Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek
2017-05-19
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.
Protein-surface interactions on stimuli-responsive polymeric biomaterials.
Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D
2016-03-04
Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.
St George-Hyslop, Peter; Lin, Julie Qiaojin; Miyashita, Akinori; Phillips, Emma C; Qamar, Seema; Randle, Suzanne J; Wang, GuoZhen
2018-04-30
Many RNA binding proteins, including FUS, contain moderately repetitive, low complexity, intrinsically disordered domains. These sequence motifs have recently been found to underpin reversible liquid: liquid phase separation and gelation of these proteins, permitting them to reversibly transition from a monodispersed state to liquid droplet- or hydrogel-like states. This function allows the proteins to serve as scaffolds for the formation of reversible membraneless intracellular organelles such as nucleoli, stress granules and neuronal transport granules. Using FUS as an example, this review examines the biophysics of this physiological process, and reports on how mutations and changes in post-translational state alter phase behaviour, and lead to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Copyright © 2018. Published by Elsevier B.V.
Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data.
Applications of reversible covalent chemistry in analytical sample preparation.
Siegel, David
2012-12-07
Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.
Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue
2013-01-01
We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661
Solid-phase synthesis of protein-polymers on reversible immobilization supports.
Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J
2018-02-27
Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.
Lam, Maggie P Y; Lau, Edward; Siu, S O; Ng, Dominic C M; Kong, Ricky P W; Chiu, Philip C N; Yeung, William S B; Lo, Clive; Chu, Ivan K
2011-11-01
In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy
2016-11-30
Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.
NASA Astrophysics Data System (ADS)
Hentschke, Reinhard; Herzfeld, Judith
1991-06-01
The reversible association of globular protein molecules in concentrated solution leads to highly polydisperse fibers, e.g., actin filaments, microtubules, and sickle-cell hemoglobin fibers. At high concentrations, excluded-volume interactions between the fibers lead to spontaneous alignment analogous to that in simple lyotropic liquid crystals. However, the phase behavior of reversibly associating proteins is complicated by the threefold coupling between the growth, alignment, and hydration of the fibers. In protein systems aggregates contain substantial solvent, which may cause them to swell or shrink, depending on osmotic stress. Extending previous work, we present a model for the equilibrium phase behavior of the above-noted protein systems in terms of simple intra- and interaggregate interactions, combined with equilibration of fiber-incorporated solvent with the bulk solvent. Specifically, we compare our model results to recent osmotic pressure data for sickle-cell hemoglobin and find excellent agreement. This comparison shows that particle interactions sufficient to cause alignment are also sufficient to squeeze significant amounts of solvent out of protein fibers. In addition, the model is in accord with findings from independent sedimentation and birefringence studies on sickle-cell hemoglobin.
Reverse phase protein microarrays: fluorometric and colorimetric detection.
Gallagher, Rosa I; Silvestri, Alessandra; Petricoin, Emanuel F; Liotta, Lance A; Espina, Virginia
2011-01-01
The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.
Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement
Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.
2011-01-01
It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964
Atwood, A; Lin, J H; Levin, H L
1996-01-01
The retrotransposon Tf1, isolated from Schizosaccharomyces pombe, contains a single open reading frame with sequences encoding Gag, protease, reverse transcriptase, and integrase (IN). Tf1 has previously been shown to possess significant transposition activity. Although Tf1 proteins do assemble into virus-like particles, the assembly does not require readthrough of a translational reading frame shift or stop codon, common mechanisms used by retroelements to express Gag in molar excess of the polymerase proteins. This study was designed to determine if Tf1 particles contain equal amounts of Gag and polymerase proteins or whether they contain the typical molar excess of Gag. After using two separate methods to calibrate the strength of our antibodies, we found that both S. pombe extracts and partially purified Tf1 particles contained a 26-fold molar excess of Gag relative to IN. Knowing that Gag and IN are derived from the same Tf1 primary translation product, we concluded that the excess Gag most likely resulted from specific degradation of IN. We obtained evidence of regulated IN degradation in comparisons of Tf1 protein extracted from log-phase cells and that extracted from stationary-phase cells. The log-phase cells contained equal molar amounts of Gag and IN, whereas cells approaching stationary phase rapidly degraded IN, leaving an excess of Gag. Analysis of the reverse transcripts indicated that the bulk of reverse transcription occurred within the particles that possess a molar excess of Gag.
Jafari, M; Mirzaie, M; Khodabandeh, M; Rezadoost, H; Ghassempour, A; Aboul-Enein, H Y
2016-07-01
During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed-phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica-based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel-free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Blending protein separation and peptide analysis through real-time proteolytic digestion.
Slysz, Gordon W; Schriemer, David C
2005-03-15
Typical liquid- or gel-based protein separations require enzymatic digestion as an important first step in generating protein identifications. Traditional protocols involve long-term proteolytic digestion of the separated protein, often leading to sample loss and reduced sensitivity. Previously, we presented a rapid method of proteolytic digestion that showed excellent digestion of resistant and low concentrations of protein without requiring reduction and alkylation. Here, we demonstrate on-line, real-time tryptic digestion in conjunction with reversed-phase protein separation. The studies were aimed at optimizing pH and ionic strength and the size of the digestion element, to produce maximal protein digestion with minimal effects on chromatographic integrity. Upon establishing optimal conditions, the digestion element was attached downstream from a capillary C4 reversed-phase column. A four-protein mixture was processed through the combined system, and the resulting peptides were analyzed on-line by electrospray mass spectrometry. Extracted ion chromatograms for protein chromatography based on peptide elution were generated. These were shown to emulate ion chromatograms produced in a subsequent run without the digestion element, based on protein elution. The methodology will enable rapid and sensitive analysis of liquid-based protein separations using the power of bottom-up proteomics methodologies.
Elastin-like polypeptide switches: A design strategy to detect multimeric proteins.
Dhandhukia, Jugal P; Brill, Dab A; Kouhi, Aida; Pastuszka, Martha K; MacKay, J Andrew
2017-09-01
Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent K d of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates. © 2017 The Protein Society.
Clustering and Network Analysis of Reverse Phase Protein Array Data.
Byron, Adam
2017-01-01
Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.
Composition and Molecular Weight Distribution of Carob Germ Proteins Fractions
USDA-ARS?s Scientific Manuscript database
Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high performance liquid chromatography (RP-HPLC), size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and electrophoretic analysis. Using a mo...
RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays
Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S
2008-01-01
Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773
Introduction
Membrane proteins play crucial role in many cellular processes and are promising candidates for biomarker discovery but are under-represented in the field of proteomics due to their hydrophobic nature. Although standard reversed-phase LC methods often exhibit ...
Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification
2010-01-01
Background Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range. PMID:20569466
Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.
2015-01-01
Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031
Folding-unfolding transitions of Rv3221c on the pressure-temperature plane
NASA Astrophysics Data System (ADS)
Somkuti, Judit; Jain, Sriyans; Ramachandran, Srinivasan; ászló Smeller, L.
2013-06-01
Rv3221c is a biotin-binding protein found in Mycobacterium tuberculosis. It has been reported that an elevated temperature is needed for it to adopt a folded conformation. We determined the complete pressure-temperature phase diagram, and determined the thermodynamical parameters of the denaturation. The phase diagram follows well the Hawley theory. The secondary structure of the protein was found to contain predominantly beta sheet. The pressure unfolding was partially reversible, resulting in pressure-sensitive aggregates, besides the correctly refolded and biotin-bound fraction of proteins.
USDA-ARS?s Scientific Manuscript database
Capillary electrophoresis (CE) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis were utilized to detect differences in the sarcoplasmic protein profiles of beef strip loins subjected to aging and hydrodynamic pressure processing (HDP) treatments. At 48 h postmortem, stri...
Wang, Jilite; Shimada, Masaya; Nagaoka, Satoshi
2017-06-01
In our previous study, rice bran protein (RBP) inhibited cholesterol micellar solubility in vitro and decreased serum cholesterol level in rats. In the present study, RBP was separated and purified by size-exclusion chromatography and reversed-phase chromatography. The active protein of RBP related to cholesterol micellar solubility was identified as lectin and non-specific lipid-transfer protein 1 using MALDI-TOF mass spectrometry analysis.
USDA-ARS?s Scientific Manuscript database
In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed to determine how they cluster in terms of parentage and protein data, analyzed by reverse-phase HPLC (RP-HPLC) of gliadins, and size-exclusion HPLC (SE-HPLC) of unreduced proteins. Dwarfing genes in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman-McKeeman, L.D.; Rodriguez, P.A.; Takigiku, R.
1989-06-15
d-Limonene is a naturally occurring monoterpene, which when dosed orally, causes a male rat-specific nephrotoxicity manifested acutely as the exacerbation of protein droplets in proximal tubule cells. Experiments were conducted to examine the retention of (/sup 14/C)d-limonene in male and female rat kidney, to determine whether d-limonene or one or more of its metabolites associates with the male rat-specific protein, alpha 2u-globulin, and if so, to identify the bound material. The results indicated that, 24 hr after oral administration of 3 mmol d-limonene/kg, the renal concentration of d-limonene equivalents was approximately 2.5 times higher in male rats than in femalemore » rats. Equilibrium dialysis in the presence or absence of sodium dodecyl sulfate indicated that approximately 40% of the d-limonene equivalents in male rat kidney associated with proteins in a reversible manner, whereas no significant association was observed between d-limonene equivalents and female rat kidney proteins. Association between d-limonene and male rat kidney proteins was characterized by high-performance gel filtration and reverse-phase chromatography. Gel filtration HPLC indicated that d-limonene in male rat kidney is associated with a protein fraction having a molecular weight of approximately 20,000. Separation of alpha 2u-globulin from other kidney proteins by reverse-phase HPLC indicated that d-limonene associated with a protein present only in male rat kidney which was definitively identified as alpha 2u-globulin by amino acid sequencing. The major metabolite associated with alpha 2u-globulin was d-limonene-1,2-oxide. Parent d-limonene was also identified as a minor component in the alpha 2u-globulin fraction.« less
Berridge, Georgina; Chalk, Rod; D’Avanzo, Nazzareno; Dong, Liang; Doyle, Declan; Kim, Jung-In; Xia, Xiaobing; Burgess-Brown, Nicola; deRiso, Antonio; Carpenter, Elisabeth Paula; Gileadi, Opher
2011-01-01
We have developed a method for intact mass analysis of detergent-solubilized and purified integral membrane proteins using liquid chromatography–mass spectrometry (LC–MS) with methanol as the organic mobile phase. Membrane proteins and detergents are separated chromatographically during the isocratic stage of the gradient profile from a 150-mm C3 reversed-phase column. The mass accuracy is comparable to standard methods employed for soluble proteins; the sensitivity is 10-fold lower, requiring 0.2–5 μg of protein. The method is also compatible with our standard LC–MS method used for intact mass analysis of soluble proteins and may therefore be applied on a multiuser instrument or in a high-throughput environment. PMID:21093405
Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...
2014-11-04
A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less
Wang, Jixia; Kong, Song; Yan, Jingyu; Jin, Gaowa; Guo, Zhimou; Shen, Aijin; Xu, Junyan; Zhang, Xiuli; Zou, Lijuan; Liang, Xinmiao
2014-06-01
Peptide drugs play a critical role in therapeutic treatment. However, as the complexity of plasma, determination of peptide drugs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a daunting task. To solve this problem, hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE) directly combined with protein precipitation (PPT) was developed for the selective extraction of triptorelin from plasma. The extracts were analyzed by reversed-phase liquid chromatography (RPLC). Proteins, phospholipids and highly polar interferences could be removed from plasma by the efficient combination of PPT, HILIC-SPE and RPLC-MS/MS. This method was evaluated by matrix effect, recovery and process efficiency at different concentration levels (50, 500 and 5,000 ng/mL) of triptorelin. Furthermore, the performance of HILIC-SPE was compared with that of reversed-phase C18 SPE and hydrophilic lipophilic balance (Oasis HLB) SPE. Among them, HILIC-SPE provided the minimum matrix effect (ranging from 96.02% to 103.41%), the maximum recovery (ranging from 80.68% to 90.54%) and the satisfactory process efficiency (ranging from 82.83% to 92.95%). The validated method was successfully applied to determine triptorelin in rat plasma. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli
2016-02-01
Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Murakami, Tetsuro; Qamar, Seema; Lin, Julie Qiaojin; Schierle, Gabriele S. Kaminski; Rees, Eric; Miyashita, Akinori; Costa, Ana R.; Dodd, Roger B.; Chan, Fiona T.S.; Michel, Claire H.; Kronenberg-Versteeg, Deborah; Li, Yi; Yang, Seung-Pil; Wakutani, Yosuke; Meadows, William; Ferry, Rodylyn Rose; Dong, Liang; Tartaglia, Gian Gaetano; Favrin, Giorgio; Lin, Wen-Lang; Dickson, Dennis W.; Zhen, Mei; Ron, David; Schmitt-Ulms, Gerold; Fraser, Paul E.; Shneider, Neil A.; Holt, Christine; Vendruscolo, Michele; Kaminski, Clemens F.; St George-Hyslop, Peter
2015-01-01
Summary The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. PMID:26526393
Jin, Yulong; Huang, Yanyan; Xie, Yunfeng; Hu, Wenbing; Wang, Fuyi; Liu, Guoquan; Zhao, Rui
2012-01-30
The cyclic oxidation and reduction of methionine (Met) containing peptides and proteins play important roles in biological system. This work was contributed to analysis the cyclic oxidation and reduction processes of a methionine containing peptide which is very likely to relate in the cell signal transduction pathways. To mimic the biological oxidation condition, hydrogen peroxide was used as the reactive oxygen species to oxidize the peptide. Reversed-phase high-performance liquid chromatography and mass spectrometry were employed to monitor the reactions and characterize the structural changes of the products. A rapid reduction procedure was developed by simply using KI as the reductant, which is green and highly efficient. By investigation of the cyclic oxidation and reduction process, our work provides a new perspective to study the function and mechanism of Met containing peptides and proteins during cell signaling processes as well as diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Proteomic analysis of early phase of conidia germination in Aspergillus nidulans.
Oh, Young Taek; Ahn, Chun-Seob; Kim, Jeong Geun; Ro, Hyeon-Su; Lee, Chang-Won; Kim, Jae Won
2010-03-01
In order to investigate proteins involved in early phase of conidia germination, proteomic analysis was performed using two-dimensional gel electrophoresis (2D-GE) in conjunction with MALDI-TOF mass spectrometry (MS). The expression levels of 241 proteins varied quantitatively with statistical significance (P<0.05) at the early phase of the germination stage. Out of these 57 were identified by MALDI-TOF MS. Through classification of physiological functions from Conserved Domain Database analysis, among the identified proteins, 21, 13, and 6 proteins were associated with energy metabolism, protein synthesis, and protein folding process, respectively. Interestingly, eight proteins, which are involved in detoxification of reactive oxygen species (ROS) including catalase A, thioredoxin reductase, and mitochondrial peroxiredoxin, were also identified. The expression levels of the genes were further confirmed using Northern blot and reverse transcriptase (RT)-PCR analyses. This study represents the first proteomic analysis of early phase of conidia germination and will contribute to a better understanding of the molecular events involved in conidia germination process. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Calcium-binding protein from mouse Ehrlich ascites-tumour cells is homologous to human calcyclin.
Kuźnicki, J; Filipek, A; Hunziker, P E; Huber, S; Heizmann, C W
1989-01-01
A Ca2+-binding protein was purified from mouse Ehrlich ascites-tumour cells. The protein forms monomers and disulphide-linked dimers, which can be separated by reverse-phase h.p.l.c. A partial amino acid sequence analysis demonstrated that the protein has an EF-hand structure. A striking homology was found to rat and human calcyclin (a member of the S-100 protein family), which is possibly involved in cell-cycle regulation. Images Fig. 1. Fig. 2. PMID:2597136
Nshanian, Michael; Lakshmanan, Rajeswari; Chen, Hao; Ogorzalek Loo, Rachel R; Loo, Joseph A
2018-04-01
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
Hamidi, Mehrdad; Zarei, Najmeh
2009-05-01
Bovine serum albumin (BSA) is among the most widely used proteins in protein formulations as well as in the development of novel delivery systems as a typical model for therapeutic/diagnostic proteins and the new versions of vaccines. The development of reliable and easily available assay methods for quantitation of this protein would therefore play a crucial role in these types of studies. A simple gradient reversed-phase high-performance liquid chromatography with ultra-violet detection (HPLC-UV) method has been developed for quantitation of BSA in dosage forms and protein delivery systems. The method produced linear responses throughout the wide BSA concentration range of 1 to 100 micro g/mL. The average within-run and between-run variations of the method within the linear concentration range of BSA were 2.46% and 2.20%, respectively, with accuracies of 104.49% and 104.58% for within-run and between-run samples, respectively. The limits of detection (LOD) and quantitation (LOQ) of the method were 0.5 and 1 microg/mL, respectively. The method showed acceptable system suitability indices, which enabled us to use it successfully during our particulate vaccine delivery research project. Copyright 2009 John Wiley & Sons, Ltd.
Corradini, D; Huber, C G; Timperio, A M; Zolla, L
2000-07-21
Reversed-phase liquid chromatography (RPLC) was interfaced to mass spectrometry (MS) with an electrospray ion (ESI) source for the separation and accurate molecular mass determination of the individual intrinsic membrane proteins that comprise the photosystem II (PS II) major light-harvesting complex (LHC II) and minor (CP24, CP26 and CP29) antenna system, whose molecular masses range between 22,000 and 29,000. PS II is a supramolecular complex intrinsic of the thylacoid membrane, which plays the important role in photosynthesis of capturing solar energy, and transferring it to photochemical reaction centers where energy conversion occurs. The protein components of the PS II major and minor antenna systems were extracted from spinach thylacoid membranes and separated using a butyl-silica column eluted by an acetonitrile gradient in 0.05% (v/v) aqueous trifluoroacetic acid. On-line electrospray MS allowed accurate molecular mass determination and identification of the protein components of PS II major and minor antenna system. The proposed RPLC-ESI-MS method holds several advantages over sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the conventional technique for studying membrane proteins, including a better protein separation, mass accuracy, speed and efficiency.
Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong
2018-03-01
We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M
2001-08-24
An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.
Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying
2015-01-01
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
NASA Astrophysics Data System (ADS)
Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.
2017-01-01
The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.
Chen, I-Hsuan; Aguilar, Hillary Andaluz; Paez Paez, J Sebastian; Wu, Xiaofeng; Pan, Li; Wendt, Michael K; Iliuk, Anton B; Zhang, Ying; Tao, W Andy
2018-05-15
Glycoproteins comprise more than half of current FDA-approved protein cancer markers, but the development of new glycoproteins as disease biomarkers has been stagnant. Here we present a pipeline to develop glycoproteins from extracellular vesicles (EVs) through integrating quantitative glycoproteomics with a novel reverse phase glycoprotein array and then apply it to identify novel biomarkers for breast cancer. EV glycoproteomics show promise in circumventing the problems plaguing current serum/plasma glycoproteomics and allowed us to identify hundreds of glycoproteins that have not been identified in blood. We identified 1,453 unique glycopeptides representing 556 glycoproteins in EVs, among which 20 were verified significantly higher in individual breast cancer patients. We further applied a novel glyco-specific reverse phase protein array to quantify a subset of the candidates. Together, this study demonstrates the great potential of this integrated pipeline for biomarker discovery.
Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita
2010-01-01
Calcium phosphate (CaP) nanoparticle with calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse micro emulsion. Ca(NO3)2.4H2O and H3PO4 were used as aqueous phase, cyclohexane as organic phase, and poly(oxyethylene)12 nonylphenol ether (NP-12) as surfactant. Depending on calcination temperature between 600 and 800 °C, CaP nanoparticle showed different phases calcium deficient hydroxyapatite (CDHA) and β-tricalcium phosphate (β-TCP), particle size between 48 and 69 nm, the BET specific average surface area between 73 m2/g and 57 m2/g. Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. Adsorptive property of BSA was investigated with the change in BET surface area of these nanoparticle and the pH of the suspension. At pH 7.5, maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time dependent increase at pH 4.0 and 6.0 buffer solutions. However, the amount of released protein was significantly smaller at pH 7.2. BSA release rate also varied depending on the presence of different phases of CaPs in the system, β-TCP or CDHA. These results suggest that BSA protein release rate can be controlled by changing particle size, surface area and phase composition of CaP nanocarriers. PMID:19435617
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.
2001-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
Akbani, Rehan; Becker, Karl-Friedrich; Carragher, Neil; Goldstein, Ted; de Koning, Leanne; Korf, Ulrike; Liotta, Lance; Mills, Gordon B; Nishizuka, Satoshi S; Pawlak, Michael; Petricoin, Emanuel F; Pollard, Harvey B; Serrels, Bryan; Zhu, Jingchun
2014-07-01
Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dernick, Gregor; Obermüller, Stefan; Mangold, Cyrill; Magg, Christine; Matile, Hugues; Gutmann, Oliver; von der Mark, Elisabeth; Handschin, Corinne; Maugeais, Cyrille; Niesor, Eric J.
2011-01-01
The composition of lipoproteins and the association of proteins with various particles are of much interest in the context of cardiovascular disease. Here, we describe a technique for the multidimensional analysis of lipoproteins and their associated apolipoproteins. Plasma is separated by size exclusion chromatography (SEC), and fractions are analyzed by reverse-phase arrays. SEC fractions are spotted on nitrocellulose slides and incubated with different antibodies against individual apolipoproteins or antibodies against various apolipoproteins. In this way, tens of analytes can be measured simultaneously in 100 μl of plasma from a single SEC separation. This methodology is particularly suited to simultaneous analysis of multiple proteins that may change their distribution to lipoproteins or alter their conformation, depending on factors that influence circulating lipoprotein size or composition. We observed changes in the distribution of exchangeable apolipoproteins following addition of recombinant apolipoproteins or interaction with exogenous compounds. While the cholesteryl ester transfer protein (CETP)-dependent formation of pre-β-HDL was inhibited by the CETP inhibitors torcetrapib and anacetrapib, it was not reduced by the CETP modulator dalcetrapib. This finding was elucidated using this technique. PMID:21971713
Tsonev, Latchezar I; Hirsh, Allen G
2016-10-14
We have previously described a liquid chromatographic (LC) method for uncoupling controlled, wide range pH gradients and simultaneous controlled gradients of a non-buffering solute on ion exchange resins (Hirsh and Tsonev, 2012) [1]. Here we report the application of this two dimensional LC technique to the problem of resolving Human Transferrin (HT) isoforms. This important iron transporting protein should theoretically occur in several thousand glycoforms, but only about a dozen have been reported. Using dual simultaneous independent gradients (DSIGs) of acetonitrile (ACN) and pH on a mixed bed stationary phase (SP) consisting of a mixture of an anion exchange resin and a reversed phase (RP) resin we partially resolve about 60 isoforms. These are likely to be partially refolded glycoforms generated by interaction of HT with the highly hydrophobic RP SP, as well as distinct folded glycoforms. Thus this study should have interesting implications for both glycoform separation and the study of protein folding. Copyright © 2016 Elsevier B.V. All rights reserved.
Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza
2016-01-01
ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875
Lee, Hangyeore; Mun, Dong-Gi; So, Jeong Eun; Bae, Jingi; Kim, Hokeun; Masselon, Christophe; Lee, Sang-Won
2016-12-06
Proteomics aims to achieve complete profiling of the protein content and protein modifications in cells, tissues, and biofluids and to quantitatively determine changes in their abundances. This information serves to elucidate cellular processes and signaling pathways and to identify candidate protein biomarkers and/or therapeutic targets. Analyses must therefore be both comprehensive and efficient. Here, we present a novel online two-dimensional reverse-phase/reverse-phase liquid chromatography separation platform, which is based on a newly developed online noncontiguous fractionating and concatenating device (NCFC fractionator). In bottom-up proteomics analyses of a complex proteome, this system provided significantly improved exploitation of the separation space of the two RPs, considerably increasing the numbers of peptides identified compared to a contiguous 2D-RP/RPLC method. The fully automated online 2D-NCFC-RP/RPLC system bypassed a number of labor-intensive manual processes required with the previously described offline 2D-NCFC RP/RPLC method, and thus, it offers minimal sample loss in a context of highly reproducible 2D-RP/RPLC experiments.
