvatochromic properties. Polymerization of the incorporated surfactants resulted in polydiacetylene (PDA)/silica nanocomposites that were optically transparent and mechanically robust. Molecular modeling and quantum calculations and (13)C spin-lattice relaxation times (T(1)) of the PDA/silica nanocomposites indicated that the surfactant monomers can be uniformly organized into precise spatial arrangements prior to polymerization. Nanoindentation and gas transport experiments showed that these nanocomposite films have increased hardness and reduced permeability as compared to pure PDA. Our work demonstrates polymerizable surfactant/silica self-assembly to be an efficient, general approach to the formation of nanostructured conjugated polymers. The nanostructured inorganic framework serves to protect, stabilize, and orient the polymer, mediate its performance, and provide sufficient mechanical and chemical stability to enable integration of conjugated polymers into devices and microsystems.

  19. Technology for the production of Zero Q.I pitch from coal tar

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Kumar, K. Rajesh; Rao, C. V. Nageswara; Kumar, B. Vinod; Murty, J. V. S.

    2013-06-01

    Zero Quinoline Insolubles (Q.I) pitch is a special type of pitch obtained from pre-treatment of coal tar, which is converted into pitch. This is used for impregnation of electrodes for improving the strength, electrical properties and also used as a pre-cursor for Mesophase pitch for producing Mesophase pitch based carbon fibers, carbon foam, and Meso carbon micro beads. This paper discusses the technology of Q.I separation from Coal Tar by using decantation of Coal Tar mixed with Heavy Creosote Oil (HC Oil) at different temperatures. By this method we were able to produce the Zero Q.I pitch with a Q.I value of 0.1%.

  20. Evaluation of handle design characteristics in a maximum screwdriving torque task.

    PubMed

    Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F

    2007-09-01

    The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.

  1. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    NASA Astrophysics Data System (ADS)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed

    2011-07-01

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).

  2. John H. Dillon Medal Lecture: Magnetic Field Directed Self-Assembly of Block Copolymers and Surfactant Mesophases

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum

    2015-03-01

    Molecular self-assembly of block copolymers and small molecule surfactants gives rise to a rich phase behavior as a function of temperature, composition, and other variables. We consider the directed self-assembly of such soft mesophases using magnetic fields, principally through the use of in situ x-ray scattering studies. Field alignment is predicated on a sufficiently large product of magnetic anisotropy and grain size to produce magnetostatic interactions which are substantive relative to thermal forces. We examine the role of field strength on the phase behavior and alignment dynamics of a series of soft mesophases, outlining the possibility to readily create highly ordered functional materials over macroscopic length scales. We show that magnetic fields as large as 10 T have little discernable impact on the stability of block copolymer systems considered, with shifts in order-disorder transition temperatures of roughly 5 mK or smaller. Consequently, directed self-assembly in these systems proceeds by nucleation of randomly aligned grains which thereafter rotate into registry with the field. We highlight the tradeoff between decreasing mobility and increasing anisotropic field interaction that dictates alignment kinetics while transiting from a high temperature disordered state to an ordered system at lower temperatures. NSF support through DMR-0847534 is gratefully acknowledged.

  3. Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy.

    PubMed

    Li, Dianfan; Howe, Nicole; Dukkipati, Abhiram; Shah, Syed T A; Bax, Benjamin D; Edge, Colin; Bridges, Angela; Hardwicke, Phil; Singh, Onkar M P; Giblin, Ged; Pautsch, Alexander; Pfau, Roland; Schnapp, Gisela; Wang, Meitian; Olieric, Vincent; Caffrey, Martin

    2014-04-02

    The lipidic mesophase or in meso method for crystallizing membrane proteins has several high profile targets to its credit and is growing in popularity. Despite its success, the method is in its infancy as far as rational crystallogenesis is concerned. Consequently, significant time, effort, and resources are still required to generate structure-grade crystals, especially with a new target type. Therefore, a need exists for crystallogenesis protocols that are effective with a broad range of membrane protein types. Recently, a strategy for crystallizing a prokaryotic α-helical membrane protein, diacylglycerol kinase (DgkA), by the in meso method was reported (Cryst. Growth. Des.2013, 14, 2846-2857). Here, we describe its application to the human α-helical microsomal prostaglandin E2 synthase 1 (mPGES1). While the DgkA strategy proved useful, significant modifications were needed to generate structure-quality crystals of this important therapeutic target. These included protein engineering, using an additive phospholipid in the hosting mesophase, performing multiple rounds of salt screening, and carrying out trials at 4 °C in the presence of a tight binding ligand. The crystallization strategy detailed here should prove useful for generating structures of other integral membrane proteins by the in meso method.

  4. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors

    PubMed Central

    Pastor, María Jesús; Sánchez, Ignacio; Schmidt, Rainer; Cano, Mercedes

    2018-01-01

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl−, BF4−, ReO4−, p-CH3-6H4SO3− (PTS) and CF3SO3− (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H2pzR(4),R(4)][ReO4]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl− and BF4−) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity. PMID:29614030

  5. Rheological investigation of self-emulsification process: effect of co-surfactant.

    PubMed

    Biradar, Shailesh V; Dhumal, Ravindra S; Paradkar, Ananat R

    2009-01-01

    The aim of study is to investigate role of co-surfactant in self-emulsification through rheological analysis of intermediate liquid crystalline (LC) phase formed during self-emulsification. To mixture of Captex 200P (C200) and tween 80 (T80) (SES Plain), either medium hydrocarbon chain co-surfactant (Capmul MCM (CMCM): SES C) or long hydrocarbon chain co-surfactant (Peceol (P): SES P) was added separately at different concentration levels. Self-emulsification was monitored by visual observations, turbidimetric and droplet size measurement. Mesophases were obtained by 30% v/v aqueous hydration of SES and characterized by polarizing microscopy, differential scanning calorimetry (DSC) and rheological studies. SES Plain exhibited 'bad' emulsification owing to instantaneous gel formation in aqueous media. Almost all SES C have shown 'good' emulsification with transparent appearance, very low turbidity value and nano size droplets. All SES P presented 'moderate' emulsification with milky appearance, high turbidity value and coarse droplets. Polarizing microscopy revealed formation of lamellar phase in SES Plain and in all SES P while almost all SES C exhibited formation of micellar cubic phase. In DSC studies, higher extent of LC phase formation was observed in SES C as compared to SES P. Rheological study clearly demonstrated presence of elastic and partially recoverable mesophase in SES Plain, which was transformed into a viscous and non-recovering mesophase with addition of CMCM while there was no change in rheological status of SES Plain after addition of P. The weak and viscous LC phase in SES C must have not presented any resistance to strain induced deformation. Therefore, it might have ruptured easily and quickly, releasing jet of nanosize droplets whereas elastic mesophase in SES P might have ruptured with little resistance resulting in coarse droplets. The ability of co-surfactant to promote self-emulsification was attributed to their influence on viscoelastic properties of intermediate LC phase.

  6. Membrane Protein Structure Determination Using Crystallography and Lipidic Mesophases - Recent Advances and Successes

    PubMed Central

    Caffrey, Martin; Li, Dianfan; Dukkipati, Abhiram

    2012-01-01

    The crystal structure of the β2-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been solved. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signalling event across the membrane and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of thirteen distinct receptor types have been solved in the past five years. In addition to receptors, the method has proven useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, a light harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen however, the reluctance in adopting it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals is also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nano-liter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates have been built that provide unparalleled optical quality and sensitivity to nascent crystals. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this Current Topics article, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described. PMID:22783824

  7. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  8. Study on the mesophase development of pressure-responsive ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    Here we focus on the revelation of new nanoscale morphologies for a molten compressible polymeric surfactant through a compressible self-consistent field approach. A linear ABC block copolymer is set to allow a disparity in the propensities for curved interfaces and in pressure responses of ij-pairs. Under these conditions, the copolymer evolves into noble morphologies at selected segregation levels such as networks with tetrapod connections, rectangularly packed cylinders in a 2-dimensional array, and also body-centered cubic phases. Those new structures are considered to turn up by interplay between disparity in the densities of block domains and packing frustration. Comparison with the classical mesophase structures is also given. The author acknowledges the support from the Center for Photofunctional Energy Materials (GRRC).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, J. R.

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existencemore » of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.« less

  10. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Kan; Huang, Mingjun; Marson, Ryan L.

    Frank–Kasper (F-K) and quasicrystal phases were originally identified in metal alloys and only sporadically reported in soft materials. These unconventional sphere-packing schemes open up possibilities to design materials with different properties. The challenge in soft materials is how to correlate complex phases built from spheres with the tunable parameters of chemical composition and molecular architecture. Here, we report a complete sequence of various highly ordered mesophases by the self-assembly of specifically designed and synthesized giant surfactants, which are conjugates of hydrophilic polyhedral oligomeric silsesquioxane cages tethered with hydrophobic polystyrene tails. We show that the occurrence of these mesophases results frommore » nanophase separation between the heads and tails and thus is critically dependent on molecular geometry. Variations in molecular geometry achieved by changing the number of tails from one to four not only shift compositional phase boundaries but also stabilize F-K and quasicrystal phases in regions where simple phases of spheroidal micelles are typically observed. These complex self-assembled nanostructures have been identified by combining X-ray scattering techniques and real-space electron microscopy images. Brownian dynamics simulations based on a simplified molecular model confirm the architecture-induced sequence of phases. Our results demonstrate the critical role of molecular architecture in dictating the formation of supramolecular crystals with “soft” spheroidal motifs and provide guidelines to the design of unconventional self-assembled nanostructures.« less

  11. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants

    PubMed Central

    Yue, Kan; Huang, Mingjun; Marson, Ryan L.; He, Jinlin; Huang, Jiahao; Zhou, Zhe; Wang, Jing; Liu, Chang; Yan, Xuesheng; Wu, Kan; Guo, Zaihong; Liu, Hao; Ni, Peihong; Wesdemiotis, Chrys; Zhang, Wen-Bin; Glotzer, Sharon C.; Cheng, Stephen Z. D.

    2016-01-01

    Frank–Kasper (F-K) and quasicrystal phases were originally identified in metal alloys and only sporadically reported in soft materials. These unconventional sphere-packing schemes open up possibilities to design materials with different properties. The challenge in soft materials is how to correlate complex phases built from spheres with the tunable parameters of chemical composition and molecular architecture. Here, we report a complete sequence of various highly ordered mesophases by the self-assembly of specifically designed and synthesized giant surfactants, which are conjugates of hydrophilic polyhedral oligomeric silsesquioxane cages tethered with hydrophobic polystyrene tails. We show that the occurrence of these mesophases results from nanophase separation between the heads and tails and thus is critically dependent on molecular geometry. Variations in molecular geometry achieved by changing the number of tails from one to four not only shift compositional phase boundaries but also stabilize F-K and quasicrystal phases in regions where simple phases of spheroidal micelles are typically observed. These complex self-assembled nanostructures have been identified by combining X-ray scattering techniques and real-space electron microscopy images. Brownian dynamics simulations based on a simplified molecular model confirm the architecture-induced sequence of phases. Our results demonstrate the critical role of molecular architecture in dictating the formation of supramolecular crystals with “soft” spheroidal motifs and provide guidelines to the design of unconventional self-assembled nanostructures. PMID:27911786

  12. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon

    2015-03-01

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  13. Preparation of Advanced Carbon Anode Materials from Mesocarbon Microbeads for Use in High C-Rate Lithium Ion Batteries

    PubMed Central

    Fang, Ming-Dar; Ho, Tsung-Han; Yen, Jui-Pin; Lin, Yu-Run; Hong, Jin-Long; Wu, She-Huang; Jow, Jiin-Jiang

    2015-01-01

    Mesophase soft carbon (MSC) and mesophase graphite (SMG), for use in comparative studies of high C-rate Lithium Ion Battery (LIB) anodes, were made by heating mesocarbon microbeads (MCMB) at 1300 °C and 3000 °C; respectively. The crystalline structures and morphologies of the MSC, SMG, and commercial hard carbon (HC) were investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. Additionally, their electrochemical properties, when used as anode materials in LIBs, were also investigated. The results show that MSC has a superior charging rate capability compared to SMG and HC. This is attributed to MSC having a more extensive interlayer spacing than SMG, and a greater number of favorably-oriented pathways when compared to HC.

  14. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  15. Liquid crystal organization of self-assembling cyclic peptides.

    PubMed

    Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa

    2014-01-21

    Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.

  16. Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes.

    PubMed

    Kim, Dae Wook; Kim, Sug-Whan

    2005-02-07

    We present a novel simulation technique that offers efficient mass fabrication strategies for 2m class hexagonal mirror segments of extremely large telescopes. As the first of two studies in series, we establish the theoretical basis of the tool influence function (TIF) for precessing tool polishing simulation for non-rotating workpieces. These theoretical TIFs were then used to confirm the reproducibility of the material removal foot-prints (measured TIFs) of the bulged precessing tooling reported elsewhere. This is followed by the reverse-computation technique that traces, employing the simplex search method, the real polishing pressure from the empirical TIF. The technical details, together with the results and implications described here, provide the theoretical tool for material removal essential to the successful polishing simulation which will be reported in the second study.

  17. Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations

    DOE PAGES

    Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...

    2016-06-22

    Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less

  18. Nano to Meso-scale Structure in Liquid Crystals: the Cybotactic Nematic Phase of Bent-core Mesogens

    NASA Astrophysics Data System (ADS)

    Francescangeli, Oriano

    2012-02-01

    The extent of molecular order and the resulting broken symmetry determine the properties and mesophase type of liquid crystals (LCs). Thermotropic bent-core mesogens (BCMs) represent a new class of LCs exhibiting substantially different physical properties than traditional linear (calamitic) materials. In recent years BCMs have become the focus of intense experimental and theoretical investigation, with several exciting new developments. These include chiral mesophases composed of achiral BCMs, giant flexoelectricity, biaxial nematic (N) order, a ferroelectric response in the N phase, and a large flow birefringence. A key issue that is currently widely debated concerns the actual nature of the N phase of BCMs which gives rise to some of the above mentioned effects and is unambiguously identified by a peculiar low-angle X-ray diffraction pattern (the ``four-spot pattern''). The consensus emerging is that this N phase of BCMs constitutes a new type of mesophase, namely, a cybotactic nematic (Ncyb) phase unrelated to pretransition cybotaxis, in agreement with experimental [1-3] and theoretical findings [4]. This Ncyb phase is composed of nanometer-size clusters of BCMs exhibiting a relatively high degree of internal order---orientational as well as translational order (strata) imposed by close packing the BCM nonlinear shape. This peculiar supramolecular structure of the Ncyb mesophase of BCMs---evanescent, biaxial clusters of tilted and stratified nonlinear mesogens percolating the nematic fluid---accounts for their unusual properties, e.g., biaxial order [4], ferroelectric response [1], and extraordinary field-induced effects [5]. In this talk I will give an overview of the most recent developments and the current state of research on this subject. [4pt] [1] O. Francescangeli et al., Adv. Funct. Mater. 19,2592 (2009). [0pt] [2] O. Francescangeli and E.T. Samulski, Soft Matter 6, 2413 (2010) [0pt] [3] O. Francescangeli et al., Soft Matter 7, 895 (2011). [0pt] [4] A.G. Vanakaras and D.J.Photinos, J. Chem. Phys. 128, 154512 (2008). [0pt] [5] O. Francescangeli et al., Phys. Rev. Lett. 107, 207801 (2011).

  19. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    PubMed

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  20. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  1. A π-π 3D network of tetranuclear μ2/μ3-carbonato Dy(III) bis-pyrazolylpyridine clusters showing single molecule magnetism features.

    PubMed

    Gass, Ian A; Moubaraki, Boujemaa; Langley, Stuart K; Batten, Stuart R; Murray, Keith S

    2012-02-18

    2,6-Di(pyrazole-3-yl)pyridine, 3-bpp, forms a porous (4(9)·6(6)) π-π mediated 3D network of trigonal pyramidal [Dy(III)(4)] carbonato-bridged complexes, with hexagonal channels comprising 54% of the unit cell volume, the material displaying slow magnetisation reversal. This journal is © The Royal Society of Chemistry 2012

  2. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGES

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; ...

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈ 2×10 –8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstratemore » that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  3. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens.

    PubMed

    Lehmann, Matthias; Maier, Philipp

    2015-08-10

    Hexasubstituted C3 -symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape-persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short-range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star-shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  5. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈ 2×10 –8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstratemore » that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  6. Molybdenum nitrides as oxygen reduction reaction catalysts: Structural and electrochemical studies

    DOE PAGES

    Cao, Bingfei; Neuefeind, Joerg C.; Adzic, Radoslav R.; ...

    2015-02-09

    Monometallic (δ-MoN, Mo 5N 6, and Mo 2N) and bimetallic molybdenum nitrides (Co 0.6Mo 1.4N 2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (γ-Mo 2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co 0.6Mo 1.4N 2), resulting in a modest onset potential of 0.713 V versusmore » reversible hydrogen electrode (RHE). Co 0.6Mo 1.4N 2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. In conclusion, the revised monometallic hexagonal nitride structures all share many common features with the Co 0.6Mo 1.4N 2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for δ-MoN).« less

  7. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes.

    PubMed

    Jiménez, Josefina; Laguna, Antonio; Gascón, Elena; Sanz, José Antonio; Serrano, José Luis; Barberá, Joaquín; Oriol, Luis

    2012-12-21

    A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evaporation, diffusion and self-assembly at drying interfaces.

    PubMed

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  9. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    PubMed

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  10. Effect of fatty acids on self-assembly of soybean lecithin systems.

    PubMed

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases.

    PubMed

    Li, Dianfan; Boland, Coilín; Walsh, Kilian; Caffrey, Martin

    2012-09-01

    Structure-function studies of membrane proteins greatly benefit from having available high-resolution 3-D structures of the type provided through macromolecular X-ray crystallography (MX). An essential ingredient of MX is a steady supply of ideally diffraction-quality crystals. The in meso or lipidic cubic phase (LCP) method for crystallizing membrane proteins is one of several methods available for crystallizing membrane proteins. It makes use of a bicontinuous mesophase in which to grow crystals. As a method, it has had some spectacular successes of late and has attracted much attention with many research groups now interested in using it. One of the challenges associated with the method is that the hosting mesophase is extremely viscous and sticky, reminiscent of a thick toothpaste. Thus, dispensing it manually in a reproducible manner in small volumes into crystallization wells requires skill, patience and a steady hand. A protocol for doing just that was developed in the Membrane Structural & Functional Biology (MS&FB) Group(1-3). JoVE video articles describing the method are available(1,4). The manual approach for setting up in meso trials has distinct advantages with specialty applications, such as crystal optimization and derivatization. It does however suffer from being a low throughput method. Here, we demonstrate a protocol for performing in meso crystallization trials robotically. A robot offers the advantages of speed, accuracy, precision, miniaturization and being able to work continuously for extended periods under what could be regarded as hostile conditions such as in the dark, in a reducing atmosphere or at low or high temperatures. An in meso robot, when used properly, can greatly improve the productivity of membrane protein structure and function research by facilitating crystallization which is one of the slow steps in the overall structure determination pipeline. In this video article, we demonstrate the use of three commercially available robots that can dispense the viscous and sticky mesophase integral to in meso crystallogenesis. The first robot was developed in the MS&FB Group(5,6). The other two have recently become available and are included here for completeness. An overview of the protocol covered in this article is presented in Figure 1. All manipulations were performed at room temperature (~20 °C) under ambient conditions.

  12. Unidirectional self-assembly of soft templated mesoporous carbons by zone annealing

    NASA Astrophysics Data System (ADS)

    Xue, Jiachen; Singh, Gurpreet; Qiang, Zhe; Karim, Alamgir; Vogt, Bryan D.

    2013-08-01

    Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing.Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing. Electronic supplementary information (ESI) available: GISAXS profiles for the FDU-15-F127 at φ = 0° and φ = 90° is included along with 2D GISAXS data for all azimuthal data associated with FDU-15-P123 to illustrate the azimuthal dependence on the diffraction patterns. See DOI: 10.1039/c3nr02821f

  13. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  14. Dipolar magnetic interaction effects in 2D hexagonal array of cobalt hollow-spheres

    NASA Astrophysics Data System (ADS)

    Guerra, Y.; Peña-Garcia, R.; Padrón-Hernández, E.

    2018-04-01

    Planar arrangements of cobalt hollow-spheres were studied by means of micromagnetic simulation. The calculated coercivity values are in correspondence with the reported experimental data. Dipole energy effects are determinant and more significant if thickness decreases. We observed the formation of some vortex and onion configurations, solutions for individual hollow-sphere, even so there is predominance of non-homogeneous reversal. This confirms that solutions for individual spheres are not efficient in the analysis of arrays.

  15. Influence of reverse torque values in abutments with or without internal hexagon indexes.

    PubMed

    Cerutti-Kopplin, Daiane; Rodrigues Neto, Dimas João; Lins do Valle, Accácio; Pereira, Jefferson Ricardo

    2014-10-01

    The mechanical stability of the implant-abutment connection is of fundamental importance for successful implant-supported restorations. Therefore, understanding removal torque values is essential. The purpose of this study was to evaluate the reverse torque values of indexed and nonindexed abutments of the Morse Taper system. Twelve Morse taper implants with their respective abutments were divided into 2 groups (n=6): group NI, nonindexed abutments; and group IN, indexed abutments. Each abutment received a sequence of 2 consecutive torques for insertion (15 Ncm) at an interval of 10 minutes, and 1 reverse torque, all measured with a digital torque wrench. The Student t test with a 5% significance level was used to evaluate the data. Statistical analysis showed no significant difference in reverse torque values between nonindexed and indexed abutments (P=.57). When comparing insertion torque and reverse torque values between the groups, group NI presented a mean torque loosening percentage of 8% (P=.013), whereas group IN presented a loosening of 15.33% (P<.001). The use of indexed abutments for the Morse taper system presented similar biomechanical stability when compared with nonindexed abutments, both with a significant reduction in reverse torque values. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. The cubicon method for concentrating membrane proteins in the cubic mesophase.

    PubMed

    Ma, Pikyee; Weichert, Dietmar; Aleksandrov, Luba A; Jensen, Timothy J; Riordan, John R; Liu, Xiangyu; Kobilka, Brian K; Caffrey, Martin

    2017-09-01

    The lipid cubic phase (in meso) method is an important approach for generating crystals and high-resolution X-ray structures of integral membrane proteins. However, as a consequence of instability, it can be impossible-using traditional methods-to concentrate certain membrane proteins and complexes to values suitable for in meso crystallization and structure determination. The cubicon method described here exploits the amphiphilic nature of membrane proteins and their natural tendency to partition preferentially into lipid bilayers from aqueous solution. Using several rounds of reconstitution, the protein concentration in the bilayer of the cubic mesophase can be ramped up stepwise from less than a milligram per milliliter to tens of milligrams per milliliter for crystallogenesis. The general applicability of the method is demonstrated with five integral membrane proteins: the β 2 -adrenergic G protein-coupled receptor (β 2 AR), the peptide transporter (PepT St ), diacylglycerol kinase (DgkA), the alginate transporter (AlgE) and the cystic fibrosis transmembrane conductance regulator (CFTR). In the cases of β 2 AR, PepT St , DgkA and AlgE, an effective 20- to 45-fold concentration was realized, resulting in a protein-laden mesophase that allowed the formation of crystals using the in meso method and structure determination to resolutions ranging from 2.4 Å to 3.2 Å. In addition to opening up in meso crystallization to a broader range of integral membrane protein targets, the cubicon method should find application in situations that require membrane protein reconstitution in a lipid bilayer at high concentrations. These applications include functional and biophysical characterization studies for ligand screening, drug delivery, antibody production and protein complex formation. A typical cubicon experiment can be completed in 3-5 h.

