Sample records for reverse phase high

  1. Sensitive determination of nitrophenol isomers by reverse-phase high-performance liquid chromatography in conjunction with liquid-liquid extraction

    USDA-ARS?s Scientific Manuscript database

    A method for the highly sensitive determination of 2-, 3- and 4- nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the i...

  2. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography.

    PubMed

    Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang

    2010-08-01

    Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.

  3. Supplemental and highly-elevated tocopherol doses differentially regulate allergic inflammation: reversibility of α-tocopherol and γ-tocopherol's effects

    PubMed Central

    McCary, Christine A.; Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M.

    2011-01-01

    We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with antigen and supplemental tocopherols in a first phase of treatment followed by a 4 week clearance phase and then the mice received a second phase of antigen and tocopherol treatments. The pro-inflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2 but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly-elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly-elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly-elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of antigen challenge without tocopherols. In summary, the pro-inflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly-elevated-levels of α-tocopherol. Also, highly-elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were pro-inflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature. PMID:21317387

  4. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    USGS Publications Warehouse

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  5. Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua

    2017-05-01

    In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.

  6. Using reversed phase high performance liquid chromatography to study the complexation of anthocyanins with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Deineka, L. A.

    2014-06-01

    It is shown by means of reversed phase high performance liquid chromatography (RP HPLC) with mobile phases containing additions of β-cyclodextrin that 5-glucosides of cyanidin and pelargonidin form stronger inclusion complexes than 3-glucosides; this is explained by the steric interference of the glucoside radical.

  7. Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Shao, Yuyan; Parent, Lucas R.

    This paper demonstrates intermetallic compounds SnSb are highly active materials for reversibly hosting Mg ions. Compared with monometallic Sn and Sb, SnSb alloy exhibited exceptionally high reversible capacity (420 mAh/g), excellent rate capability and good cyclic stability. Mg insertion into pristine SnSb involves an activation process to complete, which induces particle breakdown and results in phase segregation to Sn-rich and Sb-rich phases. Both experimental analysis and DFT simulation suggest that the Sn-rich phase is particularly active and provides most of the capacity whereas the Sb-rich phase is not as active, and the interface between these two phases play a keymore » role in promoting the formation and stabilization of the cubic Sn phase that is more favorable for fast and reversible Mg insertion. We further show that activated SnSb alloy has good compatibility with simple Mg electrolytes. Overall, this work could provide new approaches for designing materials capable of reversible Mg ion insertion and new opportunities for understanding Mg electrochemistry.« less

  8. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    PubMed

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko

    2017-09-01

    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  9. Leukotriene B4 catabolism: quantitation of leukotriene B4 and its omega-oxidation products by reversed-phase high-performance liquid chromatography.

    PubMed

    Shak, S

    1987-01-01

    LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.

  10. ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY/UV

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...

  11. SEPARATION AND QUANTITATION OF NITROBENZENES AND THEIR REDUCTION PRODUCTS NITROANILINES AND PHENYLENEDIAMINES BY REVERSED=PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A reversed-phase high-performance liquid chromatographic method for the separation and quantitation of a mixture consisting of nitrobenzene, dinitrobenzene isomers, 1,3,5-trinitrobenzene and their reduction products: aniline, nitroanilines and phenylenediamines has been developed...

  12. (PRESENT AT NCCU) ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...

  13. Separation of alkylphenols by normal-phase and reversed-phase high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schabron, J.F.; Hurtubise, R.J.; Silver, H.F.

    1978-11-01

    Empirical correlation factors were developed which relate log k' values for alkylphenols, the naphthols, and two phenylphenols to structural features. Both normal-phase and reversed-phase chromatographic systems were studied. The stationary phases employed in the normal-phase work were ..mu..-Bondapak CN, ..mu..-Bondapak NH/sub 2/, and ..mu..-Porasil. The structural features which affect retention in the normal-phase chromatographic systems are the number of ortho substituents, the number of aliphatic carbons, and the number of aromatic rings. The stationary phases employed in the reversed-phase work were ..mu..-Bondapak C/sub 18/ and ..mu..-Bondapak CN. The structural features which affect retention in the reversed-phase chromatographic systems are themore » number of aliphatic carbons and the number of aromatic double bonds. On ..mu..-Bondapak C/sub 18/, the presence or absence of a nonaromatic ring is of added importance.« less

  14. Quality assessment of Herba Leonuri based on the analysis of multiple components using normal- and reversed-phase chromatographic methods.

    PubMed

    Dong, Shuya; He, Jiao; Hou, Huiping; Shuai, Yaping; Wang, Qi; Yang, Wenling; Sun, Zheng; Li, Qing; Bi, Kaishun; Liu, Ran

    2017-12-01

    A novel, improved, and comprehensive method for quality evaluation and discrimination of Herba Leonuri has been developed and validated based on normal- and reversed-phase chromatographic methods. To identify Herba Leonuri, normal- and reversed-phase high-performance thin-layer chromatography fingerprints were obtained by comparing the colors and R f values of the bands, and reversed-phase high-performance liquid chromatography fingerprints were obtained by using an Agilent Poroshell 120 SB-C18 within 28 min. By similarity analysis and hierarchical clustering analysis, we show that there are similar chromatographic patterns in Herba Leonuri samples, but significant differences in counterfeits and variants. To quantify the bio-active components of Herba Leonuri, reversed-phase high-performance liquid chromatography was performed to analyze syringate, leonurine, quercetin-3-O-robiniaglycoside, hyperoside, rutin, isoquercitrin, wogonin, and genkwanin simultaneously by single standard to determine multi-components method with rutin as internal standard. Meanwhile, normal-phase high-performance liquid chromatography was performed by using an Agilent ZORBAX HILIC Plus within 6 min to determine trigonelline and stachydrine using trigonelline as internal standard. Innovatively, among these compounds, bio-active components of quercetin-3-O-robiniaglycoside and trigonelline were first determined in Herba Leonuri. In general, the method integrating multi-chromatographic analyses offered an efficient way for the standardization and identification of Herba Leonuri. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didanosine, stavudine, zidovudine and abacavir in human plasma by reversed phase high performance liquid chromatography.

    PubMed

    Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M

    2005-02-25

    A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.

  16. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  17. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.

  18. Topological superconductivity in the extended Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ <0 , we find a competition between a time-reversal symmetry-breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  19. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides.

    PubMed

    Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek

    2017-05-19

    This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simultaneous determination of azathioprine and 6-mercaptopurine in serum by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsutsumi, K; Otsuki, Y; Kinoshita, T

    1982-09-10

    The simultaneous determination of azathioprine and its metabolite 6-mercaptopurine in serum by reversed-phase high-performance liquid chromatography is described. 6-Mercaptopurine was converted to a derivative, 6-mercaptopurine-N-ethylmaleimide, which is stable against autoxidation, on reaction with N-ethylmaleimide. Since the N-ethylmaleimide derivative was more hydrophobic than the parent compound, it could be extracted into ethyl acetate together with azathioprine and the derivative was retained on the reversed-phase column better than 6-mercaptopurine. In addition, 6-mercaptopurine-N-ethylmaleimide absorbed at the same wavelength (280 nm) as azathioprine. Consequently, this derivatization procedure enabled the simultaneous extraction, separation, and detection of these compounds.

  2. Separation of cannabinoids on three different mixed-mode columns containing carbon/nanodiamond/amine-polymer superficially porous particles.

    PubMed

    Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R

    2015-09-01

    Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Reversal of the contrast of optical radiation in round-trip amplifiers with a phase conjugation mirror

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Anatolii A.; Samson, B. A.

    1989-02-01

    A description is given of a method for inversion of the contrast of optical radiation in a round-trip amplifier with a phase conjugation mirror and a phase nonreciprocal element. The system can be used to achieve high powers of contrast-reversed radiation because of compensation of phase distortions introduced by amplification.

  4. Slow equilibration of reversed-phase columns for the separation of ionized solutes.

    PubMed

    Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R

    2003-10-10

    Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.

  5. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth

    PubMed Central

    Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125–8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of sensitivity to spectral modulation than spectral modulation detection with a flat standard. PMID:29621338

  6. Naturally occurring reverse tilt domains in a high-pretilt alignment nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ruiting; Atherton, Timothy J.; Zhu, Minhua; Petschek, Rolfe G.; Rosenblatt, Charles

    2007-08-01

    A cell whose substrates were coated with the polyamic acid SE1211 (Nissan Chemical Industries) and baked at high temperatures was filled with a nematic liquid crystal in the isotropic phase. On cooling into the nematic phase, naturally occurring and temporally and thermally robust reverse tilt domains separated by thin filamentlike walls were observed. The properties of these structures are reported.

  7. Synthesis and evaluation of porous polymethylsilsesquioxane microspheres as low silanol activity chromatographic stationary phase for basic compound separation.

    PubMed

    Huo, Zhixia; Wan, Qianhong; Chen, Lei

    2018-06-08

    Polymethylsilsesquioxanes (PMSQ) are potentially useful materials for liquid chromatography owing to their unique chemical, electrical and mechanical properties. Surprisingly however, no systematic studies on the use of spherical PMSQ particles as chromatographic packing have been reported. Accordingly, we present a comprehensive study aimed to characterize the chromatographic properties of this material in high performance liquid chromatography (HPLC) and to compare them with those observed on methyl (C 1 ) bonded silica phase under comparable conditions. Porous spherical particles were synthesized by a two-step hydrolysis and condensation procedure from methyltrimethoxysilane (MTMS) as a sole precursor. The as-synthesized microspheres possess spherical shape, narrow size distribution, mesoporous structure, high surface area (817 m 2  g -1 ) and reasonable carbon load (16.6%). They can be used directly as the HPLC stationary phase without the need for size classification. The PMSQ phase exhibits typical reversed-phase chromatographic properties with higher methylene selectivity and low silanol activity compared with the C 1 column. The retention mechanism for basic compounds was systematically evaluated by studying the effect of pH, ionic and solvent strength of the mobile phase. Basic compounds displayed lower retention factor and symmetric peak shape on the PMSQ column whereas longer retention and strong tailing peaks were observed on the C 1 column. The difference in retention behavior between the two columns is explained in terms of different principal retention mechanisms. Because of the low silanol activity, retention of basic compounds on the PMSQ column is governed solely by a reversed-phase mechanism. By contrast, multiple interactions including reversed-phase, cation exchange and simultaneous reversed-phase/cationic exchange interaction contribute to the retention on the C 1 column, as previously observed on other silica based reversed-phases. Furthermore, the PMSQ phase exhibited significantly enhanced stability under alkaline conditions compared with its silica-based counterpart. Taken together, the favorable morphology and pore structure combined with the benefits of low silanol activity, high pH stability and prolonged column lifetime make the newly developed PMSQ phase a promising and viable alternative to silica based reversed-phase packings for separation of basic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Green chiral HPLC study of the stability of Chiralcel OD under high temperature liquid chromatography and subcritical water conditions.

    PubMed

    Droux, S; Roy, M; Félix, G

    2014-10-01

    We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microwave-immobilized polybutadiene stationary phase for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2004-03-19

    Polybutadiene (PBD) has been immobilized on high-performance liquid chromatography (HPLC) silica by microwave radiation at various power levels (52-663 W) and actuation times (3-60 min). Columns prepared from these reversed-phase HPLC materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (%C) and infrared spectroscopy. A microwave irradiation of 20 min at 663 W gives a layer of immobilized PBD that presented good performance. Longer irradiation times give thicker immobilized layers having less favorable chromatographic properties.

  10. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation and characterization of a new microwave immobilized poly(2-phenylpropyl)methylsiloxane stationary phase for reversed phase high-performance liquid chromatography.

    PubMed

    Begnini, Fernanda R; Jardim, Isabel C S F

    2013-07-05

    A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. High pressure spectroscopic studies of phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Mishra, K. K.; Ravindran, T. R.; Dhara, Sandip

    2018-04-01

    Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) at a technologically important temperature of 340K. A structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R is also reported via another two intermediate phases of monoclinic M2 and triclinic T. Metastable monoclinic M2 phase of VO2 was synthesized by Mg doping in the vapour transport process. Raman spectroscopic measurements were carried out at high pressure on V1-xMgxO2 microrods. Two reversible structural phase transitions from monoclinic M2 to triclinic T at 1.6 GPa and T to monoclinic M1 at 3.2 GPa are observed and are explained by structural relaxation of the strained phases.

  13. Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives

    USGS Publications Warehouse

    Abidi, Sharon L.

    1989-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  14. Reversible Rigidity Control Using Low Melting Temperature Alloys

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-03-01

    Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.

  15. Reversible Phase Transition with Ultralarge Dielectric Relaxation Behaviors in Succinimide Lithium(I) Hybrids.

    PubMed

    Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui

    2018-02-05

    Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.

  16. Gradient Scouting in Reversed-Phase HPLC Revisited

    ERIC Educational Resources Information Center

    Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.

    2011-01-01

    Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…

  17. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlinger, C.; Belloni, L.; Zemb, T.

    1999-03-30

    Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions,more » modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits.« less

  18. Preparation of stationary phases for reversed-phase high-performance liquid chromatography using thermal treatments at high temperature.

    PubMed

    Vigna, Camila R M; Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H

    2007-07-13

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 degrees C for 24h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4h at higher temperatures (150-400 degrees C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, (29)Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 degrees C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 degrees C and an increase in the resolution of the components, mainly for the phase heated at 300 degrees C. Such results demonstrate that a two-step thermal treatment (100 degrees C then 150-300 degrees C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography.

  19. Improved selectivity for high-performance liquid chromatographic determination of clonazepam in plasma of epileptic patients.

    PubMed

    Le Guellec, C; Gaudet, M L; Breteau, M

    1998-11-20

    We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.

  20. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  1. Preparation of a polybutadiene stationary phase immobilized by gamma radiation for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2003-02-14

    Polybutadiene (PBD) has been immobilized on HPLC silica by gamma radiation doses in the range from 5 to 180 kGy. Columns prepared from these reversed-phase materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (% C) and infrared spectroscopy. A low dose of 5 kGy is sufficient to produce a layer of immobilized PBD which functions as an efficient and stable stationary phase. Higher doses give thicker immobilized layers having less favorable chromatographic properties.

  2. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography.

    PubMed

    Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T

    2008-03-28

    A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.

  3. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of Inonotus vaninii by Two-phase Acid Hydrolysis Followed by Reversed Phase-high Performance Liquid Chromatography-ultra Violet.

    PubMed

    Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping

    2017-01-01

    Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii . The newly established method could be used to control the quality of the herb. Abbreviations used: RP-HPLC-UV: Reversed Phase-High Performance Liquid Chromatography-Ultra Violet, RSD: Relative Standard Deviation, EtOAc: Ethyl acetate, ACN: Acetonitrile, MeOH: Methanol, RH: Relative Humility.

  4. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  5. Reversed-phase high-performance liquid chromatography of sulfur mustard in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuveeran, C.D.; Malhotra, R.C.; Dangi, R.S.

    1993-01-01

    A reversed-phase high-performance liquid chromatography method for the detection and quantitation of sulfur mustard (HD) in water is described with detection at 200 nm. The detection based on the solubility of HD in water revealed that extremely low quantities of HD (4 to 5 mg/L) only are soluble. Experience shows that water is still the medium of choice for the analysis of HD in water and aqueous effluents in spite of the minor handicap of its half-life of ca. 4 minutes, which only calls for speedy analysis.

  6. [Determination of glycyrrhizinic acid in biotransformation system by reversed-phase high performance liquid chromatography].

    PubMed

    Li, Hui; Lu, Dingqiang; Liu, Weimin

    2004-05-01

    A method for determining glycyrrhizinic acid in the biotransformation system by reversed-phase high performance liquid chromatography (RP-HPLC) was developed. The HPLC conditions were as follows: Hypersil C18 column (4.6 mm i.d. x 250 mm, 5 microm) with a mixture of methanol-water-acetic acid (70:30:1, v/v) as the mobile phase; flow rate at 1.0 mL/min; and UV detection at 254 nm. The linear range of glycyrrhizinic acid was 0.2-20 microg. The recoveries were 98%-103% with relative standard deviations between 0.16% and 1.58% (n = 3). The method is simple, rapid and accurate for determining glycyrrhizinic acid.

  7. Molecular differences between deuterated and protonated polystyrenes using reversed-phase high-performance liquid chromatography.

    PubMed

    Kayillo, Sindy; Gray, Michael J; Shalliker, R Andrew; Dennis, Gary R

    2005-05-06

    Isotopic substitution is a technique used to highlight particular bonds within a molecule for kinetic, spectroscopic and structure analysis. It is presumed that although some properties such as stretching frequencies will not be the same for substituted analogues, the chemical interactions will not vary appreciably as a function of labelling. Reversed-phase liquid chromatography has been used to demonstrate that there are significant differences between the chromatographic behaviour of a sequence of deuterated and protonated oligomeric polystyrenes. Two-dimensional reversed-phase liquid chromatography was used to show that even the diasteromers of the oligomers (n = 5) have retention mechanisms that are dependent on the subtle changes to the molecular conformation and electronic structure, which are a consequence of deuteration.

  8. Magnetization reversal mechanism and coercivity enhancement in three-dimensional granular Nd-Fe-B magnets studied by micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog

    2017-08-01

    We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.

  9. Low-energy inelastic response in the superconducting phases of PrOs4Sb12

    NASA Astrophysics Data System (ADS)

    Setty, Chandan; Wang, Yuxuan; Phillips, Philip W.

    2017-08-01

    Recent ac susceptibility and polar Kerr effect measurements in the skutterudite superconductor PrOs4Sb12 (POS) (E. M. Levenson-Falk, E. R. Schemm, M. B. Maple, and A. Kapitulnik, arXiv:1609.07535) uncovered the nature of the superconducting double transition from a high-temperature, high-field, time-reversal symmetric phase (or the A phase) to a low-temperature, low-field, time-reversal symmetry-broken phase (or the B phase). Starting from a microscopic model, we derive a Ginzburg-Landau expansion relevant to POS that describes this entrance into the time-reversal symmetry-broken phase along the temperature axis. We also provide a study of the low-energy inelastic (Raman) response in both the A and B phases of POS, and seek additional signatures which could help reveal the exact form of the gap functions previously proposed in these phases. By appropriately manipulating the incoming and scattered light geometries, along with additional subtraction procedures and suitable assumptions, we show that one can access the various irreducible representations contained in the point group describing POS. We demonstrate how to use this technique on example order parameters proposed in POS. Depending on whether there exist nodes along the c axis, we find additional low-energy spectral weight within the superconducting gap in the Eg geometry, a feature that could pinpoint the location of nodes on the Fermi surface.

  10. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  11. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    DOE PAGES

    Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; ...

    2016-05-23

    The alloy Cu 25 Au 30 Zn 45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. We discovered this alloy by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructuresmore » are those predicted by the cofactor conditions. In order to verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.« less

  12. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Kang, J; Ma, X; Meng, L; Ma, D

    1999-05-01

    To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.

  13. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    PubMed

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of a new polymeric stationary phase with reversed-phase properties for high temperature liquid chromatography.

    PubMed

    Vanhoenacker, Gerd; Dos Santos Pereira, Alberto; Kotsuka, Takashi; Cabooter, Deirdre; Desmet, Gert; Sandra, Pat

    2010-05-07

    The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 degrees C (optimal flow 0.5 mL/min) to 2.4 at 150 degrees C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 degrees C within the pH range 1-9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC-MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Characterization of a Diamond Ground Y-TZP and Reversion of the Tetragonal to Monoclinic Transformation.

    PubMed

    Candido, L M; Fais, Lmg; Ferreira, E B; Antonio, S G; Pinelli, Lap

    To characterize the surface of an yttria-stabilized zirconia (Y-TZP) ceramic after diamond grinding in terms of its crystalline phase, morphology, mean roughness (Ra), and wettability as well as to determine a thermal treatment to reverse the resulting tetragonal to monoclinic (t-m) transformation. Y-TZP specimens were distributed into different groups according to the actions (or no action) of grinding and irrigation. Grinding was accomplished using a diamond stone at a low speed. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, goniometry, and profilometry. In situ high-temperature XRD was used to determine an annealing temperature to reverse the t-m transformation. Ra was submitted to the Kruskal-Wallis test, followed by the Dunn test (α=0.05). The volume fraction of the monoclinic phase and contact angle were submitted to one-way analysis of variance, followed by the Tukey test (α=0.05). Monoclinic zirconia was observed on the surface of samples after dry and wet grinding with a diamond stone. The volume fraction of the monoclinic phase was smaller on the dry ground samples (3.6%±0.3%) than on the wet ground samples (5.6%±0.3%). High-temperature XRD showed reversion of the t-m phase transformation, which started at 700°C and completed at 800°C in a conventional oven. Grinding with a diamond stone partially transformed the crystalline phase on the surface of a Y-TZP ceramic from tetragonal to monoclinic zirconia while simultaneously increasing the surface roughness and wettability. The t-m transformation could be reversed by heat treatment at 800°C or 900°C for 60 minutes or 1000°C for 30 minutes.

  17. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    PubMed

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.

    PubMed

    Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2013-11-15

    A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  20. Motor expertise modulates the unconscious processing of human body postures.

    PubMed

    Güldenpenning, Iris; Koester, Dirk; Kunde, Wilfried; Weigelt, Matthias; Schack, Thomas

    2011-09-01

    Little is known about the cognitive background of unconscious visuomotor control of complex sports movements. Therefore, we investigated the extent to which novices and skilled high-jump athletes are able to identify visually presented body postures of the high jump unconsciously. We also asked whether or not the manner of processing differs (qualitatively or quantitatively) between these groups as a function of their motor expertise. A priming experiment with not consciously perceivable stimuli was designed to determine whether subliminal priming of movement phases (same vs. different movement phases) or temporal order (i.e. natural vs. reversed movement order) affects target processing. Participants had to decide which phase of the high jump (approach vs. flight phase) a target photograph was taken from. We found a main effect of temporal order for skilled athletes, that is, faster reaction times for prime-target pairs that reflected the natural movement order as opposed to the reversed movement order. This result indicates that temporal-order information pertaining to the domain of expertise plays a critical role in athletes' perceptual capacities. For novices, data analyses revealed an interaction between temporal order and movement phases. That is, only the reversed movement order of flight-approach pictures increased processing time. Taken together, the results suggest that the structure of cognitive movement representation modulates unconscious processing of movement pictures and points to a functional role of motor representations in visual perception.

  1. Spectrophotometric and HPLC Methods for Simultaneous Estimation of Amlodipine Besilate, Losartan Potassium and Hydrochlorothiazide in Tablets

    PubMed Central

    Wankhede, S. B.; Raka, K. C.; Wadkar, S. B.; Chitlange, S. S.

    2010-01-01

    Two UV-spectrophotometric and one reverse phase high performance liquid chromatography methods have been developed for the simultaneous estimation of amlodipine besilate, losartan potassium and hydrochlorothiazide in tablet dosage form. The first UV spectrophotometric method was a determination using the simultaneous equation method at 236.5, 254 and 271 nm over the concentration range 5-25, 10-50 and 5-25 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. The second UV method was a determination using the area under curve method at 231.5-241.5, 249-259 and 266-276 nm over the concentration range of 5-25, 5-25 and 10-50 μg/ml for amlodipine besilate, hydrochlorothiazide and losartan potassium, respectively. In reverse phase high performance liquid chromatography analysis is carried out using 0.025 M phosphate buffer (pH 3.7):acetonitrile (57:43 v/v) as the mobile phase and Kromasil C18 (4.6 mm i.d×250 mm) column as stationery phase with detection wavelength of 232 nm linearity was obtained in the concentration range of 2-14, 20-140 and 5-40 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. Both UV-spectrophotometric and reverse phase high performance liquid chromatography methods were statistically validated and can be used for analysis of combined dose tablet formulation containing amlodipine besilate, losartan potassium and hydrochlorothiazide. PMID:20582208

  2. Deproteinizing methods evaluated for determination of uric acid in serum by reversed-phase liquid chromatography with ultraviolet detection.

    PubMed

    Sakuma, R; Nishina, T; Kitamura, M

    1987-08-01

    We evaluated six deproteinizing methods for determination of uric acid in serum by "high-performance" liquid chromatography with ultraviolet detection: those involving zinc hydroxide, sodium tungstate, trichloroacetic acid, perchloric acid, acetonitrile, and centrifugal ultrafiltration (with Amicon MPS-1 devices). We used a Toyosoda ODS-120A reversed-phase column. The mobile phase was sodium phosphate buffer (40 mmol/L, pH 2.2) containing 20 mL of methanol per liter. Absorbance of the eluate was monitored at 284 nm. The precipitation method with perchloric acid gave high recoveries of uric acid and good precision, and results agreed with those by the uricase-catalase method of Kageyama (Clin Chim Acta 1971;31:421-6).

  3. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  4. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  5. Lipophilicity of a series of 1,2-benzisothiazol-3(2H)-ones determined by reversed-phase thin-layer chromatography.

    PubMed

    Sławik, Tomasz; Kowalski, Cezary

    2002-04-05

    The lipophilicity (R(Mo)) and specific hydrophobic surface area of seven 1,2-benzisothiazol-3(2H)-ones have been determined by reversed-phase TLC and the effect of different mobile-phase modifiers (acetone, acetonitrile, methanol) on the retention has been studied. The linear correlations between the volume fraction of the organic solvent and the R(M) values over a limited range were established for each solute with high values of correlation coefficients (>0.99). The influence of solvent pH on R(M) values was investigated.

  6. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Investigation of the retention/pH profile of zwitterionic fluoroquinolones in reversed-phase and ion-interaction high performance liquid chromatography.

    PubMed

    Pistos, C; Tsantili-Kakoulidou, A; Koupparis, M

    2005-09-15

    The retention/pH profiles of three fluoroquinolones, ofloxacin, norfloxacin and ciprofloxacin, was investigated by means of reversed-phase high performance liquid chromatography (RP-HPLC) and reversed-phase ion-interaction chromatography (RP-IIC), using an octadecylsilane stationary phase and acetonitrile as organic modifier. Sodium hexanesulphonate and tetrabutylammonium hydroxide were used as sources of counter ions in ion-interaction chromatography. The retention/pH profiles under in RP-HPLC were compared to the corresponding lipophilicity/pH profiles. Despite the rather hydrophilic nature of the three fluoroquinolones positive retention factors were obtained while there was a shift of the retention maximum towards more acidic pH values. This behavior was attributed mainly to non-hydrophobic silanophilic interactions with the silanized silica gel material of the stationary phase. In ion-interaction chromatography the effect of counter ions over a broad pH range was found to be ruled rather by the ion pair formation in the mobile phase which led to a drastic decrease in retention as a consequence of the disruption of the zwitterionic structure and thereupon the deliberation of a net charge in the molecules. At pH values at which zwitterionic structure was not favored both the ion-exchange and ion pair formation mechanisms were assumed to contribute to the retention.

  8. Molecular dynamics simulations of fluoropolymers in the solid state

    NASA Astrophysics Data System (ADS)

    Holt, David Bryan

    1998-10-01

    Molecular mechanics and dynamics simulations have been utilized to address the behavior of helix reversal defects in fluoropolymers. The results of the simulations confirm that helix reversals do form and migrate in PTFE crystals. The most important defect structure is a helix reversal band: two helix reversals which bracker a small chain segment (typically 6-7 backbone atoms) having the opposite helical sense from the parent molecule. Small reversal bands had velocities ranging between 100 m/s (low temperature)-250 m/s (high temperature). The size of this reversal band defect is dependent upon the helical conformation and is equal to approximately half of the helical repeat unit in the low and intermediate temperature phases. In the high temperature phase where intermolecular effects are diminished, a wider distribution of reversal band sizes was observed during the simulations. A mechanism is identified by which significant reorientation of a chain segment about the molecular axis can occur when it is bracketed by two helix reversal bands. Simulations with a model containing a perfluoromethyl (PFM) group at low temperature showed that the presence of the PFM group significantly restricts chain mobility locally. However, a significant reduction in the helix reversal defect density was observed on neighboring chains as well. During simulations in which a shear deformation was applied to the models with and without a PFM group, an increase in reversal defect density was observed. However, the helix reversal density in the sheared model containing the PFM branch was less than that in the model without a PFM branch under no shear. These data implicate helix reversal defects and associated chain segment motions in the mechanical behavior of fluoropolymer materials.

  9. Unsteady RANS/DES analysis of flow around helicopter rotor blades at forword flight conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Qian, Yaoru

    2018-05-01

    In this paper, the complex flows around forward-flying helicopter blades are numerically investigated. Both the Reynolds-averaged Navier-Stokes (RANS) and the Detached Eddy Simulation (DES) methods are used for the analysis of characteristics like local dynamic flow separation, effects of radial sweeping and reversed flow. The flow was solved by a highly efficient finite volume solver with multi-block structured grids. Focusing upon the complexity of the advance ratio effects, above properties are fully recognized. The current results showed significant agreements between both RANS and DES methods at phases with attached flow phases. Detailed information of separating flow near the withdrawal phases are given by DES results. The flow analysis of these blades under reversed flow reveals a significant interaction between the reversed flow and the span-wise sweeping.

  10. A high yield reverse micelle synthesis of catalysts and catalyst precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1995-04-01

    Reverse micelles or water-in-oil microemulsions have been prepared using a mixed AOT/SDS surfactant to increase the stability of the microemulsion and thereby allow a high loading of particle-forming precursors in the aqueous cores. The Modified Reverse Micelles (MRM), as these new binary surfactant microemulsions are called, have proven useful for the laboratory-scale synthesis of nanoscale metals, metal oxides, metal sulfides, and mixed metal materials. The system allows control over the phase and size of the precipitated crystallites and is ideal for producing nanocrystalline powders and suspensions.

  11. Development of high temperature gallium phosphide rectifiers

    NASA Technical Reports Server (NTRS)

    Craford, M. G.; Keune, D. L.

    1972-01-01

    Large area high performance, GaP rectifiers were fabricated by means of Zn diffusion into vapor phase epitaxial GaP. Devices with an active area of 0.01 sq cm typically exhibit forward voltages of 3 volts for a bias current of 1 ampere and have reverse breakdown voltages of 300 volts for temperatures from 27 C to 400 C. Typical device reverse saturation current at a reverse bias of 150 volts is less than 10 to the minus 9th power amp at 27 C and less than 0.000050 amp at 400 C.

  12. Comparing the selectivity and chiral separation of d- and l- fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact.

    PubMed

    Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A

    2017-04-14

    The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO 2 , there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.

  13. Antioxidant capacities of ten edible North American plants.

    PubMed

    Acuña, Ulyana Muñoz; Atha, Daniel E; Ma, Jun; Nee, Michael H; Kennelly, Edward J

    2002-02-01

    The EtOAc extract obtained from ten edible North American plants, Acorus calamus, Clintonia borealis, Gaultheria shallon, Juniperus osteosperma, Opuntia polyacantha, Prunus americana, Prunus virginiana, Sambucus cerulea, Sorbus americana and Vaccinium parvifolium, were tested in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical assay. High antioxidant activity was obtained from the extracts of three fruits, Gaultheria shallon, Sambucus cerulea and Prunus americana and one extracted rhizome, Acorus calamus. Catechin and epicatechin, potent polyphenolic antioxidants, were identified in the EtOAc extracts of Gaultheria shallon and Sambucus cerulea by reversed-phase thin-layer chromatography (TLC) and reversed-phase high-performance liquid chromatography (HPLC). Copyright 2002 John Wiley & Sons, Ltd.

  14. A reversible transition in liquid Bi under pressure.

    PubMed

    Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y

    2018-01-21

    The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.

  15. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    NASA Technical Reports Server (NTRS)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  16. Determination of the molecular weight of poly(ethylene glycol) in biological samples by reversed-phase LC-MS with in-source fragmentation.

    PubMed

    Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S

    2013-05-01

    PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.