Katayama, Takahiro; Yasukawa, Hiro
2008-10-01
It has been reported that Dictyostelium discoideum encodes four silent information regulator 2 (Sir2) proteins (Sir2A-D) showing sequence similarity to human homologues of Sir2 (SIRT1-3). Further screening in a database revealed that D. discoideum encodes an additional Sir2 homologue (Sir2E). The amino acid sequence of Sir2E is not similar to those of SIRTs but is similar to those of proteins encoded by Giardia lamblia, Cryptosporidium hominis and Cryptosporidium parvum. Fluorescence of Sir2E-green fluorescent protein fusion protein was detected in the D. discoideum nucleus, indicating that Sir2E is a nuclear localizing protein. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that D. discoideum expressed sir2E in amoebae in the growth phase and in prestalk cells in the developmental phase. D. discoideum overexpressing sir2E grew faster than the wild type. These results indicate that Sir2E plays important roles both in the growth phase and developmental phase of D. discoideum.
Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue
2013-01-01
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization. PMID:23997662
Kucerová, H; Strnadová, M; Ludvík, J; Chaloupka, J
1999-01-01
In Bacillus megaterium, a temperature that suppresses sporulation (43 degrees C) only slightly exceeds both the optimum growth temperature and the temperature still permitting sporulation (40-41 degrees C). Here we show that, when cells grown at 35 degrees C and transferred to a sporulation medium, were subjected to shifts between 35 degrees C and the sporulation suppressing temperature (SST, 43 degrees C), their development and proteolytic activities were deeply affected. During the reversible sporulation phase that took place at 35 degrees C for 2-3 h (T2-T3), the cells developed forespores and their protein turnover was characterized by degradation of short-lived proteins and proteins made accessible to the proteolytic attack because of starvation. During the following irreversible sporulation phase refractile heat-resistant spores appeared at T4-T5. Protein turnover rate increased again after T2 and up to T8 60-70% prelabelled proteins were degraded. The SST suppressed sporulation at its beginning; at T3 no asymmetric septa were observed and the amount of heat-resistant spores at T8 was by 4-5 orders lower than at 35 degrees C. However, the cells remained viable and were able to sporulate when transferred to a lower temperature. Protein degradation was increased up to T3 but then its velocity sharply dropped and the amount of degraded protein at T8 corresponded to slightly more than one-half of that found at 35 degrees C. The cytoplasmic proteolytic activity was enhanced but the activity in the membrane fraction was decreased. When a temperature shift to SST was applied at the beginning of the irreversible sporulation phase (T2.5), the sporulation process was impaired. A portion of forespores lyzed, the others were able to complete their development but most spores were not heat-resistant and their coats showed defects. Protein degradation increased again because an effective proteolytic system was developed during the reversible sporulation phase but the amount of degraded protein was slightly lower than at 35 degrees C. A later (T4) shift to SST had no effect on the sporulation process.
An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation.
Balasaraswathi, R; Sadasivam, S; Ward, M; Walker, J M
1998-04-01
An antiviral protein active against mechanical transmission of tomato spotted wilt virus was identified in the root tissues of Bougainvillea spectabilis Willd. Bougainvillea Antiviral Protein I (BAP I) was purified to apparent homogeneity from the roots of Bougainvillea by ammonium sulphate precipitation, CM- and DEAE-Sepharose chromatography and reverse phase HPLC. BAP I is a highly basic protein (pI value > 8.6) with an Mr of 28,000. The N-terminal sequence of BAP I showed homology with other plant antiviral proteins. Preliminary tests suggest that purified BAP I is capable of interfering with in vitro protein synthesis.
Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects
NASA Astrophysics Data System (ADS)
Finkelstein, A. V.
1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox
Vellaichamy, Adaikkalam; Tran, John C.; Catherman, Adam D.; Lee, Ji Eun; Kellie, John F.; Sweet, Steve M.M.; Zamdborg, Leonid; Thomas, Paul M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Valaskovic, Gary A.; Kelleher, Neil L.
2010-01-01
Despite the availability of ultra-high resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for on-line LC-MS to drive high-throughput top-down proteomics in a fashion similar to bottom-up. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary-LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier-Transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation (NSD) and detection of fragment ions with <5 ppm mass accuracy for highly-specific database searching using custom software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines pre-fractionated by their molecular weight using a gel-based sieving system. PMID:20073486
Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn
2017-06-02
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.
Makarov, Alexey; LoBrutto, Rosario; Karpinski, Paul
2013-11-29
There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated. Several "model" proteins, as well as several small ionizable and neutral molecules, were used for these studies. The studies were conducted with UHPLC in isocratic mode, using premixed mobile phases at constant flow rate and temperature. The pressure was modified by a backpressure regulator from about 6000psi to about 12,000psi. It was found that when using a mobile phase composition at which proteins were fully denatured (loss of alpha-helix secondary structure), the retention factors of the proteins increased upon pressure increase in the same manner as non-proteins. When using a mobile phase composition in which proteins were not fully denatured, it was observed that the retention factors of the proteins displayed a much steeper (by one order of magnitude) increase in retention upon pressure increase. It was concluded that in a mobile phase in which the protein is not initially fully denatured, the increase of pressure may facilitate the folding back of the protein to its native state (alpha-helix secondary structure). The impact of different mobile phase compositions on the denaturation of the proteins was studied using CD (Circular Dichroism). Moreover, the effect of flow rate on retention of proteins and small molecules was studied at constant pressure on the different pore size silicas and the impact of internal frictional heating was evaluated. Copyright © 2013 Elsevier B.V. All rights reserved.
Bobály, Balázs; Guillarme, Davy; Fekete, Szabolcs
2015-02-01
A new superficially porous material possessing a carbon core and nanodiamond-polymer shell and pore size of 180Å was evaluated for the analysis of large proteins. Because the stationary phase on this new support contains a certain amount of protonated amino groups within the shell structure, the resulting retention mechanism is most probably a mix between reversed phase and anion exchange. However, under the applied conditions (0.1-0.5% TFA in the mobile phase), it seemed that the main retention mechanism for proteins was hydrophobic interaction with the C18 alkylchains on this carbon based material. In this study, we demonstrated that there was no need to increase mobile phase temperature, as the peak capacity was not modified considerably between 30 and 80°C for model proteins. Thus, the risk of thermal on-column degradation or denaturation of large proteins is not relevant. Another important difference compared to silica-based materials is that this carbon-based column requires larger amount of TFA, comprised between 0.2 and 0.5%. Finally, it is important to mention that selectivity between closely related proteins (oxidized, native and reduced forms of Interferon α-2A variants) could be changed mostly through mobile phase temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita
2009-10-01
Calcium phosphate (CaP) nanoparticles with a calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse microemulsion. Ca(NO(3))(2).4H(2)O and H(3)PO(4) were used as the aqueous phase, cyclohexane as the organic phase and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant. Depending on the calcination temperature between 600 and 800 degrees C, CaP nanoparticle showed different phases of calcium-deficient hydroxyapatite (CDHA) and beta-tricalcium phosphate (beta-TCP), particle size between 48 and 69 nm, and a BET specific average surface area between 73 and 57 m(2)g(-1). Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. The adsorptive property of BSA was investigated by the change in BET surface area of these nanoparticles and the pH of the suspension. At pH 7.5, the maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time-dependent increase in pH 4.0 and 6.0 buffer solutions. However, the amount of protein released was significantly smaller at pH 7.2. The BSA release rate also varied depending on the presence of different phases of CaPs in the system, beta-TCP or CDHA. These results suggest that the BSA protein release rate can be controlled by changing the particle size, surface area and phase composition of the CaP nanocarriers.
Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara; Magni, Ruben; Taverna, Elena; De Bortoli, Maida; Ciniselli, Chiara M; Barzanò, Elena; Biassoni, Veronica; Luchini, Alessandra; Liotta, Lance A; Zhou, Weidong; Signore, Michele; Verderio, Paolo; Massimino, Maura
2017-07-11
Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.
Amaya, Ronny; Cancel, Limary M; Tarbell, John M
2016-01-01
Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease.
Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.
2016-01-01
Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease. PMID:27846267
NASA Astrophysics Data System (ADS)
Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter
2018-05-01
The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or 480 protein groups ( 1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest ( a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter
2017-11-01
The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or 480 protein groups ( 1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest ( a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. [Figure not available: see fulltext.
Akimoto, Masaru; Hokazono, Eisaku; Ota, Eri; Tateishi, Takiko; Kayamori, Yuzo
2016-01-01
Tamm-Horsfall protein (also known as uromodulin) is the most abundant urinary protein in healthy individuals. Since initially characterized by Tamm and Horsfall, the amount of urinary excretion and structural mutations of Tamm-Horsfall protein is associated with kidney diseases. However, currently available assays for Tamm-Horsfall protein, which are mainly enzyme-linked immunosorbent assay-based, suffer from poor reproducibility and might give false negative results. We developed a novel, quantitative assay for Tamm-Horsfall protein using reversed-phase high-performance liquid chromatography. A precipitation pretreatment avoided urine matrix interference and excessive sample dilution. High-performance liquid chromatography optimization based on polarity allowed excellent separation of Tamm-Horsfall protein from other major urine components. Our method exhibited high precision (based on the relative standard deviations of intraday [≤2.77%] and interday [≤5.35%] repetitions). The Tamm-Horsfall protein recovery rate was 100.0-104.2%. The mean Tamm-Horsfall protein concentration in 25 healthy individuals was 31.6 ± 18.8 mg/g creatinine. There was a strong correlation between data obtained by high-performance liquid chromatography and enzyme-linked immunosorbent assay (r = 0.906), but enzyme-linked immunosorbent assay values tended to be lower than high-performance liquid chromatography values at low Tamm-Horsfall protein concentrations. The high sensitivity and reproducibility of our Tamm-Horsfall protein assay will reduce the number of false negative results of the sample compared with enzyme-linked immunosorbent assay. Moreover, our method is superior to other high-performance liquid chromatography methods, and a simple protocol will facilitate further research on the physiological role of Tamm-Horsfall protein. © The Author(s) 2015.
Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T
2013-01-01
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin
NASA Astrophysics Data System (ADS)
Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter
1997-12-01
In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.
Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang
2014-01-01
N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.
Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang
2014-01-01
N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368
Lindsay, Howard D.; Griffiths, Dominic J.F.; Edwards, Rhian J.; Christensen, Per U.; Murray, Johanne M.; Osman, Fekret; Walworth, Nancy; Carr, Antony M.
1998-01-01
Checkpoints that respond to DNA structure changes were originally defined by the inability of yeast mutants to prevent mitosis following DNA damage or S-phase arrest. Genetic analysis has subsequently identified subpathways of the DNA structure checkpoints, including the reversible arrest of DNA synthesis. Here, we show that the Cds1 kinase is required to slow S phase in the presence of DNA-damaging agents. Cds1 is phosphorylated and activated by S-phase arrest and activated by DNA damage during S phase, but not during G1 or G2. Activation of Cds1 during S phase is dependent on all six checkpoint Rad proteins, and Cds1 interacts both genetically and physically with Rad26. Unlike its Saccharomyces cerevisiae counterpart Rad53, Cds1 is not required for the mitotic arrest checkpoints and, thus, defines an S-phase specific subpathway of the checkpoint response. We propose a model for the DNA structure checkpoints that offers a new perspective on the function of the DNA structure checkpoint proteins. This model suggests that an intrinsic mechanism linking S phase and mitosis may function independently of the known checkpoint proteins. PMID:9450932
Bandyopadhyay, Purnima; Lang, Elza A S; Rasaputra, Komal S; Steinman, Howard M
2013-08-01
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm(+), showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm(+) background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS.
Bandyopadhyay, Purnima; Lang, Elza A. S.; Rasaputra, Komal S.
2013-01-01
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm+, showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm+ background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS. PMID:23729650
NASA Astrophysics Data System (ADS)
Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.
2012-04-01
Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.
Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.
Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa
2007-09-01
A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.
Reverse-phase protein arrays (RPPA) represent a powerful functional proteomic approach to elucidate cancer-related molecular mechanisms and to develop novel cancer therapies. To facilitate community-based investigation of the large-scale protein expression data generated by this platform, we have developed a user-friendly, open-access bioinformatic resource, The Cancer Proteome Atlas (TCPA, http://tcpaportal.org), which contains two separate web applications.
Effect of diet textural characteristics on the temporal rhythms of feeding in rats.
Mok, E; Thibault, L
To examine whether the diurnal rhythms of protein-rich and carbohydrate-rich diet ingestion can be altered by presenting the diets in different textural forms, adult male Wistar rats were assigned to two dietary groups. One group received a two-way choice between high-protein powder and high-carbohydrate granular (HPP-HCG) diets. In the other group the textures were reversed [high-protein granular and high-carbohydrate powder (HPG-HCP) diets]. Rats fed HPP-HCG diets selected significantly less protein (kcal) vs. rats fed HPG-HCP diets, during the 24-h and 12-h dark phase and during the 4-h early and late dark phases. Carbohydrate intakes of the two dietary groups were not significantly different. Total caloric intake for the HPG-HCP dietary group was significantly higher than that of the HPP-HCG dietary group during the 24-h and 12-h dark phase. Body weight was significantly lower in rats fed HPP-HCG diets. In conclusion, macronutrient-rich diets presented in different textural forms alter protein-rich diet ingestion and total energy intake.
Sadanandom, Ari; Findlay, Kim; Doonan, John H.; Schulze-Lefert, Paul; Shirasu, Ken
2004-01-01
The alternation of eukaryotic life cycles between haploid and diploid phases is crucial for maintaining genetic diversity. In some organisms, the growth and development of haploid and diploid phases are nearly identical, and one might suppose that all genes required for one phase are likely to be critical for the other phase. Here, we show that targeted disruption of the chpA (cysteine- and histidine-rich-domain- [CHORD]-containing protein A) gene in haploid Aspergillus nidulans strains gives rise to chpA knockout haploids and heterozygous diploids but no chpA knockout diploids. A. nidulans chpA heterozygous diploids showed impaired conidiophore development and reduced conidiation. Deletion of chpA from diploid A. nidulans resulted in genome instability and reversion to a haploid state. Thus, our data suggest a vital role for chpA in maintenance of the diploid phase in A. nidulans. Furthermore, the human chpA homolog, Chp-1, was able to complement haploinsufficiency in A. nidulans chpA heterozygotes, suggesting that the function of CHORD-containing proteins is highly conserved in eukaryotes. PMID:15302831
Sartori, Michelangelo; Cosmi, Benilde
2018-04-01
Direct oral anticoagulants are associated with rates of major bleeding which are not negligible, albeit lower than those associated with vitamin K antagonists. No specific reversal agent for factor Xa (FXa) direct inhibitors is currently available for clinical use. A modified activated human FXa decoy protein, andexanet alfa, is being developed that binds FXa direct inhibitors in their active site, thus reversing their anticoagulant effect. The purpose of this article is to review the design, development and clinical trials of andexanet alfa. Andexanet alfa was shown to reverse FXa inhibitors anticoagulant activity both in thrombosis animal models, healthy volunteers and patients with acute major bleeding. Andexanet alfa has been studied in double-blind, placebo-controlled phase II and III studies. A preliminary report of the phase III study showed that an effective hemostasis was obtained after andexanet alfa infusion in the majority of the patients with acute major bleeding associated with FXa inhibitors. Additional studies are ongoing and andexanet alfa is expected to be launched in the market in the near future.
Chambers, Andrew G.; Mellors, J. Scott; Henley, W. Hampton; Ramsey, J. Michael
2011-01-01
A microfluidic device capable of two-dimensional reversed-phase liquid chromatography-capillary electrophoresis with integrated electrospray ionization (LC-CE-ESI) for mass spectrometry (MS)-based proteomic applications is described. Traditional instrumentation was used for the LC sample injection and delivery of the LC mobile phase. The glass microfabricated device incorporated a sample-trapping region and an LC channel packed with reversed-phase particles. Rapid electrokinetic injections of the LC effluent into the CE dimension were performed at a cross channel intersection. The CE separation channel terminated at a corner of the square device, which functioned as an integrated electrospray tip. In addition to LC-CE-ESI, this device was used for LC-ESI without any instrumental modifications. To evaluate the system, LC-MS and LC-CE-MS analysis of protein digests were performed and compared. PMID:21214194
Bandyopadhyay, Purnima; Sumer, Eren U.; Jayakumar, Deepak; Liu, Shuqing; Xiao, Huifang
2012-01-01
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates. PMID:22563053
Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik
2014-05-28
Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.
van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben
2014-01-01
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Zolla, Lello; Rinalducci, Sara; Timperio, Anna Maria; Huber, Christian G
2002-12-01
The light-harvesting proteins (Lhca) of photosystem I (PSI) from four monocot and five dicot species were extracted from plant material, separated by reversed-phase high-performance liquid chromatography (HPLC) and subsequently identified on the basis of their intact molecular masses upon on-line hyphenation with electrospray ionization mass spectrometry. Although their migration behavior in gel electrophoresis was very similar, the elution times among the four antenna types in reversed-phase-HPLC differed significantly, even more than those observed for the light-harvesting proteins of photosystem II. Identification of proteins is based on the good agreement between the measured intact molecular masses and the values calculated on the basis of their nucleotide-derived amino acid sequences, which makes the intact molecular masses applicable as intact mass tags. These values match excellently for Arabidopsis, most probably because of the availability of high-quality DNA sequence data. In all species examined, the four antennae eluted in the same order, namely Lhca1 > Lhca3 > Lhca4 > Lhca2. These characteristic patterns enabled an unequivocal assignment of the proteins in preparations from different species. Interestingly, in all species examined, Lhca1 and Lhca2 were present in two or three isoforms. A fifth antenna protein, corresponding to the Lhca6 gene, was found in tomato (Lycopersicon esculentum). However PSI showed a lower heterogeneity than photosystem II. In most plant species, Lhca2 and Lhca4 proteins are the most abundant PSI antenna proteins. The HPLC method used in this study was found to be highly reproducible, and the chromatograms may serve as a highly confident fingerprint for comparison within a single and among different species for future studies of the PSI antenna.
Reverse phase protein arrays in signaling pathways: a data integration perspective
Creighton, Chad J; Huang, Shixia
2015-01-01
The reverse phase protein array (RPPA) data platform provides expression data for a prespecified set of proteins, across a set of tissue or cell line samples. Being able to measure either total proteins or posttranslationally modified proteins, even ones present at lower abundances, RPPA represents an excellent way to capture the state of key signaling transduction pathways in normal or diseased cells. RPPA data can be combined with those of other molecular profiling platforms, in order to obtain a more complete molecular picture of the cell. This review offers perspective on the use of RPPA as a component of integrative molecular analysis, using recent case examples from The Cancer Genome Altas consortium, showing how RPPA may provide additional insight into cancer besides what other data platforms may provide. There also exists a clear need for effective visualization approaches to RPPA-based proteomic results; this was highlighted by the recent challenge, put forth by the HPN-DREAM consortium, to develop visualization methods for a highly complex RPPA dataset involving many cancer cell lines, stimuli, and inhibitors applied over time course. In this review, we put forth a number of general guidelines for effective visualization of complex molecular datasets, namely, showing the data, ordering data elements deliberately, enabling generalization, focusing on relevant specifics, and putting things into context. We give examples of how these principles can be utilized in visualizing the intrinsic subtypes of breast cancer and in meaningfully displaying the entire HPN-DREAM RPPA dataset within a single page. PMID:26185419
Spatial Normalization of Reverse Phase Protein Array Data
Kaushik, Poorvi; Molinelli, Evan J.; Miller, Martin L.; Wang, Weiqing; Korkut, Anil; Liu, Wenbin; Ju, Zhenlin; Lu, Yiling; Mills, Gordon; Sander, Chris
2014-01-01
Reverse phase protein arrays (RPPA) are an efficient, high-throughput, cost-effective method for the quantification of specific proteins in complex biological samples. The quality of RPPA data may be affected by various sources of error. One of these, spatial variation, is caused by uneven exposure of different parts of an RPPA slide to the reagents used in protein detection. We present a method for the determination and correction of systematic spatial variation in RPPA slides using positive control spots printed on each slide. The method uses a simple bi-linear interpolation technique to obtain a surface representing the spatial variation occurring across the dimensions of a slide. This surface is used to calculate correction factors that can normalize the relative protein concentrations of the samples on each slide. The adoption of the method results in increased agreement between technical and biological replicates of various tumor and cell-line derived samples. Further, in data from a study of the melanoma cell-line SKMEL-133, several slides that had previously been rejected because they had a coefficient of variation (CV) greater than 15%, are rescued by reduction of CV below this threshold in each case. The method is implemented in the R statistical programing language. It is compatible with MicroVigene and SuperCurve, packages commonly used in RPPA data analysis. The method is made available, along with suggestions for implementation, at http://bitbucket.org/rppa_preprocess/rppa_preprocess/src. PMID:25501559
Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.
Despanie, Jordan; Dhandhukia, Jugal P; Hamm-Alvarez, Sarah F; MacKay, J Andrew
2016-10-28
Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (T t ) but form amorphous coacervates above T t . Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields. Copyright © 2015. Published by Elsevier B.V.
Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei
2009-03-20
We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.
Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett
2016-03-03
The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. Copyright © 2016 Elsevier B.V. All rights reserved.
Why work was done?
To be able to identify, on a proteomic level, cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) in mouse liver microsomes for the conazole exposure study IRP # NHEERL-ECD-SCN-CZ-2002-01-R1_Addendum 1. The new enrichment method was necessary beca...
Influence of Whey Peptides on the Surface Activity of k-casein and ß-lactoglobulin
USDA-ARS?s Scientific Manuscript database
Whey protein hydrolysate (WPH) was fractionated by reverse-phase chromatography to obtain fractions of varying surface-hydrophobicities. A model oil–water interface (MI) was pre-coated with the WPH or fractions thereof. Contact angle (') of sessile drops of '-casein ('-CN) or ß-lactoglobulin A (ß-LG...
Roles of water molecules in bacteria and viruses
NASA Astrophysics Data System (ADS)
Cox, C. S.
1993-02-01
In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).
BDNF is essential to promote persistence of long-term memory storage
Bekinschtein, Pedro; Cammarota, Martín; Katche, Cynthia; Slipczuk, Leandro; Rossato, Janine I.; Goldin, Andrea; Izquierdo, Ivan; Medina, Jorge H.
2008-01-01
Persistence is a characteristic attribute of long-term memories (LTMs). However, little is known about the molecular mechanisms that mediate this process. We recently showed that persistence of LTM requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Here, we show that intrahippocampal delivery of BDNF reverses the deficit in memory persistence caused by inhibition of hippocampal protein synthesis. Importantly, we demonstrate that BDNF induces memory persistence by itself, transforming a nonlasting LTM trace into a persistent one in an ERK-dependent manner. Thus, BDNF is not only necessary, but sufficient to induce a late postacquisition phase in the hippocampus essential for persistence of LTM storage. PMID:18263738
Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S
2013-05-01
PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.
Canova-Davis, E; Eng, M; Mukku, V; Reifsnyder, D H; Olson, C V; Ling, V T
1992-01-01
Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent. Images Fig. 2. PMID:1637301
Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro
2012-01-01
Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159
Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase
Keereetaweep, Jantana; Liu, Hui; Zhai, Zhiyang; ...