  17. Cooperative behavior of molecular motions giving rise to two glass transitions in the same supercooled mesophase of a smectogenic liquid crystal dimer

    NASA Astrophysics Data System (ADS)

    López, David O.; Salud, Josep; de la Fuente, María Rosario; Sebastián, Nerea; Diez-Berart, Sergio

    2018-01-01

    In the present work, a detailed analysis of the glassy behavior and the relaxation dynamics of the liquid crystal dimer α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) heptane (CBO7O.Py) throughout both nematic and smectic-A mesophases by means of broadband dielectric spectroscopy has been performed. CBO7O.Py shows three different dielectric relaxation modes and two glass transition (Tg) temperatures: The higher Tg is due to the freezing of the molecular motions responsible for the relaxation mode with the lowest frequency (μ1 L); the lower Tg is due to the motions responsible for the two relaxation modes with highest frequencies (μ1 H and μ2), which converge just at their corresponding Tg. It is shown how the three modes follow a critical-like description via the dynamic scaling model. The two modes with lowest frequencies (μ1 L and μ1 H) are cooperative in the whole range of the mesophases, whereas the highest frequency mode (μ2) is cooperative just below some crossover temperature. In terms of fragility, at the glass transition, the ensemble (μ1 H+μ2 ) presents a value of the steepness index and μ1 L a different one, meaning that fragility is a property intrinsic to the molecular motion itself. Finally, the steepness index seems to have a universal behavior with temperature for the dielectric relaxation modes of liquid crystal dimers, being almost constant at high temperatures and increasing drastically when cooling the compound down to the glass transition from a temperature about 3/4 TN I .

  18. 2-Octyl thiophene based three ring mesogens: solid state (13)C NMR and XRD investigations.

    PubMed

    Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T; Mandal, A B

    2015-08-14

    2-Octyl thiophene based three-ring mesogens namely 4-n-alkoxyphenyl 4-(5-n-octyl-2-thienyl)benzoates are synthesized by employing palladium acetate based direct arylation. The alkoxy terminal is varied with even carbons from C2 to C14 and enantiotropic polymesomorphism is noticed for all the homologs. Accordingly, phase sequence consisting of nematic, smectic A, smectic C and smectic B is seen for mesogens with terminal chains C6, C8, C10 and C12 on cooling the isotropic phase. For mesogens with C2, C4, C8 and C10 terminal alkoxy chains, the mesophase assignment from hot-stage optical microscopy and differential scanning calorimetry is further confirmed by variable temperature powder X-ray diffraction measurements. The appearance of smectic B phase is established by noticing sharp and intense peaks in both small-angle and wide-angle regions. For a representative mesogen, i.e. T10, high-resolution solid-state (13)C NMR investigations are carried out in all the phases, viz. nematic, smectic A, smectic C and smectic B phases. The orientational order parameters calculated from (13)C-(1)H dipolar couplings from 2D SAMPI-4 experiments are found to be 0.44, 0.67, 0.73 and 0.79 in nematic, smectic A, smectic C and smectic B mesophases for the center phenyl ring respectively. Remarkably, the thiophene order parameter in all mesophases is found to be higher than that of phenyl rings and is explained by considering the molecular shape, which has a terminal bend. Further, the mesogens are found to be photoemissive in chloroform solution with an emission band at ∼410 nm.

  19. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    NASA Astrophysics Data System (ADS)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  20. Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites

    DOE PAGES

    Meier, Q. N.; Lilienblum, M.; Griffin, S. M.; ...

    2017-10-20

    The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic length scales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburgmore » and mean field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.« less

  1. Interplay between topology and disorder in a two-dimensional semi-Dirac material

    NASA Astrophysics Data System (ADS)

    Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich

    2018-01-01

    We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one direction and a parabolic dispersion in the orthogonal direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semimetal, as it generates a momentum-independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three distinct regimes—single-node trivial, two-node trivial, and two-node Chern. We find that disorder can drive topological transitions from both the single- and two-node trivial to the two-node Chern regime. We further analyze these transitions in an appropriate tight-binding Hamiltonian of an anisotropic hexagonal lattice by calculating the real-space Chern number. Additionally, we compute the disorder-averaged entanglement entropy which signals both the topological Lifshitz and Chern transition as a function of the anisotropy of the hexagonal lattice. Finally, we discuss experimental aspects of our results.

  2. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys

    DOE PAGES

    Wu, Wei; Gao, Yanfei; Oak Ridge National Lab.; ...

    2016-09-11

    We present that deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning- detwinning process, the twinning-like lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculationmore » of the lattice strain confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. In conclusion, the study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.

    Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less

  4. Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Q. N.; Lilienblum, M.; Griffin, S. M.

    The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic length scales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburgmore » and mean field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.« less

  5. The thermodynamic parameters of sorption and enantioselectivity of the chiral smectic liquid crystal 2-methylbutyl ester of 4-(4-decyloxybenzylideneamino)-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Stepanova, R. F.; Akopova, O. B.; Glebova, O. V.; Chernova, O. M.

    2008-06-01

    The thermodynamic characteristics of sorption of n-alkanes, arenes, aldehydes, monoatomic alcohols, and optical isomers of camphene and butanediol-2,3 by a chiral smectic liquid crystal, 2-methylbutyl ester of 4-(4-decyloxybenzylideneamino)-cinnamic acid, from the gas phase were studied over the temperature range including the S*C and S*A mesophases and isotropic phase. The standard and excess thermodynamic functions of sorption were determined for 26 sorbates of the classes of substances specified. The S*C and S*A mesophases exhibited selectivity with respect to the separation of para and meta xylenes (α p/m = 1.06 1.07, 90 108°C) and pronounced enantioselectivity (αR/S = 1.05 1.09, 87 108°C). The helically twisted structure of the smectic liquid crystal was shown to play an important role in the mechanism of the chiral recognition of optical isomers of polar and low-polarity compounds under gas-liquid chromatography conditions.

  6. Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups

    NASA Astrophysics Data System (ADS)

    La, Yunju; Park, Chiyoung; Shin, Tae Joo; Joo, Sang Hoon; Kang, Sebyung; Kim, Kyoung Taek

    2014-06-01

    Analogous to the complex membranes found in cellular organelles, such as the endoplasmic reticulum, the inverse cubic mesophases of lipids and their colloidal forms (cubosomes) possess internal networks of water channels arranged in crystalline order, which provide a unique nanospace for membrane-protein crystallization and guest encapsulation. Polymeric analogues of cubosomes formed by the direct self-assembly of block copolymers in solution could provide new polymeric mesoporous materials with a three-dimensionally organized internal maze of large water channels. Here we report the self-assembly of amphiphilic dendritic-linear block copolymers into polymer cubosomes in aqueous solution. The presence of precisely defined bulky dendritic blocks drives the block copolymers to form spontaneously highly curved bilayers in aqueous solution. This results in the formation of colloidal inverse bicontinuous cubic mesophases. The internal networks of water channels provide a high surface area with tunable surface functional groups that can serve as anchoring points for large guests such as proteins and enzymes.

  7. Air separation and oxygen storage properties of hexagonal rare-earth manganites

    NASA Astrophysics Data System (ADS)

    Abughayada, Castro

    This dissertation presents evaluation results of hexagonal Y1-x RxMnO3+delta (R = Er, Y, Dy, Pr, La, Tb and Ho) rare-earth manganites for prospective air separation applications. In these materials, oxygen content is sensitively dependent on the surrounding conditions of temperature and/or oxygen partial pressure, and therefore they exhibit the ability to selectively absorb, store, and release significant amounts of separated oxygen from air. This study presents a full characterization of their thermogravimetric characteristics and air separation capabilities. With the expected potential impact of oxygen content on the physical properties of these materials, the scope of this work is expanded to explore other relevant properties such as magnetic, transport, and dilatometric characteristics. Single-phase polycrystalline samples of these materials were achieved in the hexagonal P63cm phase through solid state reaction at elevated temperatures. Further annealings under reducing conditions were required for samples with large rare-earth cations in order to suppress the competing perovskite structure and form in the anticipated hexagonal phase. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger R ionic radii show rapid and reversible incorporation of significant amounts of excess oxygen (0.41 > delta > 0) at an unusual low temperature range ~190-325 °C. The reversible oxygen storage characteristics of HoMnO3+delta and related materials shown by the fast incorporation and release of interstitial oxygen at easily accessible elevated temperatures of ~300 °C demonstrate the feasibility and potential for low-cost thermal swing adsorption TSA process for oxygen separation and enrichment from air. Neutron and X-ray powder diffraction measurements confirmed the presence of three line compounds RMnO3+delta, the oxygen stoichiometric P6 3cm (delta = 0 for all R), the intermediate oxygen content superstructure phase R3c (delta ~ 0.28 for R = Ho, Dy, Dy0.5Y0.5, and Dy0.3Y0.7) constructed by tripling the c-axis of the original unit cell, and the highly oxygen-loaded Pca21 phase (delta = 0.40 for all R). In-situ synchrotron diffraction showed thermal stability of these single phases and their coexistence ranges, demonstrating that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. The magnetic properties of the multiferroic RMnO3+delta were found to be dependent on the oxygen content of these compounds. Below the magnetic ordering temperatures, samples with higher oxygen content showed slightly decreased magnetization relative to the less oxygenated ones. Dilatometry measurements suggest that the thermal expansion coefficient TEC of the oxygen-loaded Pca21 phase is slightly larger than that of the stoichiometric P63cm phase. The calculated Pca21 to P63cm chemical expansion coefficient 14.38 x 10-3 [mole-O]-1 was found to be within the expected range for the hexagonal Y0.97La0.03MnO3+delta sample.

  8. Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures.

    PubMed

    Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu

    2012-05-09

    Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.

  9. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  10. Application of reverse engineering in the production of individual dental abutments.

    NASA Astrophysics Data System (ADS)

    Yunusov, A. V.; Kashapov, R. N.; Kashapov, L. N.; Statsenko, E. O.

    2017-09-01

    The purpose of the research is to develop a method of manufacturing individual dental abutments for a variety of dental implants. System of industrial X-ray microtomography Phoenix V|tome|X S 240 has been applied for creation of highly accurate model of the dental abutment. Scanning of dental abutment and the optimization of model was produced. The program of milling the individual abutment with a standard conical neck of hexagon was produced for the five-axis milling machine imes - icore 450i from the materials titanium and zirconium oxide.

  11. Synthesis, characterization, MCD spectroscopy, and TD-DFT calculations of copper-metalated nonperipherally substituted octaoctyl derivatives of tetrabenzotriazaporphyrin, cis- and trans-tetrabenzodiazaporphyrin, tetrabenzomonoazaporphyrin, and tetrabenzoporphyrin.

    PubMed

    Mack, John; Sosa-Vargas, Lydia; Coles, Simon J; Tizzard, Graham J; Chambrier, Isabelle; Cammidge, Andrew N; Cook, Michael J; Kobayashi, Nagao

    2012-12-03

    Synthesis of the title compounds has been achieved through refinement of a recently reported synthetic protocol whereby varying equivalents of MeMgBr are reacted with 1,4-dioctylphthalonitrile to produce mixtures favoring specific hybrid structures. The initially formed magnesium-metalated compounds are obtained as pure materials and include, for the first time, both isomers (cis and trans) of tetrabenzodiazaporphyrin. The compounds were demetalated to the metal-free analogues, which were then converted into the copper-metalated derivatives. The X-ray structure of the copper tetrabenzotriazaporphyrin derivative is reported. The metal-free and copper-metalated macrocycles exhibit columnar mesophase behavior, and it is found that the mesophase stability is unexpectedly reduced in the diazaporphyrin derivatives compared to the rest of the series. The results of time-dependent density functional theory calculations for the copper complexes are compared to the observed optical properties. Michl's perimeter model was used as a conceptual framework for analyzing the magnetic circular dichroism spectral data, which predicted and accounted for trends in the observed experimental spectra.

  12. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    PubMed

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spatially-resolved magnetic resonance study of the dissolution interface between soaps and water

    NASA Astrophysics Data System (ADS)

    Ciampi, E.; Goerke, U.; McDonald, P. J.; Chambers, J. G.; Newling, B.

    2002-06-01

    The developing interfacial region between a soap bar and water has been studied using a suite of spatially resolved NMR techniques. Stray field imaging (STRAFI) allowed the dynamics of water ingress into a shop-bought, commercial soap to be followed. A simplistic analysis of the data shows the ingress to be a Fickian process (∝t1/2) in the first 4 h. The T2 contrast employed in the STRAFI method is not sufficient to resolve detail of the mesophase formation at the interface. However, double quantum filtered 2H spectroscopy at different positions in the interfacial region allowed water concentration (and mesophase distribution) to be mapped over the first 120 h of dissolution. A simple model shows good agreement with the water concentration data. In the isotropic soap solution above the interfacial region, J-cyclic cross polarization was used to selectively interrogate the CH2 1H of the soap alkyl chains and, in combination with a pulsed field gradient measurement of self-diffusion, suggests a micellar solution in which the hydrodynamic radius of the micelles is ~5nm.

  14. Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales

    NASA Astrophysics Data System (ADS)

    Kim, Hojun; Leal, Cecilia

    Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.

  15. Ordered materials for organic electronics and photonics.

    PubMed

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Gao, Yanfei; Li, Nan

    2016-12-01

    Deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning-detwinning process, the "twinning-like" lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculation of the lattice strainmore » confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. The study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  17. The α–ω phase transition in shock-loaded titanium

    DOE PAGES

    Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.; ...

    2017-07-28

    Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less

  18. Electronic transport in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.

    2002-04-01

    Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.

  19. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications

    NASA Astrophysics Data System (ADS)

    Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.

    2017-02-01

    Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29  ×  10-3 s-1 and 20  ×  10-3 s-1 respectively with an actual Pd catalyst loading of 2.665  ×  10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.

  20. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity.

    PubMed

    Tan, XueHai; Wang, Liya; Holt, Chris M B; Zahiri, Beniamin; Eikerling, Michael H; Mitlin, David

    2012-08-21

    We have synthesized a new metastable metal hydride with promising hydrogen storage properties. Body centered cubic (bcc) magnesium niobium hydride (Mg(0.75)Nb(0.25))H(2) possesses 4.5 wt% hydrogen gravimetric density, with 4 wt% being reversible. Volumetric hydrogen absorption measurements yield an enthalpy of hydride formation of -53 kJ mol(-1) H(2), which indicates a significant thermodynamic destabilization relative to the baseline -77 kJ mol(-1) H(2) for rutile MgH(2). The hydrogenation cycling kinetics are remarkable. At room temperature and 1 bar hydrogen it takes 30 minutes to absorb a 1.5 μm thick film at sorption cycle 1, and 1 minute at cycle 5. Reversible desorption is achieved in about 60 minutes at 175 °C. Using ab initio calculations we have examined the thermodynamic stability of metallic alloys with hexagonal close packed (hcp) versus bcc crystal structure. Moreover we have analyzed the formation energies of the alloy hydrides that are bcc, rutile or fluorite.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halevy, I.; Zamir, G; Winterrose, M

    The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a {approx} 0.632) to Hexagonal (c/a {approx} 1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction {beta}-Ti/{alpha}-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The {alpha} phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume changemore » is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released.« less

  2. Dimension-controlled assemblies of anion-responsive π-electronic systems bearing aryl substituents with fan-shaped geometries.

    PubMed

    Lakshmi, Vellanki; Haketa, Yohei; Yamakado, Ryohei; Yasuda, Nobuhiro; Maeda, Hiromitsu

    2017-03-30

    Pyrrole-4-aryl-substituted dipyrrolyldiketone BF 2 complexes as anion-responsive π-electronic molecules were synthesized via a 3,5-dimethylpyrrole precursor. Mesophases were observed in derivatives that possessed long alkyl chains on the pyrrole-4-aryl groups along with their anion complexes as ion-pairing assemblies in combination with appropriate cations.

  3. Technical Operations Support III (TOPS III). Delivery Order 0081: Novel Pitch Materials for High Thermal Conductivity Carbon Fibers, Foams and Composites - Phase 3

    DTIC Science & Technology

    2011-06-01

    mm Diameter Barrel and (c) a 12-Hole Spinneret with 150 Micrometer Diameter Holes...6  3. A Schematic of a Mounted Specimen for Compressive Testing Using a High-Speed Camera for Capturing...Tension-Recoil Compressive ..................................................................... 8  4. SEM Images of Oxidized 0 wt% ARHP Mesophase Pitch

  4. Process for making carbon foam

    DOEpatents

    Klett, James W.

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  5. New thermotropic chiral nematic polymers. 3. Copolymers containing a cyanobiphenyl group and (S)-(-)-1-phenylethanol or (S)-(-)-1-phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastrangelo, J.C.; Chen, S.H.

    Thermotropic chiral nematics in thin films on the order of 10 [mu]m possess a unique optical property, selective wavelength reflection, that forms the basis of a number of potential applications including circular polarizers, notch filters, beamsplitters, and so on. Instead of low molar mass chiral nematics, thermotropic copolymers have been actively pursued as an alternative in view of the possibility of achieving long-term mesophase stability and optical characteristics desired for passive device applications. Cyanobiphenyl is a relatively high birefringent group which is known to contribute to the formation of low molar mass liquid crystals; it was found to exhibit amore » nematic mesophase between the glass transition and clearing temperatures in side-chain polyacrylates with spacer lengths in the 2-6 range. However, there exists only one report on the formation of a chiral nematic copolymer with cholesterol as the chiral moiety. Since several chiral building blocks other than cholesterol have been found to possess strong helical twisting powers with selected nematogenic monomers, it would be of interest to explore a cyanobiphenyl group as a building block for the synthesis of new chiral nematic copolymers.« less

  6. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    PubMed

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  7. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  8. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  9. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    NASA Astrophysics Data System (ADS)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  10. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    PubMed

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  11. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  12. Mapping flexible protein domains at subnanometer resolution with the atomic force microscope.

    PubMed

    Müller, D J; Fotiadis, D; Engel, A

    1998-06-23

    The mapping of flexible protein domains with the atomic force microscope is reviewed. Examples discussed are the bacteriorhodopsin from Halobacterium salinarum, the head-tail-connector from phage phi29, and the hexagonally packed intermediate layer from Deinococcus radiodurans which all were recorded in physiological buffer solution. All three proteins undergo reversible structural changes that are reflected in standard deviation maps calculated from aligned topographs of individual protein complexes. Depending on the lateral resolution (up to 0.8 nm) flexible surface regions can ultimately be correlated with individual polypeptide loops. In addition, multivariate statistical classification revealed the major conformations of the protein surface.

  13. Detector shape in hexagonal sampling grids

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele

    2001-12-01

    Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.

  14. Catalysts and Initiators as Instruments Controlling Structure of Polymers with Inorganic Backbone.

    DTIC Science & Technology

    1991-05-02

    lipophobic, electron reach/poor, mesogenic, bioactive , etc. Most modifications have been performed on polyphosphazenes (nucleophilic displacement of...chlorines) and on partially hydrogenated siloxanes (hydrosilylation). Modifications of polysilanes is also known. In this aiticle the main emphasis will...groups6 ,7 . Poly(dimethylsiloxane) is probably the only siloxane polymer which does not form a mesophase and has only one first order thermal

  15. Recoil hysteresis of Sm -Co/Fe exchange-spring bilayers

    NASA Astrophysics Data System (ADS)

    Kang, K.; Lewis, L. H.; Jiang, J. S.; Bader, S. D.

    2005-12-01

    The exchange-spring behavior found in Sm-Co (20nm)/Fe epitaxial bilayer films was investigated by analyzing major hysteresis and recoil curves as a function of anneal conditions. The hard layer consists of nanocrystalline intermetallic Sm-Co hexagonal phases (majority phase Sm2Co7 with SmCo3 and SmCo5). Recoil curves, obtained from the successive removal to remanence and reapplication of an increasingly negative field from the major demagnetization curve, reveal the reversible and irreversible components of the magnetization. The Sm-Co thickness was fixed at 20nm while the Fe thicknesses of 10 and 20nm were studied, with ex situ annealing carried out in evacuated, sealed silica tubes at different temperatures. The peak in the recoil curve area is associated with the coercivity of the hard phase. The development of the soft component magnetization is revealed by the departure of the recoil area from zero with application of a reverse field. These two features together confirm that annealing stabilizes the 10nm Fe bilayer sample against local magnetic reversal while it weakens the 20nm bilayer sample. Furthermore, in both its as-deposited and annealed states the Sm -Co/Fe bilayer of 10nm Fe thickness always displays a higher exchange field and smaller recoil loop areas than the bilayer of 20nm Fe thickness, consistent with a stronger exchange response and more reversible magnetization in the former.

  16. Fabrication of n-ZnO:Al/p-Si(100) heterojunction diode and its characterization

    NASA Astrophysics Data System (ADS)

    Parvathy Venu, M.; Dharmaprakash, S. M.; Byrappa, K.

    2018-04-01

    Aluminum doped ZnO (n-ZnO:Al) nanostructured thin films were grown on ZnO seed layer coated p-Si(100) substrate employing hydrothermal technique. X-ray diffraction pattern revealed that the ZnO:Al film possess hexagonal wurtzite structure with preferential orientation along (002) direction. Photoluminescence of the sample displayed near band edge emission peak in the ultra-violet region and defect level emission peak in the visible region. The as grown thin film was used in the fabrication of n-ZnO:Al/p-Si heterojunction diode and the room temperature current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied. The heterojunction exhibited fairly good rectification with an ideality of 2.49 and reverse saturation current of 2 nA. The barrier height was found to be 0.668 eV from the I-V measurements. The C-V measurements showed a decrease in the capacitance of the heterojunction with an increase in the reverse bias voltage.

  17. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  18. Controlling orientational order in block copolymers using low-intensity magnetic fields

    PubMed Central

    Choo, Youngwoo; Kawabata, Kohsuke; Kaufman, Gilad; Feng, Xunda; Di, Xiaojun; Rokhlenko, Yekaterina; Mahajan, Lalit H.; Ndaya, Dennis; Kasi, Rajeswari M.

    2017-01-01

    The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP’s anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system’s nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles. PMID:29078379

  19. Are metastable, precrystallisation, density-fluctuations a universal phenomena?

    PubMed

    Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J

    2003-01-01

    In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.

  20. Structural evolution under uniaxial drawing of Poly(D, L-lactide) Films

    NASA Astrophysics Data System (ADS)

    Stoclet, Grégory; Lefebvre, Jean-Marc; Seguela, Roland

    2009-03-01

    Aliphatic polyesters are an important class of biodegradable polymers. They have drawn particular attention in the last few years as food packaging materials because they can be derived from renewable resources. Among this family, polylactide (PLA) is considered as one of the most promising ``green'' polymer for use as a substitute to petroleum-based polymers. In the present work, we investigate the mechanical behaviour of amorphous poly(D, L-lactide) films in relation to the structural evolution upon stretching at various draw temperatures (Td) above the glass transition temperature. Examination of the drawing behaviour shows that PLA initially behaves like a rubbery material until a true strain of the order of 1. Strain hardening occurs beyond this strain level, up to film fracture. Such strain hardening is generally ascribed to a strain induced crystallization phenomenon. In the present case, it is clearly more pronounced for Td = 90 C than for Td = 70 C. The corresponding structural evolutions are investigated by means of WAXS. The diffraction patterns reveal the marked influence of draw temperature. Indeed for Td = 70 C a mesophase is induced whereas strain-induced crystallisation takes place at Td = 90 C. Further work is in progress, in order to elucidate mesophase development and mechanical response.