  17. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Unusual magnetoelectric memory and polarization reversal in the kagome staircase compound N i3V2O8

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Wang, J. F.; He, Z. Z.; Lu, C. L.; Xia, Z. C.; Ouyang, Z. W.; Liu, C. B.; Chen, R.; Matsuo, A.; Kohama, Y.; Kindo, K.; Tokunaga, M.

    2018-05-01

    We study the electric polarization of the kagome staircase N i3V2O8 in magnetic fields up to 30 T and report a magnetoelectric memory effect controlled by bias electric fields. The explored ferroelectric phase in 19 -24 T is electrically controlled, whereas the ferroelectric phase in 2 -11 T exhibits unusual memory effects. We determine a characteristic critical magnetic field H3=11 T , below which strong memory exists and the polarization is frozen even in opposite bias fields. But when magnetic fields exceed H3, the frozen polarization is released and polarization reversal appears by tuning bias electric fields. We ascribe these phenomena to the pinning-depinning mechanism: nucleation and the accompanying pinning of chiral domain walls cooperatively induce the frozen behavior; the polarization reversal results from the depinning through the ferroelectrtic-to-paraelectric phase transition in high magnetic fields. Our experimental results reveal that the first-order phase transition plays an important role in these unusual memory effects.

  19. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  20. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution.

    PubMed

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-08-28

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.

  1. Comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for analysis of toad skin.

    PubMed

    Li, Jia-Fu; Yan, Xia; Wu, Yun-Long; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2017-04-15

    An analytical two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was constructed with a newly developed thermal evaporation assisted adsorption (TEAA) interface. This novel TEAA interface with heating temperature above solvent boiling point allowed fast removal of organic NPLC solvent and successfully solved the solvent incompatibility problem between NPLC and RPLC. The system achieved rapid on-line solvent exchange between the two dimensions within a short modulation time of 190 s and was applied in the analysis of an extract from the skin of Bufo bufo gargarizans. This is the first time to realize the on-line comprehensive analysis of a moderate polar natural product by coupling NPLC with reversed phase ultra-high performance liquid chromatography (UHPLC). To be highlighted, with the TEAA interface, the 2D NPLC × RPLC system provided excellent resolution and orthogonality (75.2%), when compared with that of 2D RPLC × RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    PubMed

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High-frequency intrinsic dynamics of the electrocaloric effect from direct atomistic simulations

    NASA Astrophysics Data System (ADS)

    Lisenkov, S.; Ponomareva, I.

    2018-05-01

    We propose a computational methodology capable of harvesting isothermal heat and entropy change in molecular dynamics simulations. The methodology is applied to study high-frequency dynamics of the electrocaloric effect (ECE) in ferroelectric PbTiO3. ECE is associated with a reversible change in temperature under adiabatic application of electric field or with a reversible change in entropy under isothermal application of the electric field. Accurate assessment of electrocaloric performance requires the knowledge of three quantities: isothermal heat, isothermal entropy change, and adiabatic temperature change. Our methodology allows computations of all these quantities directly, that is, without restoring to the reversible thermodynamical models. Consequently, it captures both reversible and irreversible effects, which is critical for ECE simulations. The approach is well suited to address the dynamics of the ECE, which so far remains underexplored. We report the following basic features of the intrinsic dynamics of ECE: (i) the ECE is independent of the electric field frequency, rate of application, or field profile; (ii) the effect persists up to the frequencies associated with the onset of dielectric losses and deteriorates from there due to the creation of irreversible entropy; and (iii) in the vicinity of the phase transition and in the paraelectric phase the onset of irreversible dynamics occurs at lower frequency as compared to the ferroelectric phase. The latter is attributed to lower intrinsic soft-mode frequencies and and larger losses in the paraelectric phase.

  4. [High-performance liquid-liquid chromatography in beverage analysis].

    PubMed

    Bricout, J; Koziet, Y; de Carpentrie, B

    1978-01-01

    Liquid liquid chromatography was performed with columns packed with stationary phases chemically bonded to silica microparticules. These columns show a high efficiency and are used very easily. Flavouring compounds like aromatic aldehydes which have a low volatility were analyzed in brandy using a polar phase alkylnitrile. Sapid substances like amarogentin in Gentiana lutea or glyryrrhizin in Glycyrrhiza glabra were determined by reversed phase chromatography. Finally ionizable substances like synthetic dyes can be analyzed by paired ion chromatography witha non polar stationary phase.

  5. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  6. On the phase propagation of extratropical ozone quasi-biennial oscillation in the observational data

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Tung, Ka Kit

    1995-05-01

    Global column ozone data from total ozone mapping spectrometer (TOMS), backscattered ultraviolet (BUV) and Dobson stations are analyzed to determine the pattern and phase property of the ozone quasi-biennial oscillation (QBO) signal. It is found that the ozone QBO signal is strongest in middle and high latitudes and is present mainly in the winter-spring season in both hemispheres. The extratropical ozone QBO signal is out of phase with the equatorial ozone QBO, which is itself in phase with the QBO in equatorial zonal wind. There are three distinctive regions, namely tropical, midlatitudinal, and polar regions, in each of which the ozone QBO signal has a fairly constant phase with respect to latitude. There is a phase reversal (sign change) between the equatorial and the extratropical regions associated with the return branch of the equatorial QBO secondary circulation, and this sign reversal occurs at ±12° of latitude symmetric about the equator. In the northern hemisphere between the midlatitudinal and polar regions, there is another possible phase reversal in some (but not all) years possibly in connection with the presence or absence of midwinter sudden warming, which creates a positive or negative anomaly relative to the region outside the polar vortex. In the southern hemisphere polar latitudes, the ozone QBO signal is usually delayed until spring in connection with the final warming. These properties are found in all data sets analyzed by the same method. Evidence does not support a gradual phase propagation from the subtropical region to the high-latitude region. Previous reported evidence for phase propagation is reexamined and is found to be artifacts of data processing.

  7. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    PubMed

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  9. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  10. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays* | Office of Cancer Genomics

    Cancer.gov

    Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data.

  11. Simple method for the extraction and reversed-phase high-performance liquid chromatographic analysis of carotenoid pigments from red yeasts (Basidiomycota, Fungi).

    PubMed

    Weber, Roland W S; Anke, Heidrun; Davoli, Paolo

    2007-03-23

    A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.

  12. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin.

    PubMed

    Downey, Mark O; Rochfort, Simone

    2008-08-01

    A limitation of large-scale viticultural trials is the time and cost of comprehensive compositional analysis of the fruit by high-performance liquid chromatography (HPLC). In addition, separate methods have generally been required to identify and quantify different classes of metabolites. To address these shortcomings a reversed-phase HPLC method was developed to simultaneously separate the anthocyanins and flavonols present in grape skins. The method employs a methanol and water gradient acidified with 10% formic acid with a run-time of 48 min including re-equilibration. Identity of anthocyanins and flavonols in Shiraz (Vitis vinifera L.) skin was confirmed by mass spectral analysis.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    K., S C; M., T C

    Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less

  14. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome

    PubMed Central

    Vachharajani, Vidula T.; Liu, Tiefu; Brown, Candice M.; Wang, Xianfeng; Buechler, Nancy L.; Wells, Jonathan David; Yoza, Barbara K.; McCall, Charles E.

    2014-01-01

    Mechanism-based sepsis treatments are unavailable, and their incidence is rising worldwide. Deaths occur during the early acute phase of hyperinflammation or subsequent postacute hypoinflammatory phase with sustained organ failure. The acute sepsis phase shifts rapidly, and multiple attempts to treat early excessive inflammation have uniformly failed. We reported in a sepsis cell model and human sepsis blood leukocytes that nuclear NAD+ sensor SIRT1 deacetylase remodels chromatin at specific gene sets to switch the acute-phase proinflammatory response to hypoinflammatory. Importantly, SIRT1 chromatin reprogramming is reversible, suggesting that inhibition of SIRT1 might reverse postacute-phase hypoinflammation. We tested this concept in septic mice, using the highly specific SIRT1 inhibitor EX-527, a small molecule that closes the NAD+ binding site of SIRT1. Strikingly, when administered 24 h after sepsis, all treated animals survived, whereas only 40% of untreated mice survived. EX-527 treatment reversed the inability of leukocytes to adhere at the small intestine MVI, reversed in vivo endotoxin tolerance, increased leukocyte accumulation in peritoneum, and improved peritoneal bacterial clearance. Mechanistically, the SIRT1 inhibitor restored repressed endothelial E-selectin and ICAM-1 expression and PSGL-1 expression on the neutrophils. Systemic benefits of EX-527 treatment included stabilized blood pressure, improved microvascular blood flow, and a shift toward proimmune macrophages in spleen and bone marrow. Our findings reveal that modifying the SIRT1 NAD+ axis may provide a novel way to treat sepsis in its hypoinflammatory phase. PMID:25001863

  15. Separation and quantitation of colour pigments of chili powder (Capsicum frutescens) by high-performance liquid chromatography-diode array detection.

    PubMed

    Cserháti, T; Forgács, E; Morais, M H; Mota, T; Ramos, A

    2000-10-27

    The performance of reversed-phase thin-layer (RP-TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC) was compared for the separation and determination of the colour pigments of chili (Capsicum frutescens) powder using a wide variety of eluent systems. No separation of pigments was achieved in RP-TLC, however, it was established that tetrahydrofuran shows an unusually high solvent strength. RP-HPLC using water-methanol-acetonitrile gradient elution separated the chili pigments in many fractions. Diode array detection (DAD) indicated that yellow pigments are eluted earlier than the red ones and chili powder contains more yellow pigments than common paprika powders. It was established that the very different absorption spectra of pigments make the use of DAD necessary.

  16. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    NASA Astrophysics Data System (ADS)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  17. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1981-10-01

    Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.

  18. Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke

    2015-11-02

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less

  19. Normal-Phase Open Column versus Reversed-Phase High Performance Liquid Chromatography: Separation of Chlorophyll a and Chlorophyll b from their Diastereomers.

    ERIC Educational Resources Information Center

    Schaber, Peter M.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment involving the separation of chlorophyll a and chlorophyll b from their diastereomers. Reasons why the experiment can be easily integrated into most laboratory curricula where high-performance liquid chromatography capabilities exist are given. (JN)

  20. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  1. Landau level splitting in Cd3As2 under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  2. Landau level splitting in Cd3As2 under high magnetic fields.

    PubMed

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-13

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  3. Landau level splitting in Cd3As2 under high magnetic fields

    PubMed Central

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-01-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry. PMID:26165390

  4. Improvement of reverse-phase high pressure liquid chromatographic resolution of benzo(a)pyrene metabolites using organic amines: application to metabolites produced by fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjessum, K.; Stegeman, J.J.

    1979-10-15

    Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo(a)pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo(a)pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo(a)-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo(a)pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolormore » indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo(a)pyrene.« less

  5. Ice polyamorphism in the minimal Mercedes-Benz model of water.

    PubMed

    Cartwright, Julyan H E; Piro, Oreste; Sánchez, Pedro A; Sintes, Tomás

    2012-12-28

    We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.

  6. Ice polyamorphism in the minimal Mercedes-Benz model of water

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.; Piro, Oreste; Sánchez, Pedro A.; Sintes, Tomás

    2012-12-01

    We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.

  7. In vivo biosynthesis of L-(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin: rapid estimation using reversed phase high pressure liquid chromatography. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Bourland, R.E.; Fernstrom, J.D.

    1981-01-01

    L(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin were purified from hypothalami and neurohypophyses 4 h after rats received L(/sup 35/S)Cys via the third ventricle. After acetic acid extraction, Sephadex G-25 filtration, and chemoadsorption to C18-silica (Sep-Pak cartridges), the labeled peptides were rapidly separated by gradient elution, reversed phase, high pressure liquid chromatography (HPLC). The identity and isotopic purity of the labeled peptides were determined by several reversed phase HPLC procedures in conjunction with chemical modification. The labeled peptide fractions were at least 50% radiochemically pure. Using this HPLC isolation procedure, incorporation of L-(/sup 35/S)Cys into each peptide was determined in hydratedmore » and dehydrated rats. Label incorporation into arginine vasopressin and oxytocin in the hypothalamus and the neurohypophysis of dehydrated rats was 2-3 times greater than that in hydrated rats. Incorporation of label into hypothalamic and neurohypophyseal somatostatin was unaffected by the hydration state of the animal. This procedure thus provides a very rapid, but sensitive, set of techniques for studying the control of small peptide biosynthesis in the brain.« less

  8. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

    DOE PAGES

    Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...

    2014-11-24

    Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less

  9. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  10. Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure.

    PubMed

    Graham, Alexander J; Banu, Ana-Maria; Düren, Tina; Greenaway, Alex; McKellar, Scott C; Mowat, John P S; Ward, Kenneth; Wright, Paul A; Moggach, Stephen A

    2014-06-18

    Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2-BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2-BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites.

  11. Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column.

    PubMed

    Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich

    2010-09-03

    Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex separation that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-phase column was reported to separate anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the separation of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary phases. Also interesting is the separation of the polymeric fraction, which elutes as a clearly separated peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode phase, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode phase with increased efficiency should provide an interesting perspective for separation of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension separation in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.

  12. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  13. Characterization of Jamaican agro-industrial wastes. Part II, fatty acid profiling using HPLC: precolumn derivatization with phenacyl bromide.

    PubMed

    Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R

    2012-09-01

    This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.

  14. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  15. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    PubMed

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2008-08-15

    Stationary phases with embedded polar groups possess several advantages over conventional alkylsilane phases, such as reduced peak tailing, enhanced selectivity for specific functional groups, and the ability to use a highly aqueous mobile phase. To gain a deeper understanding of the retentive properties of these reversed-phase packings, molecular simulations were carried out for three different stationary phases in contact with mobile phases of various water/methanol ratios. Two polar-embedded phases were modeled, namely, amide and ether containing, and compared to a conventional octadecylsilane phase. The simulations show that, due to specific hydrogen bond interactions, the polar-embedded phases take up significantly more solvent and are more ordered than their alkyl counterparts. Alkane and alcohol probe solutes indicate that the polar-embedded phases are less retentive than alkyl phases for nonpolar species, whereas polar species are more retained by them due to hydrogen bonding with the embedded groups and the increased amount of solvent within the stationary phase. This leads to a significant reduction of the free-energy barrier for the transfer of polar species from the mobile phase to residual silanols, and this reduced barrier provides a possible explanation for reduced peak tailing.

  17. Quantitative determination for cytotoxic Friedo-nor-oleanane derivatives from five morphological types of Maytenus ilicifolia (Celastraceae) by reverse-phase high-performance liquid chromatography.

    PubMed

    Buffa Filho, Waldemar; Corsino, Joaquim; Bolzani, da Silva Vanderlan; Furlan, Maysa; Pereira, Ana Maria S; França, Suzelei Castro

    2002-01-01

    Five different morphological types of Maytenus ilicifolia of the same age and harvested under the same conditions showed distinct accumulations of some friedo-nor-oleananes. A rapid, sensitive and reliable reverse-phase HPLC method (employing an external standard) was used for the determination of the cytotoxic triterpenoids, 20 alpha-hydroxymaytenin, 22 beta-hydroxymaytenin, maytenin, celastrol and pristimerin in each of the five types. Well resolved peaks with good detection response and linearity in the range 1.0-100 micrograms/mL were obtained.

  18. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimization of the β-Elimination/Michael Addition Chemistry on Reversed-Phase Supports for Mass Spectrometry Analysis of O-Linked Protein Modifications

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661

  20. Drug resistance in trypanosomes; selective interference with trypanocidal action

    PubMed Central

    Williamson, J.

    1959-01-01

    Selective reversal of the trypanocidal action of carboxylated arsenicals by p-aminobenzoic acid and of melaminyl arsenicals and diamidines by melamine has been demonstrated in vivo and in vitro. The structural specificity of these reversal phenomena is high, and suggests preferential adsorption of the antagonist during a reversible primary drug fixation stage. Thiols antagonized neutral, carboxylated and melaminyl aromatic arsenicals equally, but not diamidines; p-aminobenzoic acid antagonism is specific for carboxylated arsenicals, and melamine antagonizes only the melaminyl arsenicals and the diamidines. These reversals reflect the pattern of crossresistance behaviour and suggest that cellular structures associated with a reversible stereospecific drug adsorption phase are modified during the development of resistance. PMID:13844960

  1. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    PubMed

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  2. Development of a perfusion reversed-phase high performance liquid chromatography method for the characterisation of maize products using multivariate analysis.

    PubMed

    Rodriguez-Nogales, J M; Garcia, M C; Marina, M L

    2006-02-03

    A perfusion reversed-phase high performance liquid chromatography (RP-HPLC) method has been designed to allow rapid (3.4 min) separations of maize proteins with high resolution. Several factors, such as extraction conditions, temperature, detection wavelength and type and concentration of ion-pairing agent were optimised. A fine optimisation of the gradient elution was also performed by applying experimental design. Commercial maize products for human consumption (flours, precocked flours, fried snacks and extruded snacks) were characterised for the first time by perfusion RP-HPLC and their chromatographic profiles allowed a differentiation among products relating the different technological process used for their preparation. Furthermore, applying discriminant analysis makes it possible to group the samples according with the technological process suffered by maize products, obtaining a good prediction in 92% of the samples.

  3. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1982-11-01

    Flux-trapping during the early formation phases of a field-reversed configuration has been studied experimentally on the field-reversed theta-pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of reverse-bias flux. Contrary to previous analysis, the rate of flux loss was not governed exclusively by inertially limited plasma convection to the tube walls. At high reverse flux levels, a pressure bearing sheath was observed to form at the tube walls and the flux loss was restricted by resistive diffusion across this sheath. The characteristic time for flux loss was 0.08rt (cm) μsec, independent of the bias field and independent of the fill pressure for fill pressures above 15 mTorr D2. Octopole barrier fields were found to be effective in limiting the inertially governed flux loss at very early times before the wall sheath formed.

  4. Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures

    NASA Astrophysics Data System (ADS)

    Ander Arregi, Jon; Horký, Michal; Fabianová, Kateřina; Tolley, Robert; Fullerton, Eric E.; Uhlíř, Vojtěch

    2018-03-01

    The effects of mesoscale confinement on the metamagnetic behavior of lithographically patterned FeRh structures are investigated via Kerr microscopy. Combining the temperature- and field-dependent magnetization reversal of individual sub-micron FeRh structures provides specific phase-transition characteristics of single mesoscale objects. Relaxation of the epitaxial strain caused by patterning lowers the metamagnetic phase transition temperature by more than 15 K upon confining FeRh films below 500 nm in one lateral dimension. We also observe that the phase transition becomes highly asymmetric when comparing the cooling and heating cycles for 300 nm-wide FeRh structures. The investigation of FeRh under lateral confinement provides an interesting platform to explore emergent metamagnetic phenomena arising from the interplay of the structural, magnetic and electronic degrees of freedom at the mesoscopic length scale.

  5. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  6. Development and Validation of a Simultaneous RP-HPLCUV/DAD Method for Determination of Polyphenols in Gels Containing S. terebinthifolius Raddi (Anacardiaceae)

    PubMed Central

    Carvalho, Melina G.; Aragão, Cícero F. S; Raffin, Fernanda N.; de L. Moura, Túlio F. A.

    2017-01-01

    Topical gels containing extracts of Schinus terebinthifolius have been used to treat bacterial vaginosis. It has been reported that this species has antimicrobial, anti-inflammatory and anti-ulcerogenic properties, which can be attributed to the presence of phenolic compounds. In this work, a sensitive and selective reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols that could be present in S. terebinthifolius was developed. The method was shown to be accurate and precise. Peak purity and similarity index both exceeded 0.99. Calibration curves were linear over the concentration range studied, with correlation coefficients between 0.9931 and 0.9974. This method was used to determine the polyphenol content of a hydroalcoholic extract and pharmacy-compounded vaginal gel. Although the method is useful to assess the 6 phenolic compounds, some compounds could not be detected in the products. SUMMARY A sensitive, selective, accurate and precise reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols in S. terebinthifolius Raddi Abbreviations used: RP-HPLC-UV/DAD: Reverse Phase High Performance Liquid Chromatograph with Ultraviolet and Diode Array Detector, HPLC: High Performance Liquid Chromatograph, HPLC-UV: High Performance Liquid Chromatograph with Ultraviolet Detector, ANVISA: Brazilian National Health Surveillance Agency, LOD: Limit of detection, LOQ: Limit of quantitation PMID:28539726

  7. Development and validation of reversed-phase HPLC gradient method for the estimation of efavirenz in plasma.

    PubMed

    Gupta, Shweta; Kesarla, Rajesh; Chotai, Narendra; Omri, Abdelwahab

    2017-01-01

    Efavirenz is an anti-viral agent of non-nucleoside reverse transcriptase inhibitor category used as a part of highly active retroviral therapy for the treatment of infections of human immune deficiency virus type-1. A simple, sensitive and rapid reversed-phase high performance liquid chromatographic gradient method was developed and validated for the determination of efavirenz in plasma. The method was developed with high performance liquid chromatography using Waters X-Terra Shield, RP18 50 x 4.6 mm, 3.5 μm column and a mobile phase consisting of phosphate buffer pH 3.5 and Acetonitrile. The elute was monitored with the UV-Visible detector at 260 nm with a flow rate of 1.5 mL/min. Tenofovir disoproxil fumarate was used as internal standard. The method was validated for linearity, precision, accuracy, specificity, robustness and data obtained were statistically analyzed. Calibration curve was found to be linear over the concentration range of 1-300 μg/mL. The retention times of efavirenz and tenofovir disoproxil fumarate (internal standard) were 5.941 min and 4.356 min respectively. The regression coefficient value was found to be 0.999. The limit of detection and the limit of quantification obtained were 0.03 and 0.1 μg/mL respectively. The developed HPLC method can be useful for quantitative pharmacokinetic parameters determination of efavirenz in plasma.

  8. Publisher's Note: High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe 2 As 2 under high pressure [Phys. Rev. B 91 , 060508(R) (2015)

    DOE PAGES

    Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...

    2015-03-09

    Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less

  9. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Tang, Shouwan; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Zou, Hanfa

    2013-08-02

    An organic-inorganic hybrid monolith was prepared by a single-step ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with poly(ethylenimine) (PEI). The obtained hybrid monoliths possessed high ordered 3D skeletal microstructure with dual retention mechanism that exhibits reversed-phase (RP) mechanism under polar mobile phase and hydrophilic-interaction liquid chromatography (HILIC) retention mechanism under less polar mobile phase. The high column efficiencies of 110,000N/m can be achieved for separation of alkylbenzenes in capillary reversed-phase liquid chromatography (cLC). Due to the robust property of hybrid monolith and the rich primary and secondary amino groups on its surface, the resulting hybrid monolith was easily modified with γ-gluconolactone and physically coated with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), respectively. The former was successfully applied for HILIC separation of neutral, basic and acidic polar compounds as well as small peptides, and the latter for enantioseparation of racemates in cLC. The high column efficiencies were achieved in all of those separations. These results demonstrated that the hybrid monolith (POSS-PEI) possessed high stability and good surface tailorbility, potentially being applied for other research fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  12. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  13. [Determination of canthaxanthin and astaxanthin in egg yolks by reversed phase high performance liquid chromatography with diode array detection].

    PubMed

    He, Kang-Hao; Zou, Xiao-Li; Liu, Xiang; Zeng, Hong-Yan

    2012-01-01

    A method using reversed phase high performance liquid chromatography (RP-HPLC) coupled with diode array detector (DAD) was developed for the simultaneous determination of canthaxanthin and astaxanthin in egg yolks. Samples were extracted with acetonitrile in ultrasonic bath for 20 minutes and then purified by freezing-lipid filtration and solid phase extraction (SPE). After being vaporized to dryness by nitrogen blowing and made up to volume with methanol, the extract solution was chromatographically separated in C18 column with a unitary mobile phase consisting of acetonitrile. The proposed method was validated in terms of linearity, precision, accuracy, and limit of detection (LOD). Regression analysis revealed a good linearity between peak area of each analyte and its concentration (r > or = 0.998). The intra- and inter-day relative standard deviations (RSDs) were less than 3.6% and 5.2%, respectively. LODs of canthaxanthin and astaxanthin were 0.035 and 0.027 microg/mL (S/N = 3). The average recoveries of canthaxanthin and astaxanthin were 91.5% and 88.7%. The proposed method is simple, fast and easy to apply.

  14. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José

    2002-04-25

    The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.

  15. Isocratic non-aqueous reversed-phase high-performance liquid chromatographic separation of capsanthin and capsorubin in red peppers (Capsicum annuum L.), paprika and oleoresin.

    PubMed

    Weissenberg, M; Schaeffler, I; Menagem, E; Barzilai, M; Levy, A

    1997-01-03

    A simple, rapid high-performance liquid chromatography method has been devised in order to separate and quantify the xanthophylls capsorubin and capasanthin present in red pepper (Capsicum annuum L.) fruits and preparations made from them (paprika and oleoresin). A reversed-phase isocratic non-aqueous system allows the separation of xanthophylls within a few minutes, with detection at 450 nm, using methyl red as internal standard to locate the various carotenoids and xanthophylls found in plant extracts. The selection of extraction solvents, mild saponification conditions, and chromatographic features is evaluated and discussed. The method is proposed for rapid screening of large plant populations, plant selection, as well as for paprika products and oleoresin, and also for nutrition and quality control studies.

  16. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  17. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  18. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel

    2016-01-08

    A new procedure for the determination of 12 naturally occurring hormones and some related synthetic chemicals in milk, commonly used as growth promoters in cattle, is reported. The method is based on liquid-liquid extraction followed by solid-phase extraction (SPE) using a new one-pot synthesized ordered mesoporous silica (of the SBA-15 type) functionalized with octadecyl groups (denoted as SBA-15-C18-CO) as reversed-phase sorbent. The analytes were eluted with methanol and then submitted to HPLC with diode array detection. Under optimal conditions, the method quantification limit for the analytes ranged from 0.023 to 1.36μg/mL. The sorbent affored the extraction of estrone, 17β-estradiol, estriol, progesterone, hexestrol, diethylstilbestrol, 4-androstene-3,17-dione, ethinylestradiol, 17α-methyltestosterone, nandrolone, prednisolone and testosterone with mean recoveries ranging from 72% to 105% (except for diethylstilbestrol) with RSD<11%. These results were comparable and, in some cases, even better than those obtained with other extraction methods, therefore SBA-15-C18-CO mesoporous silica possess a high potential as a reversed-phase sorbent for SPE of the 12 mentioned endocrine disrupting compounds in milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  20. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    PubMed

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  1. Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method.

    PubMed

    G Archana; Dhodapkar, Rita; Kumar, Anupama

    2016-09-01

    The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.

  2. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  3. Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles.

    PubMed

    das Neves, José; Sarmento, Bruno; Amiji, Mansoor M; Bahia, Maria Fernanda

    2010-06-05

    The objective of this work was to develop and validate a rapid reversed-phase (RP) high-performance liquid chromatography (HPLC) method for the in vitro pharmaceutical characterization of dapivirine-loaded polymeric nanoparticles. Chromatographic runs were performed on a RP C18 column with a mobile phase comprising acetonitrile-0.5% (w/v) triethanolamine solution in isocratic mode (80:20, v/v) at a flow rate of 1 ml/min. Dapivirine was detected at a wavelength of 290 nm. The method was shown to be specific, linear in the range of 1-50 microg/ml (R(2)=0.9998), precise at the intra-day and inter-day levels as reflected by the relative standard deviation values (less than 0.85%), accurate (recovery rate of 100.17+/-0.35%), and robust to changes in the mobile phase and column brand. The detection and quantitation limits were 0.08 and 0.24 microg/ml, respectively. The method was successfully used to determine the loading capacity and association efficiency of dapivirine in poly(lactic-co-glycolic acid)-based nanoparticles and its in vitro release. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes.

    PubMed

    Voicu, Victor; Sârbu, Costel; Tache, Florentin; Micăle, Florina; Rădulescu, Ştefan Flavian; Sakurada, Koichi; Ohta, Hikoto; Medvedovici, Andrei

    2014-05-01

    The liquid chromatographic behavior observed under bimodal retention conditions (reversed phase and hydrophilic interaction) offers a new basis for the determination of some derived lipophilicity indices. The experiments were carried out on a representative group (30 compounds) of pyridinium oximes, therapeutically tested in acetylcholinesterase reactivation, covering a large range of lipophilic character. The chromatographic behavior was observed on a mixed mode acting stationary phase, resulting from covalent functionalization of high purity spherical silica with long chain alkyl groups terminated by a polar environment created through the vicinal diol substitution at the lasting carbon atoms (Acclaim Mixed Mode HILIC 1 column). Elution was achieved by combining different proportions of 5 mM ammonium formiate solutions in water and acetonitrile. The derived lipophilicity indices were compared with logP values resulting from different computational algorithms. The correlations between experimental and computed data sets are significant. To obtain a better insight on the transition from reversed phase to hydrophilic interaction retention mechanisms, the variation of the thermodynamic parameters determined through the van׳t Hoff approach was also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halevy, I.; Zamir, G; Winterrose, M

    The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a {approx} 0.632) to Hexagonal (c/a {approx} 1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction {beta}-Ti/{alpha}-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The {alpha} phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume changemore » is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released.« less

  6. Optimization of the high-performance liquid chromatographic separation of a complex mixture containing urinary steroids, boldenone and bolasterone: application to urine samples.

    PubMed

    Gonzalo-Lumbreras, R; Izquierdo-Hornillos, R

    2000-05-26

    An HPLC separation of a complex mixture containing 13 urinary anabolics and corticoids, and boldenone and bolasterone (synthetic anabolics) has been carried out. The applied optimization method involved the use of binary, ternary and quaternary mobile phases containing acetonitrile, methanol or tetrahydrofuran as organic modifiers. The effect of different reversed-phase packings and temperature on the separation was studied. The optimum separation was achieved by using a water-acetonitrile (60:40, v/v) mobile phase in reversed-phase HPLC at 30 degrees C, allowing the separation of all the analytes in about 24 min. Calibration graphs were obtained using bolasterone or methyltestosterone as internal standards. Detection limits were in the range 0.012-0.107 microg ml(-1). The optimized separation was applied to the analysis, after liquid-liquid extraction, of human urine samples spiked with steroids.

  7. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    PubMed

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dielectric model and theoretical analysis of cationic reverse micellar solutions in CTAB/isooctane/n-hexanol/water systems.

    PubMed

    Yang, Likun; Zhao, Kongshuang

    2007-08-14

    Dielectric relaxation spectra of CTAB reverse micellar solutions, CTAB/isooctane/n-hexanol/water systems with different concentrations of CTAB and different water contents, were investigated in the frequency range from 40 Hz to 110 MHz. Two striking dielectric relaxations were observed at about 10(4) Hz and 10(5) Hz, respectively. Dielectric parameters were obtained by fitting the data using the Cole-Cole equation with two Cole-Cole dispersion terms and the electrode polarization term. These parameters show different variation with the increase of the concentration of CTAB or the water content. In order to explain the two relaxations systematically and obtain detailed information on the systems and the inner surface of the reverse micelles, an electrical model has been constituted. On the basis of this model, the low-frequency dielectric relaxation was interpreted by the radial diffusion of free counterions in the diffuse layer with Grosse model. For the high-frequency dielectric relaxation, Hanai theory and the corresponding analysis method were used to calculate the phase parameters of the constituent phases in these systems. The reasonable analysis results suggest that the high-frequency relaxation probably originated from the interfacial polarization. The structural and electrical information of the present systems were obtained from the phase parameters simultaneously.

  9. Separation and determination of synthetic impurities of difloxacin by reversed-phase high-performance liquid chromatography.