2018-04-06
The first committed step in fatty acid synthesis is mediated by Acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback-regulated by short-term (reversible) and longer-term (irreversible) inhibition upon oversupply of fatty acids (FA) provided by Tween80 (predominantly containing oleic acid; 18:1). Biotin-Attachment-Domain-Containing (BADC) proteins are inactive analogs of biotin carboxyl transfer protein (BCCP) that lack biotin and their incorporation into ACCase downregulates it by displacing active (biotin-containing) BCCP subunits. Individual T-DNA insertion lines of BADC1, BADC2, and BADC3 were used to generate badc1badc2 and badc1badc3. The badc1badc3 mutant and wild-type exhibited normal growthmore » and development, however ACCase activity was 26% higher in badc1badc3 relative to wild-type and its seeds contained 30.1 %DW more FA and 32.6 %DW more TAG than wild-type. Cell suspension cultures were generated from leaves of badc1badc3 and wild-type plants to test whether BADC contributes to the irreversible phase of ACCase inhibition resulting from culture in medium containing 10mM Tween80. While the reversible phase of ACCase inhibition after two days of Tween80 feeding was equivalent for badc1badc3 and wild-type, the irreversible phase of inhibition following four days of Tween80 feeding was reduced by 50% in badc1badc3 relative to wild-type. In this work we present evidence for two important homeostatic roles for BADC proteins in downregulating ACCase activity: during normal growth and development, and by contributing to its long-term irreversible feedback inhibition resulting from oversupply of fatty acids.« less
Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keereetaweep, Jantana; Liu, Hui; Zhai, Zhiyang
The first committed step in fatty acid synthesis is mediated by Acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback-regulated by short-term (reversible) and longer-term (irreversible) inhibition upon oversupply of fatty acids (FA) provided by Tween80 (predominantly containing oleic acid; 18:1). Biotin-Attachment-Domain-Containing (BADC) proteins are inactive analogs of biotin carboxyl transfer protein (BCCP) that lack biotin and their incorporation into ACCase downregulates it by displacing active (biotin-containing) BCCP subunits. Individual T-DNA insertion lines of BADC1, BADC2, and BADC3 were used to generate badc1badc2 and badc1badc3. The badc1badc3 mutant and wild-type exhibited normal growthmore » and development, however ACCase activity was 26% higher in badc1badc3 relative to wild-type and its seeds contained 30.1 %DW more FA and 32.6 %DW more TAG than wild-type. Cell suspension cultures were generated from leaves of badc1badc3 and wild-type plants to test whether BADC contributes to the irreversible phase of ACCase inhibition resulting from culture in medium containing 10mM Tween80. While the reversible phase of ACCase inhibition after two days of Tween80 feeding was equivalent for badc1badc3 and wild-type, the irreversible phase of inhibition following four days of Tween80 feeding was reduced by 50% in badc1badc3 relative to wild-type. In this work we present evidence for two important homeostatic roles for BADC proteins in downregulating ACCase activity: during normal growth and development, and by contributing to its long-term irreversible feedback inhibition resulting from oversupply of fatty acids.« less
NASA Astrophysics Data System (ADS)
Zakharov, S. D.; Ivanov, Andrei V.; Wolf, E. B.; Danilov, V. P.; Murina, T. M.; Nguen, K. T.; Novikov, E. G.; Panasenko, N. A.; Perov, S. N.; Skopinov, S. A.; Timofeev, Yu P.
2003-02-01
Temperature-dependent transient processes initiated by a direct photogeneration of singlet oxygen in suspensions of human erythrocytes and solutions of serum albumin are studied. The processes appear as anomalous jumps in the temperature dependences of the deformability coefficient of erythrocytes and the refractive index of the extracellular medium and protein solution. In the temperature regions of anomalous jumps, cells and proteins transfer to a metastable state of a lower activity, but they can be isothermally photoreactivated. Simultaneously, a reversible rearrangement of the aqueous phase occurs near the cell and protein surfaces, accompanied by the formation of an extended corona (hydrogel). The transient processes are interpreted as phase transitions in the membrane of erythrocytes and conformation transitions in proteins. The interaction between erythrocytes and albumin via hydrogel is discovered (hydro-conformational interaction). A qualitative physical model of the early stages of the light-oxygen effect is proposed, in which collective magnetic interactions between the electron spins of oxygen molecules and the nuclear magnetic moments of protons in H2O molecules play a dominant role.
Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun
2014-04-15
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel
Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.
Folding and Stabilization of Native-Sequence-Reversed Proteins
Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong
2016-01-01
Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844
Folding and Stabilization of Native-Sequence-Reversed Proteins
NASA Astrophysics Data System (ADS)
Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong
2016-04-01
Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.
2015-01-01
Large-scale proteomics often employs two orthogonal separation methods to fractionate complex peptide mixtures. Fractionation can involve ion exchange separation coupled to reversed-phase separation or, more recently, two reversed-phase separations performed at different pH values. When multidimensional separations are combined with tandem mass spectrometry for protein identification, the strategy is often referred to as multidimensional protein identification technology (MudPIT). MudPIT has been used in either an automated (online) or manual (offline) format. In this study, we evaluated the performance of different MudPIT strategies by both label-free and tandem mass tag (TMT) isobaric tagging. Our findings revealed that online MudPIT provided more peptide/protein identifications and higher sequence coverage than offline platforms. When employing an off-line fractionation method with direct loading of samples onto the column from an eppendorf tube via a high-pressure device, a 5.3% loss in protein identifications is observed. When off-line fractionated samples are loaded via an autosampler, a 44.5% loss in protein identifications is observed compared with direct loading of samples onto a triphasic capillary column. Moreover, peptide recovery was significantly lower after offline fractionation than in online fractionation. Signal-to-noise (S/N) ratio, however, was not significantly altered between experimental groups. It is likely that offline sample collection results in stochastic peptide loss due to noncovalent adsorption to solid surfaces. Therefore, the use of the offline approaches should be considered carefully when processing minute quantities of valuable samples. PMID:25040086
Cardoso, Clóvis Dervil Appratto; Perobelli, Rafaela Ferreira; Xavier, Bruna; Maldaner, Fernanda Pavani Stamm; da Silva, Francielle Santos; Dalmora, Sérgio Luiz
2017-01-01
Reversed-phase and size-exclusion liquid chromatography methods were validated for the assessment of streptokinase. The reversed-phase method was carried out on a Jupiter C 4 column (250 mm × 4.6 mm id) maintained at 25°C. The mobile phase consisted of 50 mM sodium sulfate solution pH 7.0 and methanol (90:10, v/v), run isocratically at a flow rate of 0.8 mL/min. The size-exclusion method was carried out on a Protein KW 802.5 column (300 mm × 8.0 mm id), at 25°C. The mobile phase consisted of 40 mM sodium acetate solution pH 7.0, run isocratically at a flow rate of 1.0 mL/min. Retention times were 19.3 min, and 14.1 min, and calibration curves were linear over the concentration range of 0.25-250 μg/mL (25.75-25 750 IU/mL) (r 2 = 0.9997) and 5-80 μg/mL (515-8240 IU/mL) (r 2 = 0.9996), respectively, for reversed-phase and size exclusion, with detection at 220 and 204 nm. Chromatographic methods were employed in conjunction with the in vitro bioassay for the content/potency assessment of Streptokinase, contributing to improve the quality control and ensure the efficacy of the biotherapeutic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodriguez-Nogales, J M; Garcia, M C; Marina, M L
2006-02-03
A perfusion reversed-phase high performance liquid chromatography (RP-HPLC) method has been designed to allow rapid (3.4 min) separations of maize proteins with high resolution. Several factors, such as extraction conditions, temperature, detection wavelength and type and concentration of ion-pairing agent were optimised. A fine optimisation of the gradient elution was also performed by applying experimental design. Commercial maize products for human consumption (flours, precocked flours, fried snacks and extruded snacks) were characterised for the first time by perfusion RP-HPLC and their chromatographic profiles allowed a differentiation among products relating the different technological process used for their preparation. Furthermore, applying discriminant analysis makes it possible to group the samples according with the technological process suffered by maize products, obtaining a good prediction in 92% of the samples.
Lv, Zilan; Wang, Chuan; Yuan, Taixian; Liu, Yuehong; Song, Tao; Liu, Yueliang; Chen, Chu; Yang, Min; Tang, Zuchuan; Shi, Qiong; Weng, Yaguang
2014-02-01
Bone morphogenetic protein 9 (BMP9) is a member of the transforming growth factor-β (TGF-β) family, which has been shown to regulate the progression of several tumors. Recent studies indicated that BMP9 affects osteosarcoma (OS) processes, but its specific roles and molecular mechanisms have yet to be fully elucidated. The human OS cell lines 143B and MG63 were used for the present study. We found that BMP9 overexpression suppressed the growth of OS cells, whereas inhibition of BMP9 reversed this effect. Our results also showed that BMP9 overexpression induced G0/G1 phase arrest and apoptosis in OS cells. We further investigated the possible molecular mechanisms mediating the biological role of BMP9. We observed that BMP9 overexpression reduced β-catenin mRNA and protein levels, and also downregulated its downstream proteins c-Myc and osteoprotegerin (OPG) and inhibited the phosphorylation levels of GSK-3β (Ser 9) in OS cells, whereas inhibition of BMP9 reversed these effects. Moreover, the suppressive effects of BMP9 overexpression on OS cells was reversed by exogenous β-catenin expression, but augmented by β-catenin silencing. In conclusion, our results revealed that BMP9 can regulate tumor growth of OS cells through the Wnt/β-catenin pathway. Therefore, BMP9 may be a new therapeutic target in OS.
Calvert, Valerie S; Collantes, Rochelle; Elariny, Hazem; Afendy, Arian; Baranova, Ancha; Mendoza, Michael; Goodman, Zachary; Liotta, Lance A; Petricoin, Emanuel F; Younossi, Zobair M
2007-07-01
Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Omental adipose tissue, a biologically active organ secreting adipokines and cytokines, may play a role in the development of NAFLD. We tested this hypothesis with reverse-phase protein microarrays (RPA) for multiplexed cell signaling analysis of adipose tissue from patients with NAFLD. Omental adipose tissue was obtained from 99 obese patients. Liver biopsies obtained at the time of surgery were all read by the same hepatopathologist. Adipose tissue was exposed to rapid pressure cycles to extract protein lysates. RPA was used to investigate intracellular signaling. Analysis of 54 different kinase substrates and cell signaling endpoints showed that an insulin signaling pathway is deranged in different locations in NAFLD patients. Furthermore, components of insulin receptor-mediated signaling differentiate most of the conditions on the NAFLD spectrum. For example, PKA (protein kinase A) and AKT/mTOR (protein kinase B/mammalian target of rapamycin) pathway derangement accurately discriminates patients with NASH from those with the non-progressive forms of NAFLD. PKC (protein kinase C) delta, AKT, and SHC phosphorylation changes occur in patients with simple steatosis. Amounts of the FKHR (forkhead factor Foxo1)phosphorylated at S256 residue were significantly correlated with AST/ALT ratio in all morbidly obese patients. Furthermore, amounts of cleaved caspase 9 and pp90RSK S380 were positively correlated in patients with NASH. Specific insulin pathway signaling events are altered in the adipose tissue of patients with NASH compared with patients with nonprogressive forms of NAFLD. These findings provide evidence for the role of omental fat in the pathogenesis, and potentially, the progression of NAFLD.
Luciani, M Gloria; Campregher, Christoph; Fortune, John M; Kunkel, Thomas A; Gasche, Christoph
2007-01-01
Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116(p53-/-), HCT116+chr3, and LoVo were treated with 5-ASA for 2-96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis.
Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin
2016-06-01
The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r(2) > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide.
Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin
2016-01-01
Purpose: The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Methods: Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Results: Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r2 > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Conclusion: Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide. PMID:27478788
HDL cholesterol transport during inflammation.
van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R
2007-04-01
The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.
Jakschitz, Thomas A E; Huck, Christian W; Lubbad, Said; Bonn, Günther K
2007-04-13
In this paper the synthesis, optimisation and application of a silane based monolithic copolymer for the rapid separation of proteins and oligonucleotides is described. The monolith was prepared by thermal initiated in situ copolymerisation of trimethylsilyl-4-methylstyrene (TMSiMS) and bis(4-vinylbenzyl)dimethylsilane (BVBDMSi) in a silanised 200 microm I.D. fused silica column. Different ratios of monomer and crosslinker, as well as different ratios of micro- (toluene) and macro-porogen (2-propanol) were used for optimising the physical properties of the stationary phase regarding separation efficiency. The prepared monolithic stationary phases were characterised by measurement of permeability with different solvents, determination of pore size distribution by mercury intrusion porosimetry (MIP). Morphology was studied by scanning electron microscopy (SEM). Applying optimised conditions, a mixture comprised of five standard proteins ribunuclease A, cytochrome c, alpha-lactalbumine, myoglobine and ovalbumine was separated within 1 min by ion-pair reversed-phase liquid chromatography (IP-RPLC) obtaining half-height peak widths between 1.8 and 2.4 s. Baseline separation of oligonucleotides d(pT)(12-18) was achieved within 1.8 min obtaining half-height peak widths between 3.6 and 5.4 s. The results demonstrate the high potential of this stationary phase for fast separation of high-molecular weight biomolecules such as oligonucleotides and proteins.
Webb, Kristofor J.; Xu, Tao; Park, Sung Kyu; Yates, John R.
2013-01-01
A modified multidimensional protein identification technology (MudPIT) separation was coupled to an LTQ Orbitrap Velos mass spectrometer and used to rapidly identify the near complete yeast proteome from a whole cell tryptic digest. This modified on-line two dimensional liquid chromatography separation consists of 39 strong cation exchange steps followed by a short 18.5 min reversed-phase (RP) gradient. A total of 4,269 protein identifications were made from 4,189 distinguishable protein families from yeast during log phase growth. The “Micro” MudPIT separation performed as well as a standard MudPIT separation in 40% less gradient time. The majority of the yeast proteome can now be routinely covered in less than a days’ time with high reproducibility and sensitivity. The newly devised separation method was used to detect changes in protein expression during cellular quiescence in yeast. An enrichment in the GO annotations ‘oxidation reduction’, ‘catabolic processing’ and ‘cellular response to oxidative stress’ was seen in the quiescent cellular fraction, consistent with their long lived stress resistant phenotypes. Heterogeneity was observed in the stationary phase fraction with a less dense cell population showing reductions in KEGG pathway categories of ‘Ribosome’ and ‘Proteasome’, further defining the complex nature of yeast populations present during stationary phase growth. In total 4,488 distinguishable protein families were identified in all cellular conditions tested. PMID:23540446
Amelioration of chronic fluoride toxicity by calcium and fluoride-free water in rats.
Shankar, Priyanka; Ghosh, Sudip; Bhaskarachary, K; Venkaiah, K; Khandare, Arjun L
2013-07-14
The study was undertaken to explore the amelioration of chronic fluoride (F) toxicity (with low and normal Ca) in rats. The study was conducted in two phases. In phase I (6 months), seventy-six Wistar, weanling male rats were assigned to four treatment groups: normal-Ca (0·5 %) diet (NCD), Ca+F - ; low-Ca (0·25 %) diet (LCD), Ca - F - ; NCD +100 parts per million (ppm) F water, Ca+F+; LCD +100 ppm F water, Ca - F+. In phase II (reversal experiment, 3 months), LCD was replaced with the NCD. Treatment groups Ca+F+ and Ca - F+ were divided into two subgroups to compare the effect of continuation v. discontinuation along with Ca supplementation on reversal of chronic F toxicity. In phase I, significantly reduced food efficiency ratio (FER), body weight gain (BWG), faecal F excretion, serum Ca and increased bone F deposition were observed in the treatment group Ca - F+. Reduced serum 25-hydroxy-vitamin D3, increased 1,25-dihydroxy-vitamin D3 and up-regulation of Ca-sensing receptor, vitamin D receptor and S100 Ca-binding protein G (S100G) were observed in treatment groups Ca - F - and Ca - F+. In phase II (reversal phase), FER, BWG and serum Ca in treatment groups Ca - F+/Ca+F - and Ca - F+/Ca+F+ were still lower, as compared with other groups. However, other variables were comparable. Down-regulation of S100G was observed in F-fed groups (Ca+F+/Ca+F+ and Ca - F+/Ca+F+) in phase II. It is concluded that low Ca aggravates F toxicity, which can be ameliorated after providing adequate Ca and F-free water. However, chronic F toxicity can interfere with Ca absorption by down-regulating S100G expression irrespective of Ca nutrition.
Systematical Optimization of Reverse-phase Chromatography for Shotgun Proteomics
Xu, Ping; Duong, Duc M.; Peng, Junmin
2009-01-01
Summary We report the optimization of a common LC/MS/MS platform to maximize the number of proteins identified from a complex biological sample. The platform uses digested yeast lysate on a 75 μm internal diameter × 12 cm reverse-phase column that is combined with an LTQ-Orbitrap mass spectrometer. We first generated a yeast peptide mix that was quantified by multiple methods including the strategy of stable isotope labeling with amino acids in cell culture (SILAC). The peptide mix was analyzed on a highly reproducible, automated nanoLC/MS/MS system with systematic adjustment of loading amount, flow rate, elution gradient range and length. Interestingly, the column was found to be almost saturated by loading ~1 μg of the sample. Whereas the optimal flow rate (~0.2 μl/min) and elution buffer range (13–32% of acetonitrile) appeared to be independent of the loading amount, the best gradient length varied according to the amount of samples: 160 min for 1 μg of the peptide mix, but 40 min for 10 ng of the same sample. The effect of these parameters on elution peptide peak width is evaluated. After full optimization, 1,012 proteins (clustered in 806 groups) with an estimated protein false discovery rate of ~3% were identified in 1 μg of yeast lysate in a single 160-min LC/MS/MS run. PMID:19566079
Cueto-Rojas, H F; Pérez, N O; Pérez-Sánchez, G; Ocampo-Juárez, I; Medina-Rivero, E
2010-04-15
Interferon-alpha 2b (IFN-alpha 2b) is a recombinant therapeutic cytokine produced as inclusion bodies using a strain of Escherichia coli as expression system. After fermentation and recovery, it is necessary to know the amount of recombinant IFN-alpha 2b, in order to determine the yield and the load for solubilization, and chromatographic protein purification steps. The present work details the validation of a new short run-time and fast sample-preparation method to quantify IFN-alpha 2b in inclusion bodies using Reversed Phase-Ultra Performance Liquid Chromatography (RP-UPLC). The developed method demonstrated an accuracy of 100.28%; the relative standard deviations for method precision, repeatability and inter-day precision tests were found to be 0.57%, 1.54% and 1.83%, respectively. Linearity of the method was assessed in the range of concentrations from 0.05 mg/mL to 0.5 mg/mL, the curve obtained had a determination coefficient (r(2)) of 0.9989. Detection and quantification limits were found to be 0.008 mg/mL and 0.025 mg/mL, respectively. The method also demonstrated robustness for changes in column temperature, and specificity against host proteins and other recombinant protein expressed in the same E. coli strain. Copyright 2010 Elsevier B.V. All rights reserved.
Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F.; Dovichi, Norman J.
2016-01-01
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by reversed phase liquid chromatography. One set of 30 fractions was analyzed by 100-min CZE-ESI-MS/MS separations (50 hr total instrument time), and a second set of 15 fractions was analyzed by 3-hr UPLC-ESI-MS/MS separations (45 hr total instrument time). CZE-MS/MS produced 70% as many protein IDs (4,134 vs. 5,787) and 60% as many peptide IDs (22,535 vs. 36,848) as UPLC-MS/MS with similar instrument time (50 h vs. 45 h) but with 50 times smaller total consumed sample amount (1.5 μg vs. 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50-fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically-pumped nanospray interface used in CZE. This report is the first comparison of CZE-MS/MS and UPLC-MS/MS for large-scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE-ESI-MS/MS approach those produced by UPLC-MS/MS, but with nearly two orders of magnitude lower sample amounts. PMID:27723263
ANALYSIS OF PROTEIN DIGESTS BY nano- SCX/RP/MSMS WITH pH SALT GRADIENT SCX ELUTION
The objective of this study was to optimize chromatographic parameters for complex peptide mixture analyses using two dimensional nano-LC/MSMS system. It used a strong cation exchange (SCX) and reversed phase chromatography (RP). The SCX solvent system was designed to promote pep...
Rodríguez-Figueroa, J C; González-Córdova, A F; Torres-Llanez, M J; Garcia, H S; Vallejo-Cordoba, B
2012-10-01
The ability of specific wild Lactococcus lactis strains to hydrolyze milk proteins to release angiotensin I-converting enzyme (ACE) inhibitory peptides was evaluated. The peptide profiles were obtained from the <3 kDa water-soluble extract and subsequently fractionated by reversed-phase HPLC. The fractions with the lowest half-maximal inhibitory concentration estimated values (peptide concentration necessary to inhibit ACE activity by 50%) were Lc. lactis NRRL B-50571 fraction (F)1 (0.034 ± 0.002 μg/mL; mean ± SD) and Lc. lactis NRRL B-50572B F 0005 (0.041 ± 0.003 μg/mL; mean ± SD). All peptide fractions were analyzed by reversed-phase HPLC tandem mass spectrometry. Twenty-one novel peptide sequences associated with ACE inhibitory (ACEI) activity were identified. Several novel ACEI peptides presented peptides encrypted with proven hypotensive activity. In conclusion, specific wild Lc. lactis strains were able to hydrolyze milk proteins to generate potent ACEI peptides. However, further studies are necessary to find out the relationship between Lc. lactis strain proteolytic systems and their ability to biogenerate hypotensive peptides. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gerbaux, Pascal; Wantier, Pascale; Flammang, Robert
2004-03-01
Recent studies have demonstrated the biological importance of the interaction of nitric oxide with proteins such as cytochrome-c or hemoglobin. In particular, the possibility that the nitrosonium cation, NO(+), could reversibly bind to sulfide atom type was proposed. At pH values of biological relevance, nitrosation was proposed to occur through the action of NO(+) carriers such as nitrosothiols or nitrosamines. In this context, the gas phase chemistry of protonated nitrosothiols is studied in the present work by a combination of mass spectrometry and computational methods.
Huang, Tongtong; Anselme, Karine; Sarrailh, Segolene; Ponche, Arnaud
2016-01-30
The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (<3 cm(2)). Protein quantification was investigated with a liquid chromatography chain equipped with a size exclusion column or a reversed-phase column. By evaluating the validation of the method according to guidelines of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), all the results obtained by HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 μg/cm(2) and 0.4 μg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 μg/cm(2) and 0.8 μg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Bader, Sabine; Zajac, Magdalena; Friess, Thomas; Ruge, Elisabeth; Rieder, Natascha; Gierke, Berthold; Heubach, Yvonne; Thomas, Marlene; Pawlak, Michael
2015-01-01
Reverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues. Protein lysates were prepared from matched FF and FFPE tissue specimens of individual tumors taken from three different xenograft models of human cancer. Materials from both untreated mice and mice treated with either anti-HER3 or bispecific anti-IGF-1R/EGFR monoclonal antibodies were analyzed. Correlations between signals from FF and FFPE tissue samples were investigated. Overall, 60 markers were identified that produced comparable profiles between FF and FFPE tissues, demonstrating significant correlation between the two sample types. The top 25 markers also showed significance after correction for multiple testing. The panel of markers covered several clinically relevant tumor signaling pathways and both phosphorylated and nonphosphorylated proteins were represented. Biologically relevant changes in marker expression were noted when RPPA profiles from treated and untreated xenografts were compared. These data demonstrate that, using appropriately selected antibodies, RPPA analysis from FFPE tissue is well feasible and generates biologically meaningful information. The identified panel of markers that generate similar profiles in matched fixed and unfixed tissue samples may be clinically useful for pharmacodynamic studies of drug effect using FFPE tissues. PMID:26106084
Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons
NASA Astrophysics Data System (ADS)
Qiu, Liming; Vaughn, Mark; Cheng, Kelvin
2012-10-01
Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.
Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua
2017-05-01
In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.
He, Lin; Li, Qing; Liu, Lihua; Wang, Yuanli; Xie, Jing; Yang, Hongdan; Wang, Qun
2015-01-01
The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction. PMID:26305468
Protein mass analysis of histones.
Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G
2003-09-01
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.
Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter
2018-04-19
Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Aranha, C; Bordekar, A; Shahani, S
1998-11-01
Early pregnancy factor (EPF)-like activity from culture supernatants obtained from stimulated lymphocytes of pregnant women was characterized and identified. The enzyme-linked immunosorbent assay depending on the presence of "Fc" receptors on bovine spermatozoa was used to identify the EPF-like molecule purified by gel filtration and reverse-phase high-performance liquid chromatography. The results indicated that the crude lymphocyte culture supernatant, the EPF-positive G IV fraction obtained on gel filtration, and the EPF-positive reverse-phase high-performance liquid chromatography protein readily bound with the different concentrations of aggregated human gamma-globulin in a manner similar to that in which the standard control of aggregated human gamma-globulin binds to the bovine spermatozoa. EPF-like activity synthesized and secreted by lymphocytes during pregnancy may be a Fc-receptor-like molecule.
Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok
2009-07-15
A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.
Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1
Iswari, S.; Palta, Jiwan P.
1989-01-01
Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856
Shiomi, Kazuo; Sato, Yuichiro; Hamamoto, Shohei; Mita, Hajime; Shimakura, Kuniyoshi
2008-01-01
Tropomyosin and arginine kinase have been identified as crustacean allergens. During purification of arginine kinase from black tiger shrimp Penaeus monodon, we found a new allergen of 20-kDa. A 20-kDa allergen was purified from the abdominal muscle of black tiger shrimp by salting-out, anion-exchange HPLC and reverse-phase HPLC. Following digestion of the 20-kDa allergen with lysyl endopeptidase, peptide fragments were isolated by reverse-phase HPLC, and 2 of them were sequenced. The 20-kDa allergen, together with tropomyosin and arginine kinase purified from black tiger shrimp, was evaluated for IgE reactivity by ELISA. Five species of crustaceans (kuruma shrimp, American lobster, pink shrimp, king crab and snow crab) were surveyed for the 20-kDa allergen by immunoblotting. The 20-kDa allergen was purified from black tiger shrimp and identified as a sarcoplasmic calcium-binding protein (SCP) based on the determined amino acid sequences of 2 enzymatic fragments. Of 16 sera from crustacean-allergic patients, 8 and 13 reacted to SCP and tropomyosin, respectively; the reactivity to arginine kinase was weakly recognized with 10 sera. In immunoblotting, an IgE-reactive 20-kDa protein was also detected in kuruma shrimp, American lobster and pink shrimp but not in 2 species of crab. Preadsorption of the sera with black tiger shrimp SCP abolished the IgE reactivity of the 20-kDa protein, suggesting the 20-kDa protein to be an SCP. SCP is a new crustacean allergen, and distribution of IgE-reactive SCP is probably limited to shrimp and crayfish. (c) 2008 S. Karger AG, Basel.
Expression and purification of mouse peptide ESP4 in Escherichia coli.
Hirakane, Makoto; Taniguchi, Masahiro; Yoshinaga, Sosuke; Misumi, Shogo; Terasawa, Hiroaki
2014-04-01
Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members. Copyright © 2014 Elsevier Inc. All rights reserved.
Zha, Hongbin; Raffeld, Mark; Charboneau, Lu; Pittaluga, Stefania; Kwak, Larry W; Petricoin, Emanuel; Liotta, Lance A; Jaffe, Elaine S
2004-02-01
Overexpression of Bcl-2 protein has been known to play a role in the pathogenesis of follicular lymphoma (FL). However, 10-15% of FLs are negative for Bcl-2 by immunohistochemistry, raising the possibility that another gene product(s) may provide prosurvival signal(s). We used reverse phase protein microarray to analyze lysates of follicle center cells isolated by laser capture microdissection from: Bcl-2+ FL, Bcl-2- FL and reactive follicular hyperplasia (FH) (nine cases each group). TUNEL assay confirmed similar and reduced levels of apoptosis in Bcl-2+ FL and Bcl-2- FL, indicating the likelihood of Bcl-2-independent inhibition of apoptosis. Arrays were quantitatively analyzed with antibodies to proteins involved in the apoptotic pathway. As expected, Bcl-2 levels were up to eight-fold higher in Bcl-2+ FL than in FH and Bcl-2- FL. However, there was no difference in levels of Mcl-1 and survivin among these three groups. Bcl-X(L) showed a trend for increased expression in Bcl-2- FL as compared with Bcl-2+ FL, although the differences did not reach statistical significance (P>0.1). The increase in Bcl-X(L) may provide an alternative antiapoptotic signal in FL negative for Bcl-2 protein. Interestingly, Bax expression was higher in FL (Bcl-2+ or -) than in FH (P=0.001). Notably, phospho-Akt (Ser-473) was increased in FL (Bcl-2+ or -) (P<0.03) with increased phospho-Bad (Ser-136), as compared with levels in FH. The activation of the Akt/Bad pathway provides further evidence of prosurvival signals in FL, independent of Bcl-2 alone. These data suggest that nodal FL represents a single disease with a final common biochemical pathway.
Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.
Serpe, M. D.; Nothnagel, E. A.
1996-01-01
Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444
Fink, Annette; Büttner, Julia K; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Lemmermann, Niels A W
2014-02-14
Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by "reverse immunology", a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.
Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.
Feller, Urs
2016-09-20
Global change is characterized by increased CO 2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO 2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mackin, Robert B
2014-01-01
The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.
Mackin, Robert B.
2014-01-01
The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix. PMID:26150942
Peter, Jochen F.; Otto, Angela M.; Wolf, Bernhard
2007-01-01
Tumor cells change their genetic expression pattern as they progress to states of increasing malignancy. Investigations at the DNA and RNA level alone cannot provide all the information resulting after the translation and processing of the corresponding proteins, which is one reason for a poor correlation between mRNA and the respective protein abundance. In diagnostics, differentially expressed peptides or proteins are important markers for the early detection of cancer. Unfortunately, tumor cells secrete peptides and proteins in only very low amounts, making mass spectrometric determination very difficult. In this publication, methods have been developed for the effective enrichment and cleanup of substances secreted by cultivated cancer cells. To obviate peptides from fetal calf serum used in cell culture, a serum surrogate was developed, which maintained growth of the cancer cells. After the binding of substances from cell-culture supernatants to custom-made magnetic reversed-phase particles, the substances were eluted and separated by capillary high-performance liquid chromatography. Fractions were spotted directly on a MALDI target, and MALDI-TOF mass spectrometric data acquisition was performed in automatic mode. This technology was used to detect substances secreted by two mammary carcinoma cell lines differing in their malignancy (MCF-7, MDA-MB231). Unequivocal differences in the peptide secretion patterns were observed. In conclusion, this system allows the sensitive investigation of peptides secreted by cancer cells in culture and provides a valuable tool for the investigation of cancer cells in different states of malignancy. PMID:18166672
Acharya, Miteshkumar; Lau-Cam, Cesar A.
2012-01-01
A simple reversed-phase HPLC method for measuring hepatic levels of acetaminophen- (APAP-) protein adduct following an overdose of APAP was developed. An aliquot of liver homogenate in phosphate-buffered saline pH 7.4 (PBS) was placed on a Nanosep centrifugal device, which was centrifuged to obtain a protein residue. This residue was incubated with a solution of p-aminobenzoic acid (PABA), the internal standard, and bacterial protease in PBS, transferred to a Nanosep centrifugal device, and centrifuged. A 100 μL portion of the filtrate was analyzed on a YMC-Pack ODS-AMQ C18 column, using 100 mM potassium dihydrogen phosphate-methanol-acetic acid (100 : 0.6 : 0.1) as the mobile phase, a flow rate of 1 mL/min, and photometric detection at 254 nm. PABA and APAP-cystein-S-yl (APAP-Cys) eluted at ~14.7 min and 22.7 min, respectively. Method linearity, based on on-column concentrations of APAP-Cys, was observed over the range 0.078–40 μg. Recoveries of APAP-Cys from spiked blank liver homogenates ranged from ~83% to 91%. Limits of detection and of quantification of APAP-Cys, based on column concentrations, were 0.06 μg and 0.14 μg, respectively. RSD values for interday and intraday analyses of a blank liver homogenate spiked with APAP-Cyst at three levels were, in all cases, ≤1.0% and <1.5%, respectively. The proposed method was found appropriate for comparing the antidotal properties of N-acetylcysteine and taurine in a rat model of APAP poisoning. PMID:22619591
Kim, Heejae; Chen, Wilfred
2016-09-20
Protein purification using inverse phase transition of elastin-like polypeptide (ELP) domains is a useful alternative to chromatography. Genetic fusions of ELP domains to various proteins have the ability to reversibly transition between soluble monomers and micron-sized aggregates and this has been used to selectively purify many ELP fusions. Affinity domains can enhance this technology by using specific protein binding domains to enable ELP mediated affinity capture (EMAC) of proteins of interest (POI) that have been fused to corresponding affinity ligands. In this paper, we highlight the use of Src homology 3 (SH3) domains and corresponding peptide ligands in EMAC that have differential binding affinities towards SH3 for efficient capture and elution of proteins. Furthermore, differences between capture and elution of a monomeric and a multimeric protein were also studied. Copyright © 2016 Elsevier B.V. All rights reserved.
Cremer, Julia E; Bean, Scott R; Tilley, Michael M; Ioerger, Brian P; Ohm, Jae B; Kaufman, Rhett C; Wilson, Jeff D; Innes, David J; Gilding, Edward K; Godwin, Ian D
2014-10-08
Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich β- and γ-kafirins may limit enzymatic access to internally positioned α-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in β-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Seema; Simpson, David C.; Tolic, Nikola
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. 715 intact proteins were detected and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post translational modifications were assigned for ~10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction.more » Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C, 15N depleted media under aerobic and sub-oxic conditions. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification complement. The strategy can be readily applied for measuring differential protein abundances, and provides a platform for high-throughput selection of biologically relevant targets for further characterization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, S.; Bautista, C.M.; Wergedal, J.
1989-11-01
Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodiummore » dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.« less
Kaur, Lovedeep; Rutherfurd, Shane M; Moughan, Paul J; Drummond, Lynley; Boland, Mike J
2010-04-28
This paper describes an in vitro study that tests the proposition that actinidin from green kiwifruit influences the digestion of proteins in the small intestine. Different food proteins, from sources including soy, meat, milk, and cereals, were incubated in the presence or absence of green kiwifruit extract (containing actinidin) using a two-stage in vitro digestion system consisting of an incubation with pepsin at stomach pH (simulating gastric digestion) and then with added pancreatin at small intestinal pH, simulating upper tract digestion in humans. The digests from the small intestinal stage (following the gastric digestion phase) were subjected to gel electrophoresis (SDS-PAGE) to assess loss of intact protein and development of large peptides during the in vitro simulated digestion. Kiwifruit extract influenced the digestion patterns of all of the proteins to various extents. For some proteins, actinidin had little impact on digestion. However, for other proteins, the presence of kiwifruit extract resulted in a substantially greater loss of intact protein and different peptide patterns from those seen after digestion with pepsin and pancreatin alone. In particular, enhanced digestion of whey protein isolate, zein, gluten, and gliadin was observed. In addition, reverse-phase HPLC (RP-HPLC) analysis showed that a 2.5 h incubation of sodium caseinate with kiwifruit extract alone resulted in approximately 45% loss of intact protein.
Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia
2008-01-01
Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151
Singh, Anamika; Wilczynski, Andrzej; Holder, Jerry R.; Witek, Rachel M.; Dirain, Marvin L.; Xiang, Zhimin; Edison, Arthur S.; Haskell-Luevano, Carrie
2011-01-01
Using a solid-phase synthetic approach, a bioactive reverse turn heterocyclic was incorporated into a cyclic peptide template to probe melanocortin receptor potency and ligand structural conformations. The five melanocortin receptor isoforms (MC1R-MC5R) are G-protein coupled receptors (GPCRs) that are regulated by endogenous agonists and antagonists. This pathway is involved in pigmentation, weight, and energy homeostasis. Herein, we report novel analogues of the chimeric AGRP-melanocortin peptide template integrated with a small molecule moiety to probe the structural and functional consequences of the core His-Phe-Arg-Trp peptide domain using a reverse-turn heterocycle. A series of six compounds are reported that result in inactive to full agonists with nM potency. Biophysical structural analysis [2D 1H NMR and computer-assisted molecular modeling (CAMM)] were performed on selected analogues, resulting in the identification that these peptide-small molecule hybrids possessed increased flexibility and fewer discrete conformational families as compared to the reference peptide and result in a novel template for further structure-function studies. PMID:21306168
Hussain, Shah; Güzel, Yüksel; Schönbichler, Stefan A; Rainer, Matthias; Huck, Christian W; Bonn, Günther K
2013-09-01
Thionins are cysteine-rich, biologically active small (∼5 kDa) and basic proteins occurring ubiquitously in the plant kingdom. This study describes an efficient solid-phase extraction (SPE) method for the selective isolation of these pharmacologically active proteins. Hollow-monolithic extraction tips based on poly(styrene-co-divinylbenzene) with embedded zirconium silicate nano-powder were designed, which showed an excellent selectivity for sulphur-rich proteins owing to strong co-ordination between zirconium and the sulphur atoms from the thiol-group of cysteine. The sorbent provides a combination of strong hydrophobic and electrostatic interactions which may help in targeted separation of certain classes of proteins in a complex mixture based upon the binding strength of different proteins. European mistletoe, wheat and barley samples were used for selective isolation of viscotoxins, purothionins and hordothionins, respectively. The enriched fractions were subjected to analysis by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometer to prove the selectivity of the SPE method towards thionins. For peptide mass-fingerprint analysis, tryptic digests of SPE eluates were examined. Reversed-phase high-performance liquid chromatography hyphenated to diode-array detection was employed for the purification of individual isoforms. The developed method was found to be highly specific for the isolation and purification of thionins.
NASA Astrophysics Data System (ADS)
Neff, H.; Laborde, H. M.; Lima, A. M. N.
2016-11-01
An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.
Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.
Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao
2007-09-01
Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.
Supercritical fluid reverse micelle separation
Fulton, John L.; Smith, Richard D.
1993-01-01
A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.
Supercritical fluid reverse micelle separation
Fulton, J.L.; Smith, R.D.
1993-11-30
A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.
Chitta, Karnakar R; Landero-Figueroa, Julio A; Kodali, Phanichand; Caruso, Joseph A; Merino, Edward J
2013-09-30
Our previous studies using HeLa and HEK 293 cells demonstrated that selenomethionine, SeMet, exerts more of an antagonistic effect on arsenic than other selenium species. These studies attributed the antagonistic effect of SeMet to decreased levels of reactive oxygen species, ROS, changes in protein phosphorylation and possible incorporation of SeMet into proteins. The present study employs a metallomics approach to identify the selenium-containing proteins in HEK 293 cells raised with SeMet. The proteins were screened and separated using two dimensional high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICPMS), size exclusion chromatography (SEC) and reversed-phase chromatography (RPC). The Se-containing proteins were identified by peptide mapping using nano-HPLC-Chip-electrospray ionization mass spectrometry (ESIMS). Copyright © 2013 Elsevier B.V. All rights reserved.
Gruninger, Robert J; Tsang, Adrian; McAllister, Tim A
2017-01-01
Fungi utilize a unique mechanism of nutrient acquisition involving extracellular digestion. To understand the biology of these microbes, it is important to identify and characterize the function of proteins that are secreted and involved in this process. Mass spectrometry-based proteomics is a powerful tool to study complex mixtures of proteins and understand how the proteins produced by an organism change in response to different conditions. Many fungi are efficient decomposers of plant cell wall, and anaerobic fungi are well recognized for their ability to digest lignocellulose. Here, we outline a protocol for the enrichment and isolation of proteins secreted by anaerobic fungi after growth on simple (glucose) and complex (straw and alfalfa hay) carbon sources. We provide detailed instruction on generating protein fragments and preparing these for proteomic analysis using reversed phase chromatography and mass spectrometry.
You, Xiangrong; Wang, Lingxia; Liang, Wenyu; Gai, Yonghong; Wang, Xiaoyan; Chen, Wei
2012-02-02
Two-dimensional gel electrophoresis (2-DE) was used to analyze the proteins related to floral reversion in Dimocarpus longan Lour. Proteins were extracted from buds undergoing the normal process of flowering and from those undergoing floral reversion in three developing stages in D. longan. Differentially expressed proteins were identified from the gels after 2-DE analysis, which were confirmed using matrix-assisted laser desorption/ionization-time of flying-mass spectroscopy and protein database search. A total of 39 proteins, including 18 up-regulated and 21 down-regulated proteins, were classified into different categories, such as energy and substance metabolism, protein translation, secondary metabolism, phytohormone, cytoskeleton structure, regulation, and stress tolerance. Among these, the largest functional class was associated with primary metabolism. Down-regulated proteins were involved in photosynthesis, transcription, and translation, whereas up-regulated proteins were involved in respiration. Decreased flavonoid synthesis and up-regulated GA20ox might be involved in the floral reversion process. Up-regulated 14-3-3 proteins played a role in the regulation of floral reversion in D. longan by responding to abiotic stress. Observations via transmission electron microscopy revealed the ultrastructure changes in shedding buds undergoing floral reversion. Overall, the results provided insights into the molecular basis for the floral reversion mechanism in D. longan. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong
2014-03-07
Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less
Chen, Shuang; Lau, Hollis; Brodsky, Yan; Kleemann, Gerd R; Latypov, Ramil F
2010-01-01
This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation-exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size-exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co-incubating Fab and Fc fragments with their respective full-length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX-based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein–protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb-based therapeutics. PMID:20512972
Unique Features of Halophilic Proteins.
Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao
2017-01-01
Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.
Indications for an inducible component of error-prone DNA repair in yeast.
Siede, W; Eckardt, F
1984-01-01
In a thermoconditional mutant of mutagenic DNA repair (rev 2ts = rad 5-8) of Saccharomyces cerevisiae recovery of survival and mutation frequencies can be monitored by incubating UV-irradiated cells in growth medium at a permissive temperature (23 degrees C) before plating and a shift to restrictive temperature (36 degrees C). Inhibition of protein synthesis with cycloheximide during incubation at permissive conditions blocks this REV 2 dependent recovery process in stationary phase rev 2ts cells, whereas it can be reduced but not totally abolished in exponentially growing cells. These results indicate a strict dependence on post-irradiation protein synthesis in stationary phase cells and argue for a considerable constitutive level and only limited inducibility in logarithmic phase cells. The UV inducibility of the REV 2 coded function in stationary phase cells could be confirmed by analysis of the dose-response pattern of the his 5-2 reversion: in stationary phase rev 2ts cells, the quadratic component of the biphasic linear-quadratic induction kinetics found at 23 degrees C, which is interpreted as the consequence of induction of mutagenic repair, is eliminated at 36 degrees C.
Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio
2012-09-01
Avocado (Persea americana) proteins have been scarcely studied despite their importance, especially in food related allergies. The proteome of avocado pulp was explored in depth by extracting proteins with capture by combinatorial peptide ligand libraries at pH 7.4 and under conditions mimicking reverse-phase capture at pH 2.2. The total number of unique gene products identified amounts to 1012 proteins, of which 174 are in common with the control, untreated sample, 190 are present only in the control and 648 represent the new species detected via combinatorial peptide ligand libraries of all combined eluates and likely represent low-abundance proteins. Among the 1012 proteins, it was possible to identify the already known avocado allergen Pers a 1 and different proteins susceptible to be allergens such as a profilin, a polygalacturonase, a thaumatin-like protein, a glucanase, and an isoflavone reductase like protein. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pan, Xiao-Wen; Zhao, Xin-Huai
2015-06-17
Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.
LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH
2007-01-01
Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873
Thaler, Florian; Valsasina, Barbara; Baldi, Rosario; Xie, Jin; Stewart, Albert; Isacchi, Antonella; Kalisz, Henryk M; Rusconi, Luisa
2003-06-01
beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.
Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra
2016-01-01
Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N. Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells. © 2015 John Wiley & Sons Ltd.
Khatami, Leila; Khodagholi, Fariba; Motamedi, Fereshteh
2018-04-16
The Interpedundular nucleus (IPN) is a small midbrain structure located deeply between the two cerebral peduncles. The strategic placement of this nucleus makes it a possible relay between structures involved in the modulation of hippocampal theta rhythm activity. In this study we aimed to investigate how reversible inactivation of IPN could affect the acquisition, consolidation and retrieval phases of memory in passive avoidance (PA) and Morris water maze (MWM) tasks. To support our data, molecular studies were performed in order to detect possible changes in the expression of proteins related to learning and memory in the hippocampus. To address this issue rats' IPN was reversibly inactivated by microinjection of lidocaine hydrochloride (4%). After the behavioral studies, the phosphorylation of CREB and P70, and c-fos expression levels in the hippocampus were determined using western blotting and immunohistochemistry respectively. Our results in the PA and MWM tasks showed that IPN reversible inactivation could impair immediate post training consolidation and retrieval while it had no effect on the acquisition phase. In addition, there was a deficit in the retention of the MWM working memory. Our data showed the ratio of pCREB/CREB, pP70/P70 and c-fos expression in the hippocampus significantly decreased after IPN reversible inactivation. Collectively, the results show that behaviorally defined changes could be due to what happens molecularly in the hippocampus after IPN reversible inactivation. It is concluded that IPN not only makes part of a network involved in the modulation of hippocampal theta rhythm activity, but also is actively engaged in hippocampal memory formation. Copyright © 2018 Elsevier B.V. All rights reserved.
Chong, B E; Hamler, R L; Lubman, D M; Ethier, S P; Rosenspire, A J; Miller, F R
2001-03-15
Nonporous (NPS) RP-HPLC has been used to rapidly separate proteins from whole cell lysates of human breast cell lines. The nonporous separation involves the use of hard-sphere silica beads of 1.5-microm diameter coated with C18, which can be used to separate proteins ranging from 5 to 90 kDa. Using only 30-40 microg of total protein, the protein molecular weights are detectable on-line using an ESI-oaTOF MS. Of hundreds of proteins detected in this mass range, approxinately 75-80 are more highly expressed. The molecular weight profiles can be displayed as a mass map analogous to a virtual "1-D gel" and differentially expressed proteins can be compared by image analysis. The separated proteins can also be detected by UV absorption and differentially expressed proteins quantified. The eluting proteins can be collected in the liquid phase and the molecular weight and peptide maps determined by MALDI-TOF MS for identification. It is demonstrated that the expressed protein profiles change during neoplastic progression and that many oncoproteins are readily detected. It is also shown that the response of premalignant cancer cells to estradiol can be rapidly screened by this method, demonstrating significant changes in response to an external agent. Ultimately, the proteins can be studied by peptide mapping to search for posttranslational modifications of the oncoproteins accompanying progression.
Major, Sylvia M; Nishizuka, Satoshi; Morita, Daisaku; Rowland, Rick; Sunshine, Margot; Shankavaram, Uma; Washburn, Frank; Asin, Daniel; Kouros-Mehr, Hosein; Kane, David; Weinstein, John N
2006-04-06
Monoclonal antibodies are used extensively throughout the biomedical sciences for detection of antigens, either in vitro or in vivo. We, for example, have used them for quantitation of proteins on "reverse-phase" protein lysate arrays. For those studies, we quality-controlled > 600 available monoclonal antibodies and also needed to develop precise information on the genes that encode their antigens. Translation among the various protein and gene identifier types proved non-trivial because of one-to-many and many-to-one relationships. To organize the antibody, protein, and gene information, we initially developed a relational database in Filemaker for our own use. When it became apparent that the information would be useful to many other researchers faced with the need to choose or characterize antibodies, we developed it further as AbMiner, a fully relational web-based database under MySQL, programmed in Java. AbMiner is a user-friendly, web-based relational database of information on > 600 commercially available antibodies that we validated by Western blot for protein microarray studies. It includes many types of information on the antibody, the immunogen, the vendor, the antigen, and the antigen's gene. Multiple gene and protein identifier types provide links to corresponding entries in a variety of other public databases, including resources for phosphorylation-specific antibodies. AbMiner also includes our quality-control data against a pool of 60 diverse cancer cell types (the NCI-60) and also protein expression levels for the NCI-60 cells measured using our high-density "reverse-phase" protein lysate microarrays for a selection of the listed antibodies. Some other available database resources give information on antibody specificity for one or a couple of cell types. In contrast, the data in AbMiner indicate specificity with respect to the antigens in a pool of 60 diverse cell types from nine different tissues of origin. AbMiner is a relational database that provides extensive information from our own laboratory and other sources on more than 600 available antibodies and the genes that encode the antibodies' antigens. The data will be made freely available at http://discover.nci.nih.gov/abminer.
Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication
Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas
2016-01-01
Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839
Recombinant production, isotope labeling and purification of ENOD40B: a plant peptide hormone.