  1. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-juan; Zhang, Chang-wen; Zhang, Shu-feng; Ji, Wei-xiao; Li, Ping; Wang, Pei-ji; Li, Sheng-shi; Yan, Shi-shen

    2017-11-01

    The quantum anomalous Hall (QAH) effect has attracted extensive attention due to time-reversal symmetry broken by a staggered magnetic flux emerging from ferromagnetic ordering and spin-orbit coupling. However, the experimental observations of the QAH effect are still challenging due to its small nontrivial bulk gap. Here, based on density functional theory and Berry curvature calculations, we propose the realization of intrinsic QAH effect in two-dimensional hexagonal metal-oxide lattice, N b2O3 , which is characterized by the nonzero Chern number (C =1 ) and chiral edge states. Spin-polarized calculations indicate that it exhibits a Dirac half-metal feature with temperature as large as TC=392 K using spin-wave theory. When the spin-orbit coupling is switched on, N b2O3 becomes a QAH insulator. Notably, the nontrivial topology is robust against biaxial strain with its band gap reaching up to Eg=75 meV , which is far beyond room temperature. A tight-binding model is further constructed to understand the origin of nontrivially electronic properties. Our findings on the Dirac half-metal and room-temperature QAH effect in the N b2O3 lattice can serve as an ideal platform for developing future topotronics devices.

  2. Improvement of oxygen storage properties of hexagonal YMnO3+δ by microstructural modifications

    NASA Astrophysics Data System (ADS)

    Klimkowicz, Alicja; Świerczek, Konrad; Kobayashi, Shuntaro; Takasaki, Akito; Allahyani, Wadiah; Dabrowski, Bogdan

    2018-02-01

    Hexagonal YMnO3+δ is shown to be an effective temperature-swing oxygen storage material working at low temperatures (150-300 °C) in pure oxygen if adequately processed or obtained having sub-micrometer primary particles with limited number of big agglomerates. A substantial increase of a practical oxygen storage capacity is observed for a sample synthesized by a solid-state method, which was subjected to a high impact mechanical milling. However, even better properties can be achieved for the sol-gel technique-produced YMnO3+δ. The reversible incorporation and release of the oxygen is associated with a structural transformation between stoichiometric YMnO3 (Hex0) phase and a mixture of oxygen-loaded Hex1 with δ ≈ 0.28 and Hex2 with δ ≈ 0.41 phases, as documented by in situ structural X-ray diffraction studies, supported by thermogravimetric experiments. Contrary to HoMnO3+δ, it was not possible to obtain single phase Hex1 material in oxygen, as well as to oxidize YMnO3 in air. Results confirm crucial role of the ionic size of rare earth element Ln on the oxygen storage-related properties and stability of the oxygen-loaded LnMnO3+δ phases.

  3. Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal YMnO3 single crystal visualized by a spherical aberration-corrected STEM.

    PubMed

    Matsumoto, Takao; Ishikawa, Ryo; Tohei, Tetsuya; Kimura, Hideo; Yao, Qiwen; Zhao, Hongyang; Wang, Xiaolin; Chen, Dapeng; Cheng, Zhenxiang; Shibata, Naoya; Ikuhara, Yuichi

    2013-10-09

    A state-of-the-art spherical aberration-corrected STEM was fully utilized to directly visualize the multiferroic domain structure in a hexagonal YMnO3 single crystal at atomic scale. With the aid of multivariate statistical analysis (MSA), we obtained unbiased and quantitative maps of ferroelectric domain structures with atomic resolution. Such a statistical image analysis of the transition region between opposite polarizations has confirmed atomically sharp transitions of ferroelectric polarization both in antiparallel (uncharged) and tail-to-tail 180° (charged) domain boundaries. Through the analysis, a correlated subatomic image shift of Mn-O layers with that of Y layers, exhibiting a double-arc shape of reversed curvatures, have been elucidated. The amount of image shift in Mn-O layers along the c-axis is statistically significant as small as 0.016 nm, roughly one-third of the evident image shift of 0.048 nm in Y layers. Interestingly, a careful analysis has shown that such a subatomic image shift in Mn-O layers vanishes at the tail-to-tail 180° domain boundaries. Furthermore, taking advantage of the annular bright field (ABF) imaging technique combined with MSA, the tilting of MnO5 bipyramids, the very core mechanism of multiferroicity of the material, is evaluated.

  4. Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface.

    PubMed

    Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao

    2018-01-09

    Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

  5. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.

    PubMed

    Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L

    2016-02-16

    Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.

  6. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  7. Rotating non-Boussinesq convection: oscillating hexagons

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim; Riecke, Hermann; Pesch, Werner

    2000-11-01

    Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.

  8. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2001-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  9. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2003-12-16

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  10. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2003-12-02

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  11. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  12. Disclinations in Carbon-Carbon Composites.

    DTIC Science & Technology

    1983-09-01

    8i-C-0641 U LASIFIED F/6G ii/4 N I uuuuullu ..D un n ." =25 1321. MICROCOP EOUINTSLHR NATONL = BUR A FSADRS16- UNCLASSI FI ED SECURITY CLASIrICA’sJM...Applications nuclear carbon carbon fiber intercalation compounds biocarbons and potential uses - Fundamentals physics chemistry technology The technical...Graphite intercalation compounds : old and new University of Munich problems in the chemist’s view West Germany L. S. Singer Carbon fibers from mesophase

  13. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    PubMed

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  14. Development of Low-cost, High Energy-per-unit-area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.

    1978-01-01

    The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.

  15. The guidance of visual search by shape features and shape configurations.

    PubMed

    McCants, Cody W; Berggren, Nick; Eimer, Martin

    2018-03-01

    Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Open-framework micro- and meso-structured chalcogenides and their ion exchange properties

    NASA Astrophysics Data System (ADS)

    Ding, Nan

    2007-12-01

    Micro- and meso- structured chalcogenides with open inorganic framework have driven tremendous attention and intense work during the last two decades. They belong to a special category of materials possessing multifunctional potential due to their large void space within the atomic skeletons and the novel physical properties brought by the chalcogen elements. The latter are not generally present in typical open-framework oxides. In addition, because of the different size and electronegativity of the chalcogen elements compared to oxygen, many new structural properties were expected to emerge when the work in this dissertation was undertaken. The major body of this work involves group 13 (e.g. Ga, In) or 14 (e.g. Ge, Sn) elements with chalcogen. Transition metals also are incorporated in a few examples. The first two groups of compounds reported belong to the latter case. Unique structure types have been obtained under hydrothermal conditions via the combination of M (M = Zn, Cd), Sn and Q (Q = S, Se) to build microporous A6M4Sn3Q13 (A = K, Rb) based on truncated penta-supertrahedral cluster [M4Sn4Q 17]10-. More surprisingly, the protonation of K 6Cd4Sn3Se13 led to another new compound K14Cd15Sn12Se46 which possesses a labyrinth-like void space within the compact [Cd15Sn12Se 46]14- anionic skeleton. This structural characteristic leads to an unusual stability of the compound in acid. Both the K6Cd 4Sn3Se13 and K14Cd15Sn 12Se46 are fast ion-exchangers and their K+ ions can be replaced by other alkali metal cations and even H+ for the latter. Other work reported was aimed at the heavier analogs of alumiophosphate, i.e. the open-frameworks based on group 13 (Ga, In), 15 (Sb) and chalcogen elements. Two groups of chalcoantimonates with two-dimensional architectures [M5Sb6S19]5- and polymorphic [M2Sb2Q7]2- (M = Ga, In; Q = S, Se) were obtained. With the help of bulky organic structure-directing agents, large windows were formed in some of these anionic slabs. The windows are aligned through each layer, adding a pseudo-3D feature to the compounds. This leads to excellent ion-exchange properties. More remarkably, these compounds showed exceptional selectivity for Cs+ ions than any other alkali metal and alkaline earth metal cations due to the soft acid (Cs +)/soft base (S2-) attraction and the size discrimination imposed by the open windows within the frameworks. These properties point to a new direction of designing compounds for possible radioactive 137Cs+ remediation. With the even larger surfactant molecules in water, metal cations In 3+, Zn2+ and Cd2+ can connect [SbSe 4]3- clusters via coordination chemistry to form cubic and hexagonal mesophases. In addition to the linking effect, these metal cations also played the role of Lewis acids and partially reduced [SbSe4] 3- to [SbSe3]3-, both of which are present in the long-range ordered mesostructures. Short range order in a mesostuctured chalcogenide was approached, when structurally rigid Chevrel clusters [Re 6Se6Br8]2- were linked by triselenide anions via metathesis. Higher angle Bragg reflections of this compound provided an opportunity to build a structural model for the first time for a chalcogen-based mesophase.

  17. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    PubMed

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in property characterization.

  18. Competition between crystallization and vitrification of the rigid amorphous fraction in poly(3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Maria Laura; Righetti, Maria Cristina; Gazzano, Massimo

    2012-07-01

    Semicrystalline polymers have a metastable nanophase structure, where the various nanophases can be crystal, liquid, glass, or mesophase. This multi-level structure is determined by a competition among self-organization, crystallization, and vitrification of the amorphous segments and is established during material processing. The kinetics of such competition is here determined for poly(3-hydroxybutyrate) (PHB), as vitrification/devitrification of the rigid amorphous fraction strongly affects crystallization kinetics of PHB.

  19. Liquid Crystals for Laser Applications

    DTIC Science & Technology

    1992-07-01

    336. Zei’dovich, B . Ya. and Tabiryan, N. V., Induced light scattering in the mesophase of a nematic liquid crystal (NLC), JETP Lett., 30, 478- 482 ...and devices. ADVANCES IN MATERIALS I Ferroelectric LC’s Ferroelectricity in liquid crystals was first suggested in 1974 by R. B . Meyer2 3 who, by means...most recently, 2 4 the M* phase. These tilted chiral smectic phases are classified according to the nature of the intermolecular I I packing within

  20. Role of amphiphilic molecule on liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Dan, Kaustabh; Roy, Madhusudan; Datta, Alokmay

    2013-02-01

    We have studied the effect of an amphiphilic fatty acid, Stearic Acid (StA), on the phases, wetting and polarization properties of the liquid crystalline substance N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), through Differential Scanning Calorimetry and Optical Polarization Microscopy. Metastable and mesophases disappear for a MBBA:StA = 1:5 mixture. This mixture wets Si(111) and dewets Si(100) surfaces while pure MBBA dewets both. Films of this mixture also show better polarization than the pure sample.

  1. Studying the orientation of bio-objects by nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zubtsova, Yu. A.; Kamanin, A. A.; Kamanina, N. V.

    2017-05-01

    We have studied the ability of a liquid-crystal (LC) matrix to visualize and orient DNA molecules. It is established that the relief of the interface between the LC mesophase and conducting contact can be improved without using an additional high-ohmic polymer layer. Spectroscopic and ellipsometric techniques revealed changes in the refractive properties and structure of composites. The obtained results can be used in creating devices for rapid DNA testing with retained form of biostructures.

  2. Structure of the Mesophases Formed by a Perfluoroalkyl/Biphenyl Compound. Amphiphilic and Steric Effects

    NASA Astrophysics Data System (ADS)

    Pensec, Sandrine; Tournilhac, François-Genès; Bassoul, Pierre

    1996-11-01

    We describe the synthesis and mesomorphic behaviour of 4-(1H,1H-perfluorooctyloxy)- 4'-methoxy biphenyl. Two mesophases of smectic E and smectic A types were observed. X-ray diffraction study of the smectic E phase indicates a herringbone arrangement of the biphenyl cores, the perfluoroalkyl chains being in a molten state. The {S_E to S_A} transition is related to the melting of the biphenyl sublattice. In both phases, the flexibility of perfluoroalkyl chains permits the area matching between the two segregated sublayers. Nous décrivons la synthèse et les propriétés mésomorphes du 4-(1H,1H-perfluorooctyloxy)- 4'-méthoxy biphényle. Ce composé forme deux mésophases de type smectique E et smectique A. L'analyse par diffraction des rayons X révèle, dans le cas de la phase smectique E un arrangement en chevrons des coeurs biphényles, les chaînes perfluoroalkyles se trouvant dans un état désordonné. La transition {S_E to S_A} correspond à la fusion partielle de la sous-couche biphényle. Dans les deux phases smectiques, la flexibilité des chaînes perfluoroalkyles permet l'adéquation des aires moléculaires entre les deux sous-couches ségrégées.

  3. Nanoparticles in discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  4. Chiral Superstructure Mesophases of Achiral Bent-Shaped Molecules - Hierarchical Chirality Amplification and Physical Properties.

    PubMed

    Le, Khoa V; Takezoe, Hideo; Araoka, Fumito

    2017-07-01

    Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation.

    PubMed

    Mugheirbi, Naila A; Tajber, Lidia

    2015-10-01

    The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chain hexagonal cacti with the extremal eccentric distance sum.

    PubMed

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  7. Investigation of Deformation Dynamics in a Wrought Magnesium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Qiao, Hua; An, Ke

    2014-11-01

    In the present research, the deformation dynamics and the effect of the deformation history on plastic deformation in a wrought magnesium alloy have been studied using real-time in-situ neutron diffraction measurements under a continuous loading condition and elastic-viscoplastic self-consistent (EVPSC) polycrystal modeling. The experimental results reveal that the pre-deformation delayed the activation of the tensile twinning during subsequent compression, mainly resulting from the residual strain. No apparent detwinning occurred during unloading and even in the elastic region during reverse loading. It is believed that the grain rotation played an important role in the elastic region during reverse loading. The EVPSCmore » model, which has been recently updated by implementing the twinning and detwinning model, was employed to characterize the deformation mechanism during the strain-path changes. The simulation result predicts well the experimental observation from the real-time in-situ neutron diffraction measurements. The present study provides a deep insight of the nature of deformation mechanisms in a hexagonal close-packed structured polycrystalline wrought magnesium alloy, which might lead to a new era of deformation-mechanism research.« less

  8. An Explanation for Saturn's Hexagon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a stable hexagonal shape that rotates with very nearly the same period as Saturns rotational period.The formation of this hexagon depends on factors such as the initial amplitude and curvature of the jet. The models treatment of the wind profile within Saturns atmosphere is another key component that allowed them to match the observed characteristics of the Hexagon, such as its shape, vorticity behavior, temperature gradient, and seasonal stability.BonusThe gif below shows part of an animation the authors produced of the jet evolution in their model. You can see a hexagon begin to develop at around 230 days into the simulation, and by about 400 days it becomes stable and non-rotating (were looking at it from a reference frame rotating with Saturn). The full animation can be viewed here. [Morales-Juberas et al., 2015]CitationR. Morales-Juberas et al.2015 ApJ 806 L18 doi:10.1088/2041-8205/806/1/L18

  9. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis.

    PubMed

    Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias

    2014-11-01

    Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    NASA Astrophysics Data System (ADS)

    Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang

    2010-04-01

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  11. Self-Assembly in Systems Containing Silicone Compounds

    NASA Astrophysics Data System (ADS)

    Ferreira, Maira Silva; Loh, Watson

    2009-01-01

    Chemical systems formed by silicone solvents and surfactants have potential applications in a variety of industrial products. In spite of their technological relevance, there are few reports on the scientific literature that focus on characterizing such ternary systems. In this work, we have aimed to develop a general, structural investigation on the phase diagram of one system that typically comprises silicone-based chemicals, by means of the SAXS (small-angle X-ray scattering) technique. Important features such as the presence of diverse aggregation states in the overall system, either on their own or in equilibrium with other structures, have been detected. As a result, optically isotropic chemical systems (direct and/or reversed microemulsions) and liquid crystals with lamellar or hexagonal packing have been identified and characterized.

  12. The wave numbers of supercritical surface tension driven Benard convection

    NASA Technical Reports Server (NTRS)

    Koschmieder, E. L.; Switzer, D. W.

    1991-01-01

    The cell size or the wave numbers of supercritical hexagonal convection cells in primarily surface tension driven convection on a uniformly heated plate was studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It was found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It was also observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wave number with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy were tested with three fluid layers of different depth.

  13. The wavenumbers of supercritical surface-tension-driven Benard convection

    NASA Technical Reports Server (NTRS)

    Koschmieder, E. L.; Switzer, D. W.

    1992-01-01

    The cell size or the wavenumbers of supercritical hexagonal convection cells in primarily surface-tension-driven convection on a uniformly heated plate has been studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It has been found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It has also been observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wavenumber with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy have been tested with three fluid layers of different depth.

  14. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, David S.

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less

  15. Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.; Mihama, K.

    1986-12-01

    Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.

  16. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  17. The past, present, and future of hockey-stick-shaped liquid crystals

    NASA Astrophysics Data System (ADS)

    Choi, E.-Joon

    2014-02-01

    Recently, the liquid crystalline materials with a bent-core mesogen have attracted attentions because their interesting properties such as polarity and biaxiality of the mesophase. There are several types of bent-core mesogenic structures have been reported, for instance, banana-shaped, V-shaped molecules, boomerang-shaped, hockey stick-shaped, and Yshaped molecules. In this study, the liquid crystals and the reactive mesogens with the hockey-stick shaped mesogens will be described concerning with the structure-property relationship.

  18. Self-assembled pentacenequinone derivative for trace detection of picric acid.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna

    2013-02-01

    Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Renaut, R.W.

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In somemore » cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.« less

  20. Comparison of presumptive blood test kits including hexagon OBTI.

    PubMed

    Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E

    2008-05-01

    Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.

  1. Hexagonal convection patterns and their evolutionary scenarios in electroconvection induced by a strong unipolar injection

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Liu, Lin-Hua; Tan, He-Ping

    2018-05-01

    A regular hexagonal pattern of three-dimensional electroconvective flow induced by unipolar injection in dielectric liquids is numerically observed by solving the fully coupled governing equations using the lattice Boltzmann method. A small-amplitude perturbation in the form of a spatially periodic pattern of hexagonal cells is introduced initially. The transient development of convective cells that undergo a sequence of transitions agrees with the idea of flow seeking an optimal scale. Stable hexagonal convective cells and their subcritical bifurcation together with a hysteresis loop are clearly observed. In addition, the stability of the hexagonal flow pattern is analyzed in a wide range of relevant parameters, including the electric Rayleigh number T , nondimensional mobility M , and wave number k . It is found that centrally downflowing hexagonal cells, which are characterized by the central region being empty of charge, are preferred in the system.

  2. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  3. Metastable phases of silver and gold in hexagonal structure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2004-07-01

    Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.

  4. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  5. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  6. Novel high pressure hexagonal OsB2 by mechanochemistry

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  7. A new look at sporoderm ontogeny in Persea americana and the hidden side of development.

    PubMed

    Gabarayeva, Nina I; Grigorjeva, Valentina V; Rowley, John R

    2010-06-01

    The phenomenon of self-assembly, widespread in both the living and the non-living world, is a key mechanism in sporoderm pattern formation. Observations in developmental palynology appear in a new light if they are regarded as aspects of a sequence of micellar colloidal mesophases at genomically controlled initial parameters. The exine of Persea is reduced to ornamentation (spines and gemmae with underlying skin-like ectexine); there is no endexine. Development of Persea exine was analysed based on the idea that ornamentation of pollen occurs largely by self-assembly. Flower buds were collected from trees grown in greenhouses over 11 years in order to examine all the main developmental stages, including the very short tetrad period. After fixing, sections were examined using transmission electron microscopy. The locations of future spines are determined by lipid droplets in invaginations of the microspore plasma membrane. The addition of new sporopollenin monomers into these invaginations leads to the appearance of chimeric polymersomes, which, after splitting into two individual assemblies, give rise to both liquid-crystal conical 'skeletons' of spines and spherical micelles. After autopolymerization of sporopollenin, spines emerge around their skeletons, nested into clusters of globules. These clusters and single globules between spines appear on a base of spherical micelles. The intine also develops on the base of micellar mesophases. Colloidal chemistry helps to provide a more general understanding of the processes and explains recurrent features of pollen walls from remote taxa.

  8. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael

    2013-05-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHGmore » images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.« less

  9. Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Taguchi, Satomi; Liu, Feng; Zeng, Xiang-bing; Ungar, Goran; Ohno, Hiroyuki; Kato, Takashi

    2012-02-08

    Two series of wedge-shaped onium salts, one ammonium and the other phosphonium, having 3,4,5-tris(alkyloxy)benzyl moieties, exhibit thermotropic bicontinuous "gyroid" cubic (Cub(bi)) and hexagonal columnar liquid-crystalline (LC) phases by nanosegregation between ionophilic and ionophobic parts. The alkyl chain lengths on the cationic moieties, anion species, and alkyl chain lengths on the benzyl moieties have crucial effects on their thermotropic phase behavior. For example, triethyl-[3,4,5-tris(dodecyloxy)benzyl]ammonium hexafluorophosphate forms the thermotropic Ia3d Cub(bi) LC phase, whereas an analogous compound with trifluoromethanesulfonate anion shows no LC properties. Synchrotron small-angle diffraction intensities from the Ia3d Cub(bi) LC materials provide electron density maps in the bulk state. The resulting maps show convincingly that the Ia3d Cub(bi) structure is composed of three-dimensionally interconnected ion nanochannel networks surrounded by aliphatic domains. A novel differential mapping technique has been applied successfully. The map of triethyl-[3,4,5-tris(decyloxy)benzyl]ammonium tetrafluoroborate has been subtracted from that of the analogous ammonium salt with hexafluorophosphate anion in the Ia3d Cub(bi) phases. The differential map shows that the counteranions are located in the core of the three-dimensionally interconnected nanochannel networks. Changing from trimethyl- via triethyl- to tripropylammonium cation changes the phase from columnar to Cub(bi) to no mesophase, respectively. This sensitivity to the widened shape for the narrow end of the molecule is explained successfully by the previously proposed semiquantitative geometric model based on the radial distribution of volume in wedge-shaped molecules. The LC onium salts dissolve lithium tetrafluoroborate without losing the Ia3d Cub(bi) LC phase. The Cub(bi) LC materials exhibit efficient ion-transporting behavior as a result of their 3D interconnected ion nanochannel networks. The Ia3d Cub(bi) LC material formed by triethyl-[3,4,5-tris(decyloxy)benzyl]phosphonium tetrafluoroborate shows ionic conductivities higher than the analogous Ia3d Cub(bi) material based on ammonium salts. The present study indicates great potential of Cub(bi) LC nanostructures consisting of ionic molecules for development of transportation nanochannel materials.

  10. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  11. Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation

    NASA Astrophysics Data System (ADS)

    Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.

  12. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    PubMed

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  13. Colloidal attraction induced by a temperature gradient.