    PubMed

    Rao, R Nageswara; Nagaraju, V

    2004-11-19

    A simple and rapid reversed-phase high-performance liquid chromatographic method for separation and determination of process-related impurities of difloxacin (DFL) was developed. The separation was achieved on a reversed-phase C(18) column using methanol-water-acetic acid (78:21.9:0.1, v/v/v) as a mobile solvent at a flow rate of 1.0 ml/min at 28 degrees C using UV detection at 230 nm. It was linear over a range of 0.03 x 10(-6) to 1.60 x 10(-6)g for process related impurities and 0.05 x 10(-6) to 2.40 x 10(-6)g for difloxacin. The detection limits were 0.009 x 10(-6) to 0.024 x 10(-6)g for all the compounds examined. The recoveries were found to be in the range of 97.6-102.0% for impurities as well as difloxacin. The precision and robustness of the method were evaluated. It was used for not only quality assurance, but also monitoring the synthetic reactions involved in the process development work of difloxacin. The method was found to be specific, precise and reliable for the determination of unreacted levels of raw materials, intermediates in the reaction mixtures and the finished products of difloxacin.

  10. Human and porcine immunoreactive gastric inhibitory polypeptides (IR-GIP) are not identical.

    PubMed

    Bacarese-Hamilton, A J; Adrian, T E; Bloom, S R

    1984-03-12

    Immunoreactive gastric inhibitory polypeptide (IR-GIP) from human and porcine intestine was quantified by radioimmunoassay and the molecular forms characterised by gel permeation and reverse-phase high pressure liquid chromatography (HPLC). Gel filtration revealed two major immunoreactive peaks corresponding to the previously described 5-kDa and 8-kDa molecular forms, which appeared similar in both species. Isocratic reverse-phase HPLC revealed that the major immunoreactive GIP peak (5-kDa) in the human tissue eluted earlier than the corresponding porcine molecular form, indicating the latter to be less hydrophobic. These findings suggest significant species differences between human and porcine GIP.

  11. Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods

    NASA Astrophysics Data System (ADS)

    Andrle, C. M.; Jakubowski, N.; Broekaert, J. A. C.

    1997-02-01

    Speciation of Cr(III) and Cr(VI) based on the formation of different complexes with ammonium-pyrrolidinedithioate (APDC) in a continuous flow technique and their preconcentration using solid phase extraction (SPE) have been elaborated and applied to the analysis of waste waters from the galvanic industry. The Cr complexes were separated and determined using reversed phase-high performance liquid chromatography (RP-HPLC) coupled to different detection methods, namely UV-detection, graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma mass spectrometry with hydraulic high pressure nebulization (HHPN/ICP-MS). After optimization the detection limits for Cr(III) and Cr(VI) of all methods are at the μg 1 -1 level and the precision in terms of RSD is 5% ( cCr = 100 μg 1 -1, N = 10). The procedure was applied to the determination of Cr(III) and Cr(VI) at the μg 1 -1 level in galvanic waste waters, and its accuracy was approved by comparing the results with those of independent methods.

  12. Comparison of gamma-oryzanol contents in crude rice bran oils from different sources by various determination methods.

    PubMed

    Yoshie, Ayano; Kanda, Ayato; Nakamura, Takahiro; Igusa, Hisao; Hara, Setsuko

    2009-01-01

    Although there are various determination methods for gamma -oryzanol contained in rice bran oil by absorptiometry, normal-phase HPLC, and reversed-phase HPLC, their accuracies and the correlations among them have not been revealed yet. Chloroform-containing mixed solvents are widely used as mobile phases in some HPLC methods, but researchers have been apprehensive about its use in terms of safety for the human body and the environment.In the present study, a simple and accurate determination method was developed by improving the reversed-phase HPLC method. This novel HPLC method uses methanol/acetonitrile/acetic acid (52/45/3 v/v/v), a non-chlorinated solvent, as the mobile phase, and shows an excellent linearity (y = 0.9527x + 0.1241, R(2) = 0.9974) with absorptiometry. The mean relative errors among the existing 3 methods and the novel method, determined by adding fixed amounts of gamma-oryzanol into refined rice salad oil, were -4.7% for the absorptiometry, -6.8% for the existing normal-phase HPLC, +4.6% for the existing reversed-phase HPLC, and -1.6% for the novel reversed-phase HPLC method. gamma -Oryzanol content in 12 kinds of crude rice bran oils obtained from different sources were determined by the four methods. The mean content of those oils were 1.75+/-0.18% for the absorptiometry, 1.29+/-0.11% for the existing normal-phase HPLC, 1.51+/-0.10% for the existing reversed-phase HPLC, and 1.54+/-0.19% for the novel reversed-phase HPLC method.

  13. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    NASA Astrophysics Data System (ADS)

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  14. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    PubMed

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  15. Lattice parameters and structural phase transition of lanthanum titanate perovskite, La0.68(Ti0.95,Al0.05)O3.

    PubMed

    Ali, Roushown; Yashima, Masatomo

    2003-05-01

    Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.

  16. Cyclic interconversion of methionine containing peptide between oxidized and reduced phases monitored by reversed-phase HPLC and ESI-MS/MS.

    PubMed

    Jin, Yulong; Huang, Yanyan; Xie, Yunfeng; Hu, Wenbing; Wang, Fuyi; Liu, Guoquan; Zhao, Rui

    2012-01-30

    The cyclic oxidation and reduction of methionine (Met) containing peptides and proteins play important roles in biological system. This work was contributed to analysis the cyclic oxidation and reduction processes of a methionine containing peptide which is very likely to relate in the cell signal transduction pathways. To mimic the biological oxidation condition, hydrogen peroxide was used as the reactive oxygen species to oxidize the peptide. Reversed-phase high-performance liquid chromatography and mass spectrometry were employed to monitor the reactions and characterize the structural changes of the products. A rapid reduction procedure was developed by simply using KI as the reductant, which is green and highly efficient. By investigation of the cyclic oxidation and reduction process, our work provides a new perspective to study the function and mechanism of Met containing peptides and proteins during cell signaling processes as well as diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Validation of a reversed phase high performance thin layer chromatographic-densitometric method for secoisolariciresinol diglucoside determination in flaxseed.

    PubMed

    Coran, Silvia A; Bartolucci, Gianluca; Bambagiotti-Alberti, Massimo

    2008-10-17

    The validation of a HPTLC-densitometric method for the determination of secoisolariciresinol diglucoside (SDG) in flaxseed was performed improving the reproducibility of a previously reported HPTLC densitometric procedure by the use of fully wettable reversed phase plates (silica gel 60 RP18W F(254S), 10cmx10cm) with MeOH:HCOOH 0.1% (40:60, v/v) mobile phase. The analysis required only the alkaline hydrolysis in aqueous medium of undefatted samples and densitometry at 282nm of HPTLC runs. The method was validated following the protocol proposed by the Société Francaise des Sciences et Techniques Pharmaceutiques (SFSTP) giving rise to a dependable and high throughput procedure well suited to routine application. SDG was quantified in the range of 321-1071ng with RSD of repeatability and intermediate precision not exceeding 3.61% and accuracy inside the acceptance limits. Flaxseed of five cultivars of different origin was elected as test-bed.

  18. Porous Graphitic Carbon Liquid Chromatography-Mass Spectrometry Analysis of Drought Stress-Responsive Raffinose Family Oligosaccharides in Plant Tissues.

    PubMed

    Jorge, Tiago F; Florêncio, Maria H; António, Carla

    2017-01-01

    Drought is a major limiting factor in agriculture and responsible for dramatic crop yield losses worldwide. The adjustment of the metabolic status via accumulation of drought stress-responsive osmolytes is one of the many strategies that some plants have developed to cope with water deficit conditions. Osmolytes are highly polar compounds, analysis of whcih is difficult with typical reversed-phase chromatography. Porous graphitic carbon (PGC) has shown to be a suitable alternative to reversed-phase stationary phases for the analysis of highly polar compounds typically found in the plant metabolome. In this chapter, we describe the development and validation of a PGC-based liquid chromatography tandem mass spectrometry (LC-MS n ) method suitable for the target analysis of water-soluble carbohydrates, such as raffinose family oligosaccharides (RFOs). We present detailed information regarding PGC column equilibration, LC-MS n system operation, data analysis, and important notes to be considered during the steps of method development and validation.

  19. DETERMINATION OF CARBENDAZIM IN WATER BY HIGH-PERFORMANCE IMMUNOAFFINITY CHROMATOGRAPHY ON-LINE WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH DIODE-ARRAY OR MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    An automated method for the determination of carbendazim in water that combines high-performance immunoaffinity chromatography (HPIAC), high-performance liquid chromatography (HPLC) in the reversed-phase mode, and detection by either UV-Vis diode array detector (DAD) spectroscopy...

  20. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Liquid-solid phase transition alloy as reversible and rapid molding bone cement.

    PubMed

    Yi, Liting; Jin, Chao; Wang, Lei; Liu, Jing

    2014-12-01

    Acrylic bone cement has been an essential non-metallic implant used as fixing agent in the cemented total joint arthroplasty (THA). However, the currently available materials based mainly on polymethylmethacrylate (PMMA) still encounter certain limitations, such as time-consuming polymerization, thermal and chemical necrosis and troublesome revision procedure. Here from an alternative way, we proposed for the first time to adopt the injectable alloy cement to address such tough issues through introducing its unique liquid-solid phase transition mechanism. A typical cement along this way is thus made of an alloy Bi/In/Sn/Zn with a specifically designed low melting point 57.5 °C, which enables its rapid molding into various desired shapes with high plasticity and ultimate metallic behaviors. The fundamental characteristics including the mechanical strength, biocompatibility and phase transition-induced thermal effects have been clarified to demonstrate the importance of such alloy as unconventional cement with favorable merits. In addition, we also disclosed its advantage as an excellent contrast agent for radiation imaging on the bone interior structure which is highly beneficial for guiding the surgery and monitoring the therapeutic effects. Particularly, the proposed alloy cement with reversible phase transition feature significantly simplifies the revision of the cement and prosthesis. This study opens the way for employing the injectable alloy materials as reversible bone cement to fulfill diverse clinical needs in the coming time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    NASA Astrophysics Data System (ADS)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  3. Phase conjugation and time reversal in acoustics

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2000-07-01

    This paper compares the different approaches used in acoustics to time reverse or to phase conjugate a wavefield. The basic principle of a time reversal mirror is an extension for broadband pulsed waves to the optical phase conjugated mirror designed for monochromatic waves. However, this equivalence is only valid mathematically and there are some fundamental differences between these two techniques that will be described in this paper.

  4. Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media

    NASA Astrophysics Data System (ADS)

    Vezzoli, Stefano; Bruno, Vincenzo; DeVault, Clayton; Roger, Thomas; Shalaev, Vladimir M.; Boltasseva, Alexandra; Ferrera, Marcello; Clerici, Matteo; Dubietis, Audrius; Faccio, Daniele

    2018-01-01

    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008), 10.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.

  5. (Investigations in guage theories, topological solitons and string theories)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.N.; Tze, C.H.

    1989-01-01

    This report discusses the following topics: Phases and conservation laws in parametrized systems; Time reversal symmetry in 2 + 1 dimemsional systems; Chiral symmetry breaking in QCD at high temperatures; Solitons at Tev energies; Self-Duality, conformal symmetries and hypercomplex analyticity; Hopf phase entanglements, exotic membranes and division algebras; and Non-perturbative methods. 58 refs. (JSP)

  6. Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α'-Thermoelastic Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kretinina, I. V.; Keinikh, K. S.; Kuts, O. A.; Kirillov, V. A.; Karaman, I.; Maier, H.

    2013-12-01

    Using single crystals of a Fe - 28% Ni - 17% Co - 11.5% Al - 25% Ta (аt.%) alloy, oriented for tensile loading along the [001] direction, the shape-memory (SME) and superelasticity (SE) effects caused by reversible thermoelastic martensitic transformations (MTs) from a high-temperature fcc-phase into a bctmartensite are investigated. It is demonstrated that the conditions necessary for the thermoelastic MTs to occur are achieved by aging at 973 K within the time interval (t) from 0.5 to 7.0 hours, which is accompanied by precipitation of the γ'-phase particles, (FeNiCo)3(AlTa), whose d < 8-12 nm. When the size of the γ'-precipitates becomes as large as d ≥ 8-12 nm, the MT becomes partially reversible. The physical causes underlying the kinetics of thermoelstic reversible fcc-bct MTs are discussed.

  7. Structural evolution of calcite at high temperatures: Phase V unveiled

    PubMed Central

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  8. Simulation studies of GST phase change alloys

    NASA Astrophysics Data System (ADS)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  9. Comparison of various types of stationary phases in non-aqueous reversed-phase high-performance liquid chromatography-mass spectrometry of glycerolipids in blackcurrant oil and its enzymatic hydrolysis mixture.

    PubMed

    Lísa, Miroslav; Holcapek, Michal; Sovová, Helena

    2009-11-20

    The selection of column packing during the development of high-performance liquid chromatography method is a crucial step to achieve sufficient chromatographic resolution of analyzed species in complex mixtures. Various stationary phases are tested in this paper for the analysis of complex mixture of triacylglycerols (TGs) in blackcurrant oil using non-aqueous reversed-phase (NARP) system with acetonitrile-2-propanol mobile phase. Conventional C(18) column in the total length of 45 cm is used for the separation of TGs according to their equivalent carbon number, the number and positions of double bonds and acyl chain lengths. The separation of TGs and their more polar hydrolysis products after the partial enzymatic hydrolysis of blackcurrant oil in one chromatographic run is achieved using conventional C(18) column. Retention times of TGs are reduced almost 10 times without the loss of the chromatographic resolution using ultra high-performance liquid chromatography with 1.7 microm C(18) particles. The separation in NARP system on C(30) column shows an unusual phenomenon, because the retention order of TGs changes depending on the column temperature, which is reported for the first time. The commercial monolithic column modified with C(18) is used for the fast analysis of TGs to increase the sample throughput but at cost of low resolution.

  10. Determination of the n-octanol/water partition coefficients of weakly ionizable basic compounds by reversed-phase high-performance liquid chromatography with neutral model compounds.

    PubMed

    Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2014-11-01

    A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization and validation of the reversed-phase high-performance liquid chromatography with fluorescence detection method for the separation of tocopherol and tocotrienol isomers in cereals, employing a novel sorbent material.

    PubMed

    Irakli, Maria N; Samanidou, Victoria F; Papadoyannis, Ioannis N

    2012-03-07

    The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 μm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 μg/mL) was used as the internal standard. Detection limits ranged from 0.27 μg/mL (γ-T) to 0.76 μg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.

  12. Offline pentafluorophenyl (PFP)-RP prefractionation as an alternative to high-pH RP for comprehensive LC-MS/MS proteomics and phosphoproteomics.

    PubMed

    Grassetti, Andrew V; Hards, Rufus; Gerber, Scott A

    2017-07-01

    Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.

  13. Identification and characterization of potential impurities of donepezil.

    PubMed

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  14. Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin

    2012-10-01

    Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.

  15. Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Kashi, M. Almasi; Ramazani, A.

    2018-05-01

    Magnetic nanowires electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeCoNi NWs with varied diameters (between 60 and 150 nm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. X-ray diffraction patterns indicated the formation of FeCoNi NWs with fcc FeNi and bcc FeCo alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing diameter. First-order reversal curve measurements revealed that, with increasing diameter from 60 to 150 nm, besides a transition from a single domain (SD) state to a pseudo SD state, an increase in the reversible magnetization component of the NWs from 11% to 24% occurred.

  16. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less

  17. [Separation and purification of the components in Trachelospermum jasminoides by two dimensional hydrophilic interaction liquid chromatography- reversed-phase liquid chromatography].

    PubMed

    Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu

    2017-06-08

    A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .

  18. Limitation of predictive 2-D liquid chromatography in reducing the database search space in shotgun proteomics: in silico studies.

    PubMed

    Moskovets, Eugene; Goloborodko, Anton A; Gorshkov, Alexander V; Gorshkov, Mikhail V

    2012-07-01

    A two-dimensional (2-D) liquid chromatography (LC) separation of complex peptide mixtures that combines a normal phase utilizing hydrophilic interactions and a reversed phase offers reportedly the highest level of 2-D LC orthogonality by providing an even spread of peptides across multiple LC fractions. Matching experimental peptide retention times to those predicted by empirical models describing chromatographic separation in each LC dimension leads to a significant reduction in a database search space. In this work, we calculated the retention times of tryptic peptides separated in the C18 reversed phase at different separation conditions (pH 2 and pH 10) and in TSK gel Amide-80 normal phase. We show that retention times calculated for different 2-D LC separation schemes utilizing these phases start to correlate once the mass range of peptides under analysis becomes progressively narrow. This effect is explained by high degree of correlation between retention coefficients in the considered phases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal structure transformation in potassium acrylate

    NASA Astrophysics Data System (ADS)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  20. Pharmacokinetics and tissue distribution study of Praeruptorin D from Radix peucedani in rats by high-performance liquid chromatography (HPLC).

    PubMed

    Liang, Taigang; Yue, Wenyan; Du, Xue; Ren, Luhui; Li, Qingshan

    2012-01-01

    Praeruptorin D (PD), a major pyranocoumarin isolated from Radix Peucedani, exhibited antitumor and anti-inflammatory activities. The aim of this study was to investigate the pharmacokinetics and tissue distribution of PD in rats following intravenous (i.v.) administration. The levels of PD in plasma and tissues were measured by a simple and sensitive reversed-phase high-performance liquid chromatography (HPLC) method. The biosamples were treated by liquid-liquid extraction (LLE) with methyl tert-butyl ether (MTBE) and osthole was used as the internal standard (IS). The chromatographic separation was accomplished on a reversed-phase C(18) column using methanol-water (75:25, v/v) as mobile phase at a flow rate of 0.8 mL/min and ultraviolet detection wave length was set at 323 nm. The results demonstrate that this method has excellent specificity, linearity, precision, accuracy and recovery. The pharmacokinetic study found that PD fitted well into a two-compartment model with a fast distribution phase and a relative slow elimination phase. Tissue distribution showed that the highest concentration was observed in the lung, followed by heart, liver and kidney. Furthermore, PD can also be detected in the brain, which indicated that PD could cross the blood-brain barrier after i.v. administration.

  1. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.

    2015-08-15

    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less

  2. [Simultaneous determination of canthaxanthin and astaxanthin in feedstuffs using solid phase extraction-reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, Hua; Yang, Xin; Ma, Ying; Dong, Aijun; Zhang, Yingchun

    2008-05-01

    A method was developed for the simultaneous determination of canthaxanthin and astaxanthin in feedstuffs using reversed-phase high performance liquid chromatography (RP-HPLC). The sample was extracted by acetonitrile, and cleaned up by an LC-NH2 column. An Agilent ZORBAX Eclipse XDB-C18 analytical column (150 mm x 4.6 mm, 5 microm) was used and kept at 25 degrees C. Acetonitrile-methanol (95 : 5, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min. The detection was performed by a diode array detector at 474 nm. The quantitive analysis of external standard calibration curves was used. The linear ranges of the method for canthaxanthin and astaxanthin were 1.0 - 30.0 mg/L (r = 0.999 0) and 1.0 - 20.0 mg/L (r = 0.999 1), respectively. The average recoveries were 90% - 101% with the relative standard deviations of 0.62% - 3.68%. The detection limits were 0.84 and 0.60 mg/L for canthaxanthin and astaxanthin, respectively. The method is simple, precise, sensitive and reproductive. It can be used to determine the contents of canthaxanthin and astaxanthin in feedstuffs.

  3. Temperature-triggered reversible dielectric and nonlinear optical switch based on the one-dimensional organic-inorganic hybrid phase transition compound [C6H11NH3]2CdCl4.

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi

    2014-10-20

    The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.

  4. Effect of first dimension phase selectivity in online comprehensive two dimensional liquid chromatography (LC × LC)

    PubMed Central

    Gu, Haiwei; Huang, Yuan; Filgueira, Marcelo; Carr, Peter W.

    2012-01-01

    In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC × LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC × LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP × RP. PMID:21840009

  5. Traffic Lights in Trichodesmium. Regulation of Photosynthesis for Nitrogen Fixation Studied by Chlorophyll Fluorescence Kinetic Microscopy1

    PubMed Central

    Küpper, Hendrik; Ferimazova, Naila; Šetlík, Ivan; Berman-Frank, Ilana

    2004-01-01

    We investigated interactions between photosynthesis and nitrogen fixation in the non-heterocystous marine cyanobacterium Trichodesmium IMS101 at the single-cell level by two-dimensional (imaging) microscopic measurements of chlorophyll fluorescence kinetics. Nitrogen fixation was closely associated with the appearance of cells with high basic fluorescence yield (F0), termed bright cells. In cultures aerated with normal air, both nitrogen fixation and bright cells appeared in the middle of the light phase. In cultures aerated with 5% oxygen, both processes occurred at a low level throughout most of the day. Under 50% oxygen, nitrogen fixation commenced at the beginning of the light phase but declined soon afterwards. Rapid reversible switches between fluorescence levels were observed, which indicated that the elevated F0 of the bright cells originates from reversible uncoupling of the photosystem II (PSII) antenna from the PSII reaction center. Two physiologically distinct types of bright cells were observed. Type I had about double F0 compared to the normal F0 in the dark phase and a PSII activity, measured as variable fluorescence (Fv = Fm − F0), similar to normal non-diazotrophic cells. Correlation of type I cells with nitrogen fixation, oxygen concentration, and light suggests that this physiological state is connected to an up-regulation of the Mehler reaction, resulting in oxygen consumption despite functional PSII. Type II cells had more than three times the normal F0 and hardly any PSII activity measurable by variable fluorescence. They did not occur under low-oxygen concentrations, but appeared under high-oxygen levels outside the diazotrophic period, suggesting that this state represents a reaction to oxidative stress not necessarily connected to nitrogen fixation. In addition to the two high-fluorescence states, cells were observed to reversibly enter a low-fluorescence state. This occurred mainly after a cell went through its bright phase and may represent a fluorescence-quenching recovery phase. PMID:15299119

  6. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.

    PubMed

    Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang

    2011-04-01

    Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases.

    PubMed

    Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng

    2015-08-05

    Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.

    PubMed

    Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi

    2018-04-01

    For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

  9. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    PubMed

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  10. Determination of 4-nonylphenol and 4-octylphenol in human blood samples by high-performance liquid chromatography with multi-electrode electrochemical coulometric-array detection.

    PubMed

    Inoue, K; Yoshimura, Y; Makino, T; Nakazawa, H

    2000-11-01

    Alkylphenols can affect human health because they disrupt the endocrine system. In this study, an analytical method for determining trace amounts of 4-nonylphenol (NP) and 4-octylphenol (OP) in human blood samples was developed. Reversed-phase HPLC with multi-electrode electrochemical coulometric-array detection was used for the determination of NP and OP in plasma and serum samples prepared with a solid-phase extraction method. The separation was achieved using an isocratic mobile phase of 0.7% phosphoric acid-acetonitrile with a C18 reversed phase column. The detection limits of NP and OP were 1.0 and 0.5 ng ml-1, respectively. The recoveries of NP and OP added to human plasma samples were above 70.0% with a relative standard deviation of less than 15.5%. The method was found to be applicable to the determination of NP and OP in various human blood samples such as serum and plasma.

  11. Electrofluid hydrolysis enhances the production of fermentable sugars from corncob via in/reverse-phase induced voltage.

    PubMed

    Wu, Fengfeng; Jin, Yamei; Li, Dandan; Zhou, Yuyi; Guo, Lunan; Zhang, Mengyue; Xu, Xueming; Yang, Na

    2017-06-01

    To improve the economic value of lignocellulosic biomasses, an innovative electrofluidic technology has been applied to the efficient hydrolysis of corncob. The system combines fluidic reactors and induced voltages via magnetoelectric coupling effect. The excitation voltage had a positive impact on reducing sugar content (RSC). But, the increase of voltage frequency at 400-700Hz caused a slight decline of the RSC. Higher temperature limits the electrical effect on the hydrolysis at 70-80°C. The energy efficiency increased under the addition of metallic ions and series of in-phase induced voltage to promote hydrolysis. In addition, the 4-series system with in-phase and reverse-phase induced voltages under the synchronous magnetic flux, exhibited a significant influence on the RSC with a maximum increase of 56%. High throughput could be achieved by increasing series in a compact system. Electrofluid hydrolysis avoids electrochemical reaction, electrode corrosion, and sample contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phase retrieval with the reverse projection method in the presence of object's scattering

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Gao, Kun; Wang, Dajiang

    2017-08-01

    X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed ;Reverse Projection; (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices.

  13. Isolation and purification of an early pregnancy factor-like molecule from culture supernatants obtained from lymphocytes of pregnant women: II. Identification of the molecule as a Fc-receptor-like molecule: a preliminary report.

    PubMed

    Aranha, C; Bordekar, A; Shahani, S

    1998-11-01

    Early pregnancy factor (EPF)-like activity from culture supernatants obtained from stimulated lymphocytes of pregnant women was characterized and identified. The enzyme-linked immunosorbent assay depending on the presence of "Fc" receptors on bovine spermatozoa was used to identify the EPF-like molecule purified by gel filtration and reverse-phase high-performance liquid chromatography. The results indicated that the crude lymphocyte culture supernatant, the EPF-positive G IV fraction obtained on gel filtration, and the EPF-positive reverse-phase high-performance liquid chromatography protein readily bound with the different concentrations of aggregated human gamma-globulin in a manner similar to that in which the standard control of aggregated human gamma-globulin binds to the bovine spermatozoa. EPF-like activity synthesized and secreted by lymphocytes during pregnancy may be a Fc-receptor-like molecule.

  14. An analysis of dissolved organic matter from freshwater Karelian Lakes using reversed-phase high-performance liquid chromatography with online absorbance and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.

    2017-01-01

    The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.

  15. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Narukawa, Tomohiro; Chiba, Koichi; Sinaviwat, Savarin; Feldmann, Jörg

    2017-01-06

    A new rapid monitoring method by means of high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) following the heat-assisted extraction was developed for measurement of total inorganic arsenic species in rice flour. As(III) and As(V) eluted at the same retention time and completely separated from organoarsenic species by an isocratic elution program on a reversed phase column. Therefore, neither ambiguous oxidation of arsenite to arsenate nor the integration of two peaks were necessary to determine directly the target analyte inorganic arsenic. Rapid injection allowed measuring 3 replicates within 6min and this combined with a quantitative extraction of all arsenic species from rice flour by a 15min HNO 3 -H 2 O 2 extraction makes this the fastest laboratory based method for inorganic arsenic in rice flour. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A general method for the purification of synthetic oligodeoxyribonucleotides containing strong secondary structure by reversed-phase high-performance liquid chromatography on PRP-1 resin.

    PubMed

    Germann, M W; Pon, R T; van de Sande, J H

    1987-09-01

    Synthetic 5'-dimethoxytritylated oligodeoxyribonucleotides, which contained strong secondary structure, were satisfactorily denatured and purified by reversed-phase HPLC on PRP-1 columns when strongly alkaline conditions (0.05 M NaOH) were employed. This procedure was suitable for the purification of hairpin structures, e.g., d(CG)nT4(CG)n (n = 4, 5, 6), and oligo(dG) sequences, e.g., d(G)24, as well as oligodeoxyribonucleotide probes which contained degenerate base sites. Oligodeoxyribonucleotides as long as 50 bases in length were purified. Recovery of injected oligonucleotides was typically 90% or better. The high capacity of the PRP-1 resin also allowed purification to be performed on a preparative scale (2-8 mg per injection). Enzymatic degradation and HPLC analysis indicated that no modification of the heterocyclic bases occurred under the alkaline conditions described.

  17. Development of validated high-temperature reverse-phase UHPLC-PDA analytical method for simultaneous analysis of five natural isothiocyanates in cruciferous vegetables.

    PubMed

    Robin; Arora, Rohit; Arora, Saroj; Vig, Adarsh Pal

    2018-01-15

    In the present study reverse-phase UHPLC-PDA technique was developed at 60°C for simultaneous quantification of allyl, 3-butenyl, 4-(methylthio)butyl, benzyl and phenethyl isothiocyanates. The validation parameter showed a very good linearity, with a correlation coefficient of 1.00 for all detected standard analytes. Also, high precision and accuracy were observed with lowest obtained values of 1.39% and 99.1%, respectively. Different varieties of three plants, viz. Brassica rapa var. rapa L., Raphanus sativus L. var. oleiformis Pers. and Eruca sativa Mill., were analyzed with this method. After analysis, 4-(methylthio)butyl isothiocyanate was observed to be the major component in the varieties of arugula. Allyl, benzyl and phenethyl isothiocyanates were detected in turnip varieties and, in addition, 3-butenyl isothiocyanate was detected in radish varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE PAGES

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...

    2017-08-02

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  19. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  20. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  1. Simultaneous determination of azathioprine and 6-mercaptopurine by high-performance liquid chromatography.

    PubMed

    Van Os, E C; McKinney, J A; Zins, B J; Mays, D C; Schriver, Z H; Sandborn, W J; Lipsky, J J

    1996-04-26

    A specific, sensitive, single-step solid-phase extraction and reversed-phase high-performance liquid chromatographic method for the simultaneous determination of plasma 6-mercaptopurine and azathioprine concentrations is reported. Following solid-phase extraction, analytes are separated on a C18 column with mobile phase consisting of 0.8% acetonitrile in 1 mM triethylamine, pH 3.2, run on a gradient system. Quantitation limits were 5 ng/ml and 2 ng/ml for azathioprine and 6-mercaptopurine, respectively. Peak heights correlated linearly to known extracted standards for 6-mercaptopurine and azathioprine (r = 0.999) over a range of 2-200 ng/ml. No chromatographic interferences were detected.

  2. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  3. Reversed-Phase High-Performance Liquid Chromatography for the Quantification and Optimization for Extracting 10 Kinds of Carotenoids in Pepper (Capsicum annuum L.) Leaves.

    PubMed

    Li, Jing; Xie, Jianming; Yu, Jihua; Lv, Jian; Zhang, Junfeng; Wang, Xiaolong; Wang, Cheng; Tang, Chaonan; Zhang, Yingchun; Dawuda, Mohammed Mujitaba; Zhu, Daiqiang; Ma, Guoli

    2017-09-27

    Carotenoids are considered to be crucial elements in many fields and, furthermore, the significant factor in pepper leaves under low light and chilling temperature. However, little literature focused on the method to determinate and extract the contents of carotenoid compositions in pepper leaves. Therefore, a time-saving and highly sensitive reversed-phase high-performance liquid chromatography method for separation and quantification of 10 carotenoids was developed, and an optimized technological process for carotenoid composition extraction in pepper leaves was established for the first time. Our final method concluded that six xanthophylls eluted after about 9-26 min. In contrast, four carotenes showed higher retention times after nearly 28-40 min, which significantly shortened time and improved efficiency. Meanwhile, we suggested that 8 mL of 20% KOH-methanol solution should be added to perform saponification at 60 °C for 30 min. The ratio of solid-liquid was 1:8, and the ultrasound-assisted extraction time was 40 min.

  4. Time-Reversal Location of the 2004 M6.0 Parkfield Earthquake Using the Vertical Component of Seismic Data.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Johnson, P.; Huang, L.; Randall, G.; Patton, H.; Montagner, J.