Chae, Young Kee; Tonneli, Marco; Markley, John L
2012-08-01
The plant peptide hormone ENOD40B was produced in a protein production strain of Escherichia coli harboring an induction controller plasmid (Rosetta(DE3)pLysS) as a His6-tagged ubiquitin fusion protein. The fusion protein product was denatured and refolded as part of the isolation procedure and purified by immobilized metal ion chromatography. The peptide hormone was released from its fusion partner by adding yeast ubiquitin hydrolase (YUH) and subsequently purified by reversed phase chromatography. The purity of the resulting peptide fragment was assayed by MALDITOF mass spectrometry and NMR spectroscopy. The final yields of the target peptide were 7.0 mg per liter of LB medium and 3.4 mg per liter of minimal medium.
A study of elastase peptides from bovine white matter proteolipid.
Lees, M B; Macklin, W B; Chao, B H
1981-10-01
Bovine white matter proteolipid has been digested with elastase in the presence of deoxycholate. After acidification, the digest was separated into an acid-soluble and an acid-insoluble fraction. The acid-insoluble fraction was enriched in nonpolar amino acids and, by a combination of solvent fractionation and chromatography, a fraction was obtained which consisted of a mixture of two peptides with a molecular weight of approximately 4000 daltons. The acid-soluble peptides were separated by molecular sieve, ion exchange and high performance liquid chromatography (HPLC) in the reverse phase mode. The purified peptides were smaller than expected on the basis of their elution position from a molecular sieve column, suggesting they were in an aggregated state during the initial chromatography. Reverse phase HPLC was shown to be useful for fingerprinting these peptide mixtures. The data demonstrate the difficulties associated with the study of this proteolipid and emphasize the tendency of both the protein and the peptides derived from it to aggregate.
Nano-functionalization of protein microspheres
NASA Astrophysics Data System (ADS)
Yoon, Sungkwon; Nichols, William T.
2014-08-01
Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.
2015-07-27
University, Manassas, VA, USA, 4 PerkinElmer, Inc., Waltham, MA, USA Burkholderia is a diverse genus of gram-negative bacteria that causes high...Burkholderia spp. infections. Materials and Methods Bacterial Strains Bm ATCC 23344, NCTC 10247, NCTC 10229, NCTC 3708, NCTC 3709, 2002721278 (Burtnick...macrophage cell line RAW264.7 was obtained from ATCC (Manassas, VA). Cells were cultured in DMEM (Life Technologies) supplemented with 10% fetal
Park, Seong-Cheol; Kim, Jin-Young; Lee, Jong-Kook; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung
2009-10-14
A novel antifungal protein (Pr-2) was identified from pumpkin rinds using water-soluble extraction, ultrafiltration, cation exchange chromatography, and reverse-phase high-performance liquid chromatography. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry indicated that the protein had a molecular mass of 14865.57 Da. Automated Edman degradation showed that the N-terminal sequence of Pr-2 was QGIGVGDNDGKRGKR-. The Pr-2 protein strongly inhibited in vitro growth of Botrytis cinerea, Colletotrichum coccodes, Fusarium solani, Fusarium oxysporum, and Trichoderma harzianum at 10-20 microM. The results of confocal laser scanning microscopy and SYTOX Green uptake demonstrated that its effective region was the membrane of the fungal cell surface. In addition, this protein was found to be noncytotoxic and heat-stable. Taken together, the results of this study indicate that Pr-2 is a good candidate for use as a natural antifungal agent.
Rapid experimental SAD phasing and hot-spot identification with halogenated fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, Joseph D.; Harrison, Jerry Joe E. K.; Arnold, Eddy
2016-01-01
Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites forin silicoscreening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structuresmore » of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.« less
Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria.
Spoof, Lisa; Błaszczyk, Agata; Meriluoto, Jussi; Cegłowska, Marta; Mazur-Marzec, Hanna
2015-12-30
Anabaenopeptins, bioactive cyclic hexapeptides, were isolated by preparative reversed-phase high performance liquid chromatography from an extract of Baltic Sea cyanobacterial bloom material composed of Nodularia spumigena (50%), Aphanizomenon flos-aquae (40%) and Dolichospermum spp. (10%). Five new anabaenopeptins and nine previously known anabaenopeptins were isolated, and their putative structures were determined by tandem mass spectrometry. The activity of the peptides against carboxypeptidase A and protein phosphatase 1 as well as chymotrypsin, trypsin and thrombin was tested. All anabaenopeptins inhibited carboxypeptidase A (apart from one anabaenopeptin variant) and protein phosphatase 1 with varying potency, but no inhibition against chymotrypsin, trypsin and thrombin was observed.
Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf
2010-08-01
The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.
Separation of alkylphenols by normal-phase and reversed-phase high-performance liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schabron, J.F.; Hurtubise, R.J.; Silver, H.F.
1978-11-01
Empirical correlation factors were developed which relate log k' values for alkylphenols, the naphthols, and two phenylphenols to structural features. Both normal-phase and reversed-phase chromatographic systems were studied. The stationary phases employed in the normal-phase work were ..mu..-Bondapak CN, ..mu..-Bondapak NH/sub 2/, and ..mu..-Porasil. The structural features which affect retention in the normal-phase chromatographic systems are the number of ortho substituents, the number of aliphatic carbons, and the number of aromatic rings. The stationary phases employed in the reversed-phase work were ..mu..-Bondapak C/sub 18/ and ..mu..-Bondapak CN. The structural features which affect retention in the reversed-phase chromatographic systems are themore » number of aliphatic carbons and the number of aromatic double bonds. On ..mu..-Bondapak C/sub 18/, the presence or absence of a nonaromatic ring is of added importance.« less
Johnston, Heather J.; Boys, Sarah K.; Makda, Ashraff; Carragher, Neil O.
2016-01-01
Abstract Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid‐phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose‐dependent response in IRS‐1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. PMID:27304907
RNA stores tau reversibly in complex coacervates
Lin, Yanxian; Eschmann, Neil A.; Zhou, Hongjun; Rauch, Jennifer N.; Hernandez, Israel; Guzman, Elmer; Kosik, Kenneth S.; Han, Songi
2017-01-01
Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable β-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the formation of insoluble fibrils. PMID:28683104
Greifenhagen, Uta; Frolov, Andrej; Blüher, Matthias; Hoffmann, Ralf
2016-04-29
Protein glycation refers to the reversible reaction between aldoses (or ketoses) and amino groups yielding relatively stable Amadori (or Heyns) products. Consecutive oxidative cleavage reactions of these products or the reaction of amino groups with other reactive substances (e.g. α-dicarbonyls) yield advanced glycation end products (AGEs) that can alter the structures and functions of proteins. AGEs have been identified in all organisms, and their contents appear to rise with some diseases, such as diabetes and obesity. Here, we report a pilot study using highly sensitive and specific proteomics approach to identify and quantify AGE modification sites in plasma proteins by reversed phase HPLC mass spectrometry in tryptic plasma digests. In total, 19 AGE modification sites corresponding to 11 proteins were identified in patients with type 2 diabetes mellitus under poor glycemic control. The modification degrees of 15 modification sites did not differ among cohorts of normoglycemic lean or obese and type 2 diabetes mellitus patients under good and poor glycemic control. The contents of two amide-AGEs in human serum albumin and apolipoprotein A-II were significantly higher in patients with poor glycemic control, although the plasma levels of both proteins were similar among all plasma samples. These two modification sites might be useful to predict long term, AGE-related complications in diabetic patients, such as impaired vision, increased arterial stiffness, or decreased kidney function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E
2015-11-01
A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Y; Zhou, S W; Tang, J L; Huang, L Q
2001-11-01
The aim of this study was to establish an high performance liquid chromatographic method for determining acyclovir (ACV) concentration in mouse plasma and tissues. A solution of 0.25 mL 60 g/L perchloric acid and 0.25 mL acetonitrile was added into 0.2 mL plasma or 0.2 g tissues to precipitate proteins. Following centrifugation, the supernatant obtained was injected into a reversed-phase column. Operating conditions were Hypersil ODS column(250 mm x 4.6 mm i.d., 5 microns), methanol-water-acetic acid(1:99:0.5, volume ratio) solution as mobile phase at a flow rate of 1.5 mL/min, UV detection at 252 nm. The detection limit of ACV concentration in plasma was 20 micrograms/L and that in tissues was 50 ng/g. The standard curves for ACV were linear in plasma and homogenate of tissues (r > 0.99). The precision of the method was good and the recoveries of ACV were higher than 97.5%. So this method is rapid, accurate and convenient for determination of ACV concentrations in plasma and tissues.
Dhaneshwar, Amrut D; Chaurasiya, Ram Saran; Hebbar, H Umesh
2014-01-01
In the current study, reverse micellar extraction (RME) for the purification of stem bromelain was successfully achieved using the sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane system. A maximum forward extraction efficiency of 58.0% was obtained at 100 mM AOT concentration, aqueous phase pH of 8.0 and 0.2 M NaCl. Back extraction studies on altering stripping phase pH and KCl concentration, addition of counter-ion and iso-propyl alcohol (IPA) and mechanical agitation with glass beads indicated that IPA addition and agitation with glass beads have significant effects on extraction efficiency. The protein extraction was higher (51.9%) in case of the IPA (10% v/v) added system during back extraction as compared to a cetyltrimethylammonium bromide (100 mM) added system (9.42%). The central composite design technique was used to optimize the back extraction conditions further. Concentration of IPA, amount of glass beads, mixing time, and agitation speed (in rpm) were the variables selected. IPA concentration of 8.5% (v/v), glass bead concentration of 0.6 (w/v), and mixing time of 45 min at 400 rpm resulted in higher back extraction efficiency of 45.6% and activity recovery of 88.8% with purification of 3.04-fold. The study indicated that mechanical agitation using glass beads could be used for destabilizing the reverse micelles and release of bromelain back into the fresh aqueous phase. © 2014 American Institute of Chemical Engineers.
Abulaizi, Mayinuer; Tomonaga, Takeshi; Satoh, Mamoru; Sogawa, Kazuyuki; Matsushita, Kazuyuki; Kodera, Yoshio; Obul, Jurat; Takano, Shigetsugu; Yoshitomi, Hideyuki; Miyazaki, Masaru; Nomura, Fumio
2011-01-01
We searched for novel tumor markers of pancreatic cancer by three-step serum proteome analysis. Twelve serum abundant proteins were depleted using immunoaffinity columns followed by fractionation by reverse-phase high-performance liquid chromatography. Proteins in each fraction were separated by two-dimensional gel electrophoresis. Then the gel was stained by Coomassie Brilliant Blue. Protein spots in which the expression levels were significantly different between cancer and normal control were identified by LC-MS/MS. One hundred and two spots were upregulated, and 84 spots were downregulated in serum samples obtained from patients with pancreatic cancers, and 58 proteins were identified by mass spectrometry. These candidate proteins were validated using western blot analysis and enzyme-linked immunosorbent assay (ELISA). As a result of these validation process, we could confirm that the serum levels of apolipoprotein A-IV, vitamin D-binding protein, plasma retinol-binding protein 4, and tetranectin were significantly decreased in patients with pancreatic cancer. PMID:22091389
Nonclassical nucleation pathways in protein crystallization
NASA Astrophysics Data System (ADS)
Zhang, Fajun
2017-11-01
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Nonclassical nucleation pathways in protein crystallization.
Zhang, Fajun
2017-11-08
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Sewell, Andrew; Brown, Brandee; Biktasova, Asel; Mills, Gordon B; Lu, Yiling; Tyson, Darren R; Issaeva, Natalia; Yarbrough, Wendell G
2014-05-01
Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These data suggest that inhibitors for mTOR may have activity against HPV(+) PIK3CA mutant oropharyngeal cancers. ©2014 AACR.
Selvaraju, Subhashini; Rassi, Ziad El
2013-01-01
A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the “cascading” of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of 8 DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome. PMID:23533108
Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael
2012-01-01
Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446
Arbor, Sage; Marshall, Garland R
2009-02-01
Reverse turns are often recognition sites for protein/protein interactions and, therefore, valuable potential targets for determining recognition motifs in development of potential therapeutics. A virtual combinatorial library of cyclic tetrapeptides (CTPs) was generated and the bonds in the low-energy structures were overlapped with canonical reverse-turn Calpha-Cbeta bonds (Tran et al., J Comput Aided Mol Des 19(8):551-566, 2005) to determine the utility of CTPs as reverse-turn peptidomimetics. All reverse turns in the Protein Data Bank (PDB) with a crystal structures resolution < or = 3.0 A were classified into the same known canonical reverse-turn Calpha-Cbeta bond clusters (Tran et al., J Comput Aided Mol Des 19(8):551-566, 2005). CTP reverse-turn mimics were compiled that mimicked both the relative orientations of three of the four as well as all four Calpha-Cbeta bonds in the reverse turns of the PDB. 54% of reverse turns represented in the PDB had eight or more CTPs structures that mimicked the orientation of all four of the Calpha-Cbeta bonds in the reverse turn.
Preparation and characterization of human recombinant protein 1/Clara cell M(r) 10,000 protein.
Okutani, R; Itoh, Y; Yamada, T; Yamaguchi, T; Singh, G; Yagisawa, H; Kawai, T
1996-09-01
Protein 1, which is identical to human Clara cell M(r) 10(4) protein, is a homodimeric, low molecular mass protein (M(r) 14,000) and an effective inhibitor of phospholipase A2 activity. We have expressed this protein in E. coli and characterized its physiochemical and biological properties. Using a pET expression system, about 1.7 mg of purified recombinant protein 1 was obtained from 250 ml of E. coli culture. The amino-terminal sequence of recombinant protein 1 up to the 20th residue was identical to that of native protein 1 except for an extra methionine at the amino-terminus. On reversed-phase HPLC, recombinant protein 1 eluted at the same retention time as native protein 1. The dose-response curves of recombinant protein 1 and native protein 1 in an enzyme-linked immunosorbent assay for protein 1 were identical. Recombinant protein 1 inhibited both porcine pancreas and cobra venom phospholipase A2 activities. These results indicated that recombinant protein 1 is structurally and biologically identical to native protein 1. We found that recombinant protein 1 also inhibits phosphatidylinositol-specific phospholipase C activity.
Topological superconductivity in the extended Kitaev-Heisenberg model
NASA Astrophysics Data System (ADS)
Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.
2018-01-01
We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ <0 , we find a competition between a time-reversal symmetry-breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.
Sun, Pei; Wu, Haoyang; Huang, Jiali; Xu, Ying; Yang, Feng; Zhang, Qi; Xu, Xingang
2018-05-22
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang
2014-03-01
Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3β, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3β, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Pyridylamination as a means of analyzing complex sugar chains
Hase, Sumihiro
2010-01-01
Herein, I describe pyridylamination for versatile analysis of sugar chains. The reducing ends of the sugar chains are tagged with 2-aminopyridine and the resultant chemically stable fluorescent derivatives are used for structural/functional analysis. Pyridylamination is an effective “operating system” for increasing sensitivity and simplifying the analytical procedures including mass spectrometry and NMR. Excellent separation of isomers is achieved by reversed-phase HPLC. However, separation is further improved by two-dimensional HPLC, which involves a combination of reversed-phase HPLC and size-fractionation HPLC. Moreover, a two-dimensional HPLC map is also useful for structural analysis. I describe a simple procedure for preparing homogeneous pyridylamino sugar chains that is less laborious than existing techniques and can be used for functional analysis (e.g., sugar-protein interaction). This novel approach was applied and some of the results are described: i) a glucosyl-serine type sugar chain found in blood coagulation factors; ii) discovery of endo-β-mannosidase (EC 3.2.1.152) and a new type plant α1,2-l-fucosidase; and iii) novel substrate specificity of a cytosolic α-mannosidase. Moreover, using homogeneous sugar chains of a size similar to in vivo substrates we were able to analyze interactions between sugar chains and proteins such as enzymes and lectins in detail. Interestingly, our studies reveal that some enzymes recognize a wider region of the substrate than anticipated. PMID:20431262
Skubatz, Hanna; Orellana, Mónica V; Howald, William N
2013-01-01
The mode of action of the thermogenic inducers (salicylic acid, aspirin, and 2,6-dihydroxybenzoic acid) in the appendix of the Sauromatum guttatum inflorescence is poorly understood. Using ESI-MS and light scattering analysis, we have demonstrated that NAD(P) reductase like protein (RL) is the salicylic acid receptor in the Sauromatum appendix. RL was self-assembled in water into a large unit with a hydrodynamic diameter of 800 nm. In the presence of 1 pM salicylic acid, RL exhibited discontinuous and reversible volume phase transitions. The volume phase changed from 800 to 300 nm diameter and vice versa. RL stayed at each volume phase for ~4–5 min with a fast relaxation time between the 2 phases. ESI-MS analysis of RL extracted from appendices treated with salicylic acid, aspirin, and 2,6-DHBA at a micromolar range demonstrated that these compounds are capable of inducing graded conformational changes that are concentration-dependent. A strong correlation between RL conformations and heat-production induced by salicylic acid was also observed. These preliminary findings reveal structural and conformational roles for RL by which plants regulate their temperature and synchronize their time keeping mechanisms. PMID:28516022
Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki
2013-01-01
We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379
Does Warming a Lysozyme Solution Cook Ones Data?
NASA Technical Reports Server (NTRS)
Pusey, Marc; Burke, Michael; Judge, Russell
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.
Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F; Rand, Kasper D
2014-12-02
Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.
USDA-ARS?s Scientific Manuscript database
A method for the highly sensitive determination of 2-, 3- and 4- nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the i...
Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.
Pilbrow, Jodi; Bekhit, Alaa El-Din A; Carne, Alan
2016-07-15
This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alpha 1-acid glycoprotein reverses cocaine-induced sodium channel blockade in cardiac myocytes.
Ma, Yu-Ling; Peters, Nicholas S; Henry, John A
2006-03-01
Alpha 1-acid glycoprotein (AAG) is an acute phase protein capable of binding basic drugs. This action explains its reversal of sodium channel blockade by drugs such as amitriptyline and quinidine. We report here the reversal of cocaine-induced sodium channel blockade by AAG. The sodium channel blocking property of cocaine is a major mechanism behind cocaine-induced sudden cardiac death, since sodium channels play a key role in the initiation and regulation of the heart beat. Voltage-gated sodium current (I(Na)) was recorded using whole-cell patch-clamp techniques. Guinea-pig cardiac ventricular myocytes were isolated and continuously perfused at room temperature with physiological solutions. At concentrations ranging from 5 to 320 microM cocaine showed a dose-dependent and reversible blockade of I(Na) with an IC50 of 45.9 microM. The addition of equimolar amounts of AAG to cocaine produced almost complete reversal of cocaine's effects, suggesting a single binding site for cocaine on the AAG molecule. With changes of peak I(Na) normalized against control as 1, cocaine at 20 and 40 microM reduced I(Na) to 0.62+/-0.042 (n = 6) and 0.57+/-0.052 (n = 9), respectively, and the addition of an equimolar concentration of AAG reversed I(Na) to 0.86+/-0.022 and 0.91+/-0.060, respectively. AAG reverses cocaine-induced sodium channel blockade in a dose-dependent manner, indicating a therapeutic potential to reverse acute cocaine cardiac toxicity.
Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H
2016-01-01
Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels.
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Yoshie, Ayano; Kanda, Ayato; Nakamura, Takahiro; Igusa, Hisao; Hara, Setsuko
2009-01-01
Although there are various determination methods for gamma -oryzanol contained in rice bran oil by absorptiometry, normal-phase HPLC, and reversed-phase HPLC, their accuracies and the correlations among them have not been revealed yet. Chloroform-containing mixed solvents are widely used as mobile phases in some HPLC methods, but researchers have been apprehensive about its use in terms of safety for the human body and the environment.In the present study, a simple and accurate determination method was developed by improving the reversed-phase HPLC method. This novel HPLC method uses methanol/acetonitrile/acetic acid (52/45/3 v/v/v), a non-chlorinated solvent, as the mobile phase, and shows an excellent linearity (y = 0.9527x + 0.1241, R(2) = 0.9974) with absorptiometry. The mean relative errors among the existing 3 methods and the novel method, determined by adding fixed amounts of gamma-oryzanol into refined rice salad oil, were -4.7% for the absorptiometry, -6.8% for the existing normal-phase HPLC, +4.6% for the existing reversed-phase HPLC, and -1.6% for the novel reversed-phase HPLC method. gamma -Oryzanol content in 12 kinds of crude rice bran oils obtained from different sources were determined by the four methods. The mean content of those oils were 1.75+/-0.18% for the absorptiometry, 1.29+/-0.11% for the existing normal-phase HPLC, 1.51+/-0.10% for the existing reversed-phase HPLC, and 1.54+/-0.19% for the novel reversed-phase HPLC method.
Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L
2016-01-01
To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.
Evidence for tyrosine-linked glycosaminoglycan in a bacterial surface protein.
Peters, J; Rudolf, S; Oschkinat, H; Mengele, R; Sumper, M; Kellermann, J; Lottspeich, F; Baumeister, W
1992-04-01
The S-layer protein of Acetogenium kivui was subjected to proteolysis with different proteases and several high molecular mass glycosaminoglycan peptides containing glucose, galactosamine and an unidentified sugar-related component were separated by molecular sieve chromatography and reversed-phase HPLC and subjected to N-terminal sequence analysis. By methylation analysis glucose was found to be uniformly 1,6-linked, whereas galactosamine was exclusively 1,4-linked. Hydrazinolysis and subsequent amino-acid analysis as well as two-dimensional NMR spectroscopy were used to demonstrate that in these peptides carbohydrate was covalently linked to tyrosine. As all of the four Tyr-glycosylation sites were found to be preceded by valine, a new recognition sequence for glycosylation is suggested.
Isolation and Characterization of a Novel Nuclear Protein from Pollen Mother Cells of Lily
Sasaki, Yoh; Yasuda, Hideyo; Ohba, Yoshiki; Harada, Hiroshi
1990-01-01
Pollen mother cells of the lily (Lilium speciosum) were found to have a histone-H1-like protein (PMCP) not detected in other tissues. The PMCP appears from the late S-G2 period of premeiosis and is present in mature pollen. PMCP and H1 were extracted from pollen mother cells with 5% perchloric acid and isolated by reverse-phase high-performance liquid chromatography. The amino acid composition of PMCP differs from that of somatic H1. However, PMCP is similar to H1t in mammalian testis with regard to amino acid composition. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:16667855
Moncrieff, J
1994-03-18
A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.
Determination of fenoterol in human plasma by HPLC with fluorescence detection after derivatization.
Meineke, Ingolf; Steinmetz, Hannelore; Kramer, Skaidrit; Gleiter, Christoph H
2002-06-20
A new method for the determination of fenoterol is described, which uses HPLC separation with fluorescence detection. Dobutamine is employed as an internal standard. The separation was achieved on a short reversed phase column with a mobile phase consisting of water, acetonitrile and methanol. Prior to chromatography both analytes are derivatized with 9-chloroformyl-carbazole. Isolation of the analytes from plasma is carried out by liquid-liquid extraction into 2-butanol after protein precipitation with acetonitrile. The method is capable of estimating fenoterol concentrations in the sub-nanogram per ml range with sufficient accuracy and precision. The determination of fenoterol can now be carried out in the average laboratory without radiolabelled material.
Improved biomarker tests are required to minimize overdiagnosis and overtreatment of breast cancers. A number of pathologic criteria have been established to differentiate indolent or aggressive behavior, such as Nottingham grade of cancer cells. However, the effects of the tumor microenvironment on patient outcomes have not been integrated into pathologic criteria. In the current study, the Reactive subtype of breast cancer, identified by reverse-phase protein arrays, was demonstrated to indicate a favorable outcome.
Rice, W G; Schaeffer, C A; Graham, L; Bu, M; McDougal, J S; Orloff, S L; Villinger, F; Young, M; Oroszlan, S; Fesen, M R
1993-01-01
The C-nitroso compound 3-nitrosobenzamide, which has been shown to remove zinc from the retroviral-type zinc finger of p7NC nucleocapsid proteins, inhibits acute infection of human immunodeficiency virus type 1 in cultured human lymphocytes. The attachment of the virus to lymphocytes and the activities of critical viral enzymes, such as reverse transcriptase, protease, and integrase, are not affected by 3-nitrosobenzamide. However, the process of reverse transcription to form proviral DNA is effectively abolished by the drug, identifying the mode of action of 3-nitrosobenzamide as interrupting the role of p7NC in accurate proviral DNA synthesis during the infectious phase of the virus life cycle. Images Fig. 3 Fig. 4 PMID:7692451
Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer
NASA Astrophysics Data System (ADS)
Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.