    PubMed

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  14. Design and Synthesis of Novel Discotic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kayal, Himadri Sekhar

    Columnar mesophases of discotic liquid crystals (DLCs) have attracted much attention as organic semiconductors and have been tested as active materials in light-emitting diodes, photovoltaic solar cells, and field-effect transistors. However, devices based on DLCs have shown lower performance than devices based on polymeric and small molecule glass semiconductors, despite their superior charge conducting and advantages self-organizing properties. Most DLCs also require relatively complex processing conditions for the preparation of electronic devices, which is another significant disadvantage. Consequently, new types of DLCs are sought-after to overcome these limitations and described in this thesis are new types of discotic materials and their synthesis. Chapters 2 and 3 describe star-shaped discotic molecules for donor-acceptor columnar structures and as novel flexible core discotic molecules. Presented are the first examples of star-shaped heptamers of donor and acceptor discotic molecules which have six hexaalkoxy triphenylene ligands and a hexaazatriphenylene hexacarboxylate core or a hexaazatriphenylene hexaamide core. The hexaazatriphenylene cores were chosen because of their electron deficient character while the hexaalkoxy triphenylenes are known to be electron rich. Envisioned is the formation of super-columns in which the heptamers stack on top of each other and generate a material with electron acceptor and electron donor channels separated by aliphatic chains. This is an important difference to previously reported donor-acceptor star-shaped structures that were connected via conjugated linkers and do not form separate columnar stacks. Star-shaped DLCs based on small aromatic groups linked together by short flexible spacers may represent a novel type of discotic core structure that does not require peripheral flexible chains. Softening of the core by the spacer group is expected to sufficiently lower melting points and not interfere with the columnar stacking as long as a disc-shaped structure can be adopted. Presented here are synthetic approaches towards novel hexa(thiophen-2-yl)alkyl)benzene derivatives as star-shaped hetero-heptamer discotic cores. New ionic and polymerizable discotic liquid crystals based on the commercial dye tetraazaporphyrin are presented in Chapters 4 and 5. Both areas have been given little attention despite their importance for the preparation of stable films for devices. Tetraazaporphyrins containing azide and acetylene groups at the end of aliphatic spacers have been prepared and cross-linked by cycloaddition (click chemistry). Some derivatives form columnar mesophases and could be thermally cross-linked in their columnar mesophase and their copper catalyzed cross-linking in Langmuir and Langmuir-Blodgett layers was also successful.

  15. Defect chaos of oscillating hexagons in rotating convection

    PubMed

    Echebarria; Riecke

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.

  16. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.

    2018-03-01

    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.

  17. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    NASA Astrophysics Data System (ADS)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  18. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  19. Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases

    NASA Astrophysics Data System (ADS)

    Assenza, Salvatore; Mezzenga, Raffaele

    2018-02-01

    We perform a simulation study of the diffusion of small solutes in the confined domains imposed by inverse bicontinuous cubic phases for the primitive, diamond, and gyroid symmetries common to many lipid/water mesophase systems employed in experiments. For large diffusing domains, the long-time diffusion coefficient shows universal features when the size of the confining domain is renormalized by the Gaussian curvature of the triply periodic minimal surface. When bottlenecks are widely present, they become the most relevant factor for transport, regardless of the connectivity of the cubic phase.

  20. Observation of polar order and thermochromic behaviour in a chiral bent-core system exhibiting exotic mesophases due to superstructural frustration.

    PubMed

    Punjani, Vidhika; Mohiuddin, Golam; Kaur, Supreet; Khan, Raj Kumar; Ghosh, Sharmistha; Pal, Santanu Kumar

    2018-04-03

    A new approach accompanied by superstructural frustration is reported. By attaching a cholesterol moiety directly to the central bent-core system it displayed exotic BPIII, BPII/I, Ncyb*, TGBA, SmAPA, SmA and SmX phases as shown by X-ray scattering results. While higher homologues of the series exhibited spontaneous formation of polar order (Ps ∼ 61 nC cm-2) upon applied voltage, the lower homologues showed thermochromic behaviour which can also be trapped via temperature quenching.

  1. Experimental NMR spin-lattice relaxometry study in the liquid crystalline nematic phase of propylcyano-phenylcyclohexane.

    PubMed

    Acosta, R H; Pusiol, D J

    2001-01-01

    The NMR spin-lattice proton relaxation dispersion T1(nu(L)) of the liquid crystal propylcyano-phenylcyclohexane is studied over several decades of Larmor frequencies and at different temperatures in the nematic mesophase. The results show that the order fluctuation of the local nematic director contribution to T1(nu(L)) undergoes a transition between two power regimes: from T1(nu(L)) protional to nu(1/2)L to nu(alpha)L (alpha approximately 1/3) on going from low to high Larmor frequencies.

  2. Synthesis of Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 3. Influence of Molecular Weight, Interconnecting Unit and Substituent on the Mesomorphic behavior of Polymers with Laterally Attached Mesogens

    DTIC Science & Technology

    1992-04-08

    polymethylsiloxanes, 6 -7 polyacrylates ,2,4,5 polymethacrylates, 1 ,3 and polychloroacrylates, 5 exhibit only nematic mesophases regardless of the...corresponding carboxyl chloride. Potassium bicyclo[2.2.1]hept-2-ene-5- carboxylate was prepared by titrating a methanolic solution of the carboxylic acid...Esterification of the Corresponding Benzyl Bromides. Monomers 1I-n were prepared in 47-88% yield using the following procedure. A mixture of potassium bicyclo

  3. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-temperature molecular dynamics simulation of aragonite.

    PubMed

    Miyake, Akira; Kawano, Jun

    2010-06-09

    For molecular dynamics simulations using aragonite structure as the initial state, a new phase of space group P6₃22 (hexagonal aragonite) appeared at temperatures above 510 K at a pressure of 1 atm. It was a first-order phase transition which occurs metastably within the stable region of calcite and the dT/dP slope of the phase boundary between orthorhombic and hexagonal aragonite was about 1.25 × 10³ K GPa⁻¹. In the hexagonal aragonite structure, CO₃ groups were rotated by 30° around the c axis and move up and down along the c axis from their position in aragonite, and Ca ions were six-coordinated as they are in calcite. The CaO₆ octahedron of hexagonal aragonite was strongly distorted, whereas in the calcite structure it is an almost ideal octahedron. The transition between hexagonal and orthorhombic aragonite involves only small movements of CO₃ groups. Therefore, it is possible that hexagonal aragonite plays an important part in the metastable formation of aragonite within the stability field of calcite and in the development of sector trilling in aragonite.

  5. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    PubMed

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  6. Why do Hematite FORCs Look Weird?

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.

    2017-12-01

    Although much progress has been made in the modelling of first-order reversal curve (FORC) diagrams for ensembles of interacting single domain (SD) magnetite particles with cubic and uniaxial anisotropy, a comprehensive understanding of FORC diagrams for magnetic minerals with other forms of anisotropy is currently lacking. For example, it has long been recognised that FORC diagrams for hematite display a range of unexplained features, including one or more of the following: 1) a kidney-shaped positive peak that is negatively offset from the horizontal axis; 2) a negative peak that sits below the offset positive peak; and 3) a negative-positive streak that extends at a steep negative angle to the horizontal axis. Here we demonstrate that many of the diagnostic features of hematite FORCs can be explained as an intrinsic consequence of hexagonal anisotropy operating within the basal plane. Simulations are performed for an ensemble of identical, randomly oriented, non-interacting SD particles, with easy axes located at 60° to each other within a basal plane. In the general case, there are six stable or metastable solutions for the magnetic state of a particle, with different critical fields for switching into and out of the corresponding hysteresis branch. Downward switching between branches at the reversal field is paired with either symmetrical or asymmetrical upward switching between branches at the measurement field. Paired switching events lead to both symmetrical (central ridge) and asymmetrical (negatively shifted) signals in the FORC diagram. A downward transition out of one branch means the corresponding upward transition from that branch is no longer accessible, leading to a negative contribution to the FORC distribution. At the same time, an upward transition from a different branch becomes newly accessible, leading to a paired positive contribution to the FORC distribution. Simulations of interacting SD particles with hexagonal anisotropy and a broad range of switching fields reproduce many of the features typically associated with hematite FORC diagrams, demonstrating that key features can largely be explained as an intrinsic effect caused by the availability of multiple hysteresis branches.

  7. A Configurational-Bias-Monte-Carlo Back-Mapping Algorithm for Efficient and Rapid Conversion of Coarse-Grained Water Structures Into Atomistic Models.

    PubMed

    Loeffler, Troy David; Chan, Henry; Narayanan, Badri; Cherukara, Mathew J; Gray, Stephen K; Sankaranarayanan, Subramanian K R S

    2018-06-20

    Coarse-grained molecular dynamics (MD) simulations represent a powerful approach to simulate longer time scale and larger length scale phenomena than those accessible to all-atom models. The gain in efficiency, however, comes at the cost of atomistic details. The reverse transformation, also known as back-mapping, of coarse grained beads into their atomistic constituents represents a major challenge. Most existing approaches are limited to specific molecules or specific force-fields and often rely on running a long time atomistic MD of the back-mapped configuration to arrive at an optimal solution. Such approaches are problematic when dealing with systems with high diffusion barriers. Here, we introduce a new extension of the configurational-bias-Monte-Carlo (CBMC) algorithm, which we term the crystalline-configurational-bias-Monte-Carlo (C-CBMC) algortihm, that allows rapid and efficient conversion of a coarse-grained model back into its atomistic representation. Although the method is generic, we use a coarse-grained water model as a representative example and demonstrate the back-mapping or reverse transformation for model systems ranging from the ice-liquid water interface to amorphous and crystalline ice configurations. A series of simulations using the TIP4P/Ice model are performed to compare the new CBMC method to several other standard Monte Carlo and Molecular Dynamics based back-mapping techniques. In all the cases, the C-CBMC algorithm is able to find optimal hydrogen bonded configuration many thousand evaluations/steps sooner than the other methods compared within this paper. For crystalline ice structures such as a hexagonal, cubic, and cubic-hexagonal stacking disorder structures, the C-CBMC was able to find structures that were between 0.05 and 0.1 eV/water molecule lower in energy than the ground state energies predicted by the other methods. Detailed analysis of the atomistic structures show a significantly better global hydrogen positioning when contrasted with the existing simpler back-mapping methods. Our results demonstrate the efficiency and efficacy of our new back-mapping approach, especially for crystalline systems where simple force-field based relaxations have a tendency to get trapped in local minima.

  8. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants.

    PubMed

    Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro

    2009-01-01

    This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of dental implants.

  9. The influence of abutment screw tightening on screw joint configuration.

    PubMed

    Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B

    2002-01-01

    Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.

  10. Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: A first principles study

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Kaur, Sumandeep; Srivastava, Sunita

    2018-02-01

    Density functional theory has been employed to study the electronic and mechanical properties of the monolayer and bilayer ZnS. AB stacked ZnS bilayer is found to be energetically more favorable over the AA stacked ZnS bilayer. The electronic bandgap decreases on moving from monolayer to bilayer. Application of positive transverse electric field in AA/AB stacked bilayers leads to a semiconductor to metal transition at 1.10 V/Å. Reversed polarity of electric field, on the other hand, leads to an asymmetric behavior of the bandgap for AB stacking while the behavior of the bandgap in AA stacking is polarity independent. The strong dependency of bandgap on polarity of electric field in AB stacked ZnS bilayer is due to the balancing of external field with the induced internal field which arises due the electronegativity and heterogeneity in the arrangements of atoms. The electronic structure varies with the variation of applied biaxial strain (compression/tensile). We report an increase in band gap in both single and double layers under compression up to -8.0%, which can be attributed to greater superposition of atomic orbitals (Zn-d and S-p hybridization). We expect that our results may stimulate more theoretical and experimental work on hexagonal multi-layers of ZnS employing external field (temperature, pressure, field etc.) for future applications of our present work.

  11. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    PubMed

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  12. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)(n)F, n = 1.0-2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes.

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2012-08-23

    The effects of the HF composition, n, in 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C(12)MIm(FH)(n)F, n = 1.0-2.3) on their physicochemical and structural properties have been investigated using infrared spectroscopy, thermal analysis, polarized optical microscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. The phase diagram of C(12)MIm(FH)(n)F (n vs transition temperature) suggests that C(12)MIm(FH)(n)F is a mixed crystal system that has a boundary around n = 1.9. For all compositions, a liquid crystalline mesophase with a smectic A interdigitated bilayer structure is observed. The temperature range of the mesophase decreases with increasing n value (from 61.8 °C for C(12)MIm(FH)(1.0)F to 37.0 °C for C(12)MIm(FH)(2.3)F). The layer spacing of the smectic structure decreases with increasing n value or increasing temperature. Two structural types with different layer spacings are observed in the crystalline phase (type I, 1.0 ≤ n ≤ 1.9, and type II, 1.9 ≤ n ≤ 2.3). Ionic conductivities parallel and perpendicular to the smectic layers (σ(||) and σ([perpendicular])) increase with increasing n value, whereas the anisotropy of the ionic conductivities (σ(||)/σ([perpendicular])) is independent of the n value, since the thickness of the insulating sheet formed by the dodecyl group remains nearly unchanged.

  13. Directing the assembly of nanostructured films with living cells

    NASA Astrophysics Data System (ADS)

    Brinker, C. Jeffrey

    2007-03-01

    This talk describes our recent discovery of the ability of living cells to organize extended nanostructures and nano-objects in a manner that creates a unique, highly biocompatible nano//bio interface (Science 313, 337-340, 2006). We find that, using short chain phospholipids to direct the formation of thin film silica mesophases during evaporation-induced self-assembly, the introduction of cells (so far yeast and bacteria) alters profoundly the inorganic self-assembly pathway. Cells actively organize around themselves an ordered, multilayered lipid-membrane that interfaces coherently with a lipid-templated silica mesophase. This bio/nano interface is unique in that it withstands drying (even evacuation) without cracking or the development of tensile stresses -- yet it maintains accessibility to molecules, proteins/antibodies, plasmids, etc - introduced into the 3D silica host. Additionally cell viability is preserved for weeks to months in the absence of buffer, making these constructs useful as standalone cell-based sensors. The bio/nano interfaces we describe do not form `passively' -- rather they are a consequence of the cell's ability to sense and actively respond to external stimuli. During EISA, solvent evaporation concentrates the extracellular environment in osmolytes. In response to this hyperosmotic stress, the cells release water, creating a gradient in pH, which is maintained within the adjoining nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and a variety of other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting -- processes allowing patterning of cellular arrays - and even spatially-defined genetic modification.

  14. Complex topological structures of frustrated liquid crystals with potential for optics and photonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Žumer, Slobodan; Čančula, Miha; Čopar, Simon; Ravnik, Miha

    2015-10-01

    Geometrical constrains and intrinsic chirality in nematic mesophases enable formation of stable and metastable complex defect structures. Recently selected knotted and linked disclinations have been formed using laser manipulation of nematic braids entangling colloidal particles in nematic colloids [Tkalec et al., Science 2011; Copar et al., PNAS 2015]. In unwinded chiral nematic phases stable and metastable toron and hopfion defects have been implemented by laser tweezers [Smalyukh et al., Nature Materials 2010; Chen et al., PRL2013] and in chiral nematic colloids particles dressed by solitonic deformations [Porenta et al., Sci. Rep. 2014]. Modelling studies based on the numerical minimisation of the phenomenological free energy, supported with the adapted topological theory [Copar and Zumer, PRL 2011; Copar, Phys. Rep. 2014] allow describing the observed nematic defect structures and also predicting numerous structures in confined blue phases [Fukuda and Zumer, Nature Comms 2011 and PRL 2011] and stable knotted disclinations in cholesteric droplets with homeotropic boundary [Sec et al., Nature Comms 2014]. Coupling the modeling with finite difference time domain light field computation enables understanding of light propagation and light induced restructuring in these mesophases. The method was recently demonstrated for the description of low intensity light beam changes during the propagation along disclination lines [Brasselet et al., PRL 2009; Cancula et al., PRE 2014]. Allowing also high intensity light an order restructuring is induced [Porenta et al., Soft Matter 2012; Cancula et al., 2015]. These approaches help to uncover the potential of topological structures for beyond-display optical and photonic applications.

  15. A new look at sporoderm ontogeny in Persea americana and the hidden side of development

    PubMed Central

    Gabarayeva, Nina I.; Grigorjeva, Valentina V.; Rowley, John R.

    2010-01-01

    Background and Aims The phenomenon of self-assembly, widespread in both the living and the non-living world, is a key mechanism in sporoderm pattern formation. Observations in developmental palynology appear in a new light if they are regarded as aspects of a sequence of micellar colloidal mesophases at genomically controlled initial parameters. The exine of Persea is reduced to ornamentaion (spines and gemmae with underlying skin-like ectexine); there is no endexine. Development of Persea exine was analysed based on the idea that ornamentation of pollen occurs largely by self-assembly. Methods Flower buds were collected from trees grown in greenhouses over 11 years in order to examine all the main developmental stages, including the very short tetrad period. After fixing, sections were examined using transmission electron microscopy. Key Results and Conclusions The locations of future spines are determined by lipid droplets in invaginations of the microspore plasma membrane. The addition of new sporopollenin monomers into these invaginations leads to the appearance of chimeric polymersomes, which, after splitting into two individual assemblies, give rise to both liquid-crystal conical ‘skeletons’ of spines and spherical micelles. After autopolymerization of sporopollenin, spines emerge around their skeletons, nested into clusters of globules. These clusters and single globules between spines appear on a base of spherical micelles. The intine also develops on the base of micellar mesophases. Colloidal chemistry helps to provide a more general understanding of the processes and explains recurrent features of pollen walls from remote taxa. PMID:20400758

  16. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: Application to 1H NMR reversion experiments in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibrium.

  17. Hexagon solar power panel

    NASA Technical Reports Server (NTRS)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  18. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate

  19. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  20. Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity

    NASA Astrophysics Data System (ADS)

    Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri

    2018-04-01

    A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.

  1. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    PubMed

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  2. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  3. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.

    PubMed

    Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen

    2012-02-01

    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.

  4. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model

    DOE PAGES

    Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...

    2016-08-25

    We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less

  5. STIR: Novel Electronic States by Gating Strongly Correlated Materials

    DTIC Science & Technology

    2016-03-01

    plan built on my group’s recent demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to...demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to prevent disorder and chemical...techniques and learned to apply thin hexagonal Boron Nitride to single crystals of materials expected to show some of the most exciting correlated

  6. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  7. Anomalous fast dynamics of adsorbate overlayers near an incommensurate structural transition.

    PubMed

    Granato, Enzo; Ying, S C; Elder, K R; Ala-Nissila, T

    2013-09-20

    We investigate the dynamics of a compressively strained adsorbed layer on a periodic substrate via a simple two-dimensional model that admits striped and hexagonal incommensurate phases. We show that the mass transport is superfast near the striped-hexagonal phase boundary and in the hexagonal phase. For an initial step profile separating a bare substrate region (or "hole") from the rest of a striped incommensurate phase, the superfast domain wall dynamics leads to a bifurcation of the initial step profile into two interfaces or profiles propagating in opposite directions with a hexagonal phase in between. This yields a theoretical understanding of the recent experiments for the Pb/Si(111) system.

  8. Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Lee, L. P.

    1972-01-01

    A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.

  9. Effect of hexagonal hillock on luminescence characteristic of multiple quantum wells structure

    NASA Astrophysics Data System (ADS)

    Du, Jinjuan; Xu, Shengrui; Li, Peixian; Zhang, Jincheng; Zhao, Ying; Peng, Ruoshi; Fan, Xiaomeng; Hao, Yue

    2018-04-01

    GaN based ultraviolet multiple quantum well structures grown on a c-plane sapphire substrate by metal organic chemical deposition showed a microstructure with a large amount of huge hexagonal hillocks. The polarity of the sample is confirmed by etching with sodium hydroxide solution. The luminous intensity distribution of a typical hexagonal hillock was investigated by the phototluminescent mapping and the luminous intensity at hillock top regions was found to be 15 times higher than that of the regions around hillocks. The reduction of dislocations, the decreasing of the quantum confirmed stack effect caused by semipolar plane and the inclination of the sidewalls of the hexagonal hillock were responsible for the enhancement of luminous intensity.

  10. Variability of Young’s modulus and Poisson’s ratio of hexagonal crystals

    NASA Astrophysics Data System (ADS)

    Komarova, M. A.; Gorodtsov, V. A.; Lisovenko, D. S.

    2018-04-01

    In this paper, the variability of elastic characteristics (Young’s modulus and Poisson’s ratio) of hexagonal crystals has been studied. Analytic expressions for Young’s modulus and Poisson’s ratio are obtained. Stationary values for these elastic characteristics are found. Young’s modulus has three stationary values, and Poisson’s ratio has eight stationary values. Numerical analysis of these elastic characteristics for hexagonal crystals is given based on the experimental data from the Landolt-Börnstein handbook. Global extrema of Young’s modulus and Poisson’s ratio for hexagonal crystals are found. Crystals are found in which the maximum values exceeds the upper limit for isotropic materials.

  11. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yuan, Hongsheng; Meng, Yue; Mao, Ho-kwang

    2018-03-01

    A deep lower-mantle (DLM) water reservoir depends on availability of hydrous minerals which can store and transport water into the DLM without dehydration. Recent discoveries found hydrous phases AlOOH (Z = 2) with a CaCl2-type structure and FeOOH (Z = 4) with a cubic pyrite-type structure stable under the high-pressure–temperature (P-T) conditions of the DLM. Our experiments at 107–136 GPa and 2,400 K have further demonstrated that (Fe,Al)OOH is stabilized in a hexagonal lattice. By combining powder X-ray-diffraction techniques with multigrain indexation, we are able to determine this hexagonal hydrous phase with a = 10.5803(6) Å and c = 2.5897(3) Å at 110 GPa. Hexagonal (Fe,Al)OOH can transform to the cubic pyrite structure at low T with the same density. The hexagonal phase can be formed when δ-AlOOH incorporates FeOOH produced by reaction between water and Fe, which may store a substantial quantity of water in the DLM.

  12. Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies

    NASA Astrophysics Data System (ADS)

    Vinoth, S.; Balaganapathi, T.; KaniAmuthan, B.; Arun, T.; Muthuselvam, I. Panneer; Chou, Fang-Cheng; Thilakan, P.

    2017-08-01

    Solvothermal synthesis and optimization of pure Bismuth telluride (Bi2Te3) hexagonal nanoplatelets was carried out from Bismuth Oxide (Bi2O3) and Tellurium dioxide (TeO2). XRD measurements revealed a sensitive change in crystallization behaviour in correlation with variation in Te/Bi stoichiometry identified through the exchange in intensities between (10 10 ̅) and (110) peaks. Further, Energy Dispersive X-ray (EDAX) analysis revealed the variation in Te/Bi ratio with respect to autoclave temperature. Field emission scanning electron Microscope (FESEM) and the high resolution transmission electron Microscope (HRTEM) studies show the complete growth of hexagonal nanoplatelets at 200 °C. Confocal Micro-Raman measurements revealed the occurrence of symmetry breaking in the synthesized hexagonal nanoplatelets. The electrical conductivity and the activation energy were recorded as 6.01×10-3 S/m and 0.042 eV respectively. Highest maximum absolute value of Seebeck coefficient of -355 μV/K was obtained for the hexagonal nanoplatelets.

  13. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal micro-resonators

    NASA Astrophysics Data System (ADS)

    Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.

    2017-09-01

    Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.

  14. Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures

    NASA Astrophysics Data System (ADS)

    Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.

    2018-01-01

    ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.

  15. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?

    PubMed

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2015-02-21

    Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

  16. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less

  17. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  18. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  19. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  20. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoni, F.; Lalli, S.; Lucchetti, L.

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  1. Fabrication and Properties of Carbon Fibers

    PubMed Central

    Huang, Xiaosong

    2009-01-01

    This paper reviews the research and development activities conducted over the past few decades on carbon fibers. The two most important precursors in the carbon fiber industry are polyacrylonitrile (PAN) and mesophase pitch (MP). The structure and composition of the precursor affect the properties of the resultant carbon fibers significantly. Although the essential processes for carbon fiber production are similar, different precursors require different processing conditions in order to achieve improved performance. The research efforts on process optimization are discussed in this review. The review also attempts to cover the research on other precursor materials developed mainly for the purpose of cost reduction.

  2. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2004-08-24

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  3. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2007-01-02

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  4. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2006-03-21

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  5. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2002-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  6. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2000-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  7. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2007-01-23

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  8. Electric-Field-Induced Alignment of Block Copolymer/Nanoparticle Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedel, Clemens; Schindler, Kerstin; Pavan, Mariela J.