    2007-12-01

    In this work we describe Time Reversal experiments applying seismic waves recorded from the 2004 M6.0 Parkfield Earthquake. The reverse seismic wavefield is created by time-reversing recorded seismograms and then injecting them from the seismograph locations into a whole entire Earth velocity model. The concept is identical to acoustic Time-Reversal Mirror laboratory experiments except the seismic data are numerically backpropagated through a velocity model (Fink, 1996; Ulrich et al, 2007). Data are backpropagated using the finite element code SPECFEM3D (Komatitsch et al, 2002), employing the velocity model s20rts (Ritsema et al, 2000). In this paper, we backpropagate only the vertical component of seismic data from about 100 broadband surface stations located worldwide (FDSN), using the period band of 23-120s. We use those only waveforms that are highly correlated with forward-propagated synthetics. The focusing quality depends upon the type of waves back- propagated; for the vertical displacement component the possible types include body waves, Rayleigh waves, or their combination. We show that Rayleigh waves, both real and artifact, dominate the reverse movie in all cases. They are created during rebroadcast of the time reverse signals, including body wave phases, because we use point-like-force sources for injection. The artifact waves, termed "ghosts" manifest as surface waves, do not correspond to real wave phases during the forward propagation. The surface ghost waves can significantly blur the focusing at the source. We find that the ghosts cannot be easily eliminated in the manner described by Tsogka&Papanicolaou (2002). It is necessary to understand how they are created in order to remove them during TRM studies, particularly when using only the body waves. For this moderate magnitude of earthquake we demonstrate the robustness of the TRM as an alternative location method despite the restriction to vertical component phases. One advantage of TRM location is that it does not rely on a prior picking of specific phases (Larmat et al, 2006). In future work will be conducted TRM backpropagation using the horizontal displacement components of seismic data as well as study the source complexity (double couples). Our ultimate goal is to determine whether or not Time Reversal offers information about the source that cannot be obtained from other methods, or that complements other methods.

  5. Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.

    2001-10-01

    When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.

  6. Synthesis, Characterization, and Evaluation of Pluronic-Based β-Cyclodextrin Polyrotaxanes for Mobilization of Accumulated Cholesterol from Niemann-Pick Type C Fibroblasts

    PubMed Central

    Collins, Christopher J.; McCauliff, Leslie A.; Hyun, Seok-Hee; Zhang, Zhaorui; Paul, Lake N.; Kulkarni, Aditya; Zick, Klaus; Wirth, Mary; Storch, Judith; Thompson, David H.

    2015-01-01

    Several lines of evidence suggest that β-cyclodextrin (β-CD) derivatives initiate the efflux of accumulated, unesterified cholesterol from the late endosomal/lysosomal compartment in Niemann Pick C (NPC) disease models. Unfortunately, repeated injections or continuous infusions of current β-CD therapies are required to sustain suppression of symptoms and prolong life. In an effort to make CD treatment a more viable option by boosting efficacy and improving pharmacokinetics, a library of Pluronic surfactant-based β-CD polyrotaxanes has been developed using biocompatible poly(ethylene glycol) (PEG)–polypropylene glycol (PPG)–PEG triblock copolymers. These compounds carry multiple copies of β-CD as shown by 1H NMR, 2D nuclear Overhouser effect spectroscopy, gel permeation chromatography/multiangle light scattering, analytical ultracentrifugation analysis, matrix assisted laser desorption/ionization mass spectrometry, and diffusion-ordered spectroscopy. Analyses of free β-cyclodextrin contamination in the compounds were made by reverse phase high pressure liquid chromatography and hydrophilic interaction liquid chromatography. Dethreading kinetics were studied by reverse phase high pressure liquid chromatography, UV/vis, and 1H NMR analysis. Filipin staining studies using npc2−/− fibroblasts show significant reversal of cholesterol accumulation after treatment with polyrotaxane compounds. The rate and efficacy of reversal is similar to that achieved by equivalent amounts of monomeric β-CD alone. PMID:23560535

  7. Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick type C fibroblasts.

    PubMed

    Collins, Christopher J; McCauliff, Leslie A; Hyun, Seok-Hee; Zhang, Zhaorui; Paul, Lake N; Kulkarni, Aditya; Zick, Klaus; Wirth, Mary; Storch, Judith; Thompson, David H

    2013-05-14

    Several lines of evidence suggest that β-cyclodextrin (β-CD) derivatives initiate the efflux of accumulated, unesterified cholesterol from the late endosomal/lysosomal compartment in Niemann Pick C (NPC) disease models. Unfortunately, repeated injections or continuous infusions of current β-CD therapies are required to sustain suppression of symptoms and prolong life. In an effort to make CD treatment a more viable option by boosting efficacy and improving pharmacokinetics, a library of Pluronic surfactant-based β-CD polyrotaxanes has been developed using biocompatible poly(ethylene glycol) (PEG)-polypropylene glycol (PPG)-PEG triblock copolymers. These compounds carry multiple copies of β-CD as shown by (1)H NMR, 2D nuclear Overhouser effect spectroscopy, gel permeation chromatography/multiangle light scattering, analytical ultracentrifugation analysis, matrix assisted laser desorption/ionization mass spectrometry, and diffusion-ordered spectroscopy. Analyses of free β-cyclodextrin contamination in the compounds were made by reverse phase high pressure liquid chromatography and hydrophilic interaction liquid chromatography. Dethreading kinetics were studied by reverse phase high pressure liquid chromatography, UV/vis, and (1)H NMR analysis. Filipin staining studies using npc2(-/-) fibroblasts show significant reversal of cholesterol accumulation after treatment with polyrotaxane compounds. The rate and efficacy of reversal is similar to that achieved by equivalent amounts of monomeric β-CD alone.

  8. Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing.

    PubMed

    Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2015-07-01

    Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols.

  9. Continuous delivery of ropinirole reverses motor deficits without dyskinesia induction in MPTP-treated common marmosets.

    PubMed

    Stockwell, K A; Virley, D J; Perren, M; Iravani, M M; Jackson, M J; Rose, S; Jenner, P

    2008-05-01

    L-DOPA treatment of Parkinson's disease induces a high incidence of motor complications, notably dyskinesia. Longer acting dopamine agonists, e.g. ropinirole, are thought to produce more continuous dopaminergic stimulation and less severe dyskinesia. However, standard oral administration of dopamine agonists does not result in constant plasma drug levels, therefore, more continuous drug delivery may result in both prolonged reversal of motor deficits and reduced levels of dyskinesia. Therefore, we compared the effects of repeated oral administration of ropinirole to constant subcutaneous infusion in MPTP-treated common marmosets. Animals received oral administration (0.4 mg/kg, BID) or continuous infusion of ropinirole (0.8 mg/kg/day) via osmotic minipumps for 14 days (Phase I). The treatments were then switched and continued for a further 14 days (Phase II). In Phase I, locomotor activity was similar between treatment groups but reversal of motor disability was more pronounced in animals receiving continuous infusion. Dyskinesia intensity was low in both groups however there was a trend suggestive of less marked dyskinesia in those animals receiving continuous infusion. In Phase II, increased locomotor activity was maintained but animals switched from oral to continuous treatment showing an initial period of enhanced locomotor activity. The reversal of motor disability was maintained in both groups, however, motor disability tended towards greater improvement following continuous infusion. Importantly, dyskinesia remained low in both groups suggesting that constant delivery of ropinirole neither leads to priming nor expression of dyskinesia. These results suggest that a once-daily controlled-release formulation may provide improvements over existing benefits with standard oral ropinirole in Parkinson's disease patients.

  10. Broken Time-Reversal Symmetry in Strongly Correlated Ladder Structures

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2004-03-01

    A decade after the first detailed numerical investigations of strongly correlated ladder models, exotic and interesting phases are still being discovered. Besides charge and spin density wave states with broken translational symmetry, and resonating valence bond (RVB) type superconductivity, a time reversal symmetry borken phase was recently found at half filling [J.B. Marston et al., Phys. Rev. Lett 89, 056404 (2002)]. In this talk I will present our recent results of density matrix renormalization group (DMRG) calculations [Phys. Rev. Lett. 90, 186401 (2003)], where we provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of this state in which long-range ordered orbital currents are arranged in a staggered pattern. This phase, which we found to coexist with a charge density wave, is known in the literature under the names ``staggered flux phase'', ``orbital antiferromagnetism'' or ``d-density wave (DDW)''. This brings us closer to recent proposals that this order might be realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.

  11. Procyanidins (Condensed Tannins) in Green Cell Suspension Cultures of Douglas Fir Compared with Those in Strawberry and Avocado Leaves by Means of C18-Reversed-phase Chromatography 1

    PubMed Central

    Stafford, Helen A.; Lester, Hope H.

    1980-01-01

    The procyanidins (the most common type of proanthocyanidin or condensed tannin) from cell suspension cultures derived from cotyledons of Douglas Fir have been compared with those isolated from leaves of strawberry and avocado. Seventy per cent methanol (v/v) extracts from 100 milligrams fresh weight samples were analyzed by a combination of C18-reversed-phase columns with high-performance liquid chromatography, and normal phase paper chromatography. (−)-Epicatechin and its oligomers were generally retarded longer on C18 columns than the corresponding units made of (+)-catechin when eluted with solvents made up of 5% acetic acid alone or mixed with methanol up to 15% (v/v). Douglas fir preparations contained the most complex set of procyanidins and consisted of oligomers of catechin and epicatechin, whereas strawberry and avocado contained mainly (+)-catechin and (−)-epicatechin derivatives, respectively. PMID:16661581

  12. Determination of dapsone in serum and saliva using reversed-phase high-performance liquid chromatography with ultraviolet or electrochemical detection.

    PubMed

    Moncrieff, J

    1994-03-18

    A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.

  13. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys

    NASA Technical Reports Server (NTRS)

    Fecht, H. J.

    1991-01-01

    During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.

  14. Theory of nematic order with aggregate dehydration for reversibly assembling proteins in concentrated solutions: Application to sickle-cell hemoglobin polymers

    NASA Astrophysics Data System (ADS)

    Hentschke, Reinhard; Herzfeld, Judith

    1991-06-01

    The reversible association of globular protein molecules in concentrated solution leads to highly polydisperse fibers, e.g., actin filaments, microtubules, and sickle-cell hemoglobin fibers. At high concentrations, excluded-volume interactions between the fibers lead to spontaneous alignment analogous to that in simple lyotropic liquid crystals. However, the phase behavior of reversibly associating proteins is complicated by the threefold coupling between the growth, alignment, and hydration of the fibers. In protein systems aggregates contain substantial solvent, which may cause them to swell or shrink, depending on osmotic stress. Extending previous work, we present a model for the equilibrium phase behavior of the above-noted protein systems in terms of simple intra- and interaggregate interactions, combined with equilibration of fiber-incorporated solvent with the bulk solvent. Specifically, we compare our model results to recent osmotic pressure data for sickle-cell hemoglobin and find excellent agreement. This comparison shows that particle interactions sufficient to cause alignment are also sufficient to squeeze significant amounts of solvent out of protein fibers. In addition, the model is in accord with findings from independent sedimentation and birefringence studies on sickle-cell hemoglobin.

  15. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  16. Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends

    DOE PAGES

    Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; ...

    2016-12-23

    The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. Here, we demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomainmore » structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies.« less

  17. Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends

    PubMed Central

    Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; Lee, Bongjoon; Ning, Xin; Zhang, Ren; Karim, Alamgir; Davis, Robert F.; Matyjaszewski, Krzysztof; Bockstaller, Michael R.

    2016-01-01

    The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. We demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomain structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies. PMID:28028538

  18. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Luo, Langli; Zhong, Li

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  19. Phase-change memory function of correlated electrons in organic conductors

    NASA Astrophysics Data System (ADS)

    Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.

    2015-01-01

    Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.

  20. Pulse Phase Dependence of Low Energy Emission Lines in an X-ray pulsar 4U 1626-67 during its spin-up and spin-down phase

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab Chand

    2016-07-01

    We will present the results obtained from the new observation of an ultra-compact X-ray binary pulsar 4U 1626-67, carried out with the XMM-Newton observatory. 4U 1626-67, a unique accretion powered pulsar underwent two torque reversals since its discovery in 1977. Pulse phase resolved spectroscopy of this source performed using the data from the XMM-Newton observatory during its spin-down phase revealed the dependence of the emission lines on the pulse phase. O VII emission line at 0.569 keV showed the maximum variation by factor of 4. These variations were interpreted due to warps in the accretion disk (Beri et al. 2015). Radiation pressure induced warping is also believed to be the cause for spin-down. In light of this possible explanation for spin-down torque reversal we expect different line variability during the spin-up phase. We will discuss the implications of the results obtained after performing pulse phase resolved spectroscopy using data from the EPIC-pn during the current spin-up phase. Detailed study of the prominent Neon and Oxygen line complexes with the high resolution Reflection Grating Spectrometer (RGS) on-board XMM-Newton will also be presented.

  1. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  2. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  3. Preparation and Characterization of a Polymeric Monolithic Column for Use in High-Performance Liquid Chromatography (HPLC)

    ERIC Educational Resources Information Center

    Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.

    2011-01-01

    The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…

  4. High Performance Liquid Chromatographic Analysis of Phytoplankton Pigments Using a C16-Amide Column

    EPA Science Inventory

    A reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed to analyze in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a RP-C16-Amide column and a ternary gradient system consistin...

  5. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils.

    PubMed

    Chen, Miao; Xia, Qinghai; Liu, Mousheng; Yang, Yaling

    2011-01-01

    A cloud-point extraction (CPE) method using Triton X-114 (TX-114) nonionic surfactant was developed for the extraction and preconcentration of propyl gallate (PG), tertiary butyl hydroquinone (TBHQ), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) from edible oils. The optimum conditions of CPE were 2.5% (v/v) TX-114, 0.5% (w/v) NaCl and 40 min equilibration time at 50 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 280 nm, using a gradient mobile phase consisting of methanol and 1.5% (v/v) acetic acid. Under the studied conditions, 4 synthetic phenolic antioxidants (SPAs) were successfully separated within 24 min. The limits of detection (LOD) were 1.9 ng mL(-1) for PG, 11 ng mL(-1) for TBHQ, 2.3 ng mL(-1) for BHA, and 5.9 ng mL(-1) for BHT. Recoveries of the SPAs spiked into edible oil were in the range 81% to 88%. The CPE method was shown to be potentially useful for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environment-friendly. Practical Application: The method established in this article uses less organic solvent to extract SPAs from edible oils; it is simple, highly sensitive and results in no pollution to the environment.

  6. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin.

    PubMed

    Jang, Mooseok; Ruan, Haowen; Vellekoop, Ivo M; Judkewitz, Benjamin; Chung, Euiheon; Yang, Changhuei

    2015-01-01

    Light scattering in biological tissue significantly limits the accessible depth for localized optical interrogation and deep-tissue optical imaging. This challenge can be overcome by exploiting the time-reversal property of optical phase conjugation (OPC) to reverse multiple scattering events or suppress turbidity. However, in living tissue, scatterers are highly movable and the movement can disrupt time-reversal symmetry when there is a latency in the OPC playback. In this paper, we show that the motion-induced degradation of the OPC turbidity-suppression effect through a dynamic scattering medium shares the same decorrelation time constant as that determined from speckle intensity autocorrelation - a popular conventional measure of scatterer movement. We investigated this decorrelation characteristic time through a 1.5-mm-thick dorsal skin flap of a living mouse and found that it ranges from 50 ms to 2.5 s depending on the level of immobilization. This study provides information on relevant time scales for applying OPC to living tissues.

  7. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1990-01-01

    The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.

  8. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry.

    PubMed

    Pocock, Tessa; Król, Marianna; Huner, Norman P A

    2004-01-01

    Chorophylls and carotenoids are functionally important pigment molecules in photosynthetic organisms. Methods for the determination of chlorophylls a and b, beta-carotene, neoxanthin, and the pigments that are involved in photoprotective cycles such as the xanthophylls are discussed. These cycles involve the reversible de-epoxidation of violaxanthin into antheraxanthin and zeaxanthin, as well as the reversible de-epoxidation of lutein-5,6-epoxide into lutein. This chapter describes pigment extraction procedures from higher plants and green algae. Methods for the determination and quantification using high-performance liquid chromatograpy (HPLC) are described as well as methods for the separation and purification of pigments for use as standards using thin-layer chromatography (TLC). In addition, several spectrophotometric methods for the quantification of chlorophylls a and b are described.

  10. SEPARATION OF SOME RARE EARTHS BY REVERSED-PHASE PARTITION CHROMATOGRAPHY. Report No. 129/V; Rozdzielenie Niektorych Ziem Rzadkich za Pomoca Chromatografii Podzialowej z Odwroconymi Fazami

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekierski, S.; Fidelis, I.

    1960-01-01

    The reversed phase partition chromatography was applied to the separation of small amounts of some rare earths. As a stationary phase TBP was used. and the elution was carried out with concentrated HNO/sub 3/. (auth)

  11. Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.

    2013-02-15

    Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less

  12. Characterization and screening of pyrrolizidine alkaloids and N-oxides from various parts of many botanicals and dietary supplements using liquid chromatography high resolution mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The UHPLC-QToF-MS analysis of pyrrolizidine alkaloids from various parts of 37 botanicals and 7 dietary supplements was performed. A separation by LC was achieved using a reversed-phase column and a gradient of water/acetonitrile each containing formic acid as the mobile phase. MS-MS detection was u...

  13. Superconductivity, Magnetoresistance, Magnetic Anomaly and Crystal Structure of New Phases of Topological Insulators Bi2Se3 and Sb2Te3

    NASA Astrophysics Data System (ADS)

    Kulbachinskii, V. A.; Buga, S. G.; Serebryanaya, N. R.; Perov, N. S.; Kytin, V. G.; Tarelkin, S. A.; Bagramov, R. H.; Eliseev, N. N.; Blank, V. D.

    2018-03-01

    We synthesized a new metastable phase of Bi2Se3 topological insulator by a rapid quenching after a high-pressure-high-temperature treatment at P≈7.7 GPa; 673

  14. Characterization and applications of reversed-phase column selectivity based on the hydrophobic-subtraction model.

    PubMed

    Marchand, D H; Snyder, L R; Dolan, J W

    2008-05-16

    A total of 371 reversed-phase columns have now been characterized in terms of selectivity, based on five solute-column interactions (the hydrophobic-subtraction model). The present study illustrates the use of these data for interpreting peak-tailing and column stability. New insights are also provided concerning column selectivity as a function of ligand and silica type, and the selection of columns for orthogonal separations is re-examined. Some suggestions for the quality control of reversed-phase columns during manufacture are offered.

  15. Analytical method development and validation of simultaneous estimation of rabeprazole, pantoprazole, and itopride by reverse-phase high-performance liquid chromatography.

    PubMed

    Perumal, Senthamil Selvan; Ekambaram, Sanmuga Priya; Raja, Samundeswari

    2014-12-01

    A simple, selective, rapid, and precise reverse-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of rabeprazole (RP), pantoprazole (PP), and itopride (IP) has been developed. The compounds were well separated on a Phenomenex C 18 (Luna) column (250 mm × 4.6 mm, dp = 5 μm) with C 18 guard column (4 mm × 3 mm × 5 μm) with a mobile phase consisting of buffer containing 10 mM potassium dihydrogen orthophosphate (adjusted to pH 6.8): acetonitrile (70:30 v/v) at a flow rate of 1.0 mL/min and ultraviolet detection at 288 nm. The retention time of RP, PP, and IP were 5.35, 7.92, and 11.16 minutes, respectively. Validation of the proposed method was carried out according to International Conference on Harmonisation (ICH) guidelines. Linearity range was obtained for RP, PP, and IP over the concentration range of 2.5-25, 1-30, and 3-35 μg/mL and the r 2 values were 0.994, 0.978, and 0.991, respectively. The calculated limit of detection (LOD) values were 1, 0.3, and 1 μg/mL and limit of quantitation (LOQ) values were 2.5, 1, and 3 μg/mL for RP, PP, and IP correspondingly. Thus, the current study showed that the developed reverse-phase liquid chromatography method is sensitive and selective for the estimation of RP, PP, and IP in combined dosage form. Copyright © 2014. Published by Elsevier B.V.

  16. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    NASA Astrophysics Data System (ADS)

    Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang

    2010-04-01

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  17. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    ERIC Educational Resources Information Center

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  18. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  19. Four reversible and reconfigurable structures for three-phase emulsions: extended morphologies and applications

    NASA Astrophysics Data System (ADS)

    Ge, Xue-Hui; Geng, Yu-Hao; Zhang, Qiao-Chu; Shao, Meng; Chen, Jian; Luo, Guang-Sheng; Xu, Jian-Hong

    2017-02-01

    Here in this article, we classify and conclude the four morphologies of three-phase emulsions. Remarkably, we achieve the reversible transformations between every shape. Through theoretical analysis, we choose four liquid systems to form these four morphologies. Then monodispersed droplets with these four morphologies are formed through a microfluidic device and captured in a petri-dish. By replacing their ambient solution of the captured emulsions, in-situ morphology transformations between each shape are achieved. The process is well recorded through photographs and videos and they are systematical and reversible. Finally, we use the droplets structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve the process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea to achieve the switchable and reversible reaction control in multiple-phase reactions.

  20. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  1. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.

    PubMed

    Naser, Fuad J; Mahieu, Nathaniel G; Wang, Lingjue; Spalding, Jonathan L; Johnson, Stephen L; Patti, Gary J

    2018-02-01

    Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C 8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C 8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.

  2. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth.

    PubMed

    Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M

    2001-08-24

    An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.

  3. Composition and Molecular Weight Distribution of Carob Germ Proteins Fractions

    USDA-ARS?s Scientific Manuscript database

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high performance liquid chromatography (RP-HPLC), size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and electrophoretic analysis. Using a mo...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. P.; Wang, Y. D.; Hao, Y. L.

    Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at roommore » temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  5. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Rotational reorientation dynamics of Aerosol-OT reverse micelles formed in near-critical propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitz, M.P.; Bright, F.V.

    1996-06-01

    The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and near-critical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individualmore » AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar {open_quotes}aggregate{close_quotes} to the total decay of anisotropy. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}« less

  8. Isocratic RP-HPLC method for rutin determination in solid oral dosage forms.

    PubMed

    Kuntić, Vesna; Pejić, Natasa; Ivković, Branka; Vujić, Zorica; Ilić, Katarina; Mićić, Svetlana; Vukojević, Vladana

    2007-01-17

    A rapid and sensitive assay for quantitative determination of rutin in oral dosage forms based on isocratic reversed phase high performance liquid chromatography (RP-HPLC) was developed and validated. Using a C(18) reverse-phase analytical column, the following conditions were chosen as optimal: mobile phase methanol-water 1:1 (v/v), pH 2.8 (adjusted with phosphoric acid), flow rate=1 mL min(-1) and temperature T=40.0 degrees C. Linearity was observed in the concentration range 8-120 microg mL(-1) with a correlation coefficient of 0.99982 and the limit of detection (LOD)=2.6 microg mL(-1), and limit of quantification (LOQ)=8.0 microg mL(-1). Intra- and inter-day precision were within acceptable limits. Robustness test indicated that the mobile phase composition and pH influence mainly the separation. The proposed method allowed direct determination of rutin in pharmaceutical dosage forms in the presence of excipients, but is not suitable for preparations where compounds structurally/chemically related to rutin may be present.

  9. Effect of particle size in preparative reversed-phase high-performance liquid chromatography on the isolation of epigallocatechin gallate from Korean green tea.

    PubMed

    Kim, Jung Il; Hong, Seung Bum; Row, Kyung Ho

    2002-03-08

    To isolate epigallocatechin gallate (EGCG) of catechin compounds from Korean green tea (Bosung, Chonnam), a C18 reversed-phase preparative column (250x22 mm) packed with packings of three different sizes (15, 40-63, and 150 microm) was used. The sample extracted with water was partitioned with chloroform and ethyl acetate to remove the impurities including caffeine. The mobile phases in this experiment were composed of 0.1% acetic acid in water, acetonitrile, methanol and ethyl acetate. The injection volume was fixed at 400 microl and the flow rate was increased as the particle size becomes larger. The isolation of EGCG with particle size was compared at a preparative scale and the feasibility of separation of EGCG at larger particle sizes was confirmed. The optimum mobile phase composition for separating EGCG was experimentally obtained at the particle sizes of 15 and 40-63 microm in the isocratic mode, but EGCG was not purely separated at the particle size of 150 microm.

  10. Expanding the term "Design Space" in high performance liquid chromatography (I).

    PubMed

    Monks, K E; Rieger, H-J; Molnár, I

    2011-12-15

    The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  12. Pressure induced phase transformations in NaZr{sub 2}(PO{sub 4}){sub 3} studied by X-ray diffraction and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamali, K.; Ravindran, T.R., E-mail: trr@igcar.gov.in; Chandra Shekar, N.V.

    2015-01-15

    Raman spectroscopic and x-ray diffraction measurements on NaZr{sub 2}(PO{sub 4}){sub 3} were carried out up to 30 GPa at close intervals of pressure, revealing two structural phase transformations around 5 and 6.6 GPa. The second phase at 5.4 GPa is indexed to R3 space group similar to that of RbTi{sub 2}(PO{sub 4}){sub 3}. Bulk modulus decreases abruptly from 53 GPa (B′=4) to 36 GPa (B′=4) in the second phase above 5 GPa. The structure of the phase III at 8.2 GPa is indexed as orthorhombic similar to the case of high temperature phase of monoclinic LiZr{sub 2}(PO{sub 4}){sub 3}. Bulkmore » modulus of this phase III is found to be 65 GPa (B′=4), which is higher than that of the ambient phase. In high pressure Raman studies, modes corresponding to 72 and 112 cm{sup −1} soften in the ambient phase whereas around 5 GPa, the ones at 60, 105, 125 and 190 cm{sup −1} soften with pressure contributing negatively to overall thermal expansion. - Graphical abstract: High pressure study of NaZr{sub 2}(PO{sub 4}){sub 3} shows a reversible phase transition from R-3c to R3 structure at 5 GPa accompanied by an increase in compressibility signaling a polyhedral tilt transition. - Highlights: • NaZr{sub 2}(PO{sub 4}){sub 3} undergoes two reversible phase transitions at 5 and 6.7 GPa. • The transition at 5 is from rhombohedral R-3c to R3 structure. • Bulk modulus of NaZr{sub 2}(PO{sub 4}){sub 3} is lower than that for the isostructural RbTi{sub 2}(PO{sub 4}){sub 3.} • Compressibility increases with substitution of a smaller cation (Na). • Zr-translational and PO{sub 4} librational modes contribute to phase transition.« less

  13. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g -1, and Earth abundance of disodium rhodizonate (Na 2C 6O 6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. In this paper, we reveal that irreversible phase transformation of Na 2C 6O 6 during cycling is the origin of the deteriorating redox activity of Na 2C 6O 6. The active-particlemore » size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. Finally, on the basis of this understanding, we achieved four-sodium storage in a Na 2C 6O 6 electrode with a reversible capacity of 484 mAh g -1, an energy density of 726 Wh kg -1 cathode, an energy efficiency above 87% and a good cycle retention.« less

  14. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate

    DOE PAGES

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey; ...

    2017-10-09

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g -1, and Earth abundance of disodium rhodizonate (Na 2C 6O 6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. In this paper, we reveal that irreversible phase transformation of Na 2C 6O 6 during cycling is the origin of the deteriorating redox activity of Na 2C 6O 6. The active-particlemore » size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. Finally, on the basis of this understanding, we achieved four-sodium storage in a Na 2C 6O 6 electrode with a reversible capacity of 484 mAh g -1, an energy density of 726 Wh kg -1 cathode, an energy efficiency above 87% and a good cycle retention.« less

  15. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate

    NASA Astrophysics Data System (ADS)

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey; Sun, Yongming; Feng, Dawei; Lim, Kipil; Chueh, William C.; Toney, Michael F.; Cui, Yi; Bao, Zhenan

    2017-11-01

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g-1, and Earth abundance of disodium rhodizonate (Na2C6O6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. Here, we reveal that irreversible phase transformation of Na2C6O6 during cycling is the origin of the deteriorating redox activity of Na2C6O6. The active-particle size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. On the basis of this understanding, we achieved four-sodium storage in a Na2C6O6 electrode with a reversible capacity of 484 mAh g-1, an energy density of 726 Wh kg-1cathode, an energy efficiency above 87% and a good cycle retention.

  16. Velocity and void distribution in a counter-current two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less

  17. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.

    PubMed

    Stieger, Christof; Rosowski, John J; Nakajima, Hideko Heidi

    2013-07-01

    The cochlea is normally driven with "forward" stimulation, in which sound is introduced to the ear canal. Alternatively, the cochlea can be stimulated at the round window (RW) using an actuator. During RW "reverse" stimulation, the acoustic flow starting at the RW does not necessarily take the same path as during forward stimulation. To understand the differences between forward and reverse stimulation, we measured ear-canal pressure, stapes velocity, RW velocity, and intracochlear pressures in scala vestibuli (SV) and scala tympani (ST) of fresh human temporal bones. During forward stimulation, the cochlear drive (differential pressure across the partition) results from the large difference in magnitude between the pressures of SV and ST, which occurs due to the high compliance of the RW. During reverse stimulation, the relatively high impedance of the middle ear causes the pressures of SV and ST to have similar magnitudes, and the differential pressure results primarily from the difference in phase of the pressures. Furthermore, the sound path differs between forward and reverse stimulation, such that motion through a third window is more significant during reverse stimulation. Additionally, we determined that although stapes velocity is a good estimate of cochlear drive during forward stimulation, it is not a good measure during reverse stimulation. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Reversal of Fortune: Increased Star Formation Efficiencies in the Early Histories of Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  19. [Determination of acyclovir in mouse plasma and tissues by reversed-phase high performance liquid chromatography].

    PubMed

    Xu, Y; Zhou, S W; Tang, J L; Huang, L Q

    2001-11-01

    The aim of this study was to establish an high performance liquid chromatographic method for determining acyclovir (ACV) concentration in mouse plasma and tissues. A solution of 0.25 mL 60 g/L perchloric acid and 0.25 mL acetonitrile was added into 0.2 mL plasma or 0.2 g tissues to precipitate proteins. Following centrifugation, the supernatant obtained was injected into a reversed-phase column. Operating conditions were Hypersil ODS column(250 mm x 4.6 mm i.d., 5 microns), methanol-water-acetic acid(1:99:0.5, volume ratio) solution as mobile phase at a flow rate of 1.5 mL/min, UV detection at 252 nm. The detection limit of ACV concentration in plasma was 20 micrograms/L and that in tissues was 50 ng/g. The standard curves for ACV were linear in plasma and homogenate of tissues (r > 0.99). The precision of the method was good and the recoveries of ACV were higher than 97.5%. So this method is rapid, accurate and convenient for determination of ACV concentrations in plasma and tissues.

  20. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    PubMed

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optically switchable photonic metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R. F.; MacDonald, K. F.; Hobson, P. A.

    2015-08-24

    We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.

  2. Solid-phase extraction and high-performance liquid chromatographic separation of pigments of red wines.

    PubMed

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I

    2000-08-11

    The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.

  3. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

  5. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    PubMed

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  6. Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach.

    PubMed

    Costescu, Cristina A; Vanderborght, Bram; David, Daniel O

    2015-11-01

    Children with autism spectrum disorder (ASD) engage in highly perseverative and inflexible behaviours. Technological tools, such as robots, received increased attention as social reinforces and/or assisting tools for improving the performance of children with ASD. The aim of our study is to investigate the role of the robotic toy Keepon in a cognitive flexibility task performed by children with ASD and typically developing (TD) children. The number of participants included in this study is 81 children: 40 TD children and 41 children with ASD. Each participant had to go through two conditions: robot interaction and human interaction in which they had performed the reversal learning task. Our primary outcomes are the number of errors from acquisition phase and from reversal phase of the task; as secondary outcomes we have measured attentional engagement and positive affect. The results of this study showed that children with ASD are more engaged in the task and they seem to enjoy more the task when interacting with the robot compared with the interaction with the adult. On the other hand their cognitive flexibility performance is, in general, similar in the robot and the human conditions with the exception of the learning phase where the robot can interfere with the performance. Implication for future research and practice are discussed.

  7. Determination of molindone enantiomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry using macrocyclic antibiotic chiral stationary phases.