2018-05-01
As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.
Grassetti, Andrew V; Hards, Rufus; Gerber, Scott A
2017-07-01
Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.
Yin, Hongfeng; Killeen, Kevin; Brennen, Reid; Sobek, Dan; Werlich, Mark; van de Goor, Tom
2005-01-15
Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.
Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle*
Vogan, Jacob M.; Collins, Kathleen
2015-01-01
Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells. PMID:26170453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, Dove; Finlay, Liam; Butler, Judy
Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve thesemore » results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.« less
Phase conjugation and time reversal in acoustics
NASA Astrophysics Data System (ADS)
Fink, Mathias
2000-07-01
This paper compares the different approaches used in acoustics to time reverse or to phase conjugate a wavefield. The basic principle of a time reversal mirror is an extension for broadband pulsed waves to the optical phase conjugated mirror designed for monochromatic waves. However, this equivalence is only valid mathematically and there are some fundamental differences between these two techniques that will be described in this paper.
Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Olozak, I.; Chattopadhyay, N.; Butters, R. R.; Kifor, O.; Scadden, D. T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor playing key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone turnover and may play a role in the "reversal" phase of skeletal remodeling that follows osteoclastic resorption and precedes osteoblastic bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for such mononuclear cells present locally within the bone marrow microenvironment. Indeed, previous studies by other investigators have shown that raising Ca2+o either in vivo or in vitro stimulated the release of interleukin-6 (IL-6) from human peripheral blood monocytes, suggesting that these cells express a Ca2+o-sensing mechanism. In these earlier studies, however, the use of reverse transcription-polymerase chain reaction (RT-PCR) failed to detect transcripts for the CaR previously cloned from parathyroid and kidney in peripheral blood monocytes. Since we recently found that non-specific esterase-positive, putative monocytes isolated from murine bone marrow express the CaR, we reevaluated the expression of this receptor in human peripheral blood monocytes. Immunocytochemistry, flow cytometry, and Western blot analysis, performed using a polyclonal antiserum specific for the CaR, detected CaR protein in human monocytes. In addition, the use of RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products, identified CaR transcripts in the cells. Therefore, taken together, our data show that human peripheral blood monocytes possess both CaR protein and mRNA very similar if not identical to those expressed in parathyroid and kidney that could mediate the previously described, direct effects of Ca2+o on these cells. Furthermore, since mononuclear cells isolated from bone marrow also express the CaR, the latter might play some role in the "reversal" phase of bone remodeling, sensing local changes in Ca2+o resulting from osteoclastic bone resorption and secreting osteotropic cytokines or performing other Ca2+o-regulated functions that contribute to the control of bone turnover.
McCary, Christine A.; Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M.
2011-01-01
We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with antigen and supplemental tocopherols in a first phase of treatment followed by a 4 week clearance phase and then the mice received a second phase of antigen and tocopherol treatments. The pro-inflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2 but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly-elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly-elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly-elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of antigen challenge without tocopherols. In summary, the pro-inflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly-elevated-levels of α-tocopherol. Also, highly-elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were pro-inflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature. PMID:21317387
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction. PMID:23520527
Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping
2014-09-01
This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.
Heterogeneity Determination and Purification of Commercial Hen Egg-White Lysozyme
NASA Technical Reports Server (NTRS)
Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.
1998-01-01
Hen egg-white lysozyme (HEWL) is widely used as a model protein, although its purity has not been adequately characterized by modern biochemical techniques. We have identified and quantified the protein heterogeneities in three commercial HEWL preparations by sodium dodecyl sulfate polyacrylamide gel electrophoresis with enhanced silver staining, reversed-phase fast protein liquid chromatography (FPLC) and immunoblotting with comparison to authentic protein standards. Depending on the source, the contaminating proteins totalled 1-6%(w/w) and consisted of ovotransferrin, ovalbumin, HEWL dimers, and polypeptides with approximate M(sub r) of 39 and 18 kDa. Furthermore, we have obtained gram quantities of electrophoretically homogeneous [> 99.9%(w/w)] HEWL by single-step semi-preparative scale cation-exchange FPLC with a yield of about 50%. Parallel studies of crystal growth kinetics, salt repartitioning and crystal perfection with this highly purified material showed fourfold increases in the growth-step velocities and significant enhancement in the structural homogeneity of HEWL crystals.
Expression and Production of SH2 Domain Proteins.
Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya
2017-01-01
The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.
Jasniewski, Jordane; Cailliez-Grimal, Catherine; Gelhaye, Eric; Revol-Junelles, Anne-Marie
2008-04-01
An optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5, by heterologous expression in Escherichia coli is described. The genes encoding mature bacteriocin were cloned into an E. coli expression system and expressed as a fusion protein with a thermostable thioredoxin. Recombinant E. coli were cultivated following a fed-batch fermentation process with pH, temperature and oxygenation regulation. The overexpression of the fusion proteins was improved by replacing IPTG by lactose. The fusion proteins were purified by thermal coagulation followed by affinity chromatography. The thioredoxin fusion protein was removed by using CNBr instead of enterokinase and the carnobacteriocins were recovered by reverse-phase chromatography. These optimizations led us to produce up to 320 mg of pure protein per liter of culture, which is four to ten fold higher than what is described for other heterologous expression systems.
Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yingwen; Shao, Yuyan; Parent, Lucas R.
This paper demonstrates intermetallic compounds SnSb are highly active materials for reversibly hosting Mg ions. Compared with monometallic Sn and Sb, SnSb alloy exhibited exceptionally high reversible capacity (420 mAh/g), excellent rate capability and good cyclic stability. Mg insertion into pristine SnSb involves an activation process to complete, which induces particle breakdown and results in phase segregation to Sn-rich and Sb-rich phases. Both experimental analysis and DFT simulation suggest that the Sn-rich phase is particularly active and provides most of the capacity whereas the Sb-rich phase is not as active, and the interface between these two phases play a keymore » role in promoting the formation and stabilization of the cubic Sn phase that is more favorable for fast and reversible Mg insertion. We further show that activated SnSb alloy has good compatibility with simple Mg electrolytes. Overall, this work could provide new approaches for designing materials capable of reversible Mg ion insertion and new opportunities for understanding Mg electrochemistry.« less
Heller, Gabriella T; Zwang, Theodore J; Sarapata, Elizabeth A; Haber, Michael A; Sazinsky, Matthew H; Radunskaya, Ami E; Johal, Malkiat S
2014-05-01
Previous methods for analyzing protein-ligand binding events using the quartz crystal microbalance with dissipation monitoring (QCM-D) fail to account for unintended binding that inevitably occurs during surface measurements and obscure kinetic information. In this article, we present a system of differential equations that accounts for both reversible and irreversible unintended interactions. This model is tested on three protein-ligand systems, each of which has different features, to establish the feasibility of using the QCM-D for protein binding analysis. Based on this analysis, we were able to obtain kinetic information for the intended interaction that is consistent with those obtained in literature via bulk-phase methods. In the appendix, we include a method for decoupling these from the intended binding events and extracting relevant affinity information. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Guan-Hong; Wan, Ju-Zhen; Le, Guo-Wei; Shi, Yong-Hui
2006-08-01
Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC(50) value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC(50) values of 26.5 microM, 82.4 microM and 13.4 microM, respectively. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS
NASA Astrophysics Data System (ADS)
Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.
2012-06-01
A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.
Modeling Protein Expression and Protein Signaling Pathways
Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan
2015-01-01
High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646
A bioinformatics-based overview of protein Lys-Ne-acetylation
USDA-ARS?s Scientific Manuscript database
Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...
Misao, R; Nakanishi, Y; Fujimoto, J; Tamaya, T
1995-09-01
This study was designed to investigate the biological significance in intracellular expression of sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) mRNA in uterine endometrium with luteal phase deficiency (designated as out-of-phase endometrium or low serum progesterone level). The levels of such mRNAs were measured by the quantitative reverse transcription-polymerase chain reaction. Under the normal serum 17 beta-estradiol and progesterone levels in the mid-luteal phase, the levels of SHBG and CBG mRNAs in the out-of-phase endometria were not significantly different from those in the normal endometria. On the other hand, SHBG and CBG mRNA levels in the endometria of low serum midluteal progesterone level were significantly (p < 0.05) reduced and raised, respectively, compared with normal levels. These findings suggest that the synthesis of endometrial steroid-binding proteins in the out-of-phase endometrium is conserved, as that in the in-phase endometrium, whereas the decreased progesterone level might up-regulate CBG expression with down-regulation of SHBG expression.
Photoinduced oxygen dynamics in lyophilized hemoglobin
NASA Astrophysics Data System (ADS)
Nöllmann, M.; Etchegoin, P.
2000-12-01
Reversible laser induced deoxygenation in the lyophilized phase of hemoglobin is demonstrated by means of resonant Raman scattering, luminescence, and optical transmission. Specific Raman modes, which are both sensitive to the spin states of Fe(II) in the hemes and resonant in the visible, are monitored as a function of time to evaluate the effect of the illuminating laser. These modes act as in-situ markers of the oxygen content of the protein. The reversible photoinduced deoxygenation can be observed through both the Raman spin-markers and the optical transmission experiments. In the former, reversible changes in the intensities of specific Raman modes are observed, while in the latter, the oscillator strength of the two main absorptions of oxyhemoglobin in the visible are seen to vary accordingly. The luminescence in lyophilized hemoglobin is found to have at least two different contributions, (i) a resonant component with the Raman modes and; (ii) a nonresonant contribution, which increases at high input laser powers and eventually masks the Raman signals. The nonresonant contribution is the luminescence of the photoproduct achieved by thermal denaturation of the protein and remains standing as a permanent nonreversible damage in the illuminated spot. Semiempirical electronic calculations of the wavefunction and total energy of the iron porphyrin reveal the underlying physical origin of the laser induced deoxygenation process in the hemes and are also presented.
Reverse and forward engineering of protein pattern formation.
Kretschmer, Simon; Harrington, Leon; Schwille, Petra
2018-05-26
Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
Carstensen, Linn; Zoldák, Gabriel; Schmid, Franz-Xaver; Sterner, Reinhard
2012-04-24
HisF, the cyclase subunit of imidazole glycerol phosphate synthase (ImGPS) from Thermotoga maritima, is an extremely thermostable (βα)(8)-barrel protein. We elucidated the unfolding and refolding mechanism of HisF. Its unfolding transition is reversible and adequately described by the two-state model, but 6 weeks is necessary to reach equilibrium (at 25 °C). During refolding, initially a burst-phase off-pathway intermediate is formed. The subsequent productive folding occurs in two kinetic phases with time constants of ~3 and ~20 s. They reflect a sequential process via an on-pathway intermediate, as revealed by stopped-flow double-mixing experiments. The final step leads to native HisF, which associates with the glutaminase subunit HisH to form the functional ImGPS complex. The conversion of the on-pathway intermediate to the native protein results in a 10(6)-fold increase of the time constant for unfolding from 89 ms to 35 h (at 4.0 M GdmCl) and thus establishes a high energy barrier to denaturation. We conclude that the extra stability of HisF is used for kinetic protection against unfolding. In its refolding mechanism, HisF resembles other (βα)(8)-barrel proteins.
Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.
Periat, Aurélie; Krull, Ira S; Guillarme, Davy
2015-02-01
This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gu, Haiwei; Huang, Yuan; Filgueira, Marcelo; Carr, Peter W.
2012-01-01
In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC × LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC × LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP × RP. PMID:21840009
Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang
2010-08-01
Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.
Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.
Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi
2018-04-01
For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.
Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M
2011-04-15
Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.
Kitata, Reta Birhanu; Dimayacyac-Esleta, Baby Rorielyn T; Choong, Wai-Kok; Tsai, Chia-Feng; Lin, Tai-Du; Tsou, Chih-Chiang; Weng, Shao-Hsing; Chen, Yi-Ju; Yang, Pan-Chyr; Arco, Susan D; Nesvizhskii, Alexey I; Sung, Ting-Yi; Chen, Yu-Ju
2015-09-04
Despite significant efforts in the past decade toward complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still "missing proteins". Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using nonsmall cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip prefractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue was incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet, and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring using synthetic peptides, we provided additional evidence of eight missing proteins including seven with transmembrane helix domains. This study demonstrates that mining missing proteins focused on cancer membrane subproteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224.
D'Amato, Alfonsina; Fasoli, Elisa; Kravchuk, Alexander V; Righetti, Pier Giorgio
2011-05-06
The "invisible" proteome of a Cola drink, stated to be produced with a kola nut extract, has been investigated via capture with combinatorial peptide ligand libraries (CPLL). Indeed, a few proteins in the M(r) 15-20 kDa range could be identified by treating large beverage volumes (1 L) and performing the capture with CPLLs at very acidic pH values (pH 2.2) under conditions mimicking reverse-phase adsorption. Ascertaining the presence of proteins deriving from plant extracts has confirmed the genuineness of such beverage and suggests the possibility of certifying whether soft drinks present on the market are indeed made with vegetable extracts or only with artificial chemical flavoring.
Multiple forms of statherin in human salivary secretions.
Jensen, J L; Lamkin, M S; Troxler, R F; Oppenheim, F G
1991-01-01
Sequential chromatography of hydroxyapatite-adsorbed salivary proteins from submandibular/sublingual secretions on Sephadex G-50 and reversed-phase HPLC resulted in the purification of statherin and several statherin variants. Amino acid analysis, Edman degradation and carboxypeptidase digestion of the obtained protein fractions led to the determination of the complete primary structures of statherin SV1, statherin SV2, and statherin SV3. SV1 is identical to statherin but lacks the carboxyl-terminal phenylalanine residue. SV2, lacking residues 6-15, is otherwise identical to statherin. SV3 is identical to SV2 but lacks the carboxyl-terminal phenylalanine. These results provide the first evidence for multiple forms of statherin which are probably derived both by post-translational modification and alternative splicing of the statherin gene.
Reversals and collisions optimize protein exchange in bacterial swarms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy
Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthusmore » optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.« less
Kulikov, A U; Zinchenko, A A
2007-02-19
This paper describes the validation of an isocratic HPLC method for the assay of dexpanthenol in aerosol and gel. The method employs the Vydac Proteins C4 column with a mobile phase of aqueous solution of trifluoroacetic acid and UV detection at 206 nm. A linear response (r>0.9999) was observed in the range of 13.0-130 microg mL(-1). The method shows good recoveries and intra and inter-day relative standard deviations were less than 1.0%. Validation parameters as specificity, accuracy and robustness were also determined. The method can be used for dexpanthenol assay of panthenol aerosol and gel with dexpanthenol as the method separates dexpanthenol from aerosol or gel excipients.
Liquid-liquid separation in solutions of normal and sickle cell hemoglobin
NASA Astrophysics Data System (ADS)
Galkin, Oleg; Chen, Kai; Nagel, Ronald L.; Elison Hirsch, Rhoda; Vekilov, Peter G.
2002-06-01
We show that in solutions of human hemoglobin (Hb)oxy- and deoxy-Hb A or Sof near-physiological pH, ionic strength, and Hb concentration, liquid-liquid phase separation occurs reversibly and reproducibly at temperatures between 35 and 40°C. In solutions of deoxy-HbS, we demonstrate that the dense liquid droplets facilitate the nucleation of HbS polymers, whose formation is the primary pathogenic event for sickle cell anemia. In view of recent results that shifts of the liquid-liquid separation phase boundary can be achieved by nontoxic additives at molar concentrations up to 30 times lower than the protein concentrations, these findings open new avenues for the inhibition of the HbS polymerization.
Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.
Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing
2013-01-01
Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.
Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis
Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing
2013-01-01
Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. PMID:23983455
Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong
2009-08-01
S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana
Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins thatmore » bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.« less
Visualizing Vpr-Induced G2 Arrest and Apoptosis
Murakami, Tomoyuki; Aida, Yoko
2014-01-01
Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1) with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2). The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to characterize the dynamics of the morphological changes that occur during Vpr-induced G2 arrest and apoptosis. PMID:24466265
Identification of Acetaminophen Adducts of Rat Liver Microsomal Proteins using 2D-LC-MS/MS.
Golizeh, Makan; LeBlanc, André; Sleno, Lekha
2015-11-16
Xenobiotic metabolism in the liver can give rise to reactive metabolites that covalently bind to proteins, and determining which proteins are targeted is important in drug discovery and molecular toxicology. However, there are difficulties in the analysis of these modified proteins in complex biological matrices due to their low abundance. In this study, an analytical approach was developed to systematically identify target proteins of acetaminophen (APAP) in rat liver microsomes (RLM) using two-dimensional chromatography and high-resolution tandem mass spectrometry. In vitro microsomal incubations, with and without APAP, were digested and subjected to strong cation exchange (SCX) fractionation prior to reverse-phase UHPLC-MS/MS. Four data processing strategies were combined into an efficient label-free workflow meant to eliminate potential false positives, using peptide spectral matching, statistical differential analysis, product ion screening, and a custom-built delta-mass filtering tool to pinpoint potential modified peptides. This study revealed four proteins, involved in important cellular processes, to be covalently modified by APAP. Data are available via ProteomeXchange with identifier PXD002590.
Quantitative proteomic analysis in breast cancer.
Tabchy, A; Hennessy, B T; Gonzalez-Angulo, A M; Bernstam, F M; Lu, Y; Mills, G B
2011-02-01
Much progress has recently been made in the genomic and transcriptional characterization of tumors. However, historically the characterization of cells at the protein level has suffered limitations in reproducibility, scalability and robustness. Recent technological advances have made it possible to accurately and reproducibly portray the global levels and active states of cellular proteins. Protein microarrays examine the native post-translational conformations of proteins including activated phosphorylated states, in a comprehensive high-throughput mode, and can map activated pathways and networks of proteins inside the cells. The reverse-phase protein microarray (RPPA) offers a unique opportunity to study signal transduction networks in small biological samples such as human biopsy material and can provide critical information for therapeutic decision-making and the monitoring of patients for targeted molecular medicine. By providing the key missing link to the story generated from genomic and gene expression characterization efforts, functional proteomics offer the promise of a comprehensive understanding of cancer. Several initial successes in breast cancer are showing that such information is clinically relevant. Copyright 2011 Prous Science, S.A.U. or its licensors. All rights reserved.
Zhao, Yimeng; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J
2016-10-07
We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.
Phase retrieval with the reverse projection method in the presence of object's scattering
NASA Astrophysics Data System (ADS)
Wang, Zhili; Gao, Kun; Wang, Dajiang
2017-08-01
X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed ;Reverse Projection; (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices.
Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan
2014-01-01
A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.
Shak, S
1987-01-01
LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.
Reversible, on-demand generation of aqueous two-phase microdroplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton
The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less
Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.
2001-10-01
When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.
Slow equilibration of reversed-phase columns for the separation of ionized solutes.
Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R
2003-10-10
Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.
Videau, Patrick; Rivers, Orion S; Hurd, Kathryn; Ushijima, Blake; Oshiro, Reid T; Ende, Rachel J; O'Hanlon, Samantha M; Cozy, Loralyn M
2016-10-24
The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9-14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234 Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein-protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription-quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein-protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes.
Vertebrate LTR retrotransposons of the Tf1/sushi group.
Butler, M; Goodwin, T; Simpson, M; Singh, M; Poulter, R
2001-03-01
LTR retrotransposons of the Tf1/sushi group from a diversity of vertebrates, including fish, amphibians, and mammals (humans, mice, and others), are described as full-length or partial elements. These elements are compared, and the mechanisms involved in self-priming of reverse transcriptase and programmed phase shifting are inferred. Evidence is presented that in mammals these elements are still transcriptionally active and are represented as proteins. This suggests that members of the Tf1/sushi group are present as functional elements (or incorporated as partial elements into host genes) in diverse vertebrate lineages.
Analgesic and antipyretic effects of Sansevieria trifasciata leaves.
Anbu, Jeba Sunilson J; Jayaraj, P; Varatharajan, R; Thomas, John; Jisha, James; Muthappan, M
2009-07-03
The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.
Reverse phase HPLC method for detection and quantification of lupin seed γ-conglutin.
Mane, Sharmilee; Bringans, Scott; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet
2017-09-15
A simple, selective and accurate reverse phase HPLC method was developed for detection and quantitation of γ-conglutin from lupin seed extract. A linear gradient of water and acetonitrile containing trifluoroacetic acid (TFA) on a reverse phase column (Agilent Zorbax 300SB C-18), with a flow rate of 0.8ml/min was able to produce a sharp and symmetric peak of γ-conglutin with a retention time at 29.16min. The identity of γ-conglutin in the peak was confirmed by mass spectrometry (MS/MS identification) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The data obtained from MS/MS analysis was matched against the specified database to obtain the exact match for the protein of interest. The proposed method was validated in terms of specificity, linearity, sensitivity, precision, recovery and accuracy. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation of γ-conglutin from the lupin seed extract with no interference of the matrix. The detection and quantitation limit of γ-conglutin were found to be 2.68μg/ml and 8.12μg/ml respectively. The accuracy (precision and recovery) analysis of the method was conducted under repeatable conditions on different days. Intra-day and inter-day precision values less than 0.5% and recovery greater than 97% indicated high precision and accuracy of the method for analysis of γ-conglutin. The method validation findings were reproducible and can be successfully applied for routine analysis of γ-conglutin from lupin seed extract. Copyright © 2017 Elsevier B.V. All rights reserved.
[Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists].
Zheng, Yan-min; Xie, Li-qun; Li, Xuan; Zhao, Jun-yan; Chen, Xiao-yi; Chen, Li; Zhou, Jing; Li, Fei
2009-12-01
To investigate the expression of protease activated receptor-2 (PAR-2) in human HepG2 hepatoma cells and elucidate the effects of trypsin and PAR-2 agonist peptide SLIGKV-NH(2) upon the proliferation of hepatoma cells and its intracellular signaling mechanism. PAR-2 protein and mRNA expression were detected by immunofluorescence and RT-PCR. The cells were treated with SLIGKV-NH(2), trypsin, reverse PAR-2 agonist peptide VKGILS-NH(2) or PD98059. The changes of cell cycle distribution were evaluated by flow cytometry. The proliferative potential of HepG2 cells was estimated by MTT. The changes of PAR-2, c-fos and PCNA mRNA expression were detected by RT-PCR. The changes of c-fos and PCNA protein expression were detected by Western blotting. PAR-2 protein and mRNA were expressed in HepG2 cells. PAR-2 mRNA expression (PAR-2/beta-actin) were 0.70 +/- 0.04 and 0.99 +/- 0.05 respectively in cells treated with trypsin and SLIGKV-NH(2). They were both significantly higher than that in the control group (0.35 +/- 0.05, F = 135.534, P < 0.01). Percent G(0)/G(1) phase of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly lower than those in the control group [(56.11 +/- 0.85)%, (57.85 +/- 0.46)% vs (79.12 +/- 0.67)%, both P < 0.01] Percent S phase, G(2)/M phase and proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly elevated (P < 0.01). The proliferation-enhancing effects and the up-regulation of mRNA and protein of c-fos and PCNA induced by trypsin or SLIGKV-NH(2) were significantly blocked by pretreatment with PD98059 (P < 0.01). There was no statistical significance in proliferation of HepG2 cells between the reverse PAR-2 agonist peptide VKGILS-NH(2) and control group (P > 0.05). PAR-2 is expressed in HepG2 hepatoma cells. PAR-2 activation induced by trypsin or SLIGKV-NH(2) promotes the proliferation of HepG2 cells partially via the ERK/AP-1 pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Wingkip; Dong, Jianguo,; Yang, Shang Fa
Tomato ACC synthase is inactivated by its substrate SAM, with the moiety of aminobutyrate being covalently linked to ACC synthase during the catalytic reactions. A partial purified ACC synthase (the catalytic activity 100 {mu}mol/h{center dot}mg protein) from pellets of apple extract was incubated with (3,4{sup 14}C) SAM. Only one radioactive peak was revealed in a C-4 reverse phase HPLC and one radioactive band on SDS-PAGE with an M.W. of 48 kDa. Apple ACC synthase in native form is resistant to V8, {alpha}-chromtrypsin and carboxylpeptidase A digestion, but effectively inactivated by trypsin and ficin, as demonstrated by both the activity assaymore » and SAM labeling. The radioactive protein cut from the SDS-PAGE was injected to three mice, two of the mice showed responses to the protein in western blot analysis. The antibodies from mice is currently under characterization.« less
Kim, Eun-Cheol; Moon, Ji-Hoi; Kang, Sang W; Kwon, Byungsuk; Lee, Hyeon-Woo
2015-04-01
We showed previously that a novel protein, transmembrane protein 126A (TMEM126A), binds to CD137 ligand (CD137L, 4-1BBL) and couples with its reverse signals in macrophages. Here, we present data showing that TMEM126A relays TLR4 signaling. Thus, up-regulation of CD54 (ICAM-1), MHC II, CD86 and CD40 expression in response to TLR4 activation was diminished in TMEM126A-deficient macrophages. Moreover in TMEM126A-deficient RAW264.7 cells, LPS/TLR4-induced late-phase JNK/SAPK and IRF-3 phosphorylation was abolished. These findings indicate that TMEM126A contributes to the TLR4 signal up-regulating the expression of genes whose products are involved in antigen presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mass spectrometry based proteomics: existing capabilities and future directions
Angel, Thomas E.; Aryal, Uma K.; Hengel, Shawna M.; Baker, Erin S.; Kelly, Ryan T.; Robinson, Errol W.; Smith, Richard D.