    External electric fi elds readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-fi eld-induced alignment of a lamellae-forming polystyrene- block -poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lowering the critical field strength above which alignment proceeds. The results suggest that the electric-fi eldassisted alignment of nanostructured block copolymer/nanoparticle composites may offer a simple way to greatly mitigate structural and orientational defects of such fi lms under benign experimental conditions.

  9. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  10. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com

    2016-05-23

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.

  11. Selective MBE growth of hexagonal networks of trapezoidal and triangular GaAs nanowires on patterned (1 1 1)B substrates

    NASA Astrophysics Data System (ADS)

    Tamai, Isao; Hasegawa, Hideki

    2007-04-01

    As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.

  12. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less

  13. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    NASA Astrophysics Data System (ADS)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  14. Antidot patterned single and bilayer thin films based on ferrimagnetic Tb-Co alloy with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Kulesh, N. A.; Vázquez, M.; Lepalovskij, V. N.; Vas'kovskiy, V. O.

    2018-02-01

    Hysteresis properties and magnetization reversal in TbCo(30 nm) and FeNi(10 nm)/TbCo(30 nm) films with nanoscale antidot lattices are investigated to test the effect of nanoholes on the perpendicular anisotropy in the TbCo layer and the induced exchange bias in the FeNi layer. The antidots are introduced by depositing the films on top of hexagonally ordered porous anodic alumina substrates with pore diameter and interpore distance fixed to 75 nm and 105 nm, respectively. The analysis of combined vibrating sample magnetometry, Kerr microscopy and magnetic force microscopy imaging measurements has allowed us to link macroscopic and local magnetization reversal processes. For magnetically hard TbCo films, we demonstrate the tunability of magnetic anisotropy and coercive field (i.e., it increases from 0.2 T for the continuous film to 0.5 T for the antidot film). For the antidot FeNi/TbCo film, magnetization of FeNi is confirmed to be in plane. Although an exchange bias has been locally detected in the FeNi layer, the integrated hysteresis loop has increased coercivity and zero shift along the field axis due to the significantly decreased magnetic anisotropy of TbCo layer.

  15. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teii, K., E-mail: teii@asem.kyushu-u.ac.jp; Ito, H.; Katayama, N.

    2015-02-07

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp{sup 2}-bonded boron nitride (sp{sup 2}BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp{sup 2}BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 10{sup 4} at ±10 V of biasing with increasing the sp{sup 2}BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation ofmore » the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp{sup 2}BN thickness. The forward current follows the Frenkel-Poole emission model in the sp{sup 2}BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp{sup 2}BN interlayer, while that of the major carriers for forward current is much less affected.« less

  16. Superstructures of chiral nematic microspheres as all-optical switchable distributors of light

    PubMed Central

    Aβhoff, Sarah J.; Sukas, Sertan; Yamaguchi, Tadatsugu; Hommersom, Catharina A.; Le Gac, Séverine; Katsonis, Nathalie

    2015-01-01

    Light technology is based on generating, detecting and controlling the wavelength, polarization and direction of light. Emerging applications range from electronics and telecommunication to health, defence and security. In particular, data transmission and communication technologies are currently asking for increasingly complex and fast devices, and therefore there is a growing interest in materials that can be used to transmit light and also to control the distribution of light in space and time. Here, we design chiral nematic microspheres whose shape enables them to reflect light of different wavelengths and handedness in all directions. Assembled in organized hexagonal superstructures, these microspheres of well-defined sizes communicate optically with high selectivity for the colour and chirality of light. Importantly, when the microspheres are doped with photo-responsive molecular switches, their chiroptical communication can be tuned, both gradually in wavelength and reversibly in polarization. Since the kinetics of the “on” and “off” switching can be adjusted by molecular engineering of the dopants and because the photonic cross-communication is selective with respect to the chirality of the incoming light, these photo-responsive microspheres show potential for chiroptical all-optical distributors and switches, in which wavelength, chirality and direction of the reflected light can be controlled independently and reversibly. PMID:26400584

  17. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  18. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  19. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  20. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    NASA Astrophysics Data System (ADS)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  1. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    PubMed

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  2. Growth and phase transformations of Ir on Ge(111)

    NASA Astrophysics Data System (ADS)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  3. Corneal endothelial cell density and morphology in normal Filipino eyes.

    PubMed

    Padilla, Ma Dominga B; Sibayan, Santiago Antonio B; Gonzales, Clarissa S A

    2004-03-01

    To describe the corneal endothelial cell density and morphology in normal adult Filipino eyes. Specular microscopy was performed in 640 eyes of 320 normal Filipino volunteers aged 20 to 86 years. Of these, 163 were male, and 157 were female. Mean cell density (MCD), mean cell area (MCA), coefficient of variation (CV) in cell size (polymegathism), and hexagonality were recorded and analyzed in relation to fellow eyes, gender, and age. MCD was 2798 +/- 307.2 cells/mm, and MCA was 363.0 +/- 40.3 microm. Results showed that women had a MCD 7.8% greater than men (P < 0.01). Regression analysis showed a consistent decrease in MCD (r = -0.47) and increase in MCA (r = 0.45) from 20 to 60 years of age. This was followed by a marked decrease in correlation and apparent trend reversal for both variables in the groups above 60 years (MCD r = 0.18, MCA r = -0.04) accompanied by a marked increase in CV in cell size (20-60 years r = -0.04, >60 years r = 0.33). A very low negative correlation (r = -0.10) was noted between hexagonality and increasing age through all age groups. The first normative data for the endothelium of Filipino eyes are reported. There are statistically significant differences in MCD between genders, and a consistent decrease in MCD and increase in MCA with age only until 60 years old, after which correlation between age and these variables decreases. Polymegathism and correlation between CV in cell size and age markedly increase after age 60.

  4. [Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].

    PubMed

    Zhao, Yang; Dong, Li-fang; Fu, Hong-yan

    2015-01-01

    By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon content are used to estimate the variations of electron density of the spot, the ring, and the halo of the white-eye hexagonal pattern. In the same argon content condition, the molecule vibrational temperatures of halo, ring, and spot in the white-eye hexagonal pattern are in descending order, while the electron densities of halo, ring, and spot are in ascending order. With argon content increasing from 70% to 90%, both the molecule vibrational temperature and the electron density of the spot increase, while both of them of the halo decrease. And the molecule vibrational temperature of the ring keeps constant, while its electron density decreases. The experimental results indicate that the plasma state of the spot, the halo and the ring in a white-eye cell of the white-eye hexagonal pattern is different. These results are of great importance to the investigation of the multilayer structure of the patterns in dielectric barrier discharge and applications in industry.

  5. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.

  6. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors

    PubMed Central

    Zhao, Xin; Li, Wei; Chen, Honglei; Wang, Shoujuan; Kong, Fangong; Liu, Shouxin

    2017-01-01

    Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO) units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-like pores, to stripe-like pores, and to ordered two-dimensional hexagonal pores as the ratio of hydrophilic/hydrophobic units increases, indicating the significant effect of EO/PO ratio on the porous structure. The mesoporous carbons as supercapacitor electrodes exhibit superior electrochemical capacitive performance and a high degree of reversibility after 2000 cycles for supercapacitors due to the well-defined mesoporosity of the carbon materials. Meanwhile, the superior carbon has a high specific capacitance of 107 F·g−1 in 6 M KOH at a current density of 10 A·g−1. PMID:29156641

  7. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors.

    PubMed

    Zhao, Xin; Li, Wei; Chen, Honglei; Wang, Shoujuan; Kong, Fangong; Liu, Shouxin

    2017-11-20

    Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO) units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-like pores, to stripe-like pores, and to ordered two-dimensional hexagonal pores as the ratio of hydrophilic/hydrophobic units increases, indicating the significant effect of EO/PO ratio on the porous structure. The mesoporous carbons as supercapacitor electrodes exhibit superior electrochemical capacitive performance and a high degree of reversibility after 2000 cycles for supercapacitors due to the well-defined mesoporosity of the carbon materials. Meanwhile, the superior carbon has a high specific capacitance of 107 F·g -1 in 6 M KOH at a current density of 10 A·g -1 .

  8. Complexion-mediated martensitic phase transformation in Titanium

    PubMed Central

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  9. Colloidal domain lithography for regularly arranged artificial magnetic out-of-plane monodomains in Au/Co/Au layers.

    PubMed

    Kuświk, Piotr; Ehresmann, Arno; Tekielak, Maria; Szymański, Bogdan; Sveklo, Iosif; Mazalski, Piotr; Engel, Dieter; Kisielewski, Jan; Lengemann, Daniel; Urbaniak, Maciej; Schmidt, Christoph; Maziewski, Andrzej; Stobiecki, Feliks

    2011-03-04

    Regularly arranged magnetic out-of-plane patterns in continuous and flat films are promising for applications in data storage technology (bit patterned media) or transport of individual magnetic particles. Whereas topographic magnetic structures are fabricated by standard lithographical techniques, the fabrication of regularly arranged artificial domains in topographically flat films is difficult, since the free energy minimization determines the existence, shape, and regularity of domains. Here we show that keV He(+) ion bombardment of Au/Co/Au layer systems through a colloidal mask of hexagonally arranged spherical polystyrene beads enables magnetic patterning of regularly arranged cylindrical magnetic monodomains with out-of-plane magnetization embedded in a ferromagnetic matrix with easy-plane anisotropy. This colloidal domain lithography creates artificial domains via periodic lateral anisotropy variations induced by periodic defect density modulations. Magnetization reversal of the layer system observed by magnetic force microscopy shows individual disc switching indicating monodomain states.

  10. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  11. Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions

    NASA Astrophysics Data System (ADS)

    Borodin, Yu. V.

    2015-01-01

    In the nanocomposite model developed here, crystals are treated as subordinate aggregate of pro- ton-selected structural elements, their blocks, and proton-containing quantum sublattices with preferred transport effects separating them. The formation of stratified reversible hexagonal structures is accompanied with protonation and formation of a dense network of H-bonds ensuring the nanocomposite properties. Nanodoping with H+ ions occurs during processing of crystals and glasses in melts as well as in aqueous solutions of Ag, Tl, Rb, and Cs salts. The isotope exchange H+ ↔ D+ and ion exchange H+ ↔ M+ lead to nanodoping of protonated materials with D+ and M+ ions. This is manifested especially clearly in Li-depleted nonequilibrium LiNbO3 and LiTaO3 crystals. Low-temperature proton-ion nanodoping over superlattices is a basically new approach to analysis of the structure and properties of extremely nonequilibrium materials.

  12. Complexion-mediated martensitic phase transformation in Titanium.

    PubMed

    Zhang, J; Tasan, C C; Lai, M J; Dippel, A-C; Raabe, D

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  13. Three-dimensional visualization of coated vesicle formation in fibroblasts

    PubMed Central

    1980-01-01

    Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles. PMID:6987244

  14. Structure-property relations in siloxane-based main chain liquid crystalline elastomers and related linear polymers

    NASA Astrophysics Data System (ADS)

    Ren, Wanting

    2007-12-01

    Soft materials have attracted much scientific and technical interest in recent years. In this thesis, attention has been placed on the underpinning relations between molecular structure and properties of one type of soft matter---main chain liquid crystalline elastomers (MCLCEs), which may have application as shape memory or as auxetic materials. In this work, a number of siloxane-based MCLCEs and their linear polymer analogues (MCLCEs) with chemical variations were synthesized and examined. Among these chemical variations, rigid p-phenylene transverse rod and flat-shaped anthraquinone (AQ) mesogenic monomers were specifically incorporated. Thermal and X-ray analysis found a smectic C phase in most of our MCLCEs, which was induced by the strong self-segregation of siloxane spacers, hydrocarbon spacers and mesogenic rods. The smectic C mesophase of the parent LCE was not grossly affected by terphenyl transverse rods. Mechanical studies of MCLCEs indicated the typical three-region stress-strain curve and a polydomain-to-monodomain transition. Strain recovery experiments of MCLCEs showed a significant dependence of strain retentions on the initial strains but not on the chemical variations, such as the crosslinker content and the lateral substituents on mesogenic rods. The MCLCE with p-phenylene transverse rod showed a highly ordered smectic A mesophase at room temperature with high stiffness. Mechanical properties of MCLCEs with AQ monomers exhibit a strong dependence on the specific combination of hydrocarbon spacer and siloxane spacer, which also strongly affect the formation of pi-pi stacking between AQ units. Poisson's ratio measurement over a wide strain range found distinct trends of Poisson's ratio as a function of the crosslinker content as well as terphenyl transverse rod loadings in its parent MCLCEs.

  15. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  16. Molten Salt Assisted Self-Assembly: Synthesis of Mesoporous LiCoO2 and LiMn2 O4 Thin Films and Investigation of Electrocatalytic Water Oxidation Performance of Lithium Cobaltate.

    PubMed

    Saat, Gülbahar; Balci, Fadime Mert; Alsaç, Elif Pınar; Karadas, Ferdi; Dag, Ömer

    2018-01-01

    Mesoporous thin films of transition metal lithiates (TML) belong to an important group of materials for the advancement of electrochemical systems. This study demonstrates a simple one pot method to synthesize the first examples of mesoporous LiCoO 2 and LiMn 2 O 4 thin films. Molten salt assisted self-assembly can be used to establish an easy route to produce mesoporous TML thin films. The salts (LiNO 3 and [Co(H 2 O) 6 ](NO 3 ) 2 or [Mn(H 2 O) 4 ](NO 3 ) 2 ) and two surfactants (10-lauryl ether and cethyltrimethylammonium bromide (CTAB) or cethyltrimethylammonium nitrate (CTAN)) form stable liquid crystalline mesophases. The charged surfactant is needed for the assembly of the necessary amount of salt in the hydrophilic domains of the mesophase, which produces stable metal lithiate pore-walls upon calcination. The films have a large pore size with a high surface area that can be increased up to 82 m 2 g -1 . The method described can be adopted to synthesize other metal oxides and metal lithiates. The mesoporous thin films of LiCoO 2 show promising performance as water oxidation catalysts under pH 7 and 14 conditions. The electrodes, prepared using CTAN as the cosurfactant, display the lowest overpotentials in the literature among other LiCoO 2 systems, as low as 376 mV at 10 mA cm -2 and 282 mV at 1 mA cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mesoporous zirconium titanium oxides. Part 1: Porosity modulation and adsorption properties of xerogels.

    PubMed

    Griffith, Christopher S; Sizgek, G Devlet; Sizgek, Erden; Scales, Nicholas; Yee, Patrick J; Luca, Vittorio

    2008-11-04

    A series of zirconium titanium oxide mesophases containing 33 atom % Zr have been prepared using carboxylic acids of different alkyl chain lengths (Cy ) from y=4-18 through organic-inorganic polymer phase segregation as the gel transition is approached. Thermal treatment of these transparent gels up to 450 degrees C eliminated the organic template, and domain coarsening occurred affording stable worm-hole mesoporous materials of homogeneous composition and pore diameters varying from about 3 to 4 nm in fine increments. With such materials, it was subsequently possible to precisely study the adsorption of vanadium oxo-anions and cations from aqueous solutions and, more particularly, probe the kinetics of intraparticle mass transport as a function of the associated pore dimension. The kinetics of mass transport through the pore systems was investigated using aqueous vanadyl (VO2+) and orthovanadate (VO3(OH)2-) probe species at concentrations ranging from 10 to 200 ppm (0.2 to 4 mmol/L) and pH values of 0 and 10.5, respectively. In the case of both of these vanadium species, the zirconium titanate mesophases displayed relatively slow kinetics, taking in excess of about 500 min to achieve maximum uptake. By using a pseudo-second-order rate law, it was possible to extract the instantaneous and overall rate of the adsorption processes and then relate these to the pore diameters. Both the instantaneous and overall rates of adsorption increased with increasing surface area and pore diameter over the studied pore size range. However, the equilibrium adsorption capacity increased linearly with pore diameter only for the higher concentrations and was independent of pore diameter for the lower concentration. These results have been interpreted using a model in which discrete adsorption occurs at low concentrations and is then followed by multilayer adsorption at higher concentration.

  18. Nonlinear geometries in liquid crystals and liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Dingemans, Theo Jacobus

    The thermodynamic properties of thermotropic liquid crystals (LCs), and polymeric LCs are strongly dependent on mesogenic shape and in order to explore the relationships between shape and physical properties new, nonlinear geometries were examined. Symmetric oxadiazole based model compounds were synthesized and despite an internal exocyclic bond angle of 134sp° the model compounds exhibit a variety of mesophases. Conoscopic studies on bis(p-hexyloxyphenyl) 4,4sp'- (1,3,4-oxadiazole-2,5-diyl) dicarboxylate in its phase Ssb{A} phase are not consistent with the uniaxial Ssb{A} phase, but rather a biaxial Ssb{CM} phase. Uniaxial and biaxial mesogenic monomers were incorporated in main-chain polyesters. Transition temperatures of the interfacially prepared polymers were higher than materials that were melt polymerized. sp{13}C NMR showed that all polymers prepared by melt condensation have random monomer sequence distributions at the diad level. Thiophene and 1,3-phenylene modified p-quinquephenyls were synthesized in order to investigate the effects of mesogen nonlinearity and dipole direction on the LC thermodynamic properties. Results indicate that shape asymmetry favors mesophase formation and stability; the thiophene dipole moment appears to have no effect. The 120sp° exocyclic bond angle disrupts liquid crystallinity in 1,3-phenylene derivatives. Additionally the placement of 2,5-thiophene in "p-quinquephenyls" affects a red shift in its UV absorption. This was exploited in single layer light emitting diodes (LEDs) to tune the electroluminescence emission. In double layer LEDs these compounds function as efficient hole transport materials with high light outputs. Ferroelectric LCs derived from isoleucine were synthesized and shown to have spontaneous polarizations that are a strong function of halogen size (F > Cl > Br).

  19. Cholesteryl-containing ionic liquid crystals composed of alkylimidazolium cations and different anions

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Bai, Lu; Li, Xin; Ma, Shuang; He, Xiaozhi; Meng, Fanbao

    2014-10-01

    Cholesteryl-containing ionic liquid crystals (ILCs) 1-cholesteryloxycarbonylmethyl(propyl)-3-methyl(butyl)imidazolium chlorides ([Ca-Me-Im]Cl, [Ca-Bu-Im]Cl, [Cb-Me-Im]Cl and [Cb-Bu-Im]Cl) and corresponding imidazolium tetrachloroaluminates ([Ca-Me-Im]AlCl4, [Ca-Bu-Im]AlCl4, [Cb-Me-Im]AlCl4 and [Cb-Bu-Im]AlCl4) were synthesized in this work, and the chemical structure, LC behavior and ionic conductivity of all these ILCs were characterized by several technical methods. The imidazolium-based salts with Cl- ions showed chiral smectic A (SA*) phase on both heating and cooling cycles, while the tetrachloroaluminates exhibited chiral nematic (N*) phase. The mesophase was confirmed by characteristic LC textures observed by polarizing optical microscopy and typical diffractogram obtained by X-ray diffraction measurements. The samples with similar cholesteryl-linkage component showed similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than alkyl substituents on the imidazole ring. The imidazolium tetrachloroaluminates display relatively low phase transition temperature compared with the precursor chlorides. The functional difference in LC behavior and ionic conductivity were discussed by investigated the structural difference between the Cl--containing and AlCl4-containing materials. The imidazolium chlorides exhibited layer structure both in crystal and mesophase states, and should be organized with a ‘head-to-tail’ organization to form interdigitated monolayer structures due to the tight ion pairs. But the imidazolium tetrachloroaluminates displayed layer structure only in crystal phase, and should be organized in ‘head-to-head’ arrangements form bilayer structures due to loose combination of ion pairs despite of hydrogen-bond and electrostatic attraction interaction.

  20. In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures

    PubMed Central

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Howe, Nicole; Vogeley, Lutz; Liu, Xiangyu; Warshamanage, Rangana; Weinert, Tobias; Panepucci, Ezequiel; Kobilka, Brian; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2016-01-01

    Here, a method for presenting crystals of soluble and membrane proteins growing in the lipid cubic or sponge phase for in situ diffraction data collection at cryogenic temperatures is introduced. The method dispenses with the need for the technically demanding and inefficient crystal-harvesting step that is an integral part of the lipid cubic phase or in meso method of growing crystals. Crystals are dispersed in a bolus of mesophase sandwiched between thin plastic windows. The bolus contains tens to hundreds of crystals, visible with an in-line microscope at macromolecular crystallography synchrotron beamlines and suitably disposed for conventional or serial crystallographic data collection. Wells containing the crystal-laden boluses are removed individually from hermetically sealed glass plates in which crystallization occurs, affixed to pins on goniometer bases and excess precipitant is removed from around the mesophase. The wells are snap-cooled in liquid nitrogen, stored and shipped in Dewars, and manually or robotically mounted on a goniometer in a cryostream for diffraction data collection at 100 K, as is performed routinely with standard, loop-harvested crystals. The method is a variant on the recently introduced in meso in situ serial crystallography (IMISX) method that enables crystallo­graphic measurements at cryogenic temperatures where crystal lifetimes are enormously enhanced whilst reducing protein consumption dramatically. The new approach has been used to generate high-resolution crystal structures of a G-protein-coupled receptor, α-helical and β-barrel transporters and an enzyme as model integral membrane proteins. Insulin and lysozyme were used as test soluble proteins. The quality of the data that can be generated by this method was attested to by performing sulfur and bromine SAD phasing with two of the test proteins. PMID:26894538

  1. Three-Dimensional Encapsulation of Saccharomyces cerevisiae in Silicate Matrices Creates Distinct Metabolic States as Revealed by Gene Chip Analysis.

    PubMed

    Fazal, Zeeshan; Pelowitz, Jennifer; Johnson, Patrick E; Harper, Jason C; Brinker, C Jeffrey; Jakobsson, Eric

    2017-04-25

    In order to design hybrid cellular/synthetic devices such as sensors and vaccines, it is important to understand how the metabolic state of living cells changes upon physical confinement within three-dimensional (3D) matrices. We analyze the gene expression patterns of stationary phase Saccharomyces cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and relate those patterns to known naturally occurring metabolic states. Silica encapsulation methods employed were lipid-templated mesophase silica thin films formed by cell-directed assembly (CDA), lipid-templated mesophase silica particles formed by spray drying (SD), and glycerol-doped silica gel monoliths prepared from an aqueous silicate (AqS+g) precursor solution. It was found that the cells for all three-encapsulated methods enter quiescent states characteristic of response to stress, albeit to different degrees and with differences in detail. By the measure of enrichment of stress-related gene ontology categories, we find that the AqS+g encapsulation is more amenable to the cells than CDA and SD encapsulation. We hypothesize that this differential response in the AqS+g encapsulation is related to four properties of the encapsulating gel: (1) oxygen permeability, (2) relative softness of the material, (3) development of a protective sheath around individual cells (visible in TEM micrographs vide infra), and (4) the presence of glycerol in the gel, which has been previously noted to serve as a protectant for encapsulated cells and can serve as the sole carbon source for S. cerevisiae under aerobic conditions. This work represents a combination of experiment and analysis aimed at the design and development of 3D encapsulation procedures to induce, and perhaps control, well-defined physiological behaviors.