    PubMed

    Jiang, Hongliang; Li, Yinghe; Pelzer, Mary; Cannon, Michelle J; Randlett, Christopher; Junga, Heiko; Jiang, Xiangyu; Ji, Qin C

    2008-05-30

    A sensitive and selective bioanalytical assay was developed and validated for the determination of enantiomeric molindone in human plasma using high-performance liquid chromatography-tandem mass spectrometry along with supported liquid extraction procedures. The chiral separation was evaluated and optimized on macrocyclic antibiotic type chiral stationary phases (CSPs) based on teicoplanin aglycone (Chirobiotic TAG) in polar organic, polar ionic, and reversed-phase mode chromatography, respectively. Complete baseline separation was achieved on a Chirobiotic TAG column under isocratic condition in reversed-phase chromatography. The method validation was conducted using a Chirobiotic TAG column (100 mm x 2.1 mm) over the curve range 0.100-100 ng/ml for each molindone enantiomer using 0.0500 ml of plasma sample. The flow rate was 0.8 ml/min and the total run time was 9 min. Supported liquid extraction in a 96-well plate format was used for sample preparation. Parameters including recovery, matrix effect, linearity, sensitivity, specificity, carryover, precision, accuracy, dilution integrity, and stability were evaluated. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels were RSD

  8. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light

    PubMed Central

    Wang, Ying Min; Judkewitz, Benjamin; DiMarzio, Charles A.; Yang, Changhuei

    2012-01-01

    Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×105). We confirm the presence of a time-reversed optical focus along with a diffuse background—a corollary of partial phase conjugation—and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics. PMID:22735456

  9. Reverse isotope dilution method for determining benzene and metabolites in tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-07-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of themore » radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue.« less

  10. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  11. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Treesearch

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  12. Reversed-phase ion-pair ultra-high-performance-liquid chromatography-mass spectrometry for fingerprinting low-molecular-weight heparins.

    PubMed

    Langeslay, Derek J; Urso, Elena; Gardini, Cristina; Naggi, Annamaria; Torri, Giangiacomo; Larive, Cynthia K

    2013-05-31

    Heparin is a complex mixture of sulfated linear carbohydrate polymers. It is widely used as an antithrombotic drug, though it has been shown to have a myriad of additional biological activities. Heparin is often partially depolymerized in order to decrease the average molecular weight, as it has been shown that low molecular weight heparins (LMWH) possess more desirable pharmacokinetic and pharmacodynamic properties than unfractionated heparin (UFH). Due to the prevalence of LMWHs in the market and the emerging availability of generic LMWH products, it is important that analytical methods be developed to ensure the drug quality. This work explores the use of tributylamine (TrBA), dibutylamine (DBA), and pentylamine (PTA) as ion-pairing reagents in conjunction with acetonitrile and methanol modified mobile phases for reversed-phase ion-pairing ultraperformance liquid chromatography coupled to mass spectrometry (RPIP-UPLC-MS) for fingerprint analysis of LMWH preparations. RPIP-UPLC-MS fingerprints are presented and compared for tinzaparinand enoxaparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Optical magnetic mirrors without metals

    DOE PAGES

    Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...

    2014-01-01

    The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less

  14. Achieving High Levels of NMR-Hyperpolarization in Aqueous Media With Minimal Catalyst Contamination Using SABRE.

    PubMed

    Iali, Wissam; Olaru, Alexandra M; Green, Gary G R; Duckett, Simon B

    2017-08-04

    Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10 -6  mol dm -3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH-SABRE. We illustrate this method for the substrates pyrazine, 5-methylpyrimidine, 4,6-d 2 -methyl nicotinate, 4,6-d 2 -nicotinamide and pyridazine achieving 1 H signal gains of approximately 790-, 340-, 3000-, 260- and 380-fold per proton at 9.4 T at the time point at which phase separation is complete. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  16. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  17. Medial Prefrontal Administration of MK-801 Impairs T-maze Discrimination Reversal Learning in Weanling Rats

    PubMed Central

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    Several executive functions rely on the medial prefrontal cortex (mPFC) in the rat. Aspiration and neurotoxic lesions of the mPFC impair reversal learning in adult rats [1, 16, 34, 55]. Systemic administration of MK-801, an NMDA receptor antagonist, impairs T-maze reversal learning in weanling rats but the role of mPFC NMDA receptor antagonism in this effect is not known in either adult or young animals. This set of studies showed that mPFC NMDA receptors are specifically involved in T-maze discrimination reversal in weanling rats. In Experiment 1, 26-day-old rats (P26) demonstrated a dose-dependent impairment following bilateral mPFC administration of either 2.5 or 5.0 µg MK-801 or saline (vehicle) during the reversal training phase only. In Experiment 2, P26 rats were trained on the same task, but 4 groups of rats received bilateral mPFC infusions during acquisition only (MK-SAL), reversal only (SAL-MK), both phases (MK-MK) or neither phase (SAL-SAL). MK-801 impaired performance only when infused during reversal. This suggests that NMDA receptor antagonism in the mPFC is selectively involved in reversal learning during development and this may account for the previously reported effects of systemic MK-801 on T-maze discrimination reversal in weanling rats. PMID:19643149

  18. A unified classification of stationary phases for packed column supercritical fluid chromatography.

    PubMed

    West, C; Lesellier, E

    2008-05-16

    The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.

  19. Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio.

    PubMed

    Liu, Jun-Guo; Xing, Jian-Min; Chang, Tian-Shi; Liu, Hui-Zhou

    2006-03-01

    Nattokinase is a novel fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, reverse micelles extraction was applied to purify and concentrate nattokinase from fermentation broth. The effects of temperature and phase volume ratio used for the forward and backward extraction on the extraction process were examined. The optimal temperature for forward and backward extraction were 25 degrees C and 35 degrees C respectively. Nattokinase became more thermosensitive during reverse micelles extraction. And it could be enriched in the stripping phase eight times during backward extraction. It was found that nattokinase could be purified by AOT reverse micelles with up to 80% activity recovery and with a purification factor of 3.9.

  20. Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio).

    PubMed

    Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A

    2017-09-01

    Zebrafish are used extensively as vertebrate animal models in biomedical research for having such features as a fully sequenced genome and transparent embryo. Yet, operant-conditioning studies with this species are scarce. The present study investigated reversal learning and resurgence of operant behavior in zebrafish. A target response (approaching a sensor) was reinforced in Phase 1. In Phase 2, the target response was extinguished while reinforcing an alternative response (approaching a different sensor). In Phase 3, extinction was in effect for the target and alternative responses. Reversal learning was demonstrated when responding tracked contingency changes between Phases 1 and 2. Moreover, resurgence occurred in 10 of 13 fish in Phase 3: Target response rates increased transiently and exceeded rates of an unreinforced control response. The present study provides the first evidence with zebrafish supporting reversal learning between discrete operant responses and a laboratory model of relapse. These findings open the possibility to assessing genetic influences of operant behavior generally and in models of relapse (e.g., resurgence, renewal, reinstatement). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ran; Feng, Jinkui; Lv, Dongping

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  2. Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1989-01-01

    Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.

  3. Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Long-Life Lithium-Sulfur Battery Cathodes.

    PubMed

    Zubair, Usman; Amici, Julia; Francia, Carlotta; McNulty, David; Bodoardo, Silvia; O'Dwyer, Colm

    2018-06-11

    In Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes. We show a simple synthetic method that allows high sulfur loading into mesoporous carbon preloaded with spatially localized nanoparticles of several Magnéli-phase titanium oxide (Ti n O 2n-1 ). This material simultaneously suppresses polysulfide shuttling phenomena by chemically binding Li polysulfides onto several Magnéli-phase surfaces in a single cathode and ensures physical confinement of sulfur and LiPS. The synergy between chemical immobilization of significant quantities of LiPS at the surface of several Ti n O 2n-1 phases and physical entrapment results in coulombically efficient high-rate cathodes with long cycle life and high capacity. These cathodes function efficiently at low electrolyte-to-sulfur ratios to provide high gravimetric and volumetric capacities in comparison with their highly porous carbon counterparts. Assembled coin cells have an initial discharge capacity of 1100 mAh g -1 at 0.1C and maintain a reversible capacity of 520 mAh g -1 at 0.2C for more than 500 cycles. Even at 1C, the cell loses only 0.06 % per cycle for 1000 cycles with a coulombic efficiency close to 99 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-performance liquid chromatographic method for the determination of dansyl-polyamines

    Treesearch

    Subhash C. Minocha; Rakesh Minocha; Cheryl A. Robie

    1990-01-01

    This paper describes a fast reliable, and a sensitive technique for the separation and quantification of dansylated polyamines by high-performance liquid chromatography. Using a small 33 x 4.6 mm I.D., 3 ?m particle size, C18 reversed-phase cartridge column and a linear gradient of acetonitrile-heptanesulfonate (10 mM, pH 3.4...

  5. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  6. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    EPA Science Inventory

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  7. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.

    PubMed

    Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2015-01-01

    A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  9. Identification of cysteine-644 as the covalent site of attachment of dexamethasone 21-mesylate to murine glucocorticoid receptors in WEHI-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.I.; Bodwell, J.E.; Mendel, D.B.

    1988-05-17

    Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with (/sup 3/H)dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single (/sup 3/H)dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the (/sup 3/H)dexamethasone 21-mesylate was located at position 5 frommore » the amino terminus. Dual-isotope labeling studies with (/sup 3/H)dexamethasone 21-mesylate and (/sup 35/S)methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of (/sup 3/H)dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells.« less

  10. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036

  11. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b ' (410.0 μg/g), chlorophyll a (162.4 μg/g), 9'- Z -neoxanthin (142.8 μg/g) and all- E -violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5- O -caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  12. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Vellekoop, Ivo M.; Judkewitz, Benjamin; Chung, Euiheon; Yang, Changhuei

    2014-01-01

    Light scattering in biological tissue significantly limits the accessible depth for localized optical interrogation and deep-tissue optical imaging. This challenge can be overcome by exploiting the time-reversal property of optical phase conjugation (OPC) to reverse multiple scattering events or suppress turbidity. However, in living tissue, scatterers are highly movable and the movement can disrupt time-reversal symmetry when there is a latency in the OPC playback. In this paper, we show that the motion-induced degradation of the OPC turbidity-suppression effect through a dynamic scattering medium shares the same decorrelation time constant as that determined from speckle intensity autocorrelation – a popular conventional measure of scatterer movement. We investigated this decorrelation characteristic time through a 1.5-mm-thick dorsal skin flap of a living mouse and found that it ranges from 50 ms to 2.5 s depending on the level of immobilization. This study provides information on relevant time scales for applying OPC to living tissues. PMID:25657876

  13. Oxygen vacancies dependent phase transition of Y2O3 films

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Zhang, Kan; Huang, Hao; Wen, Mao; Li, Quan; Zhang, Wei; Hu, Chaoquan; Zheng, Weitao

    2017-07-01

    Y2O3 films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y2O3) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y2O3 thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (Ts), in which oxygen vacancies increase monotonously with increasing Ts. For as-deposited Y2O3 films, oxygen vacancies present at high Ts can promote the nucleation of monoclinic phase, meanwhile, high Ts can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high Ts. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and maintenance of high hardness.

  14. APPLICATION OF A SPRAY DEPOSITION METHOD FOR REVERSED PHASE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Four coal gasification wastewater samples were analyzed for nonvolatile and polar organics by liquid chromatography-mass spectrometry (LC/MS). Samples were separated on a reverse phase liquid chromatographic column using an aqueous solvent as the eluant. A special spray depositio...

  15. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    DOE PAGES

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less

  16. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    PubMed

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography.

    PubMed

    Qiu, Jing; Dai, Shouhui; Zheng, Chuangmu; Yang, Shuming; Chai, Tingting; Bie, Mei

    2011-07-01

    This study used chiral columns packed with 3-μm and 5-μm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-μm and 5-μm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  18. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (Rs<1.0) and low efficiency (800-16,300plates/m), addition of a small amount of HKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. [A reversed-phase HPLC method for determining tretinoin].

    PubMed

    Jiang, X G; Xi, N Z

    1994-09-01

    Tretinoin (Tre) and its active stereo isomer isotretinoin (Iso) were simultaneously determined by reversed-phase high pressure liquid chromatographic method with a uv detector adjusted to 348 nm. Separation was accomplished on YWG-C18 column by using a MeOH:NH4Ac buffer (pH 6.0) 85:15 (vol:vol), chlorpromazine (Chl) being chosen as internal standard. Minimal detectable amount of Tre was 0.5 ng. Calibration curve was linear (r = 0.9999) in the concentration range of 25-2500 ng.ml-1. This method was used to determinate the transdermal amounts of Tre from three different preparations in Franz diffusion cell in vitro. The results showed that the proposed method could distinguish the transdermal differences from various formulations or different skin samples. In addition, it is able to be used in quantitative analysis of Tre and Iso.

  20. Piezochromism and structural and electronic properties of benz[a]anthracene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Zhang, Rong; Yao, Yansun

    2017-01-31

    We report a combined experimental and theoretical study of the high pressure behavior of a herringbone-type hydrocarbon benz[a]anthracene (BaA) using fluorescence spectroscopy, X-ray diffraction, optical absorption, photoconductivity measurements, and first-principles density functional theory (DFT) calculations. The ambient-pressure molecular solid phase of BaA was found to be stable up to ~15.0 GPa. Increasing the external pressure within this region would induce a reversible piezochromic colour change in the sample, from yellow-green to light brown. The reversibility of the colour change was confirmed by both optical observations and fluorescence measurements. Further compression beyond 15 GPa leads to polymerization of the sample andmore » formation of an amorphous hydrogenated carbon. The low pressure crystalline phase is not recoverable when the sample is decompressed from pressure above 15 GPa. DFT investigation of the structures at zero temperature suggests that the formation of a crystalline polymeric phase can take place between 30 and 117 GPa, however the kinetic barriers hinder the process at low pressure regions. The phase transition is therefore suggested to proceed along a gradual transition path to an amorphous phase at a lower reaction threshold, activated by finite temperature effects. Optical absorption measurements reveal that the band gap of BaA decreases at high pressure, from 2.4 eV at 0.5 GPa to 1.0 eV at 50.6 GPa. The DFT calculations further suggest that the band gap of BaA in the molecular phase could reduce to ~0.1 eV at 117 GPa. Photoconductivity measurements show a continuous increase of photocurrent in the molecular phase region, which most likely originated from the increase of carrier mobility under pressure.« less

  1. Role of relativity in high-pressure phase transitions of thallium.

    PubMed

    Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev

    2017-02-20

    We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.

  2. Probing the dynamic reversibility and generation of dynamic combinatorial libraries in the presence of bacterial model oligopeptides as templating guests of tetra-carbohydrazide macrocycles using electrospray mass spectrometry.

    PubMed

    Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai

    2012-12-30

    Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.

  3. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    PubMed

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    PubMed

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, V.; Fitz, D.E.; Kouri, D.J.

    1980-09-15

    The effect of phase choice and partial wave parameter choice on CS and IOS inelastic degeneracy averaged differential cross sections is studied. An approximate simplified CS scattering amplitude for l-bar=1/2(l'+l) is derived and is shown to have a form which closely resembles the McGuire--Kouri scattering amplitude for odd ..delta..j transitions and reduces to it for even ..delta..j transitions. The choice of phase in the CS wave function is shown to result in different approximations which yield significantly different shapes for the degeneracy averaged differential cross section. Time reversal symmetry arguments are employed to select the proper phase choice. IOS calculationsmore » of the degeneracy averaged differential cross sections of He--CO, He--Cl and Ne--HD using l-bar=1/2(l+l') and the phase choice which ensures proper time reversal symmetry are found to correct the phase disagreement which was previously noted for odd ..delta..j transitions using l-bar=l or l' and either the time reversal phase or other phase choices.« less

  6. Determination of Proanthocyanidin A2 Content in Phenolic Polymer Isolates by Reversed-Phase High Performance Liquid Chromatography

    USDA-ARS?s Scientific Manuscript database

    This article summarizes the development of an analytical method for the determination of proanthocyanidin (PAC) A2 in phenolic polymer isolates following acid-catalyzed degradation in the presence of excess phloroglucinol. Isolates from cranberry juice concentrate (CJC) were extensively characterize...

  7. CHARACTERIZATION OF DANSYLATED CYSTEINE, CYSTINE, GLUTATHIONE, AND GLUTATHIONE DISULFIDE BY NARROW BORE LIQUID CHROMATOGRAPHY - ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    A method using reversed phase high performance liquid chromtography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the dientity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and...

  8. CHARACTERIZATION OF DANSYLATED CYSTEINE, GLUTATHIONE DISULFIDE, CYSTEINE AND CYSTINE BY NARROW BORE LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometric (RP-LC/ESI-MS) method has been developed to confirm the identity of dansylated derivatives of cysteine and glutathione, and their respective dimers. Cysteine, GSH, CSSC...

  9. Alterations in the sarcoplasmic protein fraction of beef muscle with postmortem aging and hydrodynamic pressure processing

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis (CE) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis were utilized to detect differences in the sarcoplasmic protein profiles of beef strip loins subjected to aging and hydrodynamic pressure processing (HDP) treatments. At 48 h postmortem, stri...

  10. Kinetics on cocondensation between phenol and urea through formaldehyde I

    Treesearch

    Yasunori Yoshida; Bunchiro Tomita; Chung-Yun Hse

    1995-01-01

    The kinetics of the reactions of methylolphenols and urea were investigated using 2- and 4-hydroxybenzyl alcohols. The high-performance liquid chromatography (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to the corresponding methylolphenols in reaction mixtures were...

  11. Kinetics on cocondensation between phenol and urea through formaldehyde I.

    Treesearch

    Yasunori Yoshida; Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The kinetics of the ractions of methylolphenols and urea were investigated using 2- and 4- hydroxybenzyl alcohols. The high-performance liquid chromatogrpahy (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to be corresponding methylolphenols in reaction mixtures were...

  12. High Performance Liquid Chromatography of Some Analgesic Compounds: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Haddad, Paul; And Others

    1983-01-01

    Background information, procedures, and results are provided for an experiment demonstrating techniques of solvent selection, gradient elution, pH control, and ion-pairing in the analysis of an analgesic mixture using reversed-phase liquid chromatography on an octadecylsilane column. Although developed using sophisticated/expensive equipment, less…

  13. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  14. ON-LINE DEOXYGENATION IN REDUCTIVE (AND OXIDATIVE) AMPEROMETRIC DETECTION: ENVIRONMENTAL APPLICATIONS IN THE LIQUID CHROMATOGRAPHY OF ORGANIC PEROXIDES

    EPA Science Inventory

    Cyclic voltammetry was used qualitatively to characterize and determine the feasibility of the oxidation and reduction of selected organic peroxides and hydroperoxides at a glassy carbon electrode. Organic peroxides were determined using reversed-phase high-performance liquid chr...

  15. Phase reversal of vibratory signals in honeycomb may assist dancing honeybees to attract their audience.

    PubMed

    Tautz, J; Casas, J; Sandeman, D

    2001-11-01

    Forager honeybees dancing on the comb are able to attract dance-followers from distances across the comb that are too remote for tactile or visual signals to play a role. An alternative signal could be the vibrations of the comb at 200-300 Hz generated by dancing bees but which, without amplification, may not be large enough to alert remote dance-followers. We describe here, however, an unexpected property of honeycomb when it is subjected to vibration at around 200 Hz that would represent an effective amplification of the vibratory signals for remote dance-followers. We find that, at a specific distance from the origin of an imposed vibration, the walls across a single comb cell abruptly reverse the phase of their displacement and move in opposite directions to one another. Behavioural measurements show that the distance from which the majority of remote dance-followers are recruited coincides with the location of this phase-reversal phenomenon relative to the signal source. We propose that effective signal amplification by the phase-reversal phenomenon occurs when bees straddle a cell across which the phase reversal is expressed. Such a bee would be subjected to a situation in which the legs were moving towards and away from one another instead of in the same direction. In this manner, remote dance-followers could be alerted to a dancer performing in their vicinity.

  16. Characterization of retentivity of reversed phase liquid chromatography columns.

    PubMed

    Ying, P T; Dorsey, J G

    1991-03-01

    There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".

  17. Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys.

    PubMed

    Castany, P; Yang, Y; Bertrand, E; Gloriant, T

    2016-12-09

    In bcc metastable β titanium alloys, and particularly in superelastic alloys, a unique {332}⟨113⟩ twinning system occurs during plastic deformation. However, in situ synchrotron x-ray diffraction during a tensile test shows that the β phase totally transforms into α^{''} martensite under stress in a Ti-27Nb (at. %) alloy. {332}⟨113⟩_{β} twins are thus not formed directly in the β phase but are the result of the reversion of {130}⟨310⟩_{α^{''}} parent twins occurring in martensite under stress. The formation of an interfacial twin boundary ω phase is also observed to accommodate strains induced during the phase reversion.

  18. High-performance liquid chromatography analysis methods developed for quantifying enzymatic esterification of flavonoids in ionic liquids.

    PubMed

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2008-07-11

    Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.

  19. Method 447.0 - Determination of Chlorophylls a and b and Identification of Other Pigments of Interest in Marine and Freshwater Algae Using High Performance Liquid Chromatography with Visible Wavelength Detection

    EPA Science Inventory

    This method provides a procedure for determination of chlorophylls a (chl a) and b (chl b) found in marine and freshwater phytoplankton. Reversed phase high performance liquid chromatography (HPLC) with detection at 440 nm is used to separate the pigments from a complex pigment ...

  20. Quantitative analysis of psilocybin and psilocin in psilocybe baeocystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography.

    PubMed

    Beug, M W; Bigwood, J

    1981-03-27

    Rapid quantification of psilocybin and psilocin in extracts of wild mushrooms is accomplished by reversed-phase high-performance liquid chromatography with paired-ion reagents. Nine solvent systems and three solid supports are evaluated for their efficiency in separating psilocybin, psilocin and other components of crude mushroom extracts by thin-layer chromatography.

  1. Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography.

    PubMed

    Turak, Fatma; Güzel, Remziye; Dinç, Erdal

    2017-04-01

    A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.

  2. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  3. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748

  4. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.

  5. Reverse Algols

    NASA Technical Reports Server (NTRS)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  6. Investigations of stacking fault density in perpendicular recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less

  7. Local Gram-Schmidt and covariant Lyapunov vectors and exponents for three harmonic oscillator problems

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2012-02-01

    We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  8. Thermodynamic and kinetic characterization of polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography.

    PubMed

    Howerton, Samuel B; McGuffin, Victoria L

    2003-07-15

    The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.

  9. Poly(dodecyl methacrylate) as solvent of paraffins for phase change materials and thermally reversible light scattering films.

    PubMed

    Puig, Julieta; Williams, Roberto J J; Hoppe, Cristina E

    2013-09-25

    Paraffins are typical organic phase change materials (PCM) used for latent heat storage. For practical applications they must be encapsulated to prevent leakage or agglomeration during fusion. In this study it is shown that eicosane (C20H42 = C20) in the melted state could be dissolved in the hydrophobic domains of poly(dodecyl methacrylate) (PDMA) up to concentrations of 30 wt %, avoiding the need of encapsulation. For a 30 wt % solution, the heat of phase change was close to 69 J/g, a reasonable value for its use as a PCM. The fully converted solution remained transparent at 80 °C with no evidence of phase separation but became opaque by cooling as a consequence of paraffin crystallization. Heating above the melting temperature regenerated a transparent material. A high contrast ratio and abrupt transition between opaque and transparent states was observed for the 30 wt % blends, with a transparent state at 35 °C and an opaque state at 23 °C. This behavior was completely reproducible during consecutive heating/cooling cycles, indicating the possible use of this material as a thermally reversible light scattering (TRLS) film.

  10. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 1 - Large increases in isoform resolution of human transferrin by use of dual simultaneous independent gradients of pH & acetonitrile on a mixed bed (anion exchange plus reversed phase) stationary phase.

    PubMed

    Tsonev, Latchezar I; Hirsh, Allen G

    2016-10-14

    We have previously described a liquid chromatographic (LC) method for uncoupling controlled, wide range pH gradients and simultaneous controlled gradients of a non-buffering solute on ion exchange resins (Hirsh and Tsonev, 2012) [1]. Here we report the application of this two dimensional LC technique to the problem of resolving Human Transferrin (HT) isoforms. This important iron transporting protein should theoretically occur in several thousand glycoforms, but only about a dozen have been reported. Using dual simultaneous independent gradients (DSIGs) of acetonitrile (ACN) and pH on a mixed bed stationary phase (SP) consisting of a mixture of an anion exchange resin and a reversed phase (RP) resin we partially resolve about 60 isoforms. These are likely to be partially refolded glycoforms generated by interaction of HT with the highly hydrophobic RP SP, as well as distinct folded glycoforms. Thus this study should have interesting implications for both glycoform separation and the study of protein folding. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the rhombohedral structure is more stable than the tetragonal phase observed during the lithiation of nanoparticles.« less

  12. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE PAGES

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.; ...

    2017-02-07

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the rhombohedral structure is more stable than the tetragonal phase observed during the lithiation of nanoparticles.« less

  13. Reversibility of temperature driven discrete layer-by-layer formation of dioctyl-benzothieno-benzothiophene films.

    PubMed

    Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O

    2017-03-22

    Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.

  14. The Relationship between Reversed Masked Priming and the Tri-Phasic Pattern of the Lateralised Readiness Potential

    PubMed Central

    Seiss, Ellen; Klippel, Marie; Hope, Christopher; Boy, Frederic; Sumner, Petroc

    2014-01-01

    One of the potential explanations for negative compatibility effects (NCE) in subliminal motor priming tasks has been perceptual prime-target interactions. Here, we investigate whether the characteristic tri-phasic LRP pattern associated with the NCE is caused by these prime-target interactions. We found that both the prime-related phase and the critical reversal phase remain present even on trials where the target is omitted, confirming they are elicited by the prime and mask, not by prime-target interactions. We also report that shape and size of the reversal phase are associated with response speed, consistent with a causal role for the reversal for the subsequent response latency. Additionally, we analysed sequential modulation of the NCE by previous conflicting events, even though such conflict is subliminal. In accordance with previous literature, this modulation is small but significant. PMID:24728088

  15. Comparison of centric and reverse-centric trajectories for highly accelerated three-dimensional saturation recovery cardiac perfusion imaging.

    PubMed

    Wang, Haonan; Bangerter, Neal K; Park, Daniel J; Adluru, Ganesh; Kholmovski, Eugene G; Xu, Jian; DiBella, Edward

    2015-10-01

    Highly undersampled three-dimensional (3D) saturation-recovery sequences are affected by k-space trajectory since the magnetization does not reach steady state during the acquisition and the slab excitation profile yields different flip angles in different slices. This study compares centric and reverse-centric 3D cardiac perfusion imaging. An undersampled (98 phase encodes) 3D ECG-gated saturation-recovery sequence that alternates centric and reverse-centric acquisitions each time frame was used to image phantoms and in vivo subjects. Flip angle variation across the slices was measured, and contrast with each trajectory was analyzed via Bloch simulation. Significant variations in flip angle were observed across slices, leading to larger signal variation across slices for the centric acquisition. In simulation, severe transient artifacts were observed when using the centric trajectory with higher flip angles, placing practical limits on the maximum flip angle used. The reverse-centric trajectory provided less contrast, but was more robust to flip angle variations. Both of the k-space trajectories can provide reasonable image quality. The centric trajectory can have higher CNR, but is more sensitive to flip angle variation. The reverse-centric trajectory is more robust to flip angle variation. © 2014 Wiley Periodicals, Inc.

  16. GRASP/Ada (Graphical Representations of Algorithms, Structures, and Processes for Ada): The development of a program analysis environment for Ada. Reverse engineering tools for Ada, task 1, phase 2

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1990-01-01

    The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.

  17. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection.

    PubMed

    Novak, Ivana; Janeiro, Patricia; Seruga, Marijan; Oliveira-Brett, Ana Maria

    2008-12-23

    Several flavonoids present in red grape skins from four varieties of Portuguese grapes were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection (ECD). Extraction of flavonoids from red grape skins was performed by ultrasonication, and hydrochloric acid in methanol was used as extraction solvent. The developed RP-HPLC method used combined isocratic and gradient elution with amperometric detection with a glassy carbon-working electrode. Good peak resolution was obtained following direct injection of a sample of red grape extract in a pH 2.20 mobile phase. Eleven different flavonoids: cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-glucoside (myrtillin), petunidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside (oenin), (+)-catechin, rutin, fisetin, myricetin, morin and quercetin, can be separated in a single run by direct injection of sample solution. The limit of detection obtained for these compounds by ECD was 20-90 pg/L, 1000 times lower when compared with photodiode array (PDA) limit of detection of 12-55 ng/L. RP-HPLC-ECD was characterized by an excellent sensitivity and selectivity, and appropriate for the simultaneous determination of these electroactive phenolic compounds present in red grape skins.

  18. Rapid and Sensitive Reverse-phase High-performance Liquid Chromatography Method for Estimation of Ketorolac in Pharmaceuticals Using Weighted Regression

    PubMed Central

    Dubey, S. K.; Duddelly, S.; Jangala, H.; Saha, R. N.

    2013-01-01

    A reliable, rapid and sensitive isocratic reverse phase high-performance liquid chromatography method has been developed and validated for assay of ketorolac tromethamine in tablets and ophthalmic dosage forms using diclofenac sodium as an internal standard. An isocratic separation of ketorolac tromethamine was achieved on Oyster BDS (150×4.6 mm i.d., 5 μm particle size) column using mobile phase of methanol:acetonitrile:sodium dihydrogen phosphate (20 mM; pH 5.5) (50:10:40, %v/v) at a flow rate of 1.0 ml/min. The eluents were monitored at 322 nm for ketorolac and at 282 nm for diclofenac sodium with a photodiode array detector. The retention times of ketorolac and diclofenac sodium were found to be 1.9 min and 4.6 min, respectively. Response was a linear function of drug concentration in the range of 0.01-15 μg/ml (R2=0.994; linear regression model using weighing factor 1/x2) with a limit of detection and quantification of 0.002 μg/ml and 0.007 μg/ml, respectively. The % recovery and % relative standard deviation values indicated the method was accurate and precise. PMID:23901166

  19. Quantitation of polyamines in cultured cells and tissue homogenates by reversed-phase high-performance liquid chromatography of their benzoyl derivatives.

    PubMed

    Verkoelen, C F; Romijn, J C; Schroeder, F H; van Schalkwijk, W P; Splinter, T A

    1988-04-08

    A rapid and simple method, originally described by Redmond and Tseng [J. Chromatogr., 170 (1979) 479] was applied to the analysis of di- and polyamines in cultured human tumour cells and human tumour xenografts. Optimization of the procedures and evaluation of the characteristic features of the assay are described. The (modified) procedure employs precolumn derivatization with benzoyl chloride, extraction of the derivatives by chloroform, separation by reversed-phase high-performance liquid chromatography under isocratic conditions and detection by ultraviolet absorbance measurement at 229 nm. The complete analysis was accomplished within 10 min per sample. The detection limit was ca. 1 pmol. The intra- and inter-assay coefficients of variation were 2.5-4.4% and 3.4-13.1%, respectively. The presence of well known inhibitors of polyamine biosynthesis, such as DL-alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), did not interfere with the assay, and disturbance by cyclohexylamine could be avoided by changing the polarity of the mobile phase. The method proved to be very suitable because it is rapid, simple, requires a minimum of sample pretreatment, and still provides sufficient sensitivity to quantitate polyamines in relatively small amounts of cells (10(5) cells) or tumour tissues (less than 1 mg), even after treatment with inhibitors of polyamine biosynthesis.

  20. Pressure-induced structural transition in chalcopyrite ZnSiP2

    NASA Astrophysics Data System (ADS)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.

    2017-05-01

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.