2012-01-01
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics is increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health. PMID:22498958
NASA Astrophysics Data System (ADS)
Aumiller, William M.; Keating, Christine D.
2016-02-01
Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
Blumlein, Alice; McManus, Jennifer J
2013-10-01
DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5-1000mM) over a range of pH (5-9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation. The disaccharides, trehalose and maltose were used to assess if the disaccharide induced increase in Tm is reflected in the reversibility of thermally induced denaturation. There was extensive overlap between the Tm values where non-reversible and reversible thermal denaturation occurred. Indeed, for pH6, at the highest and lowest Tm, no refolding was observed whereas refolding was observed for intermediate values, but with similar Tm values having different proportions of refolded protein. We established a method to measure the degree of reversible unfolding following thermal denaturation and hence indirectly, the degree to which protein is lost to irreversible aggregation, and show that solution conditions which increase melt transition temperatures do not automatically confer an increase in reversibility. This type of analysis may prove useful in assessing the stability of proteins in both the biopharmaceutical and food industries. Copyright © 2013 Elsevier B.V. All rights reserved.
Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao
2014-10-02
Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.
How may targeted proteomics complement genomic data in breast cancer?
Guerin, Mathilde; Gonçalves, Anthony; Toiron, Yves; Baudelet, Emilie; Audebert, Stéphane; Boyer, Jean-Baptiste; Borg, Jean-Paul; Camoin, Luc
2017-01-01
Breast cancer (BC) is the most common female cancer in the world and was recently deconstructed in different molecular entities. Although most of the recent assays to characterize tumors at the molecular level are genomic-based, proteins are the actual executors of cellular functions and represent the vast majority of targets for anticancer drugs. Accumulated data has demonstrated an important level of quantitative and qualitative discrepancies between genomic/transcriptomic alterations and their protein counterparts, mostly related to the large number of post-translational modifications. Areas covered: This review will present novel proteomics technologies such as Reverse Phase Protein Array (RPPA) or mass-spectrometry (MS) based approaches that have emerged and that could progressively replace old-fashioned methods (e.g. immunohistochemistry, ELISA, etc.) to validate proteins as diagnostic, prognostic or predictive biomarkers, and eventually monitor them in the routine practice. Expert commentary: These different targeted proteomic approaches, able to complement genomic data in BC and characterize tumors more precisely, will permit to go through a more personalized treatment for each patient and tumor.
Sun, Lixia; Wu, Shanguang; Zhou, Liqin; Wang, Feng; Lan, Xiongdiao; Sun, Jianhua; Tong, Zhangfa; Liao, Dankui
2017-02-15
Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish ( Saurida elongata ) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC - Ni 2+ ). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC 50 of 0.116 mg·mL -1 ) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC 50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander
2004-08-03
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J [Livermore, CA; Franklin, Elizabeth [Rolla, MO; Prickett, Zane T [Golden, CO; Artau, Alexander [Pleasanton, CA
2006-05-30
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
Agrawal, Himani; Joshi, Robin; Gupta, Mahesh
2016-08-01
Pearl millet (Pennisetum glaucum) is a rich source of protein, used for present study to hydrolyze protein, peptide separation and its functional activity. Antioxidative bioactive peptide was successfully identified from pearl millet using trypsin enzyme. Different antioxidative potential of isolated peptide were assessed based on activity of DPPH radical, ABTS radical, hydroxyl radical, Fe(2+) chelating ability and reducing power. Bioactive peptide separated by gel-filtration chromatography, showed the higher antioxidant activity as tested by different free radicals. The activity of pearl millet protein hydrolysate fraction was found for DPPH assay (67.66%), ABTS assay (78.81%), Fe(2+) chelating ability (51.20%), hydroxyl assay (60.95%) and reducing power (0.375nm) was further purified using reversed-phase UFLC and subjected to matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for sequential identification of the peptide. The sequence SDRDLLGPNNQYLPK was identified as antioxidant peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marucco, Arianna; Fenoglio, Ivana; Turci, Francesco; Fubini, Bice
2013-04-01
TiO2 nanoparticles (NPs) are contained in different kinds of industrial products including paints, self-cleaning glasses, sunscreens. TiO2 is also employed in photocatalysis and it has been proposed for waste water treatment. Micrometric TiO2 is generally considered a safe material, while there is concern on the possible health effects of nanometric titania. Due to their small size NPs may migrate within the human body possibly entering in the blood stream. Therefore studies on the interaction of NPs with plasma proteins are needed. In fact, the interaction with proteins is believed to ultimately influences the NPs biological fate. Fibrinogen and albumin are two of the most abundant plasma proteins. They are involved in several important physiological functions. Furthermore, fibrinogen is known to trigger platelet adhesion and inflammation. For these reasons the study of the interaction between these protein and nanoparticles is an important step toward the understanding of the behavior of NPs in the body. In this study we investigated the interaction of albumin and fibrinogen with TiO2 nanoparticles of different crystal phases (rutile and anatase) using an integrated set of techniques. The amount of adsorbed fibrinogen and albumin for each TiO2 surface was investigated by using the bicinchoninic acid assay (BCA). The variation of the surface charge of the NP-protein conjugates respect to the naked NPs was used to indirectly estimate both surface coverage and reversibility of the adsorption upon dilution. Surface charge was monitored by measuring the ζ potential with a conventional electrophoretic light scattering (ELS) system. The extent of protein deformation was evaluated by Raman Spectroscopy. We found that both proteins adsorb irreversibly against electrostatic repulsion, likely undergoing conformational changes or selective orientation upon adsorption. The size of primary particles and the particles aggregation rather than the crystal phase modulate the affinity of fibrinogen for the TiO2 surfaces.
Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua
2016-01-01
Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed. PMID:27518822
Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua; Teissedre, Pierre-Louis
2016-01-01
Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed.
SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY
The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...
Samajdar, Rudra N; Manogaran, Dhivya; Yashonath, S; Bhattacharyya, Aninda J
2018-04-18
Quasi reversibility in electrochemical cycling between different oxidation states of iron is an often seen characteristic of iron containing heme proteins that bind dioxygen. Surprisingly, the system becomes fully reversible in the bare iron-porphyrin complex: hemin. This leads to the speculation that the polypeptide bulk (globin) around the iron-porphyrin active site in these heme proteins is probably responsible for the electrochemical quasi reversibility. To understand the effect of such polypeptide bulk on iron-porphyrin, we study the interaction of specific amino acids with the hemin center in solution. We choose three representative amino acids-histidine (a well-known iron coordinator in bio-inorganic systems), tryptophan (a well-known fluoroprobe for proteins), and cysteine (a redox-active organic molecule). The interactions of these amino acids with hemin are studied using electrochemistry, spectroscopy, and density functional theory. The results indicate that among these three, the interaction of histidine with the iron center is strongest. Further, histidine maintains the electrochemical reversibility of iron. On the other hand, tryptophan and cysteine interact weakly with the iron center but disturb the electrochemical reversibility by contributing their own redox active processes to the system. Put together, this study attempts to understand the molecular interactions that can control electrochemical reversibility in heme proteins. The results obtained here from the three representative amino acids can be scaled up to build a heme-amino acid interaction database that may predict the electrochemical properties of any protein with a defined polypeptide sequence.
Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey
2007-12-31
Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. Thesemore » cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.« less
Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer.
Poltash, Michael L; McCabe, Jacob W; Patrick, John W; Laganowsky, Arthur; Russell, David H
2018-05-23
As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase. Graphical Abstract ᅟ.
Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.
Lee, T C; Ziff, E B
1999-01-08
The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlinger, C.; Belloni, L.; Zemb, T.
1999-03-30
Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions,more » modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits.« less
Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R
2015-09-01
Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Reversible protein phosphorylation, catalyzed by protein kinases, is the most widely studied post-translational modification (PTM) both in terms of its occurrence and the regulatory consequences of phosphorylation events on phosphorylated proteins. In addition to reversible phosphorylation, many pro...
ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP
Jaru-Ampornpan, Peera; Shen, Kuang; Lam, Vinh Q.; Ali, Mona; Doniach, Sebastian; Jia, Tony Z.; Shan, Shu-ou
2010-01-01
Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and require chaperones to keep them soluble and translocation-competent. Here we show that a novel targeting factor in the chloroplast Signal Recognition Particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to AAA+-chaperones, cpSRP43 utilizes specific binding interactions with its substrate to mediate its disaggregase activity. This ‘disaggregase’ capability can allow targeting machineries to more effectively capture their protein substrates, and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example of an ATP-independent disaggregase, and demonstrates that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate. PMID:20424608
Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G
2006-09-01
An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.
Microarray R-based analysis of complex lysate experiments with MIRACLE
List, Markus; Block, Ines; Pedersen, Marlene Lemvig; Christiansen, Helle; Schmidt, Steffen; Thomassen, Mads; Tan, Qihua; Baumbach, Jan; Mollenhauer, Jan
2014-01-01
Motivation: Reverse-phase protein arrays (RPPAs) allow sensitive quantification of relative protein abundance in thousands of samples in parallel. Typical challenges involved in this technology are antibody selection, sample preparation and optimization of staining conditions. The issue of combining effective sample management and data analysis, however, has been widely neglected. Results: This motivated us to develop MIRACLE, a comprehensive and user-friendly web application bridging the gap between spotting and array analysis by conveniently keeping track of sample information. Data processing includes correction of staining bias, estimation of protein concentration from response curves, normalization for total protein amount per sample and statistical evaluation. Established analysis methods have been integrated with MIRACLE, offering experimental scientists an end-to-end solution for sample management and for carrying out data analysis. In addition, experienced users have the possibility to export data to R for more complex analyses. MIRACLE thus has the potential to further spread utilization of RPPAs as an emerging technology for high-throughput protein analysis. Availability: Project URL: http://www.nanocan.org/miracle/ Contact: mlist@health.sdu.dk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161257
Microarray R-based analysis of complex lysate experiments with MIRACLE.
List, Markus; Block, Ines; Pedersen, Marlene Lemvig; Christiansen, Helle; Schmidt, Steffen; Thomassen, Mads; Tan, Qihua; Baumbach, Jan; Mollenhauer, Jan
2014-09-01
Reverse-phase protein arrays (RPPAs) allow sensitive quantification of relative protein abundance in thousands of samples in parallel. Typical challenges involved in this technology are antibody selection, sample preparation and optimization of staining conditions. The issue of combining effective sample management and data analysis, however, has been widely neglected. This motivated us to develop MIRACLE, a comprehensive and user-friendly web application bridging the gap between spotting and array analysis by conveniently keeping track of sample information. Data processing includes correction of staining bias, estimation of protein concentration from response curves, normalization for total protein amount per sample and statistical evaluation. Established analysis methods have been integrated with MIRACLE, offering experimental scientists an end-to-end solution for sample management and for carrying out data analysis. In addition, experienced users have the possibility to export data to R for more complex analyses. MIRACLE thus has the potential to further spread utilization of RPPAs as an emerging technology for high-throughput protein analysis. Project URL: http://www.nanocan.org/miracle/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Reverse-phase HPLC analysis of human alpha crystallin.
Swamy, M S; Abraham, E C
1991-03-01
A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.
Regulation of thrombosis and vascular function by protein methionine oxidation
Gu, Sean X.; Stevens, Jeff W.
2015-01-01
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980
Ho, Jenny T C; White, Jim F; Grisshammer, Reinhard; Hess, Sonja
2008-05-01
The type 1 neurotensin receptor (NTS1) belongs to the G protein-coupled receptor (GPCR) family. GPCRs are involved in important physiological processes, but for many GPCRs ligand binding sites and other structural features have yet to be elucidated. Comprehensive analyses by mass spectrometry (MS) could address such issues, but they are complicated by the hydrophobic nature of the receptors. Recombinant NTS1 must be purified in the presence of detergents to maintain solubility and functionality of the receptor, to allow testing of ligand, or to allow G protein interaction. However, detergents are detrimental to MS analyses. Hence, steps need to be taken to substitute the detergents with MS-compatible polar/organic solvents. Here we report the characterization of NTS1 by electrospray ionization (ESI)-MS with emphasis on methods to transfer intact NTS1 or its proteolytic peptides into compatible solvents by protein precipitation and liquid chromatography (LC) prior to ESI-MS analyses. Molecular mass measurement of intact recombinant NTS1 was performed using a mixture of chloroform/methanol/aqueous trifluoroacetic acid as the mobile phase for size exclusion chromatography-ESI-MS analysis. In a separate experiment, NTS1 was digested with a combination of cyanogen bromide and trypsin and/or chymotrypsin. Subsequent reversed phase LC-ESI-tandem MS analysis resulted in greater than 80% sequence coverage of the NTS1 protein, including all seven transmembrane domains. This work represents the first comprehensive analysis of recombinant NTS1 using MS.
MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice
Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.
2014-01-01
Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siekierski, S.; Fidelis, I.
1960-01-01
The reversed phase partition chromatography was applied to the separation of small amounts of some rare earths. As a stationary phase TBP was used. and the elution was carried out with concentrated HNO/sub 3/. (auth)
NASA Astrophysics Data System (ADS)
Deineka, V. I.; Lapshova, M. S.; Deineka, L. A.
2014-06-01
It is shown by means of reversed phase high performance liquid chromatography (RP HPLC) with mobile phases containing additions of β-cyclodextrin that 5-glucosides of cyanidin and pelargonidin form stronger inclusion complexes than 3-glucosides; this is explained by the steric interference of the glucoside radical.
NASA Astrophysics Data System (ADS)
Badgett, Majors J.; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications. Graphical Abstract ᅟ.
Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui
2018-02-05
Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Yongmin; IgE Therapeutics, Inc., San Diego, CA 92121-2233; Barankiewicz, Teresa J.
2007-07-27
Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (C{kappa}) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes onmore » either GFP (5') or C{kappa} (3') were selected by anti-GFP or anti-C{kappa} antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.« less
Independent active and thermodynamic processes govern the nucleolus assembly in vivo
Falahati, Hanieh; Wieschaus, Eric
2017-01-01
Membraneless organelles play a central role in the organization of protoplasm by concentrating macromolecules, which allows efficient cellular processes. Recent studies have shown that, in vitro, certain components in such organelles can assemble through phase separation. Inside the cell, however, such organelles are multicomponent, with numerous intermolecular interactions that can potentially affect the demixing properties of individual components. In addition, the organelles themselves are inherently active, and it is not clear how the active, energy-consuming processes that occur constantly within such organelles affect the phase separation behavior of the constituent macromolecules. Here, we examine the phase separation model for the formation of membraneless organelles in vivo by assessing the two features that collectively distinguish it from active assembly, namely temperature dependence and reversibility. We use a microfluidic device that allows accurate and rapid manipulation of temperature and examine the quantitative dynamics by which six different nucleolar proteins assemble into the nucleoli of Drosophila melanogaster embryos. Our results indicate that, although phase separation is the main mode of recruitment for four of the studied proteins, the assembly of the other two is irreversible and enhanced at higher temperatures, behaviors indicative of active recruitment to the nucleolus. These two subsets of components differ in their requirements for ribosomal DNA; the two actively assembling components fail to assemble in the absence of ribosomal DNA, whereas the thermodynamically driven components assemble but lose temporal and spatial precision. PMID:28115706
Marchand, D H; Snyder, L R; Dolan, J W
2008-05-16
A total of 371 reversed-phase columns have now been characterized in terms of selectivity, based on five solute-column interactions (the hydrophobic-subtraction model). The present study illustrates the use of these data for interpreting peak-tailing and column stability. New insights are also provided concerning column selectivity as a function of ligand and silica type, and the selection of columns for orthogonal separations is re-examined. Some suggestions for the quality control of reversed-phase columns during manufacture are offered.
Rittig, N; Bach, E; Thomsen, H H; Johannsen, M; Jørgensen, J O; Richelsen, B; Jessen, N; Møller, N
2016-04-01
Inflammation is catabolic and causes muscle loss. It is unknown if amino acid supplementation reverses these effects during the acute phase of inflammation. The aim was to test whether amino acid supplementation counteracts endotoxin-induced catabolism. Eight young, healthy, lean males were investigated three times in randomized order: (i) normal conditions (Placebo), (ii) endotoxemia (LPS), and (iii) endotoxemia with amino acid supplementation (LPS + A). Protein kinetics were determined using phenylalanine, tyrosine, and urea tracers. Each study day consisted of a four-hour non-insulin stimulated period and a two-hour hyperinsulinemic euglycemic clamp period. Muscle biopsies were collected once each period. Endotoxin administration created a significant inflammatory response (cytokines, hormones, and vital parameters) without significant differences between LPS and LPS + A. Whole body protein breakdown was elevated during LPS compared with Placebo and LPS + A (p < 0.05). Whole body protein synthesis was higher during LPS + A than both Placebo and LPS (p < 0.003). Furthermore, protein synthesis was higher during LPS than during Placebo (p < 0.02). Net muscle phenylalanine release was markedly decreased during LPS + A (p < 0.004), even though muscle protein synthesis and breakdown rates did not differ significantly between interventions. LPS + A increased mammalian target of rapamycin (mTOR) phosphorylation (p < 0.05) and eukaryotic translation factor 4E-binding protein 1 (4EBP1) phosphorylation (p = 0.007) without activating AMPK or affecting insulin signaling through Akt. During insulin stimulation net muscle phenylalanine release and protein degradation were further reduced. Amino acid supplementation in the acute phase of inflammation reduces whole body and muscle protein loss, and this effect is associated with activation of mTOR and downstream signaling to protein synthesis through mTORC1, suggesting a therapeutic role for intravenous amino acids in inflammatory states. The Central Denmark Region Ethics Commitee (1-10-71-410-12) www.clinicaltrials.gov (identification number NCT01705782). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Protein-like fully reversible tetramerisation and super-association of an aminocellulose
NASA Astrophysics Data System (ADS)
Nikolajski, Melanie; Adams, Gary G.; Gillis, Richard B.; Besong, David Tabot; Rowe, Arthur J.; Heinze, Thomas; Harding, Stephen E.
2014-01-01
Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered ``protein-like'' and what might be considered as ``carbohydrate-like'' behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.
Kim, Young-Min; Kim, Eun-Young; Kim, In-Hye; Nam, Taek-Jeong
2015-05-01
Recently, obesity has increased due to a variety of reasons, including the availability of 'fast food' and high-fat diets. Developing anti-obesity functional drugs and foods from natural sources may offer solutions to this global concern. Generally, tuna is a high-protein, low-fat and low-calorie food with various bioactive effects. It may improve memory, reduce cholesterol levels and positively affect the development of brain cells. In this study, we screened the anti-obesity potential of peptides derived from tuna protein. We then observed protein bands by the Coomassie blue staining of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel. The protein mixture was concentrated and desalted using in-gel trypsin digestion and a C18 nano column and Poros R2 reversed-phase preparation, prior to quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS). We screened the peptides for their ability to affect adipogenesis in 3T3-L1 adipocytes. We also measured glucose uptake, triglyceride levels and lipid droplets using Oil Red O staining. As a result, we confirmed that one peptide inhibited adipocyte differentiation. We also observed the expression of obesity-related genes by western blot analysis and reverse transcription-polymerase chain reaction. The peptide from the tuna extract significantly reduced the expression levels of CCAAT/enhancer-binding protein α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Thus, our data suggest that this peptide from boiled tuna extract reduces lipid components and adipogenesis in 3T3-L1 cells, and these characteristics may be of value in the development of anti-obesity foods.
Nika, Heinz; Hawke, David H.; Angeletti, Ruth Hogue
2014-01-01
A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures. PMID:24688319
Liu, Dong; Liu, Shaojun; You, Cuiping; Chen, Lin; Liu, Zhen; Liu, Liangguo; Wang, Jing; Liu, Yun
2010-04-01
Diploid eggs of allotetraploid hybrids (red crucian carp female symbol x common carp male symbol), when activated by UV-irradiated sperm of scatter scale carp, can develop into diploid progenies without chromosome duplication treatment. Diploid progenies produce diploid eggs, which develop into diploid population by the same way. To understand the molecular mechanism underlying the production of diploid eggs by the diploid fish, we constructed a forward suppression subtractive hybridization complementary DNA (cDNA) library. The cDNAs from the ovary in proliferation phase were employed as the "tester," and those in growth phase were used as the "driver." Seventy-three cDNA clones that are specifically expressed in proliferation phase were detected by dot-blot hybridization. Sequencing analyses revealed that several of these cDNAs have high homologies to the known sequences in the NCBI database. Their encoded proteins include the protein preventing mitosis catastrophe (PMC), the signal recognition particle 9, the ATP-binding cassette transporter, the glucanase-xylanase fusion protein, and others. These genes were confirmed by reverse transcriptase-polymerase chain reaction. The expression profile of the PMC gene at different time points was analyzed by quantitative real-time polymerase chain reaction. The results indicated that the expression of this suppression subtractive hybridization-identified gene changed during the time course, corresponding with the cellular phenomenon in the ovary development. Our studies provide insights into the molecular mechanism underlying the ovary development of diploid gynogenetic fish.
Separation of Chloroplast Pigments Using Reverse Phase Chromatography.
ERIC Educational Resources Information Center
Reese, R. Neil
1997-01-01
Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng
2016-01-01
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219
NASA Astrophysics Data System (ADS)
Ge, Xue-Hui; Geng, Yu-Hao; Zhang, Qiao-Chu; Shao, Meng; Chen, Jian; Luo, Guang-Sheng; Xu, Jian-Hong
2017-02-01
Here in this article, we classify and conclude the four morphologies of three-phase emulsions. Remarkably, we achieve the reversible transformations between every shape. Through theoretical analysis, we choose four liquid systems to form these four morphologies. Then monodispersed droplets with these four morphologies are formed through a microfluidic device and captured in a petri-dish. By replacing their ambient solution of the captured emulsions, in-situ morphology transformations between each shape are achieved. The process is well recorded through photographs and videos and they are systematical and reversible. Finally, we use the droplets structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve the process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea to achieve the switchable and reversible reaction control in multiple-phase reactions.
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng
2016-07-18
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.
Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt
2015-02-13
The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.
The Use of Ammonium Formate as a Mobile-Phase Modifier for LC-MS/MS Analysis of Tryptic Digests
Johnson, Darryl; Boyes, Barry; Orlando, Ron
2013-01-01
A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage. PMID:24294112
The use of ammonium formate as a mobile-phase modifier for LC-MS/MS analysis of tryptic digests.
Johnson, Darryl; Boyes, Barry; Orlando, Ron
2013-12-01
A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage.
Rayman, Joseph B; Karl, Kevin A; Kandel, Eric R
2018-01-02
Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn 2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn 2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Poon, H Fai; Farr, Susan A; Thongboonkerd, Visith; Lynn, Bert C; Banks, William A; Morley, John E; Klein, Jon B; Butterfield, D Allan
2005-01-01
Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial creatine kinase, lactate dehydrogenase B, and dihydropyrimidinase-like protein 2 in process associated with learning and memory of SAMP8 mice.