  2. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  3. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  4. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel; Bienefeld, Kaspar

    2013-01-01

    The nests of European honeybees ( Apis mellifera) are organised into wax combs that contain many cells with a hexagonal structure. Many previous studies on comb-building behaviour have been made in order to understand how bees produce this geometrical structure; however, it still remains a mystery. Direct construction of hexagons by bees was suggested previously, while a recent hypothesis postulated the self-organised construction of hexagonal comb cell arrays; however, infrared and thermographic video observations of comb building in the present study failed to support the self-organisation hypothesis because bees were shown to be engaged in direct construction. Bees used their antennae, mandibles and legs in a regular sequence to manipulate the wax, while some bees supported their work by actively warming the wax. During the construction of hexagonal cells, the wax temperature was between 33.6 and 37.6 °C. This is well below 40 °C, i.e. the temperature at which wax is assumed to exist in the liquid equilibrium that is essential for self-organised building.

  5. Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3

    NASA Astrophysics Data System (ADS)

    Tsirlin, Alexander

    Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.

  6. Hexagonal Hollow Tube Based Energy Absorbing Crash Buffers for Roadside Fixed Objects

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Amirah Shafie, Nurul; Zivkovic, Grad

    2017-03-01

    The purpose of this study was to investigate the deformation of the energy absorbing hexagonal hollow tubes in a lateral compression. The aim is to design cost effective and high energy-absorbing buffer systems, which are capable of controlling out-of-control vehicles in high-speed zones. A nonlinear quasi-static finite element analysis was applied to determine the deformation and energy absorption capacity. The main parameters in the design were diameter and wall thickness of the tubes. Experimental test simulating the lateral compressive loading on a single tube was performed. Results show that as the diameter and the thickness increase, the deformation strength increases. Hexagonal tube with diameter of 219 mm and thickness of 4 mm is shown to have the highest energy absorption capability. Compared to existing cylindrical and octagonal shapes, the hexagonal tubes show the highest energy absorption capacity. Hexagonal tubes therefore can be regarded as a potential candidate for buffer designs in high speed zones. In addition, they would be compact, cost effective and facilitate ease of installation.

  7. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  8. Epitaxial hexagonal materials on IBAD-textured substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substratesmore » to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.« less

  9. Loss of preload in screwed implant joints as a function of time and tightening/untightening sequences.

    PubMed

    Bernardes, Sérgio Rocha; da Gloria Chiarello de Mattos, Maria; Hobkirk, John; Ribeiro, Ricardo Faria

    2014-01-01

    The purpose of this study was to determine whether abutment screw tightening and untightening influenced loss of preload in three different implant/abutment interfaces, or on the implant body. Five custom-fabricated machined titanium implants were used, each with its respective abutment, with different connection types, retention screws, and torque values (external hexagon with titanium screw/32 Ncm, external hexagon with coated screw/32 Ncm, internal hexagon/20 Ncm and internal conical/20 and 32 Ncm). Each implant tested had two strain gauges attached and was submitted to five tightening/untightening sequences. External hexagons resulted in the lowest preload values generated in the implant cervical third (mean of 27.75 N), while the internal hexagon had the highest values (mean of 219.61 N). There was no immediate significant loss of preload after screw tightening. Tightening/untightening sequences, regardless of the implant/abutment interface design or type of screw used in the study, did not result in any significant loss of initial preload. Conical implant connections demonstrated greater structural reinforcement within the internal connections.

  10. First-principles study of the structural properties of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, K.J.; Cohen, M.L.

    1986-12-15

    With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less

  11. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens

    PubMed Central

    Nowak, Roberta B.; Fischer, Robert S.; Zoltoski, Rebecca K.; Kuszak, Jerome R.

    2009-01-01

    Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry. PMID:19752024

  12. An orthogonal oriented quadrature hexagonal image pyramid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1987-01-01

    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.

  13. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  14. Electrochemical and thermodynamic studies of the electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bang, Hyun Joo

    A series of graphite samples were tested for their electrochemical performance as anode material for lithium ion cells. Specially treated natural graphite samples showed good reversible capacities and relatively small irreversible capacity losses. The good performance of these samples can be explained by the low surface area associated with the rounded edges and absence of exfoliation due to the presence of the rhombohedral phase and defects in the grain boundaries. Graphitized cokes showed larger irreversible capacity losses while mesophase carbons showed lower reversible capacity. The treated natural graphite samples, especially LBG25 were found to be high performance, low cost anode materials for the lithium ion cells. The electrochemical and thermal behaviors of the spinels---LiMn 2O4, LiCo1/6Mn11/6O4, LiFe 1/6Mn11/6O4, and LiNi1/6Mn11/6 O4 were studied using electrochemical and thermochemical techniques. The electrochemical techniques included cyclic voltammetry, charge/discharge cycling of 2016 coin cells and diffusion coefficient measurements using Galvanostatic Intermittent Titration Technique. Better capacity retention(GITT) was observed for the substituted spinels (0.11% loss/cycle for LiCo1/6Mn 11/6O4; 0.3% loss/cycle for LiFe1/6Mn11/6 O4; and 0.2% loss/cycle for LiNi1/6Mn11/6 O4) than for the lithium manganese dioxide spinel (1.6% loss/cycle for first 10 cycles, 0.9% loss/cycle for 33 cycles) during 33 cycles. The Differential Scanning Calorimetry (DSC) results showed that the cobalt substituted spinel has better thermal stability than the lithium manganese oxide and other substituted spinels. The thermal profile of LiMn2O4 and LiAl0.17 Mn1.83O3.97S0.03 was measured in an isothermal micro-calorimeter. The heat contributions are discussed in terms of reversible and irreversible heat generation, in combination with the entropy change directly obtained by the dE/dT measurements and the over-potential measurements. The endothermic and exothermic heat profiles observed during the charge and discharge processes are related to the Li insertion/extraction reaction in the spinel host structure for both materials. The reversible heat generation due to the lithium insertion/extraction reaction in the host electrode is estimated on the basis of the cell entropy change. The heat generation calculated from DeltaS and the open circuit potential results is consistent with the heat profile (exothermic/endothermic) generated during the charge/discharge process and with the magnitude of the heat generation from the experimental results obtained from the IMC at a slow charge/discharge rate. The irreversible heat generation dependence on the current rate is discussed at different discharge rates.

  15. Structural and electronic stability of a volleyball-shaped B80 fullerene

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian

    2010-10-01

    We have studied the structural and electronic characteristics of a volleyball-shaped B80 cage using first-principles density-functional calculations. In contrast to the popularly ratified “magic” B80 buckyball with 20 hexagonal pyramids and 12 hollow pentagons, the volleyball-shaped B80 constitutes 12 pentagonal pyramids, 8 hexagonal pyramids, and 12 hollow hexagons. The B80 volleyball is markedly more stable than the previously assumed magic B80 buckyball, which is attributed to the improved aromaticity associated with the distinct configuration.

  16. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  17. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  18. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  19. Epitaxial Growth of Cubic Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2011-01-01

    Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.

  20. Characterization of the secondary flow in hexagonal ducts

    NASA Astrophysics Data System (ADS)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  1. Characterization of the secondary flow in hexagonal ducts

    DOE PAGES

    Marin, O.; Vinuesa, R.; Obabko, A. V.; ...

    2016-12-06

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Re τ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondarymore » flow integrated over the cross-sectional area < K > yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress uw¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120° aperture of its vertex, whereas in the square duct the 90° corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15 DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90° corner sets the location of a high-speed streak at a distance z + v≃50 from it, whereas in hexagons the 120° aperture leads to a shorter distance of z + v≃38. Finally, at these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.« less

  2. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.

  3. Cationic Bulk Polymerization of Vinyl Ethers in the Liquid Crystalline Phase

    DTIC Science & Technology

    1991-10-30

    mesophase, if any, cannot alone be responsible for the unusual results obtained in this study. Table 3 . Polymerization of’ 2 -[(4-cyano-4’-biphenvl)oxy...NCC 11-H-( /C20 \\ / z 0 h ab cd e f S(7.43-7.47) Li (1.27-1.73) d (6.88-6.93) ab(7.53-7.64) ( 3 8 - , 4 9 h ( 3 .4 4 ) 10 9 8 7 6 5 4 3 2 1 0 Figure...Macromol. Sci.-Rev. Makromol. Chem. 171, 137 (1979) 2 . C. M. Paleos, Chem. Soc. Rev. 14, 45 (1985) 3 . R. G. Weiss, Tetrahedron 44, 3413 (1988) 4. D. J

  4. Lipid interactions in breadmaking.

    PubMed

    Carr, N O; Daniels, N W; Frazier, P J

    1992-01-01

    Both the natural lipids of flour and added fats are known to play an important role during the production of bread. In this review, the chemical and physical interactions of fat have been assessed in an attempt to explain these technological functions. Particular emphasis has been placed on the "binding" or complexing of lipid by flour proteins during the development of dough. While publications in this field have frequently been contradictory, evidence now indicates that observed lipid binding may involve lipid mesophase transformation and the nonspecific occlusion of lipid phases within the gluten network. The significance of these suggested events has been compared with current theories of lipid function in the breadmaking process.

  5. Controlling the polypyrrole microstructures using swollen liquid crystals as structure directing agent

    NASA Astrophysics Data System (ADS)

    Dutt, S.; Sharma, R.

    2017-10-01

    Microstructures of polypyrrole (PPy) with different morphology were synthesized using swollen liquid crystals (SLCs) as soft structure directing agents and confinement effect on the control of PPy microstructures have been thoroughly investigated. SLCs are the quaternary mixtures of aqueous phase: oil phase: surfactant: co-surfactant. Mesophases of PPy were synthesized by trapping small amount of pyrrole in the oil phase of SLCs. Spherical, fiber and rod-like microstructures of PPy were synthesized by adding ammonium persulphate (APS) as an oxidant under different synthesis conditions using SLCs. The possible mechanism for the formation of different PPy microstructures also proposed in this study.

  6. Metallo-supramolecular modules as a paradigm for materials science

    PubMed Central

    Kurth, Dirk G.

    2008-01-01

    Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science. PMID:27877929

  7. The polymorphic and mesomorphic behavior of four esters of cholesterol.

    NASA Technical Reports Server (NTRS)

    Merritt, W. G.; Cole, G. D.; Walker, W. W.

    1971-01-01

    The techniques of differential scanning calorimetry, X-ray powder diffractometry, and positron annihilation have been used to study the polymorphic and mesomorphic behavior of the following esters of cholesterol: cholesteryl formate, cholesteryl butyrate, cholesteryl benzoate, and cholesteryl cinnamate. Each of these compounds exhibits a single mesophase of the cholesteric type. The solid phase formed from the melt for each ester was observed to be structurally different from the solid phase obtained from solution. Solvents from which the solution-grown samples were crystallized were as follows: cholesteryl formate and cholesteryl butyrate from acetone, cholesteryl benzoate from benzene, and cholesteryl cinnamate from 2-butanone.

  8. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less

  10. 7-Hexagon Multifocal Electroretinography for an Objective Functional Assessment of the Macula in 14 Seconds.

    PubMed

    Schönbach, Etienne M; Chaikitmongkol, Voraporn; Annam, Rachel; McDonnell, Emma C; Wolfson, Yulia; Fletcher, Emily; Scholl, Hendrik P N

    2017-01-01

    We present the multifocal electroretinogram (mfERG) with a 7-hexagon array as an objective test of macular function that can be recorded in 14 s. We provide normal values and investigate its reproducibility and validity. Healthy participants underwent mfERG testing according to International Society for Clinical Electrophysiology of Vision (ISCEV) standards using the Espion Profile/D310 multifocal ERG system (Diagnosys, LLC, Lowell, MA, USA). One standard recording of a 61-hexagon array and 2 repeated recordings of a custom 7-hexagon array were obtained. A total of 13 subjects (mean age 46.9 years) were included. The median response densities were 12.5 nV/deg2 in the center and 5.2 nV/deg2 in the periphery. Intereye correlations were strong in both the center (ρCenter = 0.821; p < 0.0001) and the periphery (ρPeriphery = 0.862; p < 0.0001). Intraeye correlations were even stronger: ρCenter = 0.904 with p < 0.0001 and ρPeriphery = 0.955 with p < 0.0001. Bland-Altman plots demonstrated an acceptable retest mean difference in both the center and periphery, and narrow limits of agreement. We found strong correlations of the center (ρCenter = 0.826; p < 0.0001) and periphery (ρPeriphery = 0.848; p < 0.0001), with recordings obtained by the 61-hexagon method. The 7-hexagon mfERG provides reproducible results in agreement with results obtained according to the ISCEV standard. © 2017 S. Karger AG, Basel.

  11. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    PubMed

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  12. Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO(3) nanocrystals of one dimensional structure.

    PubMed

    Chithambararaj, Angamuthuraj; Bose, Arumugam Chandra

    2011-01-01

    Hexagonal molybdenum oxide (h-MoO(3)) was synthesized by a solution based chemical precipitation technique. Analysis by X-ray diffraction (XRD) confirmed that the as-synthesized powder had a metastable hexagonal structure. The characteristic vibrational band of Mo-O was identified from Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly depicted the morphology and size of h-MoO(3.) The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the characteristic peaks of molybdenum and oxygen. Thermogravimetric (TG) analysis on metastable MoO(3) revealed that the hexagonal phase was stable up to 430 °C and above this temperature complete transformation into a highly stable orthorhombic phase was achieved. The optical band gap energy was estimated from the Kubelka-Munk (K-M) function and was found to be 2.99 eV. Finally, the ethanol vapor-sensing behavior was investigated and the sensing response was found to vary linearly as a function of ethanol concentration in the parts per million (ppm) range.

  13. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  14. Polarization-free integrated gallium-nitride photonics

    PubMed Central

    Bayram, C.; Liu, R.

    2017-01-01

    Gallium Nitride (GaN) materials are the backbone of emerging solid state lighting. To date, GaN research has been primarily focused on hexagonal phase devices due to the natural crystallization. This approach limits the output power and efficiency of LEDs, particularly in the green spectrum. However, GaN can also be engineered to be in cubic phase. Cubic GaN has a lower bandgap (~200 meV) than hexagonal GaN that enables green LEDs much easily. Besides, cubic GaN has more isotropic properties (smaller effective masses, higher carrier mobility, higher doping efficiency, and higher optical gain than hexagonal GaN), and cleavage planes. Due to phase instability, however, cubic phase materials and devices have remained mostly unexplored. Here we review a new method of cubic phase GaN generation: Hexagonal-to-cubic phase transition, based on novel nano-patterning. We report a new crystallographic modelling of this hexagonal-to-cubic phase transition and systematically study the effects of nano-patterning on the GaN phase transition via transmission electron microscopy and electron backscatter diffraction experiments. In summary, silicon-integrated cubic phase GaN light emitters offer a unique opportunity for exploration in next generation photonics. PMID:29307953

  15. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  16. Circles and Hexagons

    NASA Image and Video Library

    2017-10-09

    Saturn's cloud belts generally move around the planet in a circular path, but one feature is slightly different. The planet's wandering, hexagon-shaped polar jet stream breaks the mold -- a reminder that surprises lurk everywhere in the solar system. This atmospheric feature was first observed by the Voyager mission in the early 1980s, and was dubbed "the hexagon." Cassini's visual and infrared mapping spectrometer was first to spy the hexagon during the mission, since it could see the feature's outline while the pole was still immersed in wintry darkness. The hexagon became visible to Cassini's imaging cameras as sunlight returned to the northern hemisphere. This view looks toward the northern hemisphere of Saturn -- in summer when this view was acquired -- from above 65 degrees north latitude. The image was taken with the Cassini spacecraft wide-angle camera on June 28, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 536,000 miles (862,000 kilometers) from Saturn. Image scale is 32 miles (52 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21348

  17. Cubic ice and large humidity with respect to ice in cold cirrus clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Loerting, T.

    2009-04-01

    Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hc→h. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hc→h--) Ph P*h R 1T-- 1T* (1) from which the importance of Hc→h is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-→h. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hc→h. Unfortunately, the measurement of Hc→h is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hc→h ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in-cloud water supersaturations" in the upper-tropospheric cold cirrus clouds. Using instead the value of Hc→h ? 50 J/mol (Handa et al., 1986; Mayer and Hallbrucker, 1987) the calculation gives that Pc is only ~3% larger than that of Ph. Recently it has been reported that emulsified water droplets freeze to cubic ice when being cooled at a rate of 10 K/min (Murray and Bertram, 2006,). We prepared emulsified droplets using the same emulsification technique and studied them with a differential scanning calorimeter (DSC) between 278 and 180 K using a scanning rate of 10 K/min. During the warming of the samples we observed a very broad, tiny exothermal peak approximately between 230 and 260 K. Kohl et al. (2000) observed exothermal peak at ~230 K during the warming at 30 K/min of several samples of hyperquenched glassy water (HGW) prepared at temperature between 130 and 190 K. They attributed this peak to the cubic-to-hexagonal ice transition and estimated Hc→h to be between ~33 and 75 J/mol. Johari (2005) used the value of Hc→h ? 37 J/mol. Assuming that in our case the broad peak between 230 and 260 K is also due to the cubic-to-hexagonal ice transition we obtained approximately between 10 and 25 J/mol for Hc→h. This low enthalpy of transformation suggests that cubic ice in the atmosphere contains many hexagonal stacking faults. Using these values of Hc→h for cubic ice as produced at atmospheric cooling rates, the above mentioned formula gives that Pc is larger than that of Ph only by ~1%. We, therefore, suggest that the difference in the water vapor pressures between ice Ic and ice Ih is small and does not play a significant role in the elevation of RHi in cold cirrus clouds. Murphy, D. M., and T. Koop (2005), Q. J. R. Meteorol. Soc. 131, 1539-1565. Shilling, J. E. et al. (2006). Geophys. Res. Lett. 33, L17801, doi:1029/2006GL026671. Handa, P. Y., D. D. Klug, and E. Whalley (1986). J. Chem. Phys. 84, 7009-7010. Mayer, E., and A. Hallbrucker (1987), Nature, 325, 601-602. Murray, B. J. and A. K. Bertram (2006), Phys. Chem. Chem. Phys. 8, 186-192. Kohl, I., E. Mayer, and A. Hallbrucker (2000), Phys. Chem. Chem. Phys. 2, 1579-1586. G. P. Johari, (2005), J. Chem. Phys. 122, 194504.

  18. Epitaxial growth and photoluminescence of hexagonal CdS 1- xSe x alloy films

    NASA Astrophysics Data System (ADS)

    Grün, M.; Gerlach, H.; Breitkopf, Th.; Hetterich, M.; Reznitsky, A.; Kalt, H.; Klingshirn, C.

    1995-01-01

    CdSSe ternary alloy films were grown on GaAs(111) by hot-wall beam epitaxy. The hexagonal crystal phase is obtained. The composition varies from 0 to 40% selenium. Luminescence spectroscopy at low temperatures shows a dominant effect by alloy disorder. Localization of carriers, for example, is still observed at a pulsed optical excitation density of 6 mJ/cm 2. The overall quality of the CdSSe films is sufficient to use them as buffer layers for the growth of hexagonal superlattices.

  19. Copper vapor-assisted growth of hexagonal graphene domains on silica islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Que, Yande; Jiang, Lili

    2016-07-11

    Silica (SiO{sub 2}) islands with a dendritic structure were prepared on polycrystalline copper foil, using silane (SiH{sub 4}) as a precursor, by annealing at high temperature. Assisted by copper vapor from bare sections of the foil, single-layer hexagonal graphene domains were grown directly on the SiO{sub 2} islands by chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, Raman spectra, and X-ray photoelectron spectroscopy confirm that hexagonal graphene domains, each measuring several microns, were synthesized on the silica islands.

  20. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.

    Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less

  1. Instrument adjustment knob locks to prevent accidental maladjustment

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A device, incorporating a collar with a hexagonal opening which fits snugly over a hexagonal nut used to engage instrument panel components, keeps the adjustment knob locked. A quick release mechanism frees the knob for rotational adjustment.

  2. Investigation of electronic and magnetic properties of FeS: First principle and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim

    2018-06-01

    Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.

  3. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2016-08-10

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  4. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  5. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less

  6. Optical Temperature Sensor Based on Infrared Excited Green Upconversion Emission in Hexagonal Phase NaLuF4:Yb3+/Er3+ Nanorods.

    PubMed

    Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao

    2016-04-01

    Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.

  7. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  8. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, T S(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubicmore » ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  9. Kinematic dynamo action in square and hexagonal patterns.

    PubMed

    Favier, B; Proctor, M R E

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  10. Characterization of Oxygen Storage and Structural Properties of Oxygen-Loaded Hexagonal R MnO 3+δ ( R = Ho, Er, and Y)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abughayada, C.; Dabrowski, B.; Kolesnik, S.

    2015-09-22

    Single-phase polycrystalline samples of stoichiometric RMnO3+delta (R = Er, Y, and Ho) were achieved in the hexagonal P6(3)cm structure through solid state reaction at, similar to 1300 degrees C. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger Ho and Y show rapid and reversible incorporation of large amounts of excess oxygen (0.3 > delta> 0) at an unusually low temperature range of similar to 190-325 degrees C, indicating the industrial usefulness of RMnO3+delta materials for lower cost thermal swing adsorption processes for oxygen separation from air. Further increase of the excess oxygen intake to delta similar tomore » 0.38 was achieved for all the investigated materials when annealed under high pressures of oxygen. The formation of three oxygen stable phases with 6 = 0, 0.28, and 0.38 was confirmed by thermogravimetric measurements, synchrotron X-rays, and neutron diffraction. In situ synchrotron diffraction proved the thermal stability of these single phases and the regions of their creation and coexistence, and demonstrated that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. Structural modeling using neutron powder diffraction for oxygen excess phases describes the formation and details of a large R3c superstructure observed for HoMnO3.28 by tripling the c-axis of the original parent unit cell. Modeling of the RMnO3.38 (R = Y and Er) oxygen-loaded phase converged on a structural model consistent with the symmetry of Pca2(1).« less

  11. Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.

    The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less

  12. Glyceryl monooleyl ether-based liquid crystalline nanoparticles as a transdermal delivery system of flurbiprofen: characterization and in vitro transport.

    PubMed

    Uchino, Tomonobu; Murata, Akiko; Miyazaki, Yasunori; Oka, Toshihiko; Kagawa, Yoshiyuki

    2015-01-01

    Liquid crystalline nanoparticles (LCNs) were prepared using glyceryl monooleyl ether (GME) by the modified film rehydration method. Hydrogenated lecithin (HL), 1,3-butylene glycol (1,3-BG), and Poloxamer 407 were used as additives. The prepared LCN formulations were evaluated based on particle size, small-angle X-ray diffraction (SAXS) analysis, (1)H- and (19)F-NMR spectra, and in vitro skin permeation across Yucatan micropig skin. The composition (weight percent) of the LCN formulations were GME-HL-1,3-BG (4 : 1 : 15), 4% GME-based LCN and GME-HL-1,3-BG (8 : 1 : 15), 8% GME-based LCN and their mean particle sizes were 130-175 nm. Flurbiprofen 5 and 10 mg was loaded into 4% GME-based LCN and 8% GME-based LCN systems, respectively. The results of SAXS and NMR suggested that both flurbiprofen-loaded formulations consist of particles with reverse type hexagonal phase (formation of hexosome) and flurbiprofen molecules were localized in the lipid domain through interaction of flurbiprofen with the lipid components. Flurbiprofen transport from the LCN systems across the Yucatan micropig skin was increased compared to flurbiprofen in citric buffer (pH=3.0). The 8% GME-based LCN systems was superior to the 4% GME-based LCN for flurbiprofen transport. Since the internal hexagonal phase in the 8% GME-based LCN systems had a higher degree of order compared to the 4% GME-based LCN in SAXS patterns, the 8% GME-based LCN system had a larger surface area, which might influence flurbiprofen permeation. These results indicated that the GME-based LCN system is effective in improving the skin permeation of flurbiprofen across the skin.