  1. Light-Driven Reversible Transformation between Self-Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage.

    PubMed

    Zhou, Kang; Bisoyi, Hari Krishna; Jin, Jian-Qiu; Yuan, Cong-Long; Liu, Zhen; Shen, Dong; Lu, Yan-Qing; Zheng, Zhi-Gang; Zhang, Weian; Li, Quan

    2018-04-23

    Self-organized stimuli-responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self-organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well-defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doty, F. D.; Boman, A.; Arnold, S.

    2001-10-15

    Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.

  3. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  4. Learning and altering behaviours by reinforcement: neurocognitive differences between children and adults.

    PubMed

    Shephard, E; Jackson, G M; Groom, M J

    2014-01-01

    This study examined neurocognitive differences between children and adults in the ability to learn and adapt simple stimulus-response associations through feedback. Fourteen typically developing children (mean age=10.2) and 15 healthy adults (mean age=25.5) completed a simple task in which they learned to associate visually presented stimuli with manual responses based on performance feedback (acquisition phase), and then reversed and re-learned those associations following an unexpected change in reinforcement contingencies (reversal phase). Electrophysiological activity was recorded throughout task performance. We found no group differences in learning-related changes in performance (reaction time, accuracy) or in the amplitude of event-related potentials (ERPs) associated with stimulus processing (P3 ERP) or feedback processing (feedback-related negativity; FRN) during the acquisition phase. However, children's performance was significantly more disrupted by the reversal than adults and FRN amplitudes were significantly modulated by the reversal phase in children but not adults. These findings indicate that children have specific difficulties with reinforcement learning when acquired behaviours must be altered. This may be caused by the added demands on immature executive functioning, specifically response monitoring, created by the requirement to reverse the associations, or a developmental difference in the way in which children and adults approach reinforcement learning. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Toward understanding the lithiation/delithiation process in Fe 0.5TiOPO 4/C electrode material for lithium-ion batteries

    DOE PAGES

    Lasri, Karima; Mahmoud, Abdelfattah; Saadoune, Ismael; ...

    2015-11-28

    We used Fe 0.5TiOPO 4/C composite as anode material for LIB and exhibits excellent cycling performance when the electrode is cycled in two different voltage ranges [3.0-1.3V] and [3.0- 0.02V] where different insertion mechanisms were involved. Based on in situ X-ray diffraction, in situ XANES spectroscopy results, and various electrochemical analyses at high and low voltage cut-off, we found that Fe 0.5TiOPO 4/C electrode materials still maintains its structure crystallinity after cycling between [3.0-1.3V] showing formation of new phase at the end of first discharge, with a reversible capacity of 100 mAhg-1 after 50 cycles at C/5 rate. Moreover, atmore » highly lithiated states, [3.0-0.02V] voltage range, a reduction decomposition reaction highlights the Li-insertion/extraction behaviors, and low phase crystallinity is observed during cycling, in addition an excellent rate behavior and a reversible capacity of 250 mAhg - 1 can still be maintained after 50 cycles at high cycling rate 5C.« less

  6. Quantitative high-performance liquid chromatography of nucleosides in biological materials.

    PubMed

    Gehrke, C W; Kuo, K C; Davis, G E; Suits, R D; Waalkes, T P; Borek, E

    1978-03-21

    A rigorous, comprehensive, and reliable reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the analysis of ribonucleosides in urine (psi, m1A, m1I, m2G, A, m2(2)G). An initial isolation of ribonucleosides with an affinity gel containing an immobilized phenylboronic acid was used to improve selectivity and sensitivity. Response for all nucleosides was linear from 0.1 to 50 nmoles injected and good quantitation was obtained for 25 microliter or less of sample placed on the HPLC column. Excellent precision of analysis for urinary nucleosides was achieved on matrix dependent and independent samples, and the high resolution of the reversed-phase column allowed the complete separation of 9 nucleosides from other unidentified UV absorbing components at the 1-ng level. Supporting experimental data are presented on precision, recovery, chromatographic methods, minimum detection limit, retention time, relative molar response, sample clean-up, stability of nucleosides, boronate gel capacity, and application to analysis of urine from patients with leukemia and breast cancer. This method is now being used routinely for the determination of the concentration and ratios of nucleosides in urine from patients with different types of cancer and in chemotherapy response studies.

  7. Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests.

    PubMed

    Vanhoenacker, Gerd; Vandenheede, Isabel; David, Frank; Sandra, Pat; Sandra, Koen

    2015-01-01

    Comprehensive two-dimensional liquid chromatography (LC×LC) is here proposed as a novel tool for peptide mapping of therapeutic monoclonal antibodies in both R&D and routine (QA/QC) environments. This is illustrated by the analysis of the tryptic digest of trastuzumab (Herceptin) applying a commercially available two-dimensional 2D-LC system. Three different LC×LC combinations, i.e., strong cation-exchange × reversed-phase (SCX×RP), reversed-phase × reversed-phase (RP×RP), and hydrophilic interaction × reversed-phase (HILIC×RP), are reported. Detection was carried out using both UV detection (DAD) and mass spectrometry (MS). Several challenges related to the application of LC×LC in peptide mapping and the hyphenation to MS are addressed. The applicability of LC×LC in the assessment of identity, purity, and comparability is demonstrated by the analysis of different Herceptin innovator production batches, a Herceptin biosimilar in development and of stressed samples. The described methodology was shown to be precise in terms of peak volume and (2)D retention time opening interesting perspectives for use in QA/QC testing.

  8. Report: An ex vivo up-take of levamisole molecules by cestode (Monezia expensa) of goat (Capra hirsa) and its detection through RP-HPLC.

    PubMed

    Ayaz, Muhammad Mazhar; Sajid, Muhammad; Das, Sanjota Nirmal; Hanif, Muhammad

    2018-05-01

    Detection of various molecules of drugs remained a prime issue especially in tissues of animals, humans and in their target parasites. The cestode/tapeworms pose a dilemma because of their weird body composition and uptake pattern of nutrients and medicines especially through absorption by tegument. We selected levamisole; thought to be potent antiparasitic/ani-cestodal drug. The uptake of levamisole (LEV) through cestodeal tissues is studied through HPCL in this paper. High performance liquid chromatography technique has been utilized to know the uptake of levamisole in tissues of cestodes of Goat (Monezia expensa) in small ruminants. The drug was exposed to M. expensa by in vitro till its death or a parasite ceases its movement. The tissue/ part of proglattids of the M. expensa were homogenized with some modifications and levamisole extraction was performed with liquid phase extraction method. The evaporation of solvent was done and the residual cestodal tissues were cleaned by solid phase. After the solid phase extraction method, the recovery of drug, detection and quantification of levamisole from cestodal tissues was determined through Reverse Phase Column High Performance Liquid Chromatography (RP-HPLC). Levamisole (LEV) molecules assay was obtained on a C18 reverse-phase (20um, 6mm x 150mm) column at flow rate of 1ml/min using acetonitrile and ammonium acetate as mobile phase and UV detection was done at 254nm. The development of method of Levamisole (LEV) detection from cestodal tissues by HPLC in vitro samples has been demonstrated first time in Pakistan, which can provide the solution of parasitic control and provide in sight in to the uptake of anti cestodal drugs either against human or livestock parasites.

  9. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    PubMed

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development and validation of a reversed-phase fluorescence HPLC method for determination of bucillamine in human plasma using pre-column derivatization with monobromobimane.

    PubMed

    Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok

    2009-07-15

    A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.

  11. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    PubMed

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Pressure-induced transformations in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  13. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  14. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Han, F. F.; Inoue, A.; Han, Y.; Kong, F. L.; Zhu, S. L.; Shalaan, E.; Al-Marzouki, F.; Greer, A. L.

    2017-04-01

    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  15. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    PubMed

    Han, F F; Inoue, A; Han, Y; Kong, F L; Zhu, S L; Shalaan, E; Al-Marzouki, F; Greer, A L

    2017-04-13

    Thermal stability and crystallization of three multicomponent glassy alloys, Al 86 Y 7 Ni 5 Co 1 Fe 0.5 Pd 0.5 , Al 85 Y 8 Ni 5 Co 1 Fe 0.5 Pd 0.5 and Al 84 Y 9 Ni 4 Co 1.5 Fe 0.5 Pd 1 , were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic Al x M y (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al 3 Y + Al 9 (Co, Ni) 2  + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent Al x M y ] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable Al x M y compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  16. A NEW HPLC METHOD FOR SEPARATION OF PHYTOPLANKTON PIGMENTS IN NATURAL SAMPLES

    EPA Science Inventory

    A new high-performance liquid chromatographic (HPLC) method was developed to analyze, in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a reverse-phase amide C16 (RP-amide C16) column and an elution gradient o...

  17. The Primary Sequence of Acetylcholinesterase and Selective Antibodies for the Detection of Organophosphate Toxicity

    DTIC Science & Technology

    1991-06-07

    Ava1iability ftass ,,, I I .., I. INTRODUCTION Sir Henry Dale, in 1914, suggested that an enzyme which degrades the esters of choline played a role in...yielded the deacylated peptide containing the glycan- inositol which could be isolated by size-fractionation followed by reverse phase high pressure

  18. SEPARATION AND CHARACTERIZATION OF TETROL METABOLITES OF BENZO[A]PYRENE-DNA ADDUCTS USING HPLC AND SOLID-MATRIX ROOM TEMPERATURE LUMINESCENCE. (R824100)

    EPA Science Inventory

    Abstract

    Four tetrols of benzo[a]pyrene-DNA adducts were separated using reversed-phase high performance liquid chromatography. Chromatographic fractions containing a given tetrol were readily characterized with solid-matrix room temperature luminescence techniques. So...

  19. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  20. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    PubMed

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Model-based phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.

  2. Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography.

    PubMed

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali

    2014-10-15

    A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.

  3. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    PubMed Central

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  4. Synthesis, structural characterization and high pressure phase transitions of monolithium hydronium sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis, E-mail: debasis.banerjee@stonybrook.edu; Plonka, Anna M.; Kim, Sun Jin

    2013-01-15

    A three dimensional lithium hydronium sulfate LiSO{sub 4}{center_dot}H{sub 3}O [1], [space group Pna2{sub 1}a=8.7785(12) A, b=9.1297(12) A, c=5.2799(7) A, V=423.16(10) A{sup 3}] was synthesized via solvothermal methods using 1,5-naphthalenedisulfonic acid (1,5-NSA) as the source of sulfate ions. The structure of [1], determined by single crystal X-ray diffraction techniques, consists of corner sharing LiO{sub 4} and SO{sub 4} tetrahedra, forming an anionic 3-D open framework that is charge balanced by hydronium ions positioned within channels running along [001] and forming strong H-bonding with the framework oxygen atoms. Compound [1] undergoes two reversible phase transitions, involving reorientation of SO{sub 4}{sup 2-} ionsmore » at pressures of approximately 2.5 and 5 GPa at room temperature, as evident from characteristic discontinuous frequency drops in the {nu}{sub 1} mode of the Raman spectra. Additionally, compound [1] forms dense {beta}-lithium sulfate at 300 Degree-Sign C, as evident from temperature dependent powder XRD and combined reversible TGA-DSC experiments. - Graphical abstract: Left: View of corner-shared LiO{sub 4} and SO{sub 4} tetrahedra along [001] direction with hydronium ions situated in the channels. Right: (a) Photograph of the loaded DAC (b) Ambient pressure Raman spectrum of compound [1] (c) Evolution of the {nu}{sub 1} mode with the increasing and decreasing pressure indicating transitions to high-pressure phases at {approx}2.5 (red curves) and {approx}5 GPa (blue curves) and at {approx}3.5 GPa upon decompression. Highlights: Black-Right-Pointing-Pointer A 3-D lithium hydronium sulfate is synthesized by solvothermal methods. Black-Right-Pointing-Pointer Two high pressure phase transition occurs due to rotation of sulfate groups. Black-Right-Pointing-Pointer The framework undergoes a high temperature structural transformation, to form {beta}-Li{sub 2}SO{sub 4} phase.« less

  5. Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reversed-phase high-performance liquid chromatography by using factorial design and response surface methodology.

    PubMed

    Andrade-Eiroa, Auréa; Diévart, Pascal; Dagaut, Philippe

    2010-04-15

    A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min). (c) 2009 Elsevier B.V. All rights reserved.

  6. Multi-frame acquisition scheme for efficient energy-dispersive X-ray magnetic circular dichroism in pulsed high magnetic fields at the Fe K-edge

    PubMed Central

    Strohm, Cornelius; Perrin, Florian; Dominguez, Marie-Christine; Headspith, Jon; van der Linden, Peter; Mathon, Olivier

    2011-01-01

    Using a fast silicon strip detector, a multi-frame acquisition scheme was implemented to perform energy-dispersive X-ray magnetic circular dichroism at the iron K-edge in pulsed high magnetic fields. The acquisition scheme makes use of the entire field pulse. The quality of the signal obtained from samples of ferrimagnetic erbium iron garnet allows for quantitative evaluation of the signal amplitude. Below the compensation point, two successive field-induced phase transitions and the reversal of the net magnetization of the iron sublattices in the intermediate phase were observed. PMID:21335909

  7. An assessment of the retention behaviour of polycyclic aromatic hydrocarbons on reversed phase stationary phases: selectivity and retention on C18 and phenyl-type surfaces.

    PubMed

    Kayillo, Sindy; Dennis, Gary R; Shalliker, R Andrew

    2006-09-08

    In this manuscript the retention and selectivity of a set of linear and non-linear PAHs were evaluated on five different reversed-phase columns. These phases included C18 and C18 Aqua stationary phases, as well as three phenyl phases: Propyl-phenyl, Synergi polar-RP and Cosmosil 5PBB phase. Overall, the results revealed that the phenyl-type columns offered better separation performance for the linear PAHs, while the separation of the structural isomer PAHs was enhanced on the C18 columns. The Propyl-phenyl column was found to have the highest molecular-stationary phase interactions, as evidenced by the greatest rate of change in 'S' (0.71) as a function of the molecular weight in the PAH homologous series, despite having the lowest surface coverage (3% carbon load) (where S is the slope of a plot of logk versus the solvent composition). In contrast, the C18 Aqua column, having the highest surface coverage (15% carbon load) was found to have the second lowest molecular-stationary phase interactions (rate of change in S=0.61). Interestingly, the Synergi polar-RP column, which also is a phenyl stationary phase behaved more 'C18-like' than 'phenyl-like' in many of the tests undertaken. This is probably not unexpected since all five phases were reversed phase.

  8. A simple and selective method for determination of phthalate biomarkers in vegetable samples by high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang

    2016-06-01

    In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC-MS/MS.

    PubMed

    Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas

    2018-01-01

    A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Revealing mechanism responsible for structural reversibility of single-crystal VO 2 nanorods upon lithiation/delithiation

    DOE PAGES

    Liu, Qi; Tan, Guoqiang; Wang, Peng; ...

    2017-04-17

    A pure phase of VO 2(B) nanorods have been synthesized through an energy-efficient microwave hydrothermal reaction and used as cathode materials of lithium ion batteries, which exhibit promising specific capacity (e.g., 130 mA h g -1 even after 100 charge/discharge cycles) and rate capacity (e.g., ~130 mA h g -1 at a high current of 400 mA g -1). The excellent cyclability originates from the structural reversibility of VO 2(B) upon lithiation/delithiation that is confirmed by the in situ high-energy synchrotron X-ray diffraction (HEXRD) and in situ x-ray adsorption near-edge spectroscopy (XANES) of the VO 2 nanorods in operating batterymore » cells. As a result, the real-time results reveal that discharge forces lithium ions to insert firstly into the tunnels with the largest size along b direction followed by the second largest tunnels along c direction, which is completely reversible in the charge process.« less

  11. Revealing mechanism responsible for structural reversibility of single-crystal VO 2 nanorods upon lithiation/delithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi; Tan, Guoqiang; Wang, Peng

    A pure phase of VO 2(B) nanorods have been synthesized through an energy-efficient microwave hydrothermal reaction and used as cathode materials of lithium ion batteries, which exhibit promising specific capacity (e.g., 130 mA h g -1 even after 100 charge/discharge cycles) and rate capacity (e.g., ~130 mA h g -1 at a high current of 400 mA g -1). The excellent cyclability originates from the structural reversibility of VO 2(B) upon lithiation/delithiation that is confirmed by the in situ high-energy synchrotron X-ray diffraction (HEXRD) and in situ x-ray adsorption near-edge spectroscopy (XANES) of the VO 2 nanorods in operating batterymore » cells. As a result, the real-time results reveal that discharge forces lithium ions to insert firstly into the tunnels with the largest size along b direction followed by the second largest tunnels along c direction, which is completely reversible in the charge process.« less

  12. Topological phases in a Kitaev chain with imbalanced pairing

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, X. Z.; Zhang, G.; Song, Z.

    2018-03-01

    We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. An exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. Such phases are destroyed at the points where the coalescence of ground states occurs, associated with the time-reversal symmetry breaking. We find that the Majorana edge modes also exist in an open chain in the time-reversal symmetry-unbroken region, demonstrating the bulk-edge correspondence in such a non-Hermitian system.

  13. Determination of pentachlorophenol in water and aquifer sediments by high-performance liquid chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.

    1981-01-01

    Methods for the determination of pentachlorophenol (PCP) in water and aquifer sediments are presented. Reverse-phase high-performance liquid chromotography employing ion suppression and gradient elution is used. PCP can be determined directly in water at a lower limit of detection Of 0.2 micrograms per liter. For extracts of sediment, PCP can be determined to a lower limit of 1.0 micrograms per kilogram.

  14. High-performance liquid chromatographic determination of ambroxol in human plasma.

    PubMed

    Nobilis, M; Pastera, J; Svoboda, D; Kvêtina, J; Macek, K

    1992-10-23

    Ambroxol has been determined in biological fluids using a rapid and sensitive high-performance liquid chromatographic method. The samples prepared from plasma by liquid-liquid extraction were analysed on reversed-phase silica gel by competing-ion chromatography with ultraviolet detection. The method was applied to the determination of ambroxol levels in twelve healthy volunteers after oral administration of 90 mg of ambroxol in tablets of Mucosolvan and Ambrosan.

  15. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography.

    PubMed

    Syu, Kai-Yang; Lin, Chih-Li; Huang, Hsiu-Chen; Lin, Jen-Kun

    2008-09-10

    Dabsyl chloride (dimethylaminoazobenzene sulfonyl chloride), a useful chromophoric labeling reagent for amino acids and amines, was developed in this laboratory in 1975. Although several methods have been developed to determine various types of amino acids, a quick and easy method of determining theanine, GABA, and other amino acids has not been developed in one HPLC system. In this paper are analyzed the free amino acid contents of theanine and GABA in different teas (green tea, black tea, oolong tea, Pu-erh tea, and GABA tea) with a dabsylation and reverse phase high-performance liquid chromatography (HPLC) system coupled with a detector at 425 nm absorbance. Two reverse phase columns, Hypersil GOLD and Zorbax ODS, were used and gave different resolutions of dabsyl amino acids in the gradient elution program. The data suggest that the tea source or the steps of tea-making may contribute to the theanine contents variations. High theanine contents of high-mountain tea were observed in both green tea and oolong tea. Furthermore, the raw (natural fermented) Pu-erh tea contained more theanine than ripe (wet fermented) Pu-erh tea, and the GABA contents in normal teas were generally lower than that in GABA tea.

  16. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression.

    PubMed

    Amaya, Ronny; Cancel, Limary M; Tarbell, John M

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease.

  17. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression

    PubMed Central

    Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease. PMID:27846267

  18. A simple, sensitive and rapid isocratic reversed-phase high-performance liquid chromatography method for determination and stability study of curcumin in pharmaceutical samples

    PubMed Central

    Amanolahi, Farjad; Mohammadi, Ali; Kazemi Oskuee, Reza; Nassirli, Hooriyeh; Malaekeh-Nikouei, Bizhan

    2017-01-01

    Objective: This study was designed to develop and validate a new reversed-phase high-performance liquid chromatography (RP-HPLC) method based on Q2 (R1) International Conference on Harmonization (ICH) guideline for determination of curcumin in pharmaceutical samples. Materials and Methods: The HPLC instrument method was optimized with isocratic elution with acetonitrile: ammonium acetate (45:55, v/v, pH 3.5), C18 column (150 mm×4.6 mm×5 µm particle size) and a flow rate of 1 ml/min in ambient condition and total retention time of 17 min. The volume of injection was set at 20 µl and detection was recorded at 425 nm. The robustness of the method was examined by changing the mobile phase composition, mobile phase pH, and flow rate. Results: The method was validated with respect to precision, accuracy and linearity in a concentration range of 2-100 µg/ml. The limit of detection (LOD) and limit of quantification (LOQ) were 0.25 and 0.5 µg/ml, respectively. The percentage of recovery was 98.9 to 100.5 with relative standard deviation (RSD) < 0.638%. Conclusion: The method was found to be simple, sensitive and rapid for determination of curcumin in pharmaceutical samples and had enough sensitivity to detect degradation product of curcumin produced under photolysis and hydrolysis stress condition. PMID:29062806

  19. Mode- and plasma rotation in a resistive shell reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brzozowski, J.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2004-02-01

    Mode rotation studies in a resistive shell reversed-field pinch, EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1 (2001)] are presented. The phase relations and nonlinear coupling of the resonant modes are characterized and compared with that expected from modeling based on the hypothesis that mode dynamics can be described by a quasi stationary force balance including electromagnetic and viscous forces. Both m=0 and m=1 resonant modes are studied. The m=1 modes have rotation velocities corresponding to the plasma flow velocity (20-60 km/s) in the core region. The rotation velocity decreases towards the end of the discharge, although the plasma flow velocity does not decrease. A rotating phase locked m=1 structure is observed with a velocity of about 60 km/s. The m=0 modes accelerate throughout the discharges and reach velocities as high as 150-250 km/s. The observed m=0 phase locking is consistent with theory for certain conditions, but there are several conditions when the dynamics are not described. This is not unexpected because the assumption of quasi stationarity for the mode spectra is not fulfilled for many conditions. Localized m=0 perturbations are formed in correlation with highly transient discrete dynamo events. These perturbations form at the location of the m=1 phase locked structure, but rotate with a different velocity as they spread out in the toroidal direction.

  20. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN

    DOE PAGES

    Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...

    2017-04-10

    III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.

  1. Metabolism studies of benzbromarone in rats by high performance liquid chromatography-quadrupole time of flight mass spectrometry.

    PubMed

    Wu, Haiqing; Peng, Ying; Wang, Shaojie; Wang, Kai; Zhao, Xunchen; Jiang, Fan

    2012-12-12

    A high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-QTOF-MS) method was employed in investigation of benzbromarone metabolites in rat plasma, urine, feces and bile samples. Meanwhile, the metabolic pathways of benzbromarone in rats were discussed. The identification was achieved on a reversed-phase C(18) column with mobile phase gradient method. The QTOF-MS was operated under full scan of MS or MS/MS in negative mode. The fragments were acquired by raising collision induced dissociation (CID) energy for speculating the structures of parent ions. According to the information from the chromatograms and mass spectra, 17 metabolites were obtained. Among them, the deoxidized phase I metabolites and an array of phase II metabolites-sulfate conjugates detected in the biological samples made the work more significant. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa.

    PubMed

    Geballe, Z M; Raju, S V; Godwal, B K; Jeanloz, R

    2013-10-16

    We use x-ray diffraction in a resistively heated diamond anvil cell to extend the melting curve of AuGa2 beyond its minimum at 5.5 GPa and 720 K, and to constrain the high-temperature phase boundaries between cubic (fluorite structure), orthorhombic (cottunite structure) and monoclinic phases. We document a large change in Clapeyron slope that coincides with the transitions from cubic to lower symmetry phases, showing that a structural transition is the direct cause of the change in slope. In addition, moderate (~30 K) to large (90 K) hysteresis is detected between melting and freezing, from which we infer that at high pressures, AuGa2 crystals can remain in a metastable state at more than 5% above the thermodynamic melting temperature.

  3. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  4. High-rate synthetic aperture communications in shallow water.

    PubMed

    Song, H C; Hodgkiss, W S; Kuperman, W A; Akal, T; Stevenson, M

    2009-12-01

    Time reversal communication exploits spatial diversity to achieve spatial and temporal focusing in complex ocean environments. Spatial diversity can be provided easily by a vertical array in a waveguide. Alternatively, spatial diversity can be obtained from a virtual horizontal array generated by two elements, a transmitter and a receiver, due to relative motion between them, referred to as a synthetic aperture. This paper presents coherent synthetic aperture communication results from at-sea experiments conducted in two different frequency bands: (1) 2-4 kHz and (2) 8-20 kHz. Case (1) employs binary-phase shift-keying modulation, while case (2) involves up to eight-phase shift keying modulation with a data rate of 30 kbits/s divided by the number of transmissions (diversity) to be accumulated. The receiver utilizes time reversal diversity combining followed by a single channel equalizer, with frequent channel updates to accommodate the time-varying channel due to coupling of space and time in the presence of motion. Two to five consecutive transmissions from a source moving at 4 kts over 3-6 km range in shallow water are combined successfully after Doppler compensation, confirming the feasibility of coherent synthetic aperture communications using time reversal.

  5. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  6. Regularities of the sorption of 1,2,3,4-tetrahydroquinoline derivatives under conditions of reversed phase HPLC

    NASA Astrophysics Data System (ADS)

    Nekrasova, N. A.; Kurbatova, S. V.; Zemtsova, M. N.

    2016-12-01

    Regularities of the sorption of 1,2,3,4-tetrahydroquinoline derivatives on octadecylsilyl silica gel and porous graphitic carbon from aqueous acetonitrile solutions were investigated. The effect the molecular structure and physicochemical parameters of the sorbates have on their retention characteristics under conditions of reversed phase HPLC are analyzed.

  7. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... environment and a current awareness file of OSHA regulations regarding the safe handling of the chemicals... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reverse Phase Extraction (RPE) Method... Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND...

  8. Preparation and application of reversed phase chromatorotor for the isolation of natural products by centrifugal preparative chromatography

    USDA-ARS?s Scientific Manuscript database

    A method of preparation of Chromatorotor or plates with a reversed phase (RP) solid silica gel sorbent layer has been developed for preparative centrifugal chromatography. The RP-rotor plates consist of binder free RP solid SiO2 sorbent layers of different thicknesses paked between two supported cir...

  9. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  10. Behavior of new complexes of tetrakis(4-methoxylphenyl)porphyrin with heavy rare earth elements in reversed-phase high performance liquid chromatography.

    PubMed

    Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan

    2004-08-01

    An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.

  11. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  13. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides.

    PubMed

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O

    2013-07-02

    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  14. Engineered second-harmonic diffraction from highly transmissive metasurfaces composed of complementary split-ring resonators.

    PubMed

    Yang, Xin; Zhang, Chi; Wan, Mingjie; Chen, Zhuo; Wang, Zhenlin

    2016-07-01

    We theoretically and experimentally investigated the optical second-harmonic (SH) diffraction from metasurfaces based on gold complementary split-ring resonators (CSRRs). We have demonstrated that the generated SH currents are mostly parallel to the incident polarization and are asymmetric with respect to the base of a CSRR, thus allowing us to impose the phase change of π on the SH radiation by reversing the CSRR's orientation. We verified this concept of geometry-induced nonlinear phase by designing and fabricating a nonlinear metasurface consisting of supercells of CSRRs with opposite orientations that can function as a SH beam splitter. The ability to control the phase of the local nonlinearity coupled with the high transmittance at both fundamental and SHG wavelengths makes the CSRRs good candidates for the construction of highly efficient three-dimensional nonlinear metamaterials and suitable for applications in nonlinear beam shaping.

  15. Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids

    USGS Publications Warehouse

    Abidi, S.L.

    1989-01-01

    High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.

  16. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices

    PubMed Central

    Raeis-Hosseini, Niloufar; Rho, Junsuk

    2017-01-01

    Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196

  17. Surface charge fine tuning of reversed-phase/weak anion-exchange type mixed-mode stationary phases for milder elution conditions.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael

    2015-08-28

    A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography.

    PubMed

    Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J

    2008-12-05

    A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).

  19. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less

  20. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    NASA Astrophysics Data System (ADS)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  1. Determination of tylosin and tilmicosin residues in animal tissues by reversed-phase liquid chromatography.

    PubMed

    Chan, W; Gerhardt, G C; Salisbury, C D

    1994-01-01

    A method for the simultaneous determination of tylosin and tilmicosin residues in animal tissues is reported. Solid-phase extraction columns are used to isolate the drugs from tissue extracts. Determination is accomplished by reversed-phase liquid chromatography with UV detection at 287 nm. Mean recoveries from spiked tissues were 79.9% (coefficient of variation [CV], 8.1%) for tylosin and 92.6% (CV, 8.7%) for tilmicosin. Detection limits for tylosin and tilmicosin were 0.020 and 0.010 ppm, respectively.

  2. Silica-Based, Hyper-Crosslinked Acid Stable Stationary Phases for High Performance Liquid Chromatography

    PubMed Central

    Zhang, Yu; Luo, Hao; Carr, Peter W.

    2011-01-01

    A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745

  3. Pressure-induced structural transition in chalcopyrite ZnSiP 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less

  4. A reversible bipolar WORM device based on AlOxNy thin film with Al nano phase embedded

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Li, J.; Zhang, L.; Hu, X. C.

    2017-03-01

    An Al-rich AlOxNy thin film based reversible Write-Once-Read-Many-Times (WORM) memory device with MIS structure could transit from high resistance state (HRS, ∼1011 Ω) to low resistance state (LRS, ∼105 Ω) by sweeping voltage up to ∼20 V. The first switching could be recorded as writing process for WORM device which may relate to conductive path are formed through the thin film. The conductive path should be formed by both Al nano phase and oxygen vacancies. Among of them, Al nano phases are not easy to move, but oxygen vacancies could migrate under high E-field or at high temperature environment. Such conductive path is not sensitive to charging effect after it formed, but it could be broken by heating effect, which may relate to the migration of excess Al ions and oxygen vacancies at high temperature. After baking LRS (ON state) WORM device at 200 °C for 2 min, the conductivity will decrease to HRS which indicates conductive path is broken and device back to HRS (OFF state) again. This phenomenon could be recorded as recovery process. Both writing and recovery process related to migration of oxygen vacancies and could be repeated over 10 times in this study. It also indicates that there is no permanent breakdown occurred in MIS structured WORM device operation. We suggest that this conductive path only can be dissolved by a temperature sensitive electro-chemical action. This WORM device could maintain at LRS over 105 s with on-off ratio over 4 orders.

  5. Influence of Discharge Current on Phase Transition Properties of High Quality Polycrystalline VO2 Thin Film Fabricated by HiPIMS

    PubMed Central

    Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2017-01-01

    To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990

  6. Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

    NASA Astrophysics Data System (ADS)

    Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.

    2007-07-01

    This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.

  7. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror

    NASA Astrophysics Data System (ADS)

    Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong

    2018-06-01

    Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.