  13. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Manikandan, Palanisamy; Heo, Seongwoo; Kim, Hyun Woo; Jeong, Hu Young; Lee, Eungje; Kim, Youngsik

    2017-09-01

    Layered Na0.5Co0.5Mn0.5O2 material is synthesized through a facile mixed hydroxy-carbonate route using (Co0.5Mn0.5)2(OH)2CO3 precursor and well characterized as a hexagonal layered structure under P63/mmc space group. The lattice parameters and unit cell volume (a = 2.8363 Å, c = 11.3152 Å and V = 78.83 Å3) are calculated by Rietveld refinement analysis. A flaky-bundle morphology is obtained to the layered Na0.5Co0.5Mn0.5O2 material with the hexagonal flake size ∼30 nm. Advanced transmission electron microscopic images are revealed the local structure of the layered Na0.5Co0.5Mn0.5O2 material with contrasting bright dots and faint dark dots corresponding to the Co/Mn and Na atoms. Two oxidation and reduction peaks are occurred in a cyclic voltammetric analysis corresponding to Co3+/Co4+ and Mn3+/Mn4+ redox processes. These reversible processes are attributed to the intercalation/de-intercalation of Na+ ions into the host structure of layered Na0.5Co0.5Mn0.5O2 material. Accordingly, the sodium cell is delivered the initial charge-discharge capacity 53/144 mAh g-1 at 0.5 C, which cycling studies are extended to rate capability test at 1 C, 3 C and 5C. Eventually, the Na-ion full-cell is yielded cathode charge-discharge capacity 55/52 mAh g-1 at 0.212 mA and exhibited as a high voltage cathode for Na-ion batteries.

  14. Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode

    DOE PAGES

    Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.; ...

    2017-08-04

    The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less

  15. Hexagonal gradient scheme with RF spoiling improves spoiling performance for high-flip-angle fast gradient echo imaging.

    PubMed

    Hess, Aaron T; Robson, Matthew D

    2017-03-01

    To present a framework in which time-varying gradients are applied with RF spoiling to reduce unwanted signal, particularly at high flip angles. A time-varying gradient spoiler scheme compatible with RF spoiling is defined, in which spoiler gradients cycle through the vertices of a hexagon, which we call hexagonal spoiling. The method is compared with a traditional constant spoiling gradient both in the transition to and in the steady state. Extended phase graph (EPG) simulations, phantom acquisitions, and in vivo images were used to assess the method. Simulations, phantom and in vivo experiments showed that unwanted signal was markedly reduced by employing hexagonal spoiling, both in the transition to and in the steady state. For adipose tissue at 1.5 Tesla, the unwanted signal in the steady state with a 60 ° flip angle was reduced from 22% with constant spoiling to 2% with hexagonal spoiling. A time-varying gradient spoiler scheme that works with RF spoiling, called "hexagonal spoiling," has been presented and found to offer improved spoiling over the traditional constant spoiling gradient. Magn Reson Med 77:1231-1237, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  16. Resistance of three implant-abutment interfaces to fatigue testing

    PubMed Central

    RIBEIRO, Cleide Gisele; MAIA, Maria Luiza Cabral; SCHERRER, Susanne S.; CARDOSO, Antonio Carlos; WISKOTT, H. W. Anselm

    2011-01-01

    The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture. Objectives The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. Materials and Methods In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 106 load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. Results The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. Conclusion Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results. PMID:21710094

  17. Comparative study of torque resistance and microgaps between a combined Octatorx-cone connection and an internal hexagon implant-abutment connection.

    PubMed

    Khongkhunthian, Pathawee; Khongkhunthian, Sakornratana; Weerawatprachya, Winai; Pongpat, Kanuengnit; Aunmeungtong, Weerapan

    2015-05-01

    Although the implant-abutment connection may prevent crestal bone loss around dental implants, its failure often leads to treatment failure. Microgap and micromovement of the implant-abutment connection could be causes of bone resorption around dental implant neck. The purpose of this study was to compare torque resistance and microgaps between a new cone and index connection (Octatorx) and an internal hexagon implant-abutment connection (Internal hex). Twenty Octatorx and 20 internal hexagon connections were attached with retaining screws at 30 Ncm. In a torsion resistance test, 10 of each type of connection were attached to a universal testing machine. Torque resistance with 90 degrees per minute rotation speed was recorded. For microgap measurement, each of 10 connections was embedded in clear acrylic resin. The blocks were cut longitudinally. Twenty specimens of each connection were evaluated. Twelve measurements of microgaps (6 on each side of specimen) were recorded under scanning electron microscopy. The average torsion resistance of Octatorx (203.6 ±17.4 Ncm) was significantly greater than that of the internal hexagon (146.4 ±16.1 Ncm, P<.05). For the microgap, there was a significant difference (P=.001) between the median values of Octatorx (1.19 μm) and the internal hexagon (3.80 μm). In this study, the new connection, Octatorx, had a smaller microgap and greater torque resistance than the internal hexagon connection. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. An Easily Constructed Model of a Coordination Polyhedron that Represents the Hexagonal Closest-Packed Structure.

    ERIC Educational Resources Information Center

    Yamana, Shukichi

    1987-01-01

    Illustrates the 29 steps involved in the development of a model of a coordination polyhedron that represents the hexagonal closest packed structure. Points out it is useful in teaching stereochemistry. (TW)

  19. New insights on strain energies in hexagonal systems

    NASA Astrophysics Data System (ADS)

    Thuinet, Ludovic; Besson, Rémy

    2012-06-01

    The preferential habit planes of coherent precipitates, strongly influencing alloy properties, can be investigated by direct-space elasticity methods, providing new insight into delicate issues such as elastic inhomogeneities or anharmonicity. Focusing on the poorly known hexagonal system, this work enlightens important trends overlooked hitherto, such as the critical role of C44, leading to the identification of distinct families of hexagonal alloys for precipitation. Moreover, it demonstrates the complex influence of inhomogeneities for real, finite-thickness morphologies. Finally, it provides the missing material required for atomic-scale studies of precipitation in low-symmetry systems with long-range interactions.

  20. Electronic properties of hexagonal gallium phosphide: A DFT investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin; Shah, Esha V.; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in

    2016-05-23

    A detail density functional investigation is performed to develop hexagonal 2D gallium phosphide material. The geometry, band structure and density of states (total and projected) of 2D hexagonal GaP are reported in detail. It is heartening to note that the developed material is identified as an indirect band gap semiconductor. The indirect gap for this material is predicted as 1.97 eV at K-Γ, and a direct gap of 2.28 eV at K point is achieved, which is very close to the reported direct band gap for zinc blende and buckled structures of GaP.

  1. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  2. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    PubMed

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  3. Effect of random vacancies on the electronic properties of graphene and T graphene: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Sadhukhan, B.; Nayak, A.; Mookerjee, A.

    2017-12-01

    In this communication we present together four distinct techniques for the study of electronic structure of solids: the tight-binding linear muffin-tin orbitals, the real space and augmented space recursions and the modified exchange-correlation. Using this we investigate the effect of random vacancies on the electronic properties of the carbon hexagonal allotrope, graphene, and the non-hexagonal allotrope, planar T graphene. We have inserted random vacancies at different concentrations, to simulate disorder in pristine graphene and planar T graphene sheets. The resulting disorder, both on-site (diagonal disorder) as well as in the hopping integrals (off-diagonal disorder), introduces sharp peaks in the vicinity of the Dirac point built up from localized states for both hexagonal and non-hexagonal structures. These peaks become resonances with increasing vacancy concentration. We find that in presence of vacancies, graphene-like linear dispersion appears in planar T graphene and the cross points form a loop in the first Brillouin zone similar to buckled T graphene that originates from π and π* bands without regular hexagonal symmetry. We also calculate the single-particle relaxation time, τ (ěc {q}) of ěc {q} labeled quantum electronic states which originates from scattering due to presence of vacancies, causing quantum level broadening.

  4. Formation of hexagonal and cubic ice during low-temperature growth

    PubMed Central

    Thürmer, Konrad; Nie, Shu

    2013-01-01

    From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592

  5. Honeycomb Geometry: Applied Mathematics in Nature.

    ERIC Educational Resources Information Center

    Roberts, William J.

    1984-01-01

    Study and exploration of the hexagonal shapes found in honeycombs is suggested as an interesting topic for geometry classes. Students learn that the hexagonal pattern maximizes the enclosed region and minimizes the wax needed for construction, while satisfying the bees' cell-size constraint. (MNS)

  6. Spatial partitioning of environmental correlates of avian biodiversity in the conterminous United States

    USGS Publications Warehouse

    O'Connor, R.J.; Jones, M.T.; White, D.; Hunsaker, C.; Loveland, Tom; Jones, Bruce; Preston, E.

    1996-01-01

    Classification and regression tree (CART) analysis was used to create hierarchically organized models of the distribution of bird species richness across the conterminous United States. Species richness data were taken from the Breeding Bird Survey and were related to climatic and land use data. We used a systematic spatial grid of approximately 12,500 hexagons, each approximately 640 square kilometres in area. Within each hexagon land use was characterized by the Loveland et al. land cover classification based on Advanced Very High Resolution Radiometer (AVHRR) data from NOAA polar orbiting meteorological satellites. These data were aggregated to yield fourteen land classes equivalent to an Anderson level II coverage; urban areas were added from the Digital Chart of the World. Each hexagon was characterized by climate data and landscape pattern metrics calculated from the land cover. A CART model then related the variation in species richness across the 1162 hexagons for which bird species richness data were available to the independent variables, yielding an R2-type goodness of fit metric of 47.5% deviance explained. The resulting model recognized eleven groups of hexagons, with species richness within each group determined by unique sequences of hierarchically constrained independent variables. Within the hierarchy, climate data accounted for more variability in the bird data, followed by land cover proportion, and then pattern metrics. The model was then used to predict species richness in all 12,500 hexagons of the conterminous United States yielding a map of the distribution of these eleven classes of bird species richness as determined by the environmental correlates. The potential for using this technique to interface biogeographic theory with the hierarchy theory of ecology is discussed. ?? 1996 Blackwell Science Ltd.

  7. Magnetic ground state of the multiferroic hexagonal LuFe O3

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  8. Phonons and superconductivity in fcc and dhcp lanthanum

    NASA Astrophysics Data System (ADS)

    Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.

    2010-04-01

    We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.

  9. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.

  10. Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases.

    PubMed

    Zhang, Bao-Yan; Meng, Fan-Bao; Cong, Yue-Hua

    2007-08-06

    The optical properties of polymer liquid crystal cell exhibiting polymer blue phases (PBPs) have been determined using ultraviolet-visible spectrophotometry, polarizing optical microscopy (POM), differential scanning calorimetry (DSC), X-ray measurements, FTIR imaging and optical rotation technique. PBPs are thermodynamically stabile mesophases, which appear in chiral systems between isotropic and liquid crystal phases. A series of cyclosiloxane-based blue phase polymers were synthesized using a cholesteric LC monomer and a nematic LC monomer, and some of the polymers exhibit PBPs in temperature range over 300 degrees in cooling cycles. The unique property based on their structure and different twists formed and expect to open up new photonic application and enrich polymer blue phase contents and theory.

  11. The eggshell morphology of Rallicola unguiculatus Piaget, 1880 (Ischnocera: Phthiraptera).

    PubMed

    Ahmad, Aftab

    2017-06-01

    The egg chorion of the greater coucal louse, Rallicola unguiculatus bears hexagonal ridges. The hat shaped opercular disc also shows hexagonal marks. Twenty to twenty-three button shaped micropyles occur along the opercular rim. The stigma remained obscured under the cementing material.

  12. Hexagonal OsB 2: Sintering, microstructure and mechanical properties

    DOE PAGES

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; ...

    2015-02-07

    In this study, the metastable high pressure ReB 2-type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulusmore » of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics.« less

  13. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.

    PubMed

    Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B

    2008-05-19

    Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.

  14. Conversion between hexagonal GaN and beta-Ga(2)O(3) nanowires and their electrical transport properties.

    PubMed

    Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie

    2006-02-01

    We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.

  15. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Florence T.; Post, Jeffrey E.; Heaney, Peter J.

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from Mnsingle bondO lattice vibrations between 400 and 750 cm - 1 yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied tomore » known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~ 1628 cm - 1 may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.« less

  16. Threefold rotational symmetry in hexagonally shaped core-shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging.

    PubMed

    Davtyan, Arman; Krause, Thilo; Kriegner, Dominik; Al-Hassan, Ali; Bahrami, Danial; Mostafavi Kashani, Seyed Mohammad; Lewis, Ryan B; Küpers, Hanno; Tahraoui, Abbes; Geelhaar, Lutz; Hanke, Michael; Leake, Steven John; Loffeld, Otmar; Pietsch, Ullrich

    2017-06-01

    Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In 0.15 Ga 0.85 As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

  17. Residues with similar hexagon neighborhoods share similar side-chain conformations.

    PubMed

    Li, Shuai Cheng; Bu, Dongbo; Li, Ming

    2012-01-01

    We present in this study a new approach to code protein side-chain conformations into hexagon substructures. Classical side-chain packing methods consist of two steps: first, side-chain conformations, known as rotamers, are extracted from known protein structures as candidates for each residue; second, a searching method along with an energy function is used to resolve conflicts among residues and to optimize the combinations of side chain conformations for all residues. These methods benefit from the fact that the number of possible side-chain conformations is limited, and the rotamer candidates are readily extracted; however, these methods also suffer from the inaccuracy of energy functions. Inspired by threading and Ab Initio approaches to protein structure prediction, we propose to use hexagon substructures to implicitly capture subtle issues of energy functions. Our initial results indicate that even without guidance from an energy function, hexagon structures alone can capture side-chain conformations at an accuracy of 83.8 percent, higher than 82.6 percent by the state-of-art side-chain packing methods.

  18. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M., E-mail: neekamal@srttu.edu

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energymore » of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.« less

  19. Ab initio study of the structural, vibrational and thermal properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Odhiambo, Henry; Othieno, Herick

    2015-05-01

    The structural, vibrational and thermal properties of hexagonal as well as cubic Ge2Sb2Te5 (GST) have been calculated from first principles. The relative stability of the possible stacking sequences of hexagonal GST has been confirmed to depend on the choice for the exchange-correlation (XC) energy functional. It is apparent that without the inclusion of the Te 4d orbitals in the valence states, the lattice parameters can be underestimated by as much as 3.9% compared to experiment and all-electron calculations. From phonon dispersion curves, it has been confirmed that the hexagonal phase is, indeed, stable whereas the cubic phase is metastable. In particular, calculations based on the quasi-harmonic approximation (QHA) reveal an extra heat capacity beyond the Dulong-Petit limit at high temperatures for both hexagonal and cubic GST. Moreover, cubic GST exhibits a residual entropy at 0 K, in agreement with experimental studies which attribute this phenomenon to substitutional disorder on the Sb/Ge/v sublattice.

  20. Extrinsic effects on the disorder dynamics of Bénard-Marangoni patterns

    NASA Astrophysics Data System (ADS)

    Cerisier, P.; Rahal, S.; Billia, B.

    1996-10-01

    The influence of the vessel shape, the initial conditions, and the vertical temperature gradient on dynamics and amount of disorder in convective patterns evolving in Bénard-Marangoni instability have been analyzed by using statistical tools, namely the density of defects, a disorder function, the order-disorder (m,σ) diagram introduced from the minimal spanning tree approach by Dussert et al., [Phys. Rev. B 34, 3528 (1986)] and the entropy function recently defined by Loeffler (unpublished). Pattern disorder is studied for transient and steady states. Experimental results show that the disorder in the hexagonal patterns of Bénard-Marangoni convection (i) is minimized in a hexagonal vessel and (ii) can be described as a Gaussian noise superimposed on a perfect array of hexagonal cells. Starting from imposed arrays, both hexagonal and nonhexagonal, with a wavelength different from the one that is naturally selected, the final state is independent of initial conditions. Disorder increases with the distance from the threshold. Depending on the Prandtl number, different behaviors of the patterns are observed.

  1. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  2. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    NASA Astrophysics Data System (ADS)

    Alam, M. T.; Bresnehan, M. S.; Robinson, J. A.; Haque, M. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m-1 K-1, is lower than the bulk basal plane value (390 W m-1 K-1) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.

  3. Density functional calculations of the Mössbauer parameters in hexagonal ferrite SrFe12O19

    NASA Astrophysics Data System (ADS)

    Ikeno, Hidekazu

    2018-03-01

    Mössbauer parameters in a magnetoplumbite-type hexagonal ferrite, SrFe12O19, are computed using the all-electron band structure calculation based on the density functional theory. The theoretical isomer shift and quadrupole splitting are consistent with experimentally obtained values. The absolute values of hyperfine splitting parameters are found to be underestimated, but the relative scale can be reproduced. The present results validate the site-dependence of Mössbauer parameters obtained by analyzing experimental spectra of hexagonal ferrites. The results also show the usefulness of theoretical calculations for increasing the reliability of interpretation of the Mössbauer spectra.

  4. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  5. Static high pressure studies on Nd and Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Xu, J.; Smith, G.S.

    1985-06-24

    We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.

  6. Polar Nature of Biomimetic Fluorapatite/Gelatin Composites: A Comparison of Bipolar Objects and the Polar State of Natural Tissue.

    PubMed

    Burgener, Matthias; Putzeys, Tristan; Gashti, Mazeyar Parvinzadeh; Busch, Susanne; Aboulfadl, Hanane; Wübbenhorst, Michael; Kniep, Rüdiger; Hulliger, Jürg

    2015-09-14

    The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.

  7. Perfect Circular Dichroism in the Haldane Model

    NASA Astrophysics Data System (ADS)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-06-01

    We theoretically show that perfect circular dichroism (CD) occurs in the Haldane model in which the two-dimensional (2D) material absorbs only either left-handed or right-handed circularly polarized light. Perfect CD occurs in the phase diagram of the Haldane model when the zero-field quantum Hall conductivity has a nonzero value. The coincidence of the occurrence of perfect CD and zero-field quantum Hall effect is attributed to the fact that the effect of broken time-reversal symmetry is larger than the effect of broken inversion symmetry. On the other hand, valley polarization and perfect CD occur exclusively in the phase diagram. Further, for the four regions of the phase diagram, pseudospin polarization occurs at the K and K' points in the hexagonal Brillouin zone with either the same sign or opposite sign for the K and K' points and for the valence and conduction bands. This theoretical prediction may have an impact on search for a new optical device that selects circularly polarized light controlled by the electric field.

  8. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow

    NASA Astrophysics Data System (ADS)

    Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy

    2017-02-01

    Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.

  9. Development and fabrication of a high current, fast recovery power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Devance, D. C.; Gaugh, C. E.; Karlsson, E. A.

    1983-01-01

    A high voltage (VR = 1200 V), high current (IF = 150 A), fast recovery ( 700 ns) and low forward voltage drop ( 1.5 V) silicon rectifier was designed and the process developed for its fabrication. For maximum purity, uniformity and material characteristic stability, neutron transmutation n-type doped float zone silicon is used. The design features a hexagonal chip for maximum area utilization of space available in the DO-8 diode package, PIN diffused junction structure with deep diffused D(+) anode and a shallow high concentration n(+) cathode. With the high temperature glass passivated positive bevel mesa junction termination, the achieved blocking voltage is close to the theoretical limit of the starting material. Gold diffusion is used to control the lifetime and the resulting effect on switching speed and forward voltage tradeoff. For solder reflow assembly, trimetal (Al-Ti-Ni) contacts are used. The required major device electrical characteristics were achieved. Due to the tradeoff nature of forward voltage drop and reverse recovery time, a compromise was reached for these values.

  10. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotationalmore » relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.« less

  11. Switchable friction enabled by nanoscale self-assembly on graphene

    DOE PAGES

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; ...

    2016-02-23

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as onmore » exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.« less

  12. Shearing-induced asymmetry in entorhinal grid cells.

    PubMed

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  13. On Processing Hexagonally Sampled Images

    DTIC Science & Technology

    2011-07-01

    Mersereau’s HDFT: Mersereau encountered an “insurmountable difficulty” when attempting to develop a fast algorithm to compute the hexagonal DFT...WNR GND 1-bit output CS1 . ------. (input for analog) j(-- -: I (analog out) ADC ,. __ I I I I l ______ l Power to Firefly C1 ~2 TT

  14. Regular and platform switching: bone stress analysis varying implant type.

    PubMed

    Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes

    2012-04-01

    This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants. © 2012 by the American College of Prosthodontists.

  15. Investigation on the formation of lonsdaleite from graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru

    2017-02-15

    Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility ofmore » stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.« less

  16. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less

  17. Crashworthiness analysis on alternative square honeycomb structure under axial loading

    NASA Astrophysics Data System (ADS)

    Li, Meng; Deng, Zongquan; Guo, Hongwei; Liu, Rongqiang; Ding, Beichen

    2013-07-01

    Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.

  18. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less

  19. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    NASA Astrophysics Data System (ADS)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  20. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  1. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Y.; Wang, X.; Chen, T.

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  2. Tapping into the Hexagon spy imagery database: A new automated pipeline for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Maurer, Joshua; Rupper, Summer

    2015-10-01

    Declassified historical imagery from the Hexagon spy satellite database has near-global coverage, yet remains a largely untapped resource for geomorphic change studies. Unavailable satellite ephemeris data make DEM (digital elevation model) extraction difficult in terms of time and accuracy. A new fully-automated pipeline for DEM extraction and image orthorectification is presented which yields accurate results and greatly increases efficiency over traditional photogrammetric methods, making the Hexagon image database much more appealing and accessible. A 1980 Hexagon DEM is extracted and geomorphic change computed for the Thistle Creek Landslide region in the Wasatch Range of North America to demonstrate an application of the new method. Surface elevation changes resulting from the landslide show an average elevation decrease of 14.4 ± 4.3 m in the source area, an increase of 17.6 ± 4.7 m in the deposition area, and a decrease of 30.2 ± 5.1 m resulting from a new roadcut. Two additional applications of the method include volume estimates of material excavated during the Mount St. Helens volcanic eruption and the volume of net ice loss over a 34-year period for glaciers in the Bhutanese Himalayas. These results show the value of Hexagon imagery in detecting and quantifying historical geomorphic change, especially in regions where other data sources are limited.

  3. Factorial and Structural Validity of Holland's Hexagonal Model for an Asian Student Population.

    ERIC Educational Resources Information Center

    Tay, Kenneth Kim; Hill, Joseph A.; Ward, Connie M.

    A study examined the utility of Holland's hexagonal model as a culturally appropriate theoretical framework for U.S. career psychologists working with Asian international students. Chinese-descent international students enrolled in three Southeastern universities (n=170) completed three instruments: Holland's Self-Directed Search (SDS), an…

  4. Wetting behavior on hexagonally close-packed polystyrene bead arrays with different topographies.

    PubMed

    Park, Yi-Seul; Yoon, Seo Young; Lee, Jin Seok

    2016-01-21

    Herein, we investigated the wetting behavior of hexagonally close-packed polystyrene bead arrays with different bead diameters and surface flatness. The contact angle was found to be influenced by the surface roughness as well as the contact area of the polystyrene bead array with a water droplet.

  5. Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.

    PubMed

    Golmohammadi, Mojdeh; Rey, Alejandro D

    2010-07-21

    The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic mesogens under uniaxial extensional flow are significantly enriched by the interaction of the lyotropic/thermotropic competition with the binary molecular architectures and with the quadrupolar nature of the flow.

  6. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

    NASA Astrophysics Data System (ADS)

    Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.