  8. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    PubMed

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Analytical Method Validation of High-Performance Liquid Chromatography and Stability-Indicating Study of Medroxyprogesterone Acetate Intravaginal Sponges

    PubMed Central

    Batrawi, Nidal; Wahdan, Shorouq; Abualhasan, Murad

    2017-01-01

    Medroxyprogesterone acetate is widely used in veterinary medicine as intravaginal dosage for the synchronization of breeding cycle in ewes and goats. The main goal of this study was to develop reverse-phase high-performance liquid chromatography method for the quantification of medroxyprogesterone acetate in veterinary vaginal sponges. A single high-performance liquid chromatography/UV isocratic run was used for the analytical assay of the active ingredient medroxyprogesterone. The chromatographic system consisted of a reverse-phase C18 column as the stationary phase and a mixture of 60% acetonitrile and 40% potassium dihydrogen phosphate buffer as the mobile phase; the pH was adjusted to 5.6. The method was validated according to the International Council for Harmonisation (ICH) guidelines. Forced degradation studies were also performed to evaluate the stability-indicating properties and specificity of the method. Medroxyprogesterone was eluted at 5.9 minutes. The linearity of the method was confirmed in the range of 0.0576 to 0.1134 mg/mL (R2 > 0.999). The limit of quantification was shown to be 3.9 µg/mL. Precision and accuracy ranges were found to be %RSD <0.2 and 98% to 102%, respectively. Medroxyprogesterone capacity factor value of 2.1, tailing factor value of 1.03, and resolution value of 3.9 were obtained in accordance with ICH guidelines. Based on the obtained results, a rapid, precise, accurate, sensitive, and cost-effective analysis procedure was proposed for quantitative determination of medroxyprogesterone in vaginal sponges. This analytical method is the only available method to analyse medroxyprogesterone in veterinary intravaginal dosage form. PMID:28469407

  10. Phase competition in the growth of SrCoOx/LaAlO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Meng, Dechao; Huang, Haoliang; Cai, Honglei; Huang, Qiuping; Wang, Jianlin; Yang, Yuanjun; Zhai, Xiaofang; Fu, Zhengping; Lu, Yalin

    2018-02-01

    The reversible topotactic phase transformation between brownmillerite SrCoO2.5 to perovskite SrCoO3 has attracted more and more attention for potential applications as solid oxide fuels and electrolysis cells. However, the relatively easy transformation result from small thermal stable energy barriers between the two phases leads to unstable the structures. In the paper, amounts of SrCoO3-δ films have been prepared by pulsed laser deposition at optimized growth conditions with the temperature range of 590-720°C. The X-ray diffraction (XRD) results demonstrated that a phase competition emerged around 650°C. The Gibbs free energies of two phases at high temperature revealed the difference of stability of these two phases under different growth temperature. The optical spectroscopies and X-ray photoelectron spectroscopies were used to verify the electronic structure and chemical state differences between the two phases with distinct crystal structures.

  11. Structural and electronic phase transitions of MoTe2 induced by Li ionic gating

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae

    2017-12-01

    Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.

  12. Highly specific and reversible fluoride sensor based on an organic semiconductor.

    PubMed

    Aboubakr, Hecham; Brisset, Hugues; Siri, Olivier; Raimundo, Jean-Manuel

    2013-10-15

    A novel sulfonamide-conjugated benzo-[2,1-b:3,4-b']bithiophene semiconductor has been designed and synthetized in order to develop a probe for specific detection of anions both in the homogeneous (solution) and heterogeneous phase. Its photophysical and electrochemical data were reported in this study. On the basis of the optical and NMR titrations analysis, the chelator was found to be highly selective for fluoride compared to others anions (Ka = 1.6 × 10(4) M(-1) in dimethyl sulfoxide (DMSO)). In addition, from an intricate sample, the novel chelator shows exceptional specificity toward fluoride and reveals a complete reversibility after addition of trifluoroacetic acid (TFA). Sensing films were obtained by electrochemical polymerization of the probe on an electrode surface, which clearly show effective detection of fluoride.

  13. Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.

    2008-12-01

    Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal of nanocrystalline titanium oxides, as well as other mineral systems susceptible to reversals in phase stability at the nanoscale.

  14. A novel direct screening method for alkyl glucoside production by glucosidases expressed in E. coli in 96-well plates.

    PubMed

    Gräber, Martin; Andersson, Mats; Rundbäck, Fabian; Pozzo, Tania; Karlsson, Eva Nordberg; Adlercreutz, Patrick

    2010-01-15

    The present work describes the development of a novel direct screening method, assayed in 96-well format, for evaluation of enzymatic alkyl glycoside production in a hexanol-water two-phase system. Alkyl glycosides are surfactants with a range of applications and with good biodegradability and low toxicity. Enzymatic synthesis makes it possible to prepare beta-d-glucopyranosides with high purity. In the developed screening assay, hexyl-beta-d-glucopyranoside was chosen as a model product to be synthesised by reversed hydrolysis in a water-hexanol two-phase system. In a first step the model product is produced by glucosidases expressed in E. coli cells in 96-deep-well plates. After phase separation, the hexyl-beta-d-glucopyranoside in the organic phase is degraded enzymatically and the released glucose detected spectrophotometrically at 405nm utilizing peroxidase/glucose oxidase, and the reagent 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The aqueous phase is used to monitor hydrolysis of p-NPG at 405nm, allowing use of a ratio of the two assays to compensate for expression differences. The complete method was used for comparison of two different beta-glucosidases, classified under glycoside hydrolase family 1 and 3, respectively, showing a significant difference in their ability to synthesise hexyl-beta-d-glucopyranoside by reversed hydrolysis.

  15. Metastable superheated ice in liquid-water inclusions under high negative pressure

    USGS Publications Warehouse

    Roedder, E.

    1967-01-01

    In some microscopic inclusions (consisting of aqueous liquid and vapor) in minerals, freezing eliminates the vapor phase because of greater volume occupied by the resulting ice. When vapor fails to nucleate again on partial melting, the resulting negative pressure (hydrostatic tension) inside the inclusions permits the existence of ice I crystals under reversible, metastable equilibrium, at temperatures as high as +6.5??C and negative pressures possibly exceeding 1000 bars.

  16. MQW Optical Feedback Modulators And Phase Shifters

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.

  17. Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S; DeGeorge, V; Ohodnicki, PR

    2014-05-07

    Soft magnetic nanocomposites variants of FeCo-based (HTX002) alloys (Fe65Co35)(81+x)B12Nb4-xSi2Cu1, exhibiting high inductions (up to 1.9 T), low losses, and high temperature stability are studied for high frequency inductors and current sensors. For alloys with x 0, 1, 1.5, 2, and 3, we report field induced anisotropy, K-U, after annealing at temperatures of 340-450 degrees C for 1 h in a 2 T transverse magnetic field. The anisotropy field, H-K, measured by AC permeametry on toroidal cores, and by first order reversal curves on square sections of ribbon, decreases with annealing temperature and saturates at high annealing temperatures suggesting a nanostructuremore » related anisotropy mechanism in which the amorphous phase exhibits a higher H-K than the crystalline phase. A high saturation induction nanocrystalline phase and high H-K amorphous phase were achieved by low temperature annealing resulting in a value of K-U exceeding 14 X 10(3) erg/cm(3), more than twice that reported previously for Fe-rich amorphous and nanocomposite alloys. (C) 2014 AIP Publishing LLC.« less

  18. Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite wires.

    PubMed

    Guo, Hangwen; Noh, Joo H; Dong, Shuai; Rack, Philip D; Gai, Zheng; Xu, Xiaoshan; Dagotto, Elbio; Shen, Jian; Ward, T Zac

    2013-08-14

    Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.

  19. Liquid chromatographic determination of florfenicol in the plasma of multiple species of fish

    USGS Publications Warehouse

    Vue, C.; Schmidt, L.J.; Stehly, G.R.; Gingerich, W.H.

    2002-01-01

    A simple method was developed for determining florfenicol concentration in a small volume (250 mul) of plasma from five phylogenetically diverse species of freshwater fish. Florfenicol was isolated from the plasma matrix through C-18 solid-phase extraction and quantified by reversed-phase high-performance liquid chromatography with UV detection. The accuracy (84-104%), precision (%RSDless than or equal to8), and sensitivity (quantitation limit <30 ng/ml) of the method indicate its usefulness for conducting pharmacokinetic studies on a variety of freshwater fish. Published by Elsevier Science B.V.

  20. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    USDA-ARS?s Scientific Manuscript database

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  1. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  2. Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material.

    PubMed

    Delrue, Steven; Van Den Abeele, Koen; Bou Matar, Olivier

    2016-04-01

    In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach.

    PubMed

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-04-01

    This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.

  4. A validated LC method for determination of 2,3-dichlorobenzoic acid and its associated regio isomers.

    PubMed

    Krishnaiah, Ch; Sri, Khagga Bhavya

    2012-05-01

    A simple, selective and sensitive gradient reversed-phase liquid chromatography method has been developed for the separation and determination of 2,3-dichlorobenzoic acid, which is an intermediate of the lamotrizine drug substance, and its regio isomers. The separation was achieved on a reversed-phase United States Pharmacopeia L1 (C-18) column using 0.01 M ammonium acetate buffer at pH 2.5 and methanol (50:50 v/v) mixture as mobile phase A and a methanol and water mixture (80:20 v/v) as mobile phase B in a gradient elution at flow rate 1.2 mL/min with ultraviolet detection at 210 nm. The method is found to be selective, precise, linear, accurate and robust. It was used for quality assurance and monitoring the synthetic reactions involved in the process development of lamotrizine. The method is found to be simple, rapid, specific and reliable for the determination of unreacted levels of raw materials and isomers in reaction mixtures and finished product lamotrizine. The method was fully validated as per International Conference of Harmonization guidelines and results from validation confirm that the method is highly suitable for its intended purpose. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  5. Hydrophilic interaction liquid chromatography-solid phase extraction directly combined with protein precipitation for the determination of triptorelin in plasma.

    PubMed

    Wang, Jixia; Kong, Song; Yan, Jingyu; Jin, Gaowa; Guo, Zhimou; Shen, Aijin; Xu, Junyan; Zhang, Xiuli; Zou, Lijuan; Liang, Xinmiao

    2014-06-01

    Peptide drugs play a critical role in therapeutic treatment. However, as the complexity of plasma, determination of peptide drugs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a daunting task. To solve this problem, hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE) directly combined with protein precipitation (PPT) was developed for the selective extraction of triptorelin from plasma. The extracts were analyzed by reversed-phase liquid chromatography (RPLC). Proteins, phospholipids and highly polar interferences could be removed from plasma by the efficient combination of PPT, HILIC-SPE and RPLC-MS/MS. This method was evaluated by matrix effect, recovery and process efficiency at different concentration levels (50, 500 and 5,000 ng/mL) of triptorelin. Furthermore, the performance of HILIC-SPE was compared with that of reversed-phase C18 SPE and hydrophilic lipophilic balance (Oasis HLB) SPE. Among them, HILIC-SPE provided the minimum matrix effect (ranging from 96.02% to 103.41%), the maximum recovery (ranging from 80.68% to 90.54%) and the satisfactory process efficiency (ranging from 82.83% to 92.95%). The validated method was successfully applied to determine triptorelin in rat plasma. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    PubMed

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Validation of an electrospray ionisation LC-MS/MS method for quantitative analysis of telaprevir and its R-diastereomer.

    PubMed

    Penchala, Sujan Dilly; Tjia, John; El Sherif, Omar; Back, David J; Khoo, Saye H; Else, Laura J

    2013-08-01

    A sensitive high-performance reverse phase liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of telaprevir and its inactive R-diastereomer (VRT-127394) in human plasma. The analytes and the internal standard (telaprevir-d11) were extracted from plasma by liquid-liquid extraction using tert-Butyl methyl ether (TBME). Chromatographic separation was achieved on a reversed-phase Accucore C18 column with a gradient programme consisting of water:ammonia (25%), 100:0.01 (v/v) (mobile phase A) and ACN:MeOH:ammonia (25%), 15:85:0.01 (v/v/v) (mobile phase B). The MS acquisition was performed with selective reaction monitoring mode using the respective [M+H](+) ions, m/z 680.59→322.42 for telaprevir and VRT-127394, and 691.15→110.13 for telaprevir-d11. The assay exhibited a linear dynamic range of 5-5000ng/mL for telaprevir and VRT-127394. Acceptable precision (%RSD<6.5%) and accuracy (94-108%) were obtained for concentrations over the range of the standard curve. A procedure was established to stabilise the plasma to prevent ex vivo interconversion of the isomers. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Facile preparation of an alternating copolymer-based high molecular shape-selective organic phase for reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka

    2018-06-22

    The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion chromatography (SEC) before grafting onto silica surface. Moreover, both of the monomers were commercially available. Therefore, the technique of preparation was very facile and better separation was achieved with the Sil-alt-T phase compared to the ODS, C 30 and other previously reported alternating copolymer-based columns. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Applications of reversible covalent chemistry in analytical sample preparation.

    PubMed

    Siegel, David

    2012-12-07

    Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.

  10. Synthesis of visible light driven cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca; Rashid; Department of Chemistry, Quaid-i-Azam University, Islamabad

    2013-02-15

    Graphical abstract: Cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst is synthesized using reverse micelle technique and it showed extraordinary photocatalytic activity. Display Omitted Highlights: ► TiON/Ag{sub 2}O/Co nanophotocatalyst is synthesized using microemulsion technique. ► Low temperature anatase phase and outstanding photocatlytic activity is observed. ► Effect of temperature and inert atmosphere on materials phase is investigated. ► Homogeneous dopants distribution and oxygen vacancies are examined. ► Enhancement in surface area, quantum efficiency and optical properties is observed. -- Abstract: An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag{sub 2}O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition,more » phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag{sub 2}O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag{sub 2}O/TiON and Co/Ag{sub 2}O/TiON is also investigated.« less

  11. Reverse micelle-mediated dispersive liquid-liquid microextraction of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid.

    PubMed

    Tayyebi, Moslem; Yamini, Yadollah; Moradi, Morteza

    2012-09-01

    A supramolecular solvent consisting of reverse micelles of decanoic acid, dispersed in a continuous phase of tetrahydrofuran:water, was proposed as an efficient microextraction technique for extraction of selected chlorophenoxy acid herbicides from water samples prior to high-performance liquid chromatography UV determination. The disperser solvent (1.0 mL tetrahydrofuran) containing 20 mg decanoic acid was rapidly injected into 10.0 mL of water sample. After centrifugation, the reverse micelle-rich phase (25 ± 0.5 μL) was floated at top of the home-designed centrifuge tube. The solvent was collected and 20 μL of it was injected into high-performance liquid chromatography for analysis. The results showed that the in situ solvent formation and extraction process can be completed in a few seconds. Under the optimal conditions, limits of detection of the method for 4-chloro-2-methylphenoxyacetic acid and 2,4-dichlorophenoxyacetic acid were in the range of 0.5-0.8 μg L(-1) and the repeatability of the proposed method, expressed as relative standard deviation, varied in the range of 2.5-3.2%. Linearity was found to be in the range of 1-200 μg L(-1) and the preconcentration factors were between 148 and 157. The mean percentage recoveries exceeded 92.0% for all the spiking levels in real water samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. B., E-mail: houbinghuang@gmail.com; Department of Physics, University of Science and Technology Beijing, Beijing 100083; Hu, J. M.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  13. Development and validation of a reversed-phase ion-pair high-performance liquid chromatographic method for the determination of risedronate in pharmaceutical preparations.

    PubMed

    Kyriakides, Demetra; Panderi, Irene

    2007-02-12

    A stability indicating, reversed-phase ion-pair high-performance liquid chromatographic method was developed and validated for the determination of risedronate in pharmaceutical dosage forms. The determination was performed on a BDS C(18) analytical column (250 mm x 4.6 mm i.d., 5 microm particle size); the mobile phase consisted of 0.005 M tetrabutylammonium hydroxide and 0.005 M pyrophosphate sodium (pH 7.0) mixed with acetonitrile in a ratio (78:22, v/v) and pumped at a flow rate 1.00 mL min(-1). The ultraviolet (UV) detector was operated at 262 nm. The retention times of magnesium ascorbyl phosphate, which was used as internal standard and risedronate were 4.94 and 5.95 min, respectively. The calibration graph was ranged from 2.50 to 20.00 microg mL(-1), while detection and quantitation limits were found to be 0.48 and 1.61 microg mL(-1), respectively. The intra- and inter-day percentage relative standard deviations, %R.S.D., were less than 5.9%, while the relative percentage error, %E(r), was less than 0.4%. The method was applied to the quality control of commercial tablets and content uniformity test and proved to be suitable for rapid and reliable quality control.

  14. Development and optimization of a reversed-phase high-performance liquid chromatographic method for the determination of acetaminophen and its major metabolites in rabbit plasma and urine after a toxic dose.

    PubMed

    Vertzoni, M V; Archontaki, H A; Galanopoulou, P

    2003-07-14

    A reversed-phase high-performance liquid chromatographic method with detection at 242 nm was developed, optimized and validated for the determination of acetaminophen (A) and its major metabolites glucuronide (AG) and sulfate (AS) conjugates in rabbit plasma and urine after a toxic dose. m-Aminophenol was used as internal standard (IS). A Hypersil BDS RP-C18 column (250 x 4.6 mm), 5 microm particle size, was equilibrated with a mobile phase composed of aqueous buffer solution of KH2PO4 0.05 M containing 1% CH3COOH (pH 6.5) and methanol (95:5, v/v). Its flow rate was 1.5 ml/min. Calibration curves of A, AG and AS were linear in the concentration ranges of 0.5-250, 1-200, 0.5-100 microg/ml in plasma and 1-200, 0.5-150, 0.5-100 microg/ml in urine matrix, respectively. Limits of detection and quantitation were calculated in all cases and extensive recovery studies were also performed. Intra-day relative standard deviation (R.S.D.) for A, AG and AS in plasma was less than 5, 4, 2% and in urine less than 4, 7, 4%, respectively, while the corresponding inter-day values were 7, 6, 4% and 5, 8, 6%, respectively.

  15. [Studies on determination of p-aminophenol and its related compounds prepared with catalytic hydrogenation by reversed-phase high performance liquid chromatography].

    PubMed

    Li, S; Gu, H; Zheng, M; Zhan, Y

    1997-07-01

    Catalytic hydrogenation of nitrobenzene with supported palladium catalyst is a new method to produce p-aminophenol. p-Aminophenol, aniline and 4,4'-diaminodiphenyl ether obtained from this method were determined by reversed phase high performance liquid chromatography. The factors, e.g., concentration of methanol, pH and ionic strength which could affect separation efficiency were studied. UV spectra of p-aminophenol, aniline and 4,4'-diaminodiphenyl ether were recorded. Good separation was performed by using a 100 mm x 4.6 mm column with 5 microm Hypersil ODS, a mixture of 60% aqueous 8.0 mmol/L KH2PO4 buffered to 6.5 with 4.0 mmol/L Na2HPO4 and 40% methanol as mobile phase at a flow rate of 1.0 mL/min, and UV spectrophotometric detector at 232 nm wavelength. The calibration curves of p-aminophenol, aniline and 4,4'-diaminodiphenyl ether have good linearity over concentration range of 5-250, 5-150 and 0.2-120 mg/L, respectively. Minimum detectable limits at a signal-to-noise ratio of 2 were 0.1, 0.6 and 0.6 ng. This method has been applied to analysis of the reaction products of ultrasonic catalytic hydrogenation and industrial samples with good results and reproducibility.

  16. Quantitative determination of reserpine, ajmaline, and ajmalicine in Rauvolfia serpentina by reversed-phase high-performance liquid chromatography.

    PubMed

    Srivastava, A; Tripathi, A K; Pandey, R; Verma, R K; Gupta, M M

    2006-10-01

    A sensitive and reproducible reversed-phase high-performance liquid chromatography (HPLC) method using photodiode array detection is established for the simultaneous quantitation of important root alkaloids of Rauvolfia serpentina, namely, reserpine, ajmaline, and ajmalicine. A Chromolith Performance RP-18e column (100 x 4.6-mm i.d.) and a binary gradient mobile phase composed of 0.01 M (pH 3.5) phosphate buffer (NaH(2)PO(4)) containing 0.5% glacial acetic acid and acetonitrile are used. Analysis is run at a flow rate of 1.0 mL/min with the detector operated at a wavelength of 254 nm. The calibration curves are linear over a concentration range of 1-20 microg/mL (r = 1.000) for all the alkaloids. The various other aspects of analysis (i.e., peak purity, similarity, recovery, and repeatability) are also validated. For the three components, the recoveries are found to be 98.27%, 97.03%, and 98.38%, respectively. The limits of detection are 6, 4, and 8 microg/mL for ajmaline, ajmalicine, and reserpine, respectively, and the limits of quantitation are 19, 12, and 23 microg/mL for ajmaline, ajmalicine, and reserpine, respectively. The developed method is simple, reproducible, and easy to operate. It is useful for the evaluation of R. serpentina.

  17. Spectrophotometric and Reversed-Phase High-Performance Liquid Chromatographic Method for the Determination of Doxophylline in Pharmaceutical Formulations

    PubMed Central

    Joshi, HR; Patel, AH; Captain, AD

    2010-01-01

    Two methods are described for determination of Doxophylline in a solid dosage form. The first method was based on ultraviolet (UV)-spectrophotometric determination of the drug. It involves absorbance measurement at 274 nm (λmax of Doxophylline) in 0.1 N hydrochloric acid. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.20–30 mg/ml for the drug. The second method was based on high-performance liquid chromatography (HPLC) separation of the drug in reverse-phase mode using the Hypersil ODS C18 column (250 × 4.6 mm, 5 mm). The mobile phase constituted of buffer acetonitrile (80:20) and pH adjusted to 3.0, with dilute orthophosphoric acid delivered at a flow rate 1.0 ml/min. Detection was performed at 210 nm. Separation was completed within 7 min. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.165–30 mg/ml for the drug. The relative standard deviation was found to be <2.0% for the UV-spectrophotometry and HPLC methods. Both these methods have been successively applied to the solid dosage pharmaceutical formulation, and were fully validated according to ICH guidelines. PMID:21042488

  18. Chiral-phase high-performance liquid chromatography of rotenoid racemates

    USGS Publications Warehouse

    Abidi, S.L.

    1987-01-01

    The high-performance liquid chromatograhic (HPLC) behavior of parent rotenoids (type I) and the hydroxyl-analogues (type II) on three different chiral stationary phases (CSPs) was studied. Separations of optical isomers were achieved in various degrees depending largely upon the rotenoidal structures and the CSP types employed. Enantiomers of all but elliptone compounds were separable on β-cyclodextrin-bonded silica (CDS). Without exception, the 12a-hydroxyrotenoid antipodes were resolved on Pirkle's phenylglycine-bonded silica (PGS) despite unsuccessful attenmpts to resolve the type I rotenoidal racemates. Conversely, optical resolution of the latter rotenoids was accomplished by using a helical polytriphenylmethylacrylate-coated silica (TPS) column and the observed separation factors (α values) ranged from 1.14 to 1.90. The results from HPLC of type II rotenoids on TPS (α = 1.00–1.63) suggested that variations in E-ring structures had profound influence on the resolution outcome. Conjugated double bonds on the E-ring and the desisopropylation of the five-membered E-ring ot type II rotenoids appeared to be important structural features for chiral recognition involving the TPS substrate. In both reversed-phase (CDS) and normal-pahse (PGS and TPS) HPLC modes, the less polar enantiomers were the 6aβ,12aβ-rotenoids as observed in most cases, though this relationship was reversed in the cases of deguelin and hydroxyelliptone probably due to conformational effects of rotenoidal ring systems.

  19. Physicochemical and thermodynamic characterization of the encapsulation of methyl jasmonate by natural and modified cyclodextrins using reversed-phase high-pressure liquid chromatography.

    PubMed

    López-Nicolás, José Manuel; Escorial Camps, Marta; Pérez-Sánchez, Horacio; García-Carmona, Francisco

    2013-11-27

    Although the combinations of methyl jasmonate (MeJA) and cyclodextrins (CDs) have been used by different authors to stimulate the production of several metabolites, no study has been published about the possible formation of MeJA-CD complexes when these two molecules are added together to the reaction medium as elicitors. For this reason and because knowledge of the possible complexation process of MeJA with CD under different physicochemical conditions is essential if these two molecules are to be used in cell cultures, this paper looks at the complexation of MeJA with natural and modified CDs using a reversed-phase high-pressure liquid chromatography (RP-HPLC) system. The interaction of MeJA with β-CD was more efficient than with α- and γ-CDs. However, a modified CD, HP-β-CD, was the most effective of all of the CDs tested. Moreover, MeJA formed complexes with CD with a 1:1 stoichiometry, and the formation constants of these complexes were strongly dependent upon the temperature of the mobile phase used but not the pH. To obtain information about the mechanism of the affinity of MeJA for CD, the thermodynamic parameters ΔG°, ΔH°, and ΔS° were calculated. Finally, molecular modeling studies were carried out to propose which molecular interactions are established in the complexation process.

  20. MoSbTe for high-speed and high-thermal-stability phase-change memory applications

    NASA Astrophysics Data System (ADS)

    Liu, Wanliang; Wu, Liangcai; Li, Tao; Song, Zhitang; Shi, Jianjun; Zhang, Jing; Feng, Songlin

    2018-04-01

    Mo-doped Sb1.8Te materials and electrical devices were investigated for high-thermal-stability and high-speed phase-change memory applications. The crystallization temperature (t c = 185 °C) and 10-year data retention (t 10-year = 112 °C) were greatly enhanced compared with those of Ge2Sb2Te5 (t c = 150 °C, t 10-year = 85 °C) and pure Sb1.8Te (t c = 166 °C, t 10-year = 74 °C). X-ray diffraction and transmission electron microscopy results show that the Mo dopant suppresses crystallization, reducing the crystalline grain size. Mo2.0(Sb1.8Te)98.0-based devices were fabricated to evaluate the reversible phase transition properties. SET/RESET with a large operation window can be realized using a 10 ns pulse, which is considerably better than that required for Ge2Sb2Te5 (∼50 ns). Furthermore, ∼1 × 106 switching cycles were achieved.

  1. High-performance liquid chromatographic analysis of methadone hydrochloride oral solution.

    PubMed

    Beasley, T H; Ziegler, H W

    1977-12-01

    A direct and rapid high-performance liquid chromatographic assay for methadone hydrochloride in a flavored oral solution dosage form is described. A syrup sample, one part diluted with three parts of water, is introduced onto a column packed with octadecylsilane bonded on 10 micrometer porous silica gel (reversed phase). A formic acid-ammonium formate-buffered mobile phase is linear programmed with acetonitrile. The absorbance is monitored continuously at 280 or 254 nm, using a flow-through, UV, double-beam photometer. An aqueous methadone hydrochloride solution is used for external standardization. The relative standard deviation was not more than 1.0%. Drug recovery from a syrup base was better than 99.8%.

  2. [The determination of molecular sulphur in Matsesta mineral water and its analog Novonukutskaya mineral water].

    PubMed

    Khutorianskiĭ, V A; Smirnov, A I; Matveev, D A

    2014-01-01

    The method of microcolumn reversed phase high performance liquid chromatography (rp-HPLC) was employed to determine the content of elemental sulphur in mineral waters. The study envisaged the analysis of the samples of sulphide-containing mineral waters Novonukutskaya and Matsesta obtained by the solid phase extraction technique. Based on these data, the authors discuss the origin and the circulation of sulphur in the hydrogen sulphide sources. The elution conditions selected in this study ensured the high-resolution separation of the octasulphur peak from the peaks of allotropic components of the extract whereas the two-wave detection technique allowed to identify the peaks of molecular sulphur.

  3. Improved micromethod for mezlocillin quantitation in serum and urine by high-pressure liquid chromatography.

    PubMed Central

    Fiore, D; Auger, F A; Drusano, G L; Dandu, V R; Lesko, L J

    1984-01-01

    A rapid, sensitive, and specific method of analysis for mezlocillin in serum and urine by high-pressure liquid chromatography is described. A solid-phase extraction column was used to remove interfering substances from samples before chromatography. Quantitation included the use of an internal standard, nafcillin. Mezlocillin was chromatographed with a phosphate buffer-acetonitrile (73:27) mobile phase and a C-18 reverse-phase column and detected at a wavelength of 220 nm. The assay had a sensitivity of 1.6 micrograms/ml and a linearity of up to 600 micrograms/ml and 16 mg/ml in serum and urine, respectively, with only 0.1 ml of sample. The interday and intraday coefficients of variation for replicate analyses of spiked serum and urine specimens were less than 6.5%. PMID:6517560

  4. Fluorination Induced the Surface Segregation of High Voltage Spinel on Lithium-Rich Layered Cathodes for Enhanced Rate Capability in Lithium Ion Batteries.

    PubMed

    Jin, Yi-Chun; Duh, Jenq-Gong

    2016-02-17

    This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.

  5. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Self-Healing Phase Change Salogels with Tunable Gelation Temperature.

    PubMed

    Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A

    2018-05-02

    Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.

  7. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples

    PubMed Central

    Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C

    2018-01-01

    An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines three selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Method validation resulted in a linearity range of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a reliable software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. PMID:28415015

  8. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples.

    PubMed

    Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C

    2017-05-15

    An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines multiple selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Calibration showed linearity ranges of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of β-Carotene in Supplements and Raw Materials by Reversed-Phase High Pressure Liquid Chromatography

    PubMed Central

    Szpylka, John; DeVries, Jonathan W.; Bhandari, S.; Bui, M.H.; Ji, D.; Konings, E.; Lewis, R.; Maas, P.; Parish, H.; Post, B.; Schierle, J.; Sullivan, D.; Taylor, A.; Wang, J.; Ware, G.; Woollard, D.; Wu, T.

    2008-01-01

    Twelve laboratories representing 4 countries participated in an interlaboratory study conducted to determine all-trans-β-carotene and total β-carotene in dietary supplements and raw materials. Thirteen samples were sent as blind duplicates to the collaborators. Results obtained from 11 laboratories are reported. For products composed as softgels and tablets that were analyzed for total β-carotene, the reproducibility relative standard deviation (RSDR) ranged from 3.35 to 23.09% and the HorRat values ranged from 1.06 to 3.72. For these products analyzed for trans β-carotene, the reproducibility relative standard deviation (RSDR) ranged from 4.28 to 22.76% and the HorRat values ranged from 0.92 to 3.37. The RSDr and HorRat values in the analysis of a beadlet raw material were substantial and it is believed that the variability within the material itself introduced significant variation in subsampling. The method uses high pressure liquid chromatography (LC) in the reversed-phase mode with visible light absorbance for detection and quantitation. If high levels of α-carotenes are present, a second LC system is used for additional separation and quantitation of the carotene species. It is recommended that the method be adopted as an AOAC Official Method. PMID:16385976

  10. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    PubMed

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  11. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins

    PubMed Central

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368

  12. Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Ordóñez, Edgar Y; Quintana, José Benito; Rodil, Rosario; Cela, Rafael

    2012-09-21

    The development and performance evaluation of an analytical method for the determination of six artificial sweeteners in environmental waters using solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry are presented. To this end, different SPE alternatives have been evaluated: polymeric reversed-phase (Oasis HLB, Env+, Plexa and Strata X), and mixed-mode with either weak (Oasis WAX) or strong anionic-exchange (Oasis MAX and Plexa PAX) sorbents. Among them, reversed-phase sorbents, particularly Oasis HLB and Strata X, showed the best performance. Oasis HLB provided good trueness (recoveries: 73-112%), precision (RSD<10%) and limits of quantification (LOQ: 0.01-0.5 μg/L). Moreover, two LC separation mechanisms were evaluated: reversed-phase (RPLC) and hydrophilic interaction (HILIC), with RPLC providing better performance than HILIC. The final application of the method showed the presence of acesulfame, cyclamate, saccharin and sucralose in the wastewater and surface water samples analyzed at concentrations up to 54 μg/L. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Determination of Picloram in Soil and Water by Reversed-Phase Liquid Chromatography

    Treesearch

    M.J.M. Wells; J.L. Michael; D.G. Neary

    1984-01-01

    A reversed-phase liquid chromatographic method is presneted for the determination of picloram in the parts per billion (ppb) range in soil, soil solution, and stream samples. Quanitification is effected by UV absorpation at 254 nm. Derivatization is not necessary. The method permits 92% ± 7.1 recovery from water samples and 61.8% ± 11.1 recovery from soil samples....

  14. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  15. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  16. Pretransitional phenomena and pinning in liquid-crystalline blue phases

    NASA Astrophysics Data System (ADS)

    Demikhov, E.; Stegemeyer, H.; Tsukruk, V.