    2012-09-01

    The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused. Electronic supplementary information (ESI) available: Fig. S1 Ni/ZnO hybrid nanostructure prepared using (a) 0.195 and (b) 0.25 M [Zn2+] at 90 °C Fig. S2 FTIR spectra of nickel nanoparticles prepared at 140 °C (a), and Ni/ZnO hybrid nanostructure prepared using (b) 0.063, (c) 0.125, (d) 0.195 and (e) 0.25 M [Zn2+]; Fig. S3 Raman spectra of Ni/ZnO nanostructure prepared using (a) 0.063, (b) 0.125, (c) 0.195 and (d) 0.25 M [Zn2+]; Fig. S4 Room temperature PL spectra of (a) ZnO and (b) Ni/ZnO nanostructure prepared using 0.25 M [Zn2+]. See DOI: 10.1039/c2nr31831h

  7. A quasi-hexagonal prism-shaped carbon nitride for photoreduction of carbon dioxide under visible light.

    PubMed

    He, Zhiqiao; Wang, Danfen; Tang, Juntao; Song, Shuang; Chen, Jianmeng; Tao, Xinyong

    2017-03-01

    A quasi-hexagonal prism-shaped carbon nitride (H-C 3 N 4 ) was synthesized from urea-derived C 3 N 4 (U-C 3 N 4 ) using an alkaline hydrothermal process. U-C 3 N 4 decomposition followed by hydrogen bond rearrangement of hydrolyzed products leads to the formation of a quasi-hexagonal prism-shaped structure. The H-C 3 N 4 catalysts displayed superior activity in the photoreduction of CO 2 with H 2 O compared to U-C 3 N 4 . The enhanced photocatalytic activities can be attributed to the promotion of incompletely coordinated nitrogen atom formation in the C 3 N 4 molecules. Graphical abstract ᅟ.

  8. The single crystal elastic constants of hexagonal SiC to 1000 C

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1988-01-01

    The relationships between the sound velocities in the cubic and hexagonal crystal structures and the tensor transformations for the two structures are applied to determine the elastic stiffnesses for the hexagonal structures of SiC to 1000 C. These results are then applied to calculate the polycrystalline elastic moduli, E and G, and their temperature variations. The calculated values for E and G at 20 C are 420 and 180 GPa; for (dE/dT) and (dG/dT), the values are -0.020 and -0.007 GPa/C, respectively.These agree well with published experimental values for E and G of dense polycrystalline alpha silicon carbides.

  9. Magnetic anisotropy in antiferromagnetic hexagonal MnTe

    NASA Astrophysics Data System (ADS)

    Kriegner, D.; Reichlova, H.; Grenzer, J.; Schmidt, W.; Ressouche, E.; Godinho, J.; Wagner, T.; Martin, S. Y.; Shick, A. B.; Volobuev, V. V.; Springholz, G.; Holý, V.; Wunderlich, J.; Jungwirth, T.; Výborný, K.

    2017-12-01

    Antiferromagnetic hexagonal MnTe is a promising material for spintronic devices relying on the control of antiferromagnetic domain orientations. Here we report on neutron diffraction, magnetotransport, and magnetometry experiments on semiconducting epitaxial MnTe thin films together with density functional theory (DFT) calculations of the magnetic anisotropies. The easy axes of the magnetic moments within the hexagonal basal plane are determined to be along 〈1 1 ¯00 〉 directions. The spin-flop transition and concomitant repopulation of domains in strong magnetic fields is observed. Using epitaxially induced strain the onset of the spin-flop transition changes from ˜2 to ˜0.5 T for films grown on InP and SrF2 substrates, respectively.

  10. Synthesis of a New Family of Hexakisferrocenyl Hexagons and Their Electrochemical Behavior

    PubMed Central

    Ghosh, Koushik; Zhao, Yue; Yang, Hai-Bo; Northrop, Brian H.

    2009-01-01

    The design and synthesis of two new hexakisferrocenyl hexagons has been achieved via coordination-driven self-assembly wherein the size and relative distribution of six ferrocene moieties has been precisely controlled. Insight into the structure and electronic properties of these supramolecules was obtained through electrochemical studies. PMID:18841907

  11. TOILET ROOM IN THE PROJECTION BOOTH. NOTE THE HEXAGONAL FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOILET ROOM IN THE PROJECTION BOOTH. NOTE THE HEXAGONAL FLOOR TILES WITH ACCENTED BORDER AND GLAZED WALL TILES, ALL OF WHICH WERE ORIGINAL/ TYPICAL IN TOILET ROOMS IN THIS FACILITY VIEW FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Theater, Hornet Avenue between Enterprise & Pokomoke Streets, Pearl City, Honolulu County, HI

  12. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE PAGES

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    2016-12-21

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  13. Colour-dressed hexagon tessellations for correlation functions and non-planar corrections

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro

    2018-02-01

    We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.

  14. Hexaferrite multiferroics: from bulk to thick films

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  15. Hexagonal undersampling for faster MRI near metallic implants.

    PubMed

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  16. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  17. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  18. The transformation of ZnO submicron dumbbells into perfect hexagonal tubular structures using CBD: a post treatment route.

    PubMed

    Borade, P; Joshi, K U; Gokarna, A; Lerondel, G; Jejurikar, S M

    2016-01-15

    In this paper, we report the synthesis of dumbbell-shaped ZnO structures and their subsequent transformation into perfect hexagonal tubes by the extended chemical bath deposition (CBD) method, retaining all advantages such as reproducibility, simplicity, quickness and economical aspect. Well-dispersed sub-micron-sized dumbbell-shaped ZnO structures were synthesized on a SiO2/Si substrate by the CBD method. As an extension of the CBD process the synthesized ZnO dumbbells were exposed to the evaporate coming out of the chemical bath for a few minutes (simply by adjusting the height of the deposit so that it remained just above the solution) to convert them into hexagonal tubes via the dissolution process. The possible dissolution mechanism responsible for the observed conversion is discussed. The optical properties (photo-luminescence) recorded at low temperature on both the structures showed an intense, sharp excitonic peak located at ∼370 nm. The improved intensity and low FWHM of the UV peak observed in the hexagonal tubular structures assures high optical quality, and hence can be used for optoelectronic applications.

  19. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  20. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  1. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  2. Face recognition via sparse representation of SIFT feature on hexagonal-sampling image

    NASA Astrophysics Data System (ADS)

    Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong

    2018-04-01

    This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.

  3. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  4. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures.

    PubMed

    Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K

    2017-02-15

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  5. Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology

    DOE PAGES

    Stehle, Yijing Y.; Meyer, III, Harry M.; Unocic, Raymond R.; ...

    2015-11-10

    Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies formore » the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.« less

  6. Oxygen-storage behavior and local structure in Ti-substituted YMnO3

    NASA Astrophysics Data System (ADS)

    Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.

    2017-02-01

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.

  7. Oxygen-storage behavior and local structure in Ti-substituted YMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Vanderah, T. A.

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almostmore » negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.« less

  8. Conformational studies of lithium phenyl stearate

    NASA Astrophysics Data System (ADS)

    Barron, Christopher

    The structure and conformation of lithium phenyl stearate (and to a lesser extent, for comparative purposes, cadmium stearate) was investigated using Fourier transform infrared spectroscopy, and various modelling techniques. The infrared results for LiPS show that the aliphatic portion of the soap molecule is much more ordered at room temperature than had been expected, having only 0.62 and 0.60 gtg and gg defects per molecule respectively, where an isotropic chain would have 1.35 and 1.21 gtg and gg defects per chain respectively. As the temperature is increased the number of conformational defects increases continuously, until at <130°C the chain reaches an isotropic degree of disorder. At this point the phase transition begins, so the chain reaches liquid like disorder before the phase transition begins.Modelling of the phenyl stearic acid showed that the phenyl group was restricted to certain angle of rotation values, and that the bonds close to the phenyl group were prevented from attaining true rotational isomeric state conformations, gtg defects near the phenyl group were distorted only slightly from their usual angular position, and an additional band in the infrared spectrum of LiPS at 1363 cm-1 has been assigned to this distorted gtg/gtg' defect. The gg defects near the phenyl group have a much greater distortion (and energy) resulting in a much reduced probability of occurrence. The number of gg defects present at the phase transition (<130°C) was only 75% of that expected for an isotropic n-alkane of equivalent chain length, indicating that the four bonds nearest to the phenyl group have a reduced probability of forming a gg defect.The modelling of the ionic core of LiPS gives a reasonable estimate of between 5.6 to 7.1 A for the core radius. When this is used to calculate the hexagonal cylinder diameter, at room temperature, along with the average chain extension, it gives a value for the cylinder diameter of between 33.9 to 36.8A. The hexagonal lattice parameter determined by X-ray diffraction has a value 35.9A. Also after the LiPS sample has gone through the phase transition beginning at >130°C, the hexagonal lattice parameter is 31.4A while the cylinder diameter lies between 30.2 and 33.2A.Crystalline cadmium stearate was found to contain two crystal forms, orthorhombic which has lattice dimensions of a0=5.05A, b0=7.35A and c0=48.6A and the other eithermonoclinic or triclinic. In the reverse hexagonal phase, the cadmium stearate molecule behaves like an isotropic n-alkane of equivalent chain length. The model used to predict the core radius of divalent metal soaps gives rise to some inconsistencies: the cylinder diameter thus determined gives a result between 28.8A to 31.7A, while the lattice parameter determined by X-ray diffraction gives a value of 36.9A. The assumption that the n-carboxylate ions in a divalent metal soap behave like two independent monovalent metal ion soaps appears to be incorrect.

  9. Nature of Bonding in Bowl-Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location.

    PubMed

    Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin

    2018-05-04

    The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2015-07-23

    Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals.

  11. Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein.

    PubMed

    Royer, William E; Omartian, Michael N; Knapp, James E

    2007-01-05

    Annelid erythrocruorins are extracellular respiratory complexes assembled from 180 subunits into hexagonal bilayers. Cryo-electron microscopic experiments have identified two different architectural classes. In one, designated type I, the vertices of the two hexagonal layers are partially staggered, with one hexagonal layer rotated by about 16 degrees relative to the other layer, whereas in the other class, termed type II, the vertices are essentially eclipsed. We report here the first crystal structure of a type II erythrocruorin, that from Arenicola marina, at 6.2 A resolution. The structure reveals the presence of long continuous triple-stranded coiled-coil "spokes" projecting towards the molecular center from each one-twelfth unit; interdigitation of these spokes provides the only contacts between the two hexagonal layers of the complex. This arrangement contrasts with that of a type I erythrocruorin from Lumbricus terrestris in which the spokes are broken into two triple-stranded coiled coils with a disjointed connection. The disjointed connection allows formation of a more compact structure in the type I architecture, with the two hexagonal layers closer together and additional extensive contacts between the layers. Comparison of sequences of the coiled-coil regions of various linker subunits shows that the linker subunits from type II erythrocruorins possess continuous heptad repeats, whereas a sequence gap places these repeats out of register in the type I linker subunits, consistent with a disjointed coiled-coil arrangement.

  12. Different Effects of Long- and Short-Chain Ceramides on the Gel-Fluid and Lamellar-Hexagonal Transitions of Phospholipids: A Calorimetric, NMR, and X-Ray Diffraction Study

    PubMed Central

    Sot, Jesús; Aranda, Francisco J.; Collado, M.-Isabel; Goñi, Félix M.; Alonso, Alicia

    2005-01-01

    The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and 31P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93°C (Cer16), 60°C (Cer6), and 54°C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60°C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides. PMID:15695626

  13. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derivedmore » from block co-polymers.« less

  14. Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.

    PubMed

    LeBard, David N; Matyushov, Dmitry V

    2010-07-22

    Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.

  15. Induced cholesteric systems based on some cyano derivatives as host phases

    NASA Astrophysics Data System (ADS)

    Shkolnikova, Natalya I.; Kutulya, Lidiya A.; Vashchenko, V. V.; Fedoryako, A. P.; Lapanik, V. I.; Posledovich, N. R.

    2002-12-01

    Macroscopical properties of some induced cholesteric compositions based on 4-pentyl-4'-cyano derivatives of biphenyl and phenylcyclohexane as host phases have been investigated. The series of N-arylidene derivatives of (S)-1-phenylethylamine with varied both rigid moiety of the N-arylidene fragment and terminal substituent was used as chiral dopants. The influence of the chiral dopant molecular structure as well as of physical properties of the host phases used on the helical twisting power, the temperature dependence of the induced helical pitch and the N* mesophase thermal stability has been characterized. It has been concluded that the distinctions in properties of the LC systems containing the OCH2 and COO linking groups are caused by their different conformational states.

  16. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  17. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  18. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients

    NASA Astrophysics Data System (ADS)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-01

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  19. Phase stability and mechanical properties of Mo1-xNx with 0 ≤ x ≤ 1

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Karthik; Huang, Liping; Gall, Daniel

    2017-11-01

    First-principle density-functional calculations coupled with the USPEX evolutionary phase-search algorithm are employed to calculate the convex hull of the Mo-N binary system. Eight molybdenum nitride compound phases are found to be thermodynamically stable: tetragonal β-Mo3N, hexagonal δ-Mo3N2, cubic γ-Mo11N8, orthorhombic ɛ-Mo4N3, cubic γ-Mo14N11, monoclinic σ-MoN and σ-Mo2N3, and hexagonal δ-MoN2. The convex hull is a straight line for 0 ≤ x ≤ 0.44 such that bcc Mo and the five listed compound phases with x ≤ 0.44 are predicted to co-exist in thermodynamic equilibrium. Comparing the convex hulls of cubic and hexagonal Mo1-xNx indicates that cubic structures are preferred for molybdenum rich (x < 0.3) compounds, and hexagonal phases are favored for nitrogen rich (x > 0.5) compositions, while similar formation enthalpies for cubic and hexagonal phases at intermediate x = 0.3-0.5 imply that kinetic factors play a crucial role in the phase formation. The volume per atom Vo of the thermodynamically stable Mo1-xNx phases decreases from 13.17 to 9.56 Å3 as x increases from 0.25 to 0.67, with plateaus at Vo = 11.59 Å3 for hexagonal and cubic phases and Vo = 10.95 Å3 for orthorhombic and monoclinic phases. The plateaus are attributed to the changes in the average coordination numbers of molybdenum and nitrogen atoms, which increase from 2 to 6 and decrease from 6 to 4, respectively, indicating an increasing covalent bonding character with increasing x. The change in bonding character and the associated phase change from hexagonal to cubic/orthorhombic to monoclinic cause steep increases in the isotropic elastic modulus E = 387-487 GPa, the shear modulus G = 150-196 GPa, and the hardness H = 14-24 GPa in the relatively narrow composition range x = 0.4-0.5. This also causes a drop in Poisson's ratio from 0.29 to 0.24 and an increase in Pugh's ratio from 0.49 to 0.64, indicating a ductile-to-brittle transition between x = 0.44 and 0.5.

  20. Wear at the Implant-Abutment Interface of Zirconia Abutments Manufactured by Three CAD/CAM Systems.

    PubMed

    Pinheiro Tannure, Ana Luiza; Cunha, Alfredo Gonçalves; Borges Junior, Luiz Antônio; da Silva Concílio, Laís Regiane; Claro Neves, Ana Christina

    To evaluate the changes in the external-hexagon surface of the titanium (Ti) implant before and after mechanical cycling, when coupled with zirconia (Zr) abutments (A) manufactured by three computer-aided design/computer-aided manufacturing (CAD/CAM) systems (Neodent Digital, Zirkonzahn, and AmannGirrbach) and the ZrTi abutment manufactured by Neodent. Four groups were formed (n = 6): titanium implant with Zr AmannGirrbach abutment (AZrAG), with Zr Zirkonzahn abutment (AZrZ), with Zr Neodent abutment (AZrN), and with Zr abutment with infrastructure in Ti Neodent (AZrTiN). Standardized abutments were made from three identical abutments milled in wax. Images of the surface of each side of the hexagons of the implant were obtained by scanning electron microscopy, before and after mechanical cycling, to evaluate the parameters: (1) scratches in the hexagon face; (2) hexagon superior shoulder kneading; (3) hexagon shoulder wear; (4) alterations on the hexagon base; and (5) scratches on the hexagon top. The abutments were coupled with the implants, and Cr-Co crowns were cemented. The implant/abutment/crown assemblies were submitted to mechanical cycling (400 N, 8.0 Hz) for 1 million cycles. The observed changes were classified as follows: absence (0), mild (1), moderate (2), and severe (3). The results were analyzed using the Mann-Whitney, Kruskal-Wallis, and Dunn tests (P < .05). For parameter 1, a significant difference (P = .008) was observed between AZrZ and AZrAG, with more scratches in AZrZ; and between AZrN and AZrTiN (P = .006), with more scratches in AZrN. For parameter 2, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with greater kneading in AZrZ; among AZrN and AZrTiN, there was no significant difference (P = .103). For parameter 3, a significant difference (P < .05) was observed between AZrZ and the other groups of Zr, with more wear in AZrZ; between AZrN and AZrTiN, there was no significant difference (P = .107). For parameter 4, a significant difference (P < .05) was observed between AZrZ and AZrN, with more scratches in AZrZ; a significant difference (P = .002) was also observed between AZrN and AZrTiN, with more scratches in AZrN. For parameter 5, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with the fewest scratches in AZrZ; a significant difference (P = .006) was also observed between AZrN and AZrTiN, with more alterations in AZrN. Considering all the alterations, the AZrZ group showed more surface alteration, 1.74 (0.99); followed by AZrN, 1.43 (0.92); AZrAG, 1.32 (0.96); and AZrTiN, 0.88 (0.94). Among the Neodent abutments, the AZrN group had shown more surface alterations. Among the Zr groups, AZrZ samples had shown the most altered surfaces, suggesting that alterations on the implant/Zr abutment hexagon surfaces are related to the abutment milled hexagon shape.

  1. A Method of Assembling Compact Coherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James

    2007-01-01

    A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.

  2. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  3. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2017-07-17

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  4. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    2017-10-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane.« less

  5. Large-area few-layer hexagonal boron nitride prepared by quadrupole field aided exfoliation

    NASA Astrophysics Data System (ADS)

    Lun Lu, Han; Zhi Rong, Min; Qiu Zhang, Ming

    2018-03-01

    A quadrupole electric field-mediated exfoliation method is proposed to convert micron-sized hexagonal boron nitride (h-BN) powder into few-layer hexagonal boron nitride nanosheets (h-BNNS). Under optimum conditions (400 Hz, 40 V, 32 μg ml-1, sodium deoxycholate, TAE medium), the h-BN powders (thickness >200 nm, horizontal scale ˜10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering and atomic force microscope data show that the yield is 47.6% (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers).

  6. Versatile NiO/mesoporous carbon nanodisks: controlled synthesis from hexagon shaped heterobimetallic metal-organic frameworks.

    PubMed

    Zeng, Dehong; Yang, Ying; Yang, Feng; Guo, Fangmin; Yang, Senjie; Liu, Baijun; Hao, Shijie; Ren, Yang

    2017-08-24

    Hexagonal NiO/mesoporous carbon nanodisks (NiO/MCN) are facilely and controllably synthesized via constructing nickel-zinc trimesic acid heterobimetallic metal-organic framework (HMOF) disks before pyrolysis at 910 °C. Tailoring the Ni/(Zn + Ni) feed ratio and the reaction time during the HMOF synthesis creates a well-defined hexagonal carbon nanodisk with properly populated NiO nanocrystals while maintaining high porosity and conductivity. Such an elaborately fabricated NiO/MCN is highly stable, and exhibits the largest specific capacitance of 261 F g -1 and the highest specific activity factor of 1.93 s -1 g -1 of any composite nanodisk during the capacitive test and 4-nitrophenol reduction, respectively.

  7. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    NASA Technical Reports Server (NTRS)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  8. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for openingmore » and modulating a bandgap in graphene as high as several hundred meV.« less

  9. Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes

    NASA Astrophysics Data System (ADS)

    Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.

    2004-08-01

    We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.

  10. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  11. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    PubMed

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  12. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroshi; Nakano, Masayoshi; Yoneda, Kyohei; Fukui, Hitoshi; Minami, Takuya; Bonness, Sean; Kishi, Ryohei; Takahashi, Hideaki; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Champagne, Benoît; Botek, Edith

    2009-08-01

    Using hybrid density functional theory methods, we investigate the second hyperpolarizabilities ( γ) of hexagonal shaped finite graphene fragments, which are referred to as hexagonal graphene nanoflakes (HGNFs), with two types of edge shapes: zigzag (Z) and armchair (A) edges. It is found that Z-HGNF, which gives intermediate diradical characters ( y), exhibits about 3.3 times larger orthogonal components of γ ( γ xxxx = γ yyyy in this case) than A-HGNF, which gives zero y value (closed-shell system). The γ density analysis reveals that this enhancement originates in the significant contribution of γ densities on edge regions in Z-HGNF. These observations strongly indicate that Z-HGNF is a promising candidate of open-shell singlet NLO systems.

  13. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    PubMed Central

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-01-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s. PMID:28367992

  14. Synthesis and structural characterization of ZnO-and CuO-NPs supported mesoporous silica materials (hexagonal SBA-15 and lamellar-SiO2)

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.

    2018-01-01

    Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.

  15. Measuring the order in ordered porous arrays: can bees outperform humans?

    NASA Astrophysics Data System (ADS)

    Kaatz, F. H.

    2006-08-01

    A method that explains how to quantify the amount of order in “ordered” and “highly ordered” porous arrays is derived. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF). Nanoporous anodized aluminum oxide (AAO), hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and square arrays defined by interference lithography (all taken from the literature) are compared to two-dimensional model systems. These arrays have a range of pore diameters from ˜60 to 180 nm. An order parameter, OP 3 , is defined to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare RDFs of man-made arrays with that of our honeycomb (pore diameter ˜5.89 mm), a locally grown version made by Apis mellifera without the use of foundation comb, we find OP 3 =0.399 for the honeycomb and OP 3 =0.572 for man’s best hexagonal array. The nearest neighbor peaks range from 4.65 for the honeycomb to 5.77 for man’s best hexagonal array, while the ideal hexagonal array has an average of 5.93 nearest neighbors. Ordered arrays are now becoming quite common in nanostructured science, while bee honeycombs were studied for millennia. This paper describes the first method to quantify the order found in these arrays with a simple yet elegant procedure that provides a precise measurement of the order in one array compared to other arrays.

  16. Size-tunable and monodisperse Tm³⁺/Gd³⁺-doped hexagonal NaYbF₄ nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging.

    PubMed

    Damasco, Jossana A; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N

    2014-08-27

    Hexagonal NaYbF4:Tm(3+) upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm(3+) nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd(3+)) can convert NaYbF4:Tm(3+) 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm(3+) 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd(3+) 30%/Tm(3+) 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline.

  17. Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

    PubMed Central

    2015-01-01

    Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline. PMID:25027118

  18. Torque removal evaluation of prosthetic screws after tightening and loosening cycles: an in vitro study.

    PubMed

    Cardoso, Mayra; Torres, Marcelo Ferreira; Lourenço, Eduardo José Veras; de Moraes Telles, Daniel; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-04-01

    The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: (1) abutments without hexagon at the base and (2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that (1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, (2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and (3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws. © 2011 John Wiley & Sons A/S.

  19. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    PubMed

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  20. Honeycombing The Icosahedron and Icosahedroning the Sphere

    Treesearch

    Joseph M McCollum

    2001-01-01

    This paper is an attempt to trace the theoretical foundations of the Forest Inventory and Analysis and Forest Health Monitoring hexagon networks. It is important in case one might desire to alter the intensity of the grid or lay down a new grid in Puerto Rico and the U.S. Virgin Islands, for instance. The network comes from tessellating an icosahedron with hexagons and...

Top