    1992-10-01

    Blue phases (BP's) in liquid-crystalline systems of high chirality exhibiting a short cholesteric temperature interval are investigated. In a BP I supercooled with respect to the cholesteric phase, the orientation of the cubic lattice with the (1,1,0) wave vector perpendicular to the substrate is spontaneously turned to a [200] orientation within small areas of several tenths of micrometers in diameter. A pinning of BP I lattice temperature waves is observed on the [200] orientational inhomogeneities. The pinning effect explains the observed saturation of the BP I lattice constant on decreasing temperature and its dependence on the cooling rate observed in supercooled region. A different type of cubic blue phase, BP S (``S'' represents supercooled), is observed transforming reversibly from the supercooled BP I but metastable with respect to the cholesteric phase. The BP S has two scales of order: a long-range orientational blue-phase-like order and a short-range positional smecticlike order.

  17. A novel octadecylsilane functionalized graphene oxide/silica composite stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Shuai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang

    2012-08-01

    An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    PubMed

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  19. Simultaneous Estimation of Amlodipine Besilate and Olmesartan Medoxomil in Pharmaceutical Dosage Form

    PubMed Central

    Wankhede, S. B.; Wadkar, S. B.; Raka, K. C.; Chitlange, S. S.

    2009-01-01

    Two UV Spectrophotometric and one reverse phase high performance liquid chromatography methods have been developed for the simultaneous estimation of amlodipine besilate and olmesartan medoxomil in tablet dosage form. First UV spectrophotometric method was a determination using the simultaneous equation method at 237.5 nm and 255.5 nm over the concentration range 10-50 μg/ml and 10-50 μg/ml, for amlodipine besilate and olmesartan medoxomil with accuracy 100.09%, and 100.22% respectively. Second UV spectrophotometric method was a determination using the area under curve method at 242.5-232.5 nm and 260.5-250.5 nm over the concentration range of 10-50 μg/ml and 10-50 μg/ml, for amlodipine besilate and olmesartan medoxomil with accuracy 100.10%, and 100.48%, respectively. In reverse phase high performance liquid chromatography analysis carried out using 0.05M potassuim dihydrogen phosphate buffer:acetonitrile (50:50 v/v) as the mobile phase and Kromasil C18 (4.6 mm i.d.×250 mm) column as the stationery phase with detection wavelength of 238 nm. Flow rate was 1.0 ml/min. Retention time for amlodipine besilate and olmesartan medoxomil were 3.69 and 5.36 min, respectively. Linearity was obtained in the concentration range of 4-20 μg/ml and 10-50 μg/ml for amlodipine besilate and olmesartan medoxomil, respectively. Proposed methods can be used for the estimation of amlodipine besilate and olmesartan medoxomil in tablet dosage form provided all the validation parameters are met. PMID:20502580

  20. Determination of bergenin in rat plasma by high-performance liquid chromatography.

    PubMed

    Qin, Xuan; Zhou, Dan; Zhang, Zhi-Rong; Huang, Yuan

    2007-05-01

    A simple, sensitive, selective and reproducible reversed-phase high-performance liquid chromatography (HPLC) method was developed for the determination of bergenin in rat plasma after intravenous administration. Acetaminophen was successfully used, as internal standard (IS) for calibration. The chromatographic separation was accomplished on a reversed-phase C18 column using a mobile phase consisting of methanol-water (20:80, v/v, pH 2.50) and a detection wavelength of 275 nm. Retention times of bergenin and acetaminophen were approximately 9.9 and 6.1 min and no interfering peak of the blank plasma chromatograms was observed. Good linearity was achieved in the range of 0.3 - 100 microg/ml (r2 = 0.9998). The extraction recoveries of bergenin from plasma was 70.82%, 69.44%, 70.98% at concentrations of 5, 50, 100 microg/ml. Intra-assay and inter-assay variabilities were 0.92 - 2.60% and 2.31 - 2.95%, respectively. The accuracy was validated by relative error (RE%), which was in the range of -0.05 - 1.74%. The capability of the assay to pharmacokinetic studies was demonstrated by the determination of bergenin in plasma after intravenous administration to rats in doses of 7.5 mg/kg, 15.0 mg/kg, and 30.0 mg/kg, using water as the solvent. The half-lives for distribution and elimination are not related to administered doses. A biphasic phenomenon with a rapid distribution followed by a slower elimination phase was observed from the plasma concentration-time curve and the pharmacokinetics was based on first order kinetics.

  1. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    PubMed

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods.

  2. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  3. Liquid chromatographic determination of benzocaine and N-acetylbenzocaine in the edible fillet tissue from rainbow trout

    USGS Publications Warehouse

    Meinertz, J.R.; Stehly, G.R.; Hubert, T.D.; Bernardy, J.A.

    1999-01-01

    A method was developed for determining benzocaine and N-acetylbenzocaine concentrations in fillet tissue of rainbow trout. The method involves extracting the analytes with acetonitrile, removing lipids or hydrophobic compounds from the extract with hexane, and providing additional clean-up with solid-phase extraction techniques. Analyte concentrations are determined using reversed-phase high-performance liquid chromatographic techniques with an isocratic mobile phase and UV detection. The accuracy (range, 92 to 121%), precision (R.S.D., <14%), and sensitivity (method quantitation limit, <24 ng/g) for each analyte indicate the usefulness of this method for studies characterizing the depletion of benzocaine residues from fish exposed to benzocaine. Copyright (C) 1999.

  4. EEG oscillations entrain their phase to high-level features of speech sound.

    PubMed

    Zoefel, Benedikt; VanRullen, Rufin

    2016-01-01

    Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Online reverse phase-high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry separation and characterization of heparan sulfate, heparin, and low-molecular weight-heparin disaccharides derivatized with 2-aminoacridone.

    PubMed

    Galeotti, Fabio; Volpi, Nicola

    2011-09-01

    A high-resolution online reverse-phase-high-performance liquid chromatography (RP-HPLC)-fluorescence detector (Fd)-electrospray ionization-mass spectrometry (ESI-MS) separation and structural characterization of disaccharides prepared from heparin (Hep), heparan sulfate (HS), and various low-molecular-weight (LMW)-Hep using heparin lyases and derivatization with 2-aminoacridone (AMAC) are described. A total of 12 commercially available Hep/HS-derived unsaturated disaccharides were separated and unambiguously identified on the basis of their retention times and mass spectra. The constituent disaccharides of various samples, including unfractionated Hep/HS, fast-moving and slow-moving Hep components, and several marketed products, were characterized. Furthermore, for the first time, the saturated trisulfated disaccharide belonging to the nonreducing end of Heps was detected as being approximately 2% in unfractionated samples and ~15-21% in LMW-Heps prepared by nitrous acid depolymerization. No desalting of the commercial products prior to enzymatic digestion or prepurification steps to eliminate any excess of AMAC reagent or interference from proteins, peptides, and other sample impurities before RP-HPLC-Fd-ESI-MS injection were necessary. This method has applicability for the rapid differentiation of pharmaceutical Heps and LMW-Heps prepared by means of different depolymerization processes and for compositional analysis of small amounts of samples derived from biological sources by using the highly sensitive fluorescence detector.

  6. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.

    PubMed

    Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo

    2007-09-14

    Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.

  7. O3-type layered transition metal oxide Na(NiCoFeTi) 1/4O 2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE PAGES

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; ...

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi) 1/4O 2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g –1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffractionmore » and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na + deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  8. Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system.

    PubMed

    He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 'Click Chemistry' in the preparation of porous polymer-basedparticulate stationary phases for mu-HPLC separation of peptides andproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Michael; Snauko, Marian; Svec, Frantisek

    With the use of the copper(I)-catalyzed (3 + 2) azide-alkynecycloaddition, an element of "click chemistry," stationary phasescarrying long alkyl chains or soybean trypsin inhibitor have beenprepared for use in HPLC separations in the reversed-phase and affinitymodes, respectively. The ligands were attached via a triazole ring tosize monodisperse porous beads containing either alkyne or azide pendantfunctionalities. Alkyne-containing beads prepared by directcopolymerization of propargyl acrylate with ethylene dimethacrylate wereallowed to react with azidooctadecane to give a reversed-phase sorbent.Azide-functionalized beads were prepared by chemical modification ofglycidyl methacrylate particles. Subsequent reaction with a terminalaliphatic alkyne produced a reversed-phase sorbent similar to thatobtained from themore » alkyne beads. Soybean trypsin inhibitor wasfunctionalized with N-(4-pentynoyloxy) succinimide to carry alkyne groupsand then allowed to react with the azide-containing beads to produce anaffinity sorbent for trypsin. The performance of these stationary phaseswas demonstrated with the HPLC separations of a variety of peptides andproteins.« less

  10. Determination of 13-cis-retinoic acid and its major metabolite, 4-oxo-13-cis-retinoic acid, in human blood by reversed-phase high-performance liquid chromatography.

    PubMed

    Vane, F M; Stoltenborg, J K; Buggé, C J

    1982-02-12

    A high-performance liquid chromatography (HPLC) method for the quantitation of 13-cis-retinoic acid (13-cis-RA) and its major metabolite, 4-oxo-13-cis-RA, in human blood has been developed. The method includes extraction of 1 ml of blood with diethyl ether at pH 6 and the analysis of the extract by reversed-phase HPLC with solvent programming and detection at 365 nm. The quantitation ranges for 13-cis-RA and 4-oxo-13-cis-RA are 10--2000 and 50--2000 ng/ml of blood, respectively. The method also provides estimates of the concentrations of all-trans-RA and 4-oxo-all-trans-RA. The mean intra- and inter-assay variabilities for all four compounds were 6% or less. The method separates 13-cis-RA and 4-oxo-13-cis-RA from 9-cis-RA, all-trans-RA, 4-oxo-all-trans-RA, and some other possible metabolites, such as hydroxy and epoxy retinoic acids. The method has been successfully applied to the analyses of over 1200 blood samples from four 13-cis-RA clinical studies.

  11. A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: comparative studies with the standard Jaffé and isotope-dilution mass spectrometric assays.

    PubMed

    Leung, Elvis M K; Chan, Wan

    2014-02-01

    Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples.

  12. The closing behavior of mechanical aortic heart valve prostheses.

    PubMed

    Lu, Po-Chien; Liu, Jia-Shing; Huang, Ren-Hong; Lo, Chi-Wen; Lai, Ho-Cheng; Hwang, Ned H C

    2004-01-01

    Mechanical artificial heart valves rely on reverse flow to close their leaflets. This mechanism creates regurgitation and water hammer effects that may form cavitations, damage blood cells, and cause thromboembolism. This study analyzes closing mechanisms of monoleaflet (Medtronic Hall 27), bileaflet (Carbo-Medics 27; St. Jude Medical 27; Duromedics 29), and trileaflet valves in a circulatory mock loop, including an aortic root with three sinuses. Downstream flow field velocity was measured via digital particle image velocimetry (DPIV). A high speed camera (PIVCAM 10-30 CCD video camera) tracked leaflet movement at 1000 frames/s. All valves open in 40-50 msec, but monoleaflet and bileaflet valves close in much less time (< 35 msec) than the trileaflet valve (>75 msec). During acceleration phase of systole, the monoleaflet forms a major and minor flow, the bileaflet has three jet flows, and the trileaflet produces a single central flow like physiologic valves. In deceleration phase, the aortic sinus vortices hinder monoleaflet and bileaflet valve closure until reverse flows and high negative transvalvular pressure push the leaflets rapidly for a hard closure. Conversely, the vortices help close the trileaflet valve more softly, probably causing less damage, lessening back flow, and providing a washing effect that may prevent thrombosis formation.

  13. [Direct determination of purine bases in tea by reversed-phase high performance liquid chromatography].

    PubMed

    Ding, M; Yang, H; Xiao, S; Chen, P

    1999-09-01

    A reversed-phase high performance liquid chromatographic(RP-HPLC) method for the direct determination of three purine bases(theobromin, theophyllin and caffeine) in tea was developed. An ODS column with Zorbax SB-C18(4.6 mm i.d. x 250 mm, 5 microns) was employed. The aqueous solution of methanol containing 0.05% of acetic acid and 0.25% of N,N-dimethylformamide(DMF) was used as eluent with a flow rate of 0.8 mL/min. In this method, the aqueous extract of tea can be injected into HPLC directly, but in current HPLC methods for purine bases the coexisted tea polyphenols must be pre-separated. The three purine bases in tea were separated without any interference from the coexisted tea polyphenols. This method is simple (without any special sample pretreatment) and sensitive with detection limits (S/N = 3) of 0.7, 0.9 and 1.8 mg/L for theobromin, theophyllin and caffeine respectively. The linear range of the calibration curve of peak area for the three purine bases were from 6 mg/L to 1,000 mg/L with a correlation coefficient (r) of 0.998-0.999.

  14. Crystal Chemistry of Electrochemically and Chemically Lithiated Layered α I-LiVOPO 4

    DOE PAGES

    He, Guang; Bridges, Craig A.; Manthiram, Arumugam

    2015-09-14

    LiVOPO 4 is an attractive cathode for lithium-ion batteries with a high operating voltage and the potential to achieve the reversible insertion of two lithium ions between VOPO 4 and Li 2VOPO 4. Among the three known forms of LiVOPO 4 (α, β, and αI), the α I-LiVOPO 4 has a layered structure that could promote better ionic mobility and reversibility than others. However, a comprehensive study of its lithiated product is not available as αI-LiVOPO 4 is metastable and difficult to prepare by conventional approaches. We present here a facile synthesis of highly crystalline αI-LiVOPO 4 and α I-LiVOPOmore » 4/rGO nanocomposite by a microwave-assisted solvothermal method and its electrochemical/chemical lithiation. The LiVOPO 4/rGO cathodes exhibit a high reversible capacity of 225 mAh g –1, indicating the insertion of more than one lithium into VOPO 4. Both electrochemical and chemical lithiation imply a solid-solution reaction mechanism on inserting the second lithium into α I-LiVOPO 4, but a two-phase reaction feature could also occur under certain conditions such as insufficient time for equilibration of Li + diffusion in the structure. The fully lithiated new α I-Li 2VOPO 4 phase was characterized by combined Rietveld refinement of neutron diffraction and X-ray diffraction data and by bond-valence sum maps. The results suggest that αI-Li 2VOPO 4 retains the tetragonal P4/nmm symmetry of the parent α I-LiVOPO 4 structure, where the second lithium ions are located in the lithium layers rather than in the VOPO 4 layers« less

  15. Alternative stable states and phase shifts in coral reefs under anthropogenic stress.

    PubMed

    Fung, Tak; Seymour, Robert M; Johnson, Craig R

    2011-04-01

    Ecosystems with alternative stable states (ASS) may shift discontinuously from one stable state to another as environmental parameters cross a threshold. Reversal can then be difficult due to hysteresis effects. This contrasts with continuous state changes in response to changing environmental parameters, which are less difficult to reverse. Worldwide degradation of coral reefs, involving "phase shifts" from coral to algal dominance, highlights the pressing need to determine the likelihood of discontinuous phase shifts in coral reefs, in contrast to continuous shifts with no ASS. However, there is little evidence either for or against the existence of ASS for coral reefs. We use dynamic models to investigate the likelihood of continuous and discontinuous phase shifts in coral reefs subject to sustained environmental perturbation by fishing, nutrification, and sedimentation. Our modeling results suggest that coral reefs with or without anthropogenic stress can exhibit ASS, such that discontinuous phase shifts can occur. We also find evidence to support the view that high macroalgal growth rates and low grazing rates on macroalgae favor ASS in coral reefs. Further, our results suggest that the three stressors studied, either alone or in combination, can increase the likelihood of both continuous and discontinuous phase shifts by altering the competitive balance between corals and algae. However, in contrast to continuous phase shifts, we find that discontinuous shifts occur only in model coral reefs with parameter values near the extremes of their empirically determined ranges. This suggests that continuous shifts are more likely than discontinuous shifts in coral reefs. Our results also suggest that, for ecosystems in general, tackling multiple human stressors simultaneously maximizes resilience to phase shifts, ASS, and hysteresis, leading to improvements in ecosystem health and functioning.

  16. Fragility, network adaptation, rigidity- and stress- transitions in homogenized binary GexS100-x glasses

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shibalik; Boolchand, Punit

    2014-03-01

    Binary GexS100-x glasses reveal elastic and chemical phase transitions driven by network topology. With increasing Ge content x, well defined rigidity (xc(1) =19.3%) and stress(xc(2) =24.85%) transitions and associated optical elasticity power-laws are observed in Raman scattering. Calorimetric measurements reveal a square-well like minimum with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum with edges that nearly coincide with the reversibility window. These results are signatures of the isostatically rigid nature of the elastic phase formed between the rigidity and stress transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization of non-stoichiometric batch compositions reacted at high temperatures. Homogenization of chalcogenides melts/glasses over a scale of a few microns is a pre-requisite to observe the intrinsic physical properties of these materials. Supported by NSF Grant DMR 0853957.

  17. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  18. Quantitative determination of ambroxol in tablets by derivative UV spectrophotometric method and HPLC.

    PubMed

    Dinçer, Zafer; Basan, Hasan; Göger, Nilgün Günden

    2003-04-01

    A derivative UV spectrophotometric method for the determination of ambroxol in tablets was developed. Determination of ambroxol in tablets was conducted by using first-order derivative UV spectrophotometric method at 255 nm (n = 5). Standards for the calibration graph ranging from 5.0 to 35.0 microg/ml were prepared from stock solution. The proposed method was accurate with 98.6+/-0.4% recovery value and precise with coefficient of variation (CV) of 1.22. These results were compared with those obtained by reference methods, zero-order UV spectrophotometric method and reversed-phase high-performance liquid chromatography (HPLC) method. A reversed-phase C(18) column with aqueous phosphate (0.01 M)-acetonitrile-glacial acetic acid (59:40:1, v/v/v) (pH 3.12) mobile phase was used and UV detector was set to 252 nm. Calibration solutions used in HPLC were ranging from 5.0 to 20.0 microg/ml. Results obtained by derivative UV spectrophotometric method was comparable to those obtained by reference methods, zero-order UV spectrophotometric method and HPLC, as far as ANOVA test, F(calculated) = 0.762 and F(theoretical) = 3.89, was concerned. Copyright 2003 Elsevier Science B.V.

  19. Nontrivial Berry phase in magnetic BaMnSb2 semimetal

    PubMed Central

    Huang, Silu; Shelton, W. A.; Plummer, E. W.; Jin, Rongying

    2017-01-01

    The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Although both Dirac and Weyl fermions have massless nature with the nontrivial Berry phase, the formation of Weyl fermions in 3D semimetals require either time-reversal or inversion symmetry breaking to lift degeneracy at Dirac points. Here we demonstrate experimentally that canted antiferromagnetic BaMnSb2 is a 3D Weyl semimetal with a 2D electronic structure. The Shubnikov–de Hass oscillations of the magnetoresistance give nearly zero effective mass with high mobility and the nontrivial Berry phase. The ordered magnetic arrangement (ferromagnetic ordering in the ab plane and antiferromagnetic ordering along the c axis below 286 K) breaks the time-reversal symmetry, thus offering us an ideal platform to study magnetic Weyl fermions in a centrosymmetric material. PMID:28539436

  20. The role of MHD in 3D aspects of massive gas injection

    DOE PAGES

    Izzo, Valerie A.; Parks, P. B.; Eidietis, Nicholas W.; ...

    2015-06-26

    Simulations of massive gas injection (MGI) for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with then =1 mode. The injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. In light of this mechanism, reversing the current direction also reverses the toroidal direction of impurity spreading. During themore » pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in the straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.« less

  1. The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration.

    PubMed

    St George-Hyslop, Peter; Lin, Julie Qiaojin; Miyashita, Akinori; Phillips, Emma C; Qamar, Seema; Randle, Suzanne J; Wang, GuoZhen

    2018-04-30

    Many RNA binding proteins, including FUS, contain moderately repetitive, low complexity, intrinsically disordered domains. These sequence motifs have recently been found to underpin reversible liquid: liquid phase separation and gelation of these proteins, permitting them to reversibly transition from a monodispersed state to liquid droplet- or hydrogel-like states. This function allows the proteins to serve as scaffolds for the formation of reversible membraneless intracellular organelles such as nucleoli, stress granules and neuronal transport granules. Using FUS as an example, this review examines the biophysics of this physiological process, and reports on how mutations and changes in post-translational state alter phase behaviour, and lead to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Copyright © 2018. Published by Elsevier B.V.

  2. Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides.

    PubMed

    Li, Qin; Lynen, Frédéric; Wang, Jian; Li, Hanlin; Xu, Guowang; Sandra, Pat

    2012-09-14

    A comprehensive two-dimensional HPLC approach with a high degree of orthogonality was developed for analysis of di- to deca-oligonucleotides (ONs). Hydrophilic interaction liquid chromatography (HILIC) was used in the first dimension, and ion-pair reversed-phase liquid chromatography (IP-RPLC) was employed in the second dimension. The two dimensions were connected via a ten-port valve interface equipped with octadecyl silica (ODS) traps to immobilize and focus the ONs eluting from the first dimension prior to IP-RPLC separation. An aqueous make-up flow was used for effective trapping. The comprehensive two-dimensional HPLC system was optimized with a mixture consisting of 27 oligonucleotide standards. An overall chromatographic peak capacity of 500 was obtained. The use of the volatile buffer triethylamine acetate in the second dimension allowed straightforward coupling to electrospray ionization mass spectrometry (ESI-MS) and detection of each ON in the negative ionization mode. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A study of elastase peptides from bovine white matter proteolipid.

    PubMed

    Lees, M B; Macklin, W B; Chao, B H

    1981-10-01

    Bovine white matter proteolipid has been digested with elastase in the presence of deoxycholate. After acidification, the digest was separated into an acid-soluble and an acid-insoluble fraction. The acid-insoluble fraction was enriched in nonpolar amino acids and, by a combination of solvent fractionation and chromatography, a fraction was obtained which consisted of a mixture of two peptides with a molecular weight of approximately 4000 daltons. The acid-soluble peptides were separated by molecular sieve, ion exchange and high performance liquid chromatography (HPLC) in the reverse phase mode. The purified peptides were smaller than expected on the basis of their elution position from a molecular sieve column, suggesting they were in an aggregated state during the initial chromatography. Reverse phase HPLC was shown to be useful for fingerprinting these peptide mixtures. The data demonstrate the difficulties associated with the study of this proteolipid and emphasize the tendency of both the protein and the peptides derived from it to aggregate.

  4. Structural characterization of osmoregulator peptides from the brain of the leech Theromyzon tessulatum: IPEPYVWD and IPEPYVWD-amide.

    PubMed

    Salzet, M; Vandenbulcke, F; Verger-Bocquet, M

    1996-12-31

    Neurons immunoreactive to an antiserum (a-OT) directed specifically against the C-terminal part (prolyl-leucyl-glycinamide) of vertebrate oxytocin (OT) were detected in the brain of the leech Theromyzon tessulatum. With high pressure gel permeation chromatography followed by reversed-phase HPLC on brain extracts, evidence was given of the presence of three peptides (P1, P2, P3) immunoreactive to a-OT. Results of injection experiments in T. tessulatum and of titrations of each peptide at the different physiological stages of the animals which showed a peak in peptide P1 amount at stage 3B, indicated that P1 is the active OT-like peptide. Using three steps of reversed-phase HPLC, Edman degradation and electrospray mass spectrometry, two sequences for P1 (IPEPYVWD and IPEPYVWD-amide) were found. These peptides differ from peptides to the oxytocin/vasopressin family and are unique in the animal kingdom. Confirmation of their action on the hydric balance and their distribution in the CNS were presented.

  5. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.

    2010-10-15

    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation ofmore » new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.« less

  6. Clustering and Network Analysis of Reverse Phase Protein Array Data.

    PubMed

    Byron, Adam

    2017-01-01

    Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.

  7. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3

    NASA Astrophysics Data System (ADS)

    Yao, Lide; Inkinen, Sampo; van Dijken, Sebastiaan

    2017-02-01

    Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.

  8. Study of Separation and Identification of the Active Ingredients in Gardenia jasminoides Ellis Based on a Two-Dimensional Liquid Chromatography by Coupling Reversed Phase Liquid Chromatography and Hydrophilic Interaction Liquid Chromatography.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2017-01-01

    In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Reverse phase protein microarrays: fluorometric and colorimetric detection.

    PubMed

    Gallagher, Rosa I; Silvestri, Alessandra; Petricoin, Emanuel F; Liotta, Lance A; Espina, Virginia

    2011-01-01

    The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.

  10. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav

    2018-02-01

    Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.

  11. Self-organization in P_xGe_xSe_1-2x glasses^*

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Georgiev, Daniel; Boolchand, Punit; Micoulaut, Matthieu

    2003-03-01

    Bulk glasses in the titled ternary, in the 0 < x < 0.26 composition range, are examined in MDSC and Raman scattering measurements. Both fresh and aged samples were studied. Bimodal endotherms are observed but only the high^T endotherm displays a reversing heat flow signal that represents a glass transition. The pre^_Tg endotherm is observed in quenched samples only, and represents an activation energy [1] associated with P4 units (Se^_P(Se_1/2)_3) converting to P3 (P(Se_1/2)_3) ones. T_g(x) accessed from the reversing heat flow are found to increase with x as a power^_law, displaying a cusp near x = 0.04. The non^_reversing enthalpy is found to display a global minimum in the 0.08 < x < 0.145 range identified with the self^_organized phase. Raman scattering reveals the isostatically rigid units ( P3 , P_4, CS and ES Ge(Se_1/2)_4) comprising building blocks of the self^_organized phase. These results are parallel to those encountered in the As^_Ge^_Se ternary [2,3]. ^*Supported by NSF grant DMR ^_01^_01808 1. D.G. Georgiev et al Phys. Rev. B 64,134204(2001) 2.Y. Wang et al Europhys. Lett. 52, 633 (2000) 3. T.Qu et al. companion abstract

  12. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less

  13. Structures and phase transitions in a new ferroelectric -- pyridinium chlorochromate -- studied by X-ray diffraction, DSC and dielectric methods.

    PubMed

    Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław

    2012-04-01

    Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).

  14. On the reversibility of the Meissner effect and the angular momentum puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu

    It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay ofmore » eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes. - Highlights: • The normal-superconductor phase transition is reversible. • Within the conventional theory, Foucault currents give rise to irreversibility. • To suppress Foucault currents, charge has to flow in direction perpendicular to the phase boundary. • The charge carriers have to be holes. • This solves also the angular momentum puzzle associated with the Meissner effect.« less

  15. Systematic Comparison of Reverse Phase and Hydrophilic Interaction Liquid Chromatography Platforms for the Analysis of N-linked Glycans

    PubMed Central

    Walker, S. Hunter; Carlisle, Brandon C.; Muddiman, David C.

    2013-01-01

    Due to the hydrophilic nature of glycans, reverse phase chromatography has not been widely used as a glycomic separation technique coupled to mass spectrometry. Other approaches such as hydrophilic interaction chromatography and porous graphitized carbon chromatography are often employed, though these strategies frequently suffer from decreased chromatographic resolution, long equilibration times, indefinite retention, and column bleed. Herein, it is shown that through an efficient hydrazone formation derivatization of N-linked glycans (∼4 hr of additional sample preparation time which is carried out in parallel), numerous experimental and practical advantages are gained when analyzing the glycans by online reverse phase chromatography. These benefits include an increased number of glycans detected, increased peak capacity of the separation, and the ability to analyze glycans on the identical liquid chromatography-mass spectrometry platform commonly used for proteomic analyses. The data presented show that separation of derivatized N-linked glycans by reverse phase chromatography significantly out-performs traditional separation of native or derivatized glycans by hydrophilic interaction chromatography. Furthermore, the movement to a more ubiquitous separation technique will afford numerous research groups the opportunity to analyze both proteomic and glycomic samples on the same platform with minimal time and physical change between experiments, increasing the efficiency of ‘multi-omic’ biological approaches. PMID:22954204

  16. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    PubMed

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage

    PubMed Central

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-01-01

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li+ diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li+ intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g−1 at 1 C after 80 cycles and an excellent rate capability of 100 mAh g−1 even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li+ diffusion into bulk but contributes to surface Li+ storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs. PMID:27511434

  18. Simultaneous determination of secondary metabolites from Vinca rosea plant extractives by reverse phase high performance liquid chromatography

    PubMed Central

    Siddiqui, Mohammad Jamshed Ahmad; Ismail, Zhari; Saidan, Noor Hafizoh

    2011-01-01

    Background: Vinca rosea (Apocynaceae) is one of the most important and high value medicinal plants known for its anticancer alkaloids. It is the iota of the isolated secondary metabolites used in chemotherapy to treat diverse cancers. Several high performance liquid chromatography (HPLC) methods have been developed to quantify the active alkaloids in the plant. However, this method may serve the purpose in quantification of V. rosea plant extracts in totality. Objective: To develop and validate the reverse phase (RP)-HPLC method for simultaneous determination of secondary metabolites, namely alkaloids from V. rosea plant extracts. Materials and Methods: The quantitative determination was conducted by RP-HPLC equipped with ultraviolet detector. Optimal separation was achieved by isocratic elution with mobile phase consisting of methanol:acetonitrile:ammonium acetate buffer (25 mM) with 0.1% triethylamine (15:45:40 v/v) on a column (Zorbax Eclipse plus C18, 250 mm % 4.6 mm; 5 μm). The standard markers (vindoline, vincristine, catharanthine, and vinblastine) were identified by retention time and co-injected with reference standard and quantified by external standard method at 297 nm. Results: The precision of the method was confirmed by the relative standard deviation (R.S.D.), which was lower than 2.68%. The recoveries were in the range of 98.09%-108%. The limits of detection (LOD) for each marker alkaloids were lower than 0.20 μg. Different parts of the V. rosea extracts shows different concentrations of markers, flower samples were high in vinblastine content, while methanol extract from the leaves contains all the four alkaloids in good yield, and there is no significant presence of markers in water extracts. Conclusion: HPLC method established is appropriate for the standardization and quality assurance of V. rosea plant extracts. PMID:21716929

  19. Determination of efavirenz in human dried blood spots by reversed-phase high-performance liquid chromatography with UV detection.

    PubMed

    Hoffman, Justin T; Rossi, Steven S; Espina-Quinto, Rowena; Letendre, Scott; Capparelli, Edmund V

    2013-04-01

    Previously published methods for determination of efavirenz (EFV) in human dried blood spots (DBS) use costly and complex liquid chromatography/mass spectrometry. We describe the validation and evaluation of a simple and inexpensive high-performance liquid chromatography method for EFV quantification in human DBS and dried plasma spots (DPS), using ultraviolet detection appropriate for resource-limited settings. One hundred microliters of heparinized whole blood or plasma were spotted onto blood collection cards, dried, punched, and eluted. Eluates are injected onto a C-18 reversed phase high-performance liquid chromatography column. EFV is separated isocratically using a potassium phosphate and acetonitrile mobile phase. Ultraviolet detection is at 245 nm. Quantitation is by use of external calibration standards. Following validation, the method was evaluated using whole blood and plasma from HIV-positive patients undergoing EFV therapy. Mean recovery of drug from DBS is 91.5%. The method is linear over the validated concentration range of 0.3125-20.0 μg/mL. A good correlation (Spearman r = 0.96) between paired plasma and DBS EFV concentrations from the clinical samples was observed, and hematocrit level was not found to be a significant determinant of the EFV DBS level. The mean observed C DBS/C plasma ratio was 0.68. A good correlation (Spearman r = 0.96) between paired plasma and DPS EFV concentrations from the clinical samples was observed. The mean percent deviation of DPS samples from plasma samples is 1.68%. Dried whole blood spot or dried plasma spot sampling is well suited for monitoring EFV therapy in resource-limited settings, particularly when high sensitivity is not essential.

  20. Validation of geometric measurements of the left atrium and pulmonary veins for analysis of reverse structural remodeling following ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.

    2012-03-01

    Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.

Top