García, M C; Marina, M L
2006-04-01
The undeclared addition of soybean proteins to milk products is forbidden and a method is needed for food control and enforcement. This paper reports the development of a chromatographic method for routine analysis enabling the detection of the addition of soybean proteins to dairy products. A perfusion chromatography column and a linear binary gradient of acetonitrile-water-0.1% (v/v) trifluoroacetic acid at a temperature of 60 degrees C were used. A very simple sample treatment consisting of mixing the sample with a suitable solvent (Milli-Q water or bicarbonate buffer (pH=11)) and centrifuging was used. The method enabled the separation of soybean proteins from milk proteins in less than 4 min (at a flow-rate of 3 ml/min). The method has been successfully applied to the detection of soybean proteins in milk, cheese, yogurt, and enteral formula. The correct quantitation of these vegetable proteins has also been possible in milk adulterated at origin with known sources of soybean proteins. The application of the method to samples adulterated at origin also leads to interesting conclusions as to the effect of the processing conditions used for the preparation of each dairy product on the determination of soybean proteins.
Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.
Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun
2012-12-27
L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.
NASA Astrophysics Data System (ADS)
Afanas'ev, Anatolii A.; Samson, B. A.
1989-02-01
A description is given of a method for inversion of the contrast of optical radiation in a round-trip amplifier with a phase conjugation mirror and a phase nonreciprocal element. The system can be used to achieve high powers of contrast-reversed radiation because of compensation of phase distortions introduced by amplification.
Kitata, Reta Birhanu; Dimayacyac-Esleta, Baby Rorielyn T.; Choong, Wai-Kok; Tsai, Chia-Feng; Lin, Tai-Du; Tsou, Chih-Chiang; Weng, Shao-Hsing; Chen, Yi-Ju; Yang, Pan-Chyr; Arco, Susan D.; Nesvizhskii, Alexey I.; Sung, Ting-Yi; Chen, Yu-Ju
2016-01-01
Despite significant efforts in the past decade towards complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still “missing proteins”. Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using non-small cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip pre-fractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue were incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring (MRM) using synthetic peptides, we provided additional evidences for 8 missing proteins including 7 with transmembrane helix domains (TMH). This study demonstrates that mining missing proteins focused on cancer membrane sub-proteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224. PMID:26202522
Evidence for protein conformational change at a Au(110)/protein interface
NASA Astrophysics Data System (ADS)
Messiha, H. L.; Smith, C. I.; Scrutton, N. S.; Weightman, P.
2008-07-01
Evidence is presented that reflection anisotropy spectroscopy (RAS) can provide real-time measurements of conformational change in proteins induced by electron transfer reactions. A bacterial electron transferring flavoprotein (ETF) has been modified so as to adsorb on an Au(110) electrode and enable reversible electron transfer to the protein cofactor in the absence of mediators. Reversible changes are observed in the RAS of this protein that are interpreted as arising from conformational changes accompanying the transfer of electrons.
Roles of beta-turns in protein folding: from peptide models to protein engineering.
Marcelino, Anna Marie C; Gierasch, Lila M
2008-05-01
Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.
Teysset, Laure; Dang, Van-Dinh; Kim, Min Kyung; Levin, Henry L.
2003-01-01
The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses. PMID:12692246
Universal Solid-phase Reversible Sample-Prep for Concurrent Proteome and N-glycome Characterization
Zhou, Hui; Morley, Samantha; Kostel, Stephen; Freeman, Michael R.; Joshi, Vivek; Brewster, David; Lee, Richard S.
2017-01-01
SUMMARY We describe a novel Solid-phase Reversible Sample-Prep (SRS) platform, which enables rapid sample preparation for concurrent proteome and N-glycome characterization by mass spectrometry. SRS utilizes a uniquely functionalized, silica-based bead that has strong affinity toward proteins with minimal-to-no affinity for peptides and other small molecules. By leveraging the inherent size difference between, SRS permits high-capacity binding of proteins, rapid removal of small molecules (detergents, metabolites, salts, etc.), extensive manipulation including enzymatic and chemical treatments on beads-bound proteins, and easy recovery of N-glycans and peptides. The efficacy of SRS was evaluated in a wide range of biological samples including single glycoprotein, whole cell lysate, murine tissues, and human urine. To further demonstrate the SRS platform, we coupled a quantitative strategy to SRS to investigate the differences between DU145 prostate cancer cells and its DIAPH3-silenced counterpart. Our previous studies suggested that DIAPH3 silencing in DU145 prostate cancer cells induced transition to an amoeboid phenotype that correlated with tumor progression and metastasis. In this analysis we identified distinct proteomic and N-glycomic alterations between the two cells. Intriguingly, a metastasis-associated tyrosine kinase receptor ephrin-type-A receptor (EPHA2) was highly upregulated in DIAPH3-silenced cells, indicating underling connection between EPHA2 and DIAPH3. Moreover, distinct alterations in the N-glycome were identified, suggesting a cross-link between DIAPH3 and glycosyltransferase networks. Overall, SRS is an enabling universal sample preparation strategy that is not size limited and has the capability to efficiently prepare and clean peptides and N-glycans concurrently from nearly all sample types. Conceptually, SRS can be utilized for the analysis of other posttranslational modifications, and the unique surface chemistry can be further transformed for high-throughput automation. The technical simplicity, robustness, and modularity of SRS make it a highly promising technology with great potential in proteomic-based research. PMID:26791391
Temmink, Olaf H; Bijnsdorp, Irene V; Prins, Henk-Jan; Losekoot, Nienke; Adema, Auke D; Smid, Kees; Honeywell, Richard J; Ylstra, Bauke; Eijk, Paul P; Fukushima, Masakazu; Peters, Godefridus J
2010-04-01
Trifluorothymidine (TFT) is part of the novel oral formulation TAS-102, which is currently evaluated in phase II studies. Drug resistance is an important limitation of cancer therapy. The aim of the present study was to induce resistance to TFT in H630 colon cancer cells using two different schedules and to analyze the resistance mechanism. Cells were exposed either continuously or intermittently to TFT, resulting in H630-cTFT and H630-4TFT, respectively. Cells were analyzed for cross-resistance, cell cycle, protein expression, and activity of thymidine phosphorylase (TP), thymidine kinase (TK), thymidylate synthase (TS), equilibrative nucleoside transporter (hENT), gene expression (microarray), and genomic alterations. Both cell lines were cross-resistant to 2'-deoxy-5-fluorouridine (>170-fold). Exposure to IC(75)-TFT increased the S/G(2)-M phase of H630 cells, whereas in the resistant variants, no change was observed. The two main target enzymes TS and TP remained unchanged in both TFT-resistant variants. In H630-4TFT cells, TK protein expression and activity were decreased, resulting in less activated TFT and was most likely the mechanism of TFT resistance. In H630-cTFT cells, hENT mRNA expression was decreased 2- to 3-fold, resulting in a 5- to 10-fold decreased TFT-nucleotide accumulation. Surprisingly, microarray-mRNA analysis revealed a strong increase of secretory phospholipase-A2 (sPLA2; 47-fold), which was also found by reverse transcription-PCR (RT-PCR; 211-fold). sPLA2 inhibition reversed TFT resistance partially. H630-cTFT had many chromosomal aberrations, but the exact role of sPLA2 in TFT resistance remains unclear. Altogether, resistance induction to TFT can lead to different mechanisms of resistance, including decreased TK protein expression and enzyme activity, decreased hENT expression, as well as (phospho)lipid metabolism. Mol Cancer Ther; 9(4); 1047-57. (c)2010 AACR.
Snopok, Borys; Kruglenko, Ivanna
2015-05-07
An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings.
Patel, Viralkumar M.; Balakrishnan, Kumudha; Douglas, Mark; Tibbitts, Thomas; Xu, Ethan Y.; Kutok, Jeffery L.; Ayers, Mary; Sarkar, Aloke; Guerrieri, Renato; Wierda, William G.; O’Brien, Susan; Jain, Nitin; Stern, Howard M.; Gandhi, Varsha
2017-01-01
Duvelisib, an oral dual inhibitor of PI3K-δ and PI3K-γ, is in phase III trials for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin’s lymphoma (iNHL). In CLL, duvelisib monotherapy is associated with high iwCLL and nodal response rates, but complete remissions are rare. To characterize the molecular effect of duvelisib, we obtained samples from CLL patients on the duvelisib phase I trial. Gene-expression studies (RNA seq, Nanostring, Affymetrix array, and real time RT-PCR) demonstrated increased expression of BCL2 along with several BH3-only pro-apoptotic genes. In concert with induction of transcript levels, reverse phase protein arrays and immunoblots confirmed increase at the protein level. The BCL2 inhibitor venetoclax induced greater apoptosis in ex-vivo cultured CLL cells obtained from patients on duvelisib compared to pre-treatment CLL cells from the same patients. In vitro combination of duvelisib and venetoclax resulted in enhanced apoptosis even in CLL cells cultured under conditions that simulate the tumor microenvironment. These data provide a mechanistic rationale for testing the combination of duvelisib and venetoclax in the clinic. Such combination regimen (NCT02640833) is being evaluated for patients with B-cell malignancies including CLL. PMID:28017967
Patel, V M; Balakrishnan, K; Douglas, M; Tibbitts, T; Xu, E Y; Kutok, J L; Ayers, M; Sarkar, A; Guerrieri, R; Wierda, W G; O'Brien, S; Jain, N; Stern, H M; Gandhi, V
2017-09-01
Duvelisib, an oral dual inhibitor of PI3K-δ and PI3K-γ, is in phase III trials for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin's lymphoma. In CLL, duvelisib monotherapy is associated with high iwCLL (International Workshop on Chronic Lymphocytic Leukemia) and nodal response rates, but complete remissions are rare. To characterize the molecular effect of duvelisib, we obtained samples from CLL patients on the duvelisib phase I trial. Gene expression studies (RNAseq, Nanostring, Affymetrix array and real-time RT-PCR) demonstrated increased expression of BCL2 along with several BH3-only pro-apoptotic genes. In concert with induction of transcript levels, reverse phase protein arrays and immunoblots confirmed increase at the protein level. The BCL2 inhibitor venetoclax induced greater apoptosis in ex vivo-cultured CLL cells obtained from patients on duvelisib compared with pre-treatment CLL cells from the same patients. In vitro combination of duvelisib and venetoclax resulted in enhanced apoptosis even in CLL cells cultured under conditions that simulate the tumor microenvironment. These data provide a mechanistic rationale for testing the combination of duvelisib and venetoclax in the clinic. Such combination regimen (NCT02640833) is being evaluated for patients with B-cell malignancies including CLL.
Rhoads, Shannon N; Monahan, Zachary T; Yee, Debra S; Leung, Andrew Y; Newcombe, Cameron G; O'Meally, Robert N; Cole, Robert N; Shewmaker, Frank P
2018-06-13
FUS is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS's prion-like domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS's prion-like domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here, we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS's prion-like domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser26 and Ser30). Both sites were usually phosphorylated in a sub-population of cellular FUS following a variety of DNA-damaging stresses, but not necessarily equally or simultaneously. Importantly, we found DNA-PK-dependent multi-phosphorylation of FUS's prion-like domain does not cause cytoplasmic localization.
Liu, Jian-Xiang; Bennett, John
2011-01-01
Crop yield is most sensitive to water deficit during the reproductive stage. For rice, the most sensitive yield component is spikelet fertility and the most sensitive stage is immediately before heading. Here, we examined the effect of drought on the anther proteome of two rice genotypes: Moroberekan and IR64. Water was withheld for 3 d before heading (3DBH) in well watered controls for 5 d until the flag leaf relative water content (RWC) had declined to 45-50%. Plants were then re-watered and heading occurred 2-3 d later, representing a delay of 4-5 d relative to controls. The anther proteins were separated at 3 DBH, at the end of the stress period, and at heading in stressed/re-watered plants and controls by two-dimensional (2-D) gel electrophoresis, and 93 protein spots were affected reproducibly in abundance by drought during the experiment across two rice genotypes. After drought stress, upon re-watering, expressions of 24 protein spots were irreversible in both genotypes, 60 protein spots were irreversible in IR64 but reversible in Moroberekan, only nine protein spots were irreversible in Moroberekan while reversible in IR64. Among them, there were 14 newly drought-induced protein spots in IR64; none of them was reversible on re-watering. However, there were 13 newly drought-induced protein spots in Moroberekan, 10 of them were reversible on re-watering, including six drought-induced protein spots that were not reversed in IR64. Taken together, our proteomics data reveal that drought-tolerant genotype Moroberekan possessed better recovery capability following drought and re-watering at the anther proteome level than the drought-sensitive genotype IR64. The disruptions of drought to rice anther development and pollen cell functions are also discussed in the paper.
Kim, Jun Seok; Lee, Cheolju
2015-01-01
Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075
Park, Seong-Jun; Ahn, Hee-Sung; Kim, Jun Seok; Lee, Cheolju
2015-01-01
Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins.
Huo, Zhixia; Wan, Qianhong; Chen, Lei
2018-06-08
Polymethylsilsesquioxanes (PMSQ) are potentially useful materials for liquid chromatography owing to their unique chemical, electrical and mechanical properties. Surprisingly however, no systematic studies on the use of spherical PMSQ particles as chromatographic packing have been reported. Accordingly, we present a comprehensive study aimed to characterize the chromatographic properties of this material in high performance liquid chromatography (HPLC) and to compare them with those observed on methyl (C 1 ) bonded silica phase under comparable conditions. Porous spherical particles were synthesized by a two-step hydrolysis and condensation procedure from methyltrimethoxysilane (MTMS) as a sole precursor. The as-synthesized microspheres possess spherical shape, narrow size distribution, mesoporous structure, high surface area (817 m 2 g -1 ) and reasonable carbon load (16.6%). They can be used directly as the HPLC stationary phase without the need for size classification. The PMSQ phase exhibits typical reversed-phase chromatographic properties with higher methylene selectivity and low silanol activity compared with the C 1 column. The retention mechanism for basic compounds was systematically evaluated by studying the effect of pH, ionic and solvent strength of the mobile phase. Basic compounds displayed lower retention factor and symmetric peak shape on the PMSQ column whereas longer retention and strong tailing peaks were observed on the C 1 column. The difference in retention behavior between the two columns is explained in terms of different principal retention mechanisms. Because of the low silanol activity, retention of basic compounds on the PMSQ column is governed solely by a reversed-phase mechanism. By contrast, multiple interactions including reversed-phase, cation exchange and simultaneous reversed-phase/cationic exchange interaction contribute to the retention on the C 1 column, as previously observed on other silica based reversed-phases. Furthermore, the PMSQ phase exhibited significantly enhanced stability under alkaline conditions compared with its silica-based counterpart. Taken together, the favorable morphology and pore structure combined with the benefits of low silanol activity, high pH stability and prolonged column lifetime make the newly developed PMSQ phase a promising and viable alternative to silica based reversed-phase packings for separation of basic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Gandhi, Réno M; Kogan, Cary S; Messier, Claude
2014-01-01
Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in behavioral functioning following pharmacological intervention in FXS.
Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.
Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh
2017-01-11
Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.
Zhao, Xiaoyan; Wei, Zhiyi; Du, Fangling; Zhu, Junqing
2010-11-01
Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO(3), KCl, MgCl(2), CaCl(2), NaCl, and Na(2)SO(4), extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO(3)>MgCl(2)>CaCl(2)>KCl>NaCl>Na(2)SO(4), while protein in an order of MgCl(2)>CaCl(2)>NaCl>KNO(3)>Na(2)SO(4)>KCl.
Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids
Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua
2014-01-01
Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 ns to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 42 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect. PMID:21748265
Pervin, Shehla; Singh, Rajan; Chaudhuri, Gautam
2001-01-01
DETA-NONOate, a nitric oxide (NO) donor, induced cytostasis in the human breast cancer cells MDA-MB-231, and the cells were arrested in the G1 phase of the cell cycle. This cytostatic effect of the NO donor was associated with the down-regulation of cyclin D1 and hypophosphorylation of the retinoblastoma protein. No changes in the levels of cyclin E or the catalytic partners of these cyclins, CDK2, CDK4, or CDK6, were observed. This NO-induced cytostasis and decrease in cyclin D1 was reversible for up to 48 h of DETA-NONOate (1 mM) treatment. DETA-NONOate (1 mM) produced a steady-state concentration of 0.5 μM of NO over a 24-h period. Synchronized population of the cells exposed to DETA-NONOate remained arrested at the G1 phase of the cell cycle whereas untreated control cells progressed through the cell cycle after serum stimulation. The cells arrested at the G1 phase after exposure to the NO donor had low cyclin D1 levels compared with the control cells. The levels of cyclin E and CDK4, however, were similar to the control cells. The decline in cyclin D1 protein preceded the decrease of its mRNA. This decline of cyclin D1 was due to a decrease in its synthesis induced by the NO donor and not due to an increase in its degradation. We conclude that down-regulation of cyclin D1 protein by DETA-NONOate played an important role in the cytostasis and arrest of these tumor cells in the G1 phase of the cell cycle. PMID:11248121
Hesse, Almut
2016-01-01
Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481
Composition and molecular weight distribution of carob germ protein fractions.
Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi
2010-07-14
Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.
Regulation of thrombosis and vascular function by protein methionine oxidation.
Gu, Sean X; Stevens, Jeff W; Lentz, Steven R
2015-06-18
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.
NASA Astrophysics Data System (ADS)
Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi
2017-11-01
The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.
Martha J.M. Wells; Jerry L. Michael
1987-01-01
Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...
Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko
2017-09-01
We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.
Watson, Deborah J.; Stanton, Mark E.
2009-01-01
Several executive functions rely on the medial prefrontal cortex (mPFC) in the rat. Aspiration and neurotoxic lesions of the mPFC impair reversal learning in adult rats [1, 16, 34, 55]. Systemic administration of MK-801, an NMDA receptor antagonist, impairs T-maze reversal learning in weanling rats but the role of mPFC NMDA receptor antagonism in this effect is not known in either adult or young animals. This set of studies showed that mPFC NMDA receptors are specifically involved in T-maze discrimination reversal in weanling rats. In Experiment 1, 26-day-old rats (P26) demonstrated a dose-dependent impairment following bilateral mPFC administration of either 2.5 or 5.0 µg MK-801 or saline (vehicle) during the reversal training phase only. In Experiment 2, P26 rats were trained on the same task, but 4 groups of rats received bilateral mPFC infusions during acquisition only (MK-SAL), reversal only (SAL-MK), both phases (MK-MK) or neither phase (SAL-SAL). MK-801 impaired performance only when infused during reversal. This suggests that NMDA receptor antagonism in the mPFC is selectively involved in reversal learning during development and this may account for the previously reported effects of systemic MK-801 on T-maze discrimination reversal in weanling rats. PMID:19643149
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog
2017-08-01
We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.
Liu, Jun-Guo; Xing, Jian-Min; Chang, Tian-Shi; Liu, Hui-Zhou
2006-03-01
Nattokinase is a novel fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, reverse micelles extraction was applied to purify and concentrate nattokinase from fermentation broth. The effects of temperature and phase volume ratio used for the forward and backward extraction on the extraction process were examined. The optimal temperature for forward and backward extraction were 25 degrees C and 35 degrees C respectively. Nattokinase became more thermosensitive during reverse micelles extraction. And it could be enriched in the stripping phase eight times during backward extraction. It was found that nattokinase could be purified by AOT reverse micelles with up to 80% activity recovery and with a purification factor of 3.9.
Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio).
Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A
2017-09-01
Zebrafish are used extensively as vertebrate animal models in biomedical research for having such features as a fully sequenced genome and transparent embryo. Yet, operant-conditioning studies with this species are scarce. The present study investigated reversal learning and resurgence of operant behavior in zebrafish. A target response (approaching a sensor) was reinforced in Phase 1. In Phase 2, the target response was extinguished while reinforcing an alternative response (approaching a different sensor). In Phase 3, extinction was in effect for the target and alternative responses. Reversal learning was demonstrated when responding tracked contingency changes between Phases 1 and 2. Moreover, resurgence occurred in 10 of 13 fish in Phase 3: Target response rates increased transiently and exceeded rates of an unreinforced control response. The present study provides the first evidence with zebrafish supporting reversal learning between discrete operant responses and a laboratory model of relapse. These findings open the possibility to assessing genetic influences of operant behavior generally and in models of relapse (e.g., resurgence, renewal, reinstatement). Copyright © 2017 Elsevier B.V. All rights reserved.
Roles of β-Turns in Protein Folding: From Peptide Models to Protein Engineering
Marcelino, Anna Marie C.; Gierasch, Lila M.
2010-01-01
Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein’s structure. PMID:18275088
SRY protein is expressed in ovotestis and streak gonads from human sex-reversal.
Salas-Cortés, L; Jaubert, F; Nihoul-Feketé, C; Brauner, R; Rosemblatt, M; Fellous, M
2000-01-01
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein. Copyright 2001 S. Karger AG, Basel
Reverse screening methods to search for the protein targets of chemopreventive compounds
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-05-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds.
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction. PMID:29868550
Phase behaviors of supramolecular graft copolymers with reversible bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao
2013-11-14
Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less
THE KINETICS AND THERMODYNAMICS OF REVERSIBLE DENATURATION OF CRYSTALLINE SOYBEAN TRYPSIN INHIBITOR
Kunitz, M.
1948-01-01
Crystalline soybean trypsin inhibitor protein undergoes denaturation on heating which is reversed on cooling. In the range of temperature of 35 to 50°C. a solution of the protein consists of a mixture of native and denatured forms in equilibrium with each other. The equilibrium is only slowly established and its final value at any temperature is the same whether a heated, denatured solution of the protein is cooled to the given temperature or whether a fresh solution is raised to that temperature. The kinetics of reversible denaturation of the soybean protein as well as the reversal of denaturation is that of a reversible unimolecular reaction, each process consisting at a given temperature of the same two simultaneous reactions acting in opposite directions. The experimental data on the effect of temperature on the velocity and the equilibrium constants of the opposing reaction were utilized in evaluating the reaction energies and activation energies. The reaction energies for denaturation were found to be as follows:— Change in total heat of reaction ΔH = 57,000 calories per mole Change in entropy of reaction ΔS = 180 calories per degree per mole The heat of activation ΔH 1 ‡ for denaturation = 55,000 The heat of activation ΔH 2 ‡ for the reversal of denaturation = –1900 The entropy ΔS 1 ‡ for denaturation = 95 The entropy ΔS 2 ‡ for reversal of denaturation = –84 PMID:18891149
Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1989-01-01
Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.
Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi
2015-01-01
ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps. PMID:25568209
Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.
Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha
2015-09-03
Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.
NASA Astrophysics Data System (ADS)
Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang
2017-10-01
Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.
Chun, R; Glabe, C G; Fan, H
1990-01-01
Full-length (86-residue) polypeptide corresponding to the human immunodeficiency virus type 1 tat trans-activating protein was chemically synthesized on a semiautomated apparatus, using an Fmoc amino acid continuous-flow strategy. The bulk material was relatively homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, and it showed trans-activating activity when scrape loaded into cells containing a human immunodeficiency virus long terminal repeat-chloramphenicol acetyl-transferase reporter plasmid. Reverse-phase high-pressure liquid chromatography yielded a rather broad elution profile, and assays across the column for biological activity indicated a sharper peak. Thus, high-pressure liquid chromatography provided for enrichment of biological activity. Fast atom bombardment-mass spectrometry of tryptic digests of synthetic tat identified several of the predicted tryptic peptides, consistent with accurate chemical synthesis. Images PMID:2186178
Over-expression of phage HK022 Nun protein is toxic for Escherichia coli
Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.
2008-01-01
The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198
Fast and Forceful Refolding of Stretched α-Helical Solenoid Proteins
Kim, Minkyu; Abdi, Khadar; Lee, Gwangrog; Rabbi, Mahir; Lee, Whasil; Yang, Ming; Schofield, Christopher J.; Bennett, Vann; Marszalek, Piotr E.
2010-01-01
Abstract Anfinsen's thermodynamic hypothesis implies that proteins can encode for stretching through reversible loss of structure. However, large in vitro extensions of proteins that occur through a progressive unfolding of their domains typically dissipate a significant amount of energy, and therefore are not thermodynamically reversible. Some coiled-coil proteins have been found to stretch nearly reversibly, although their extension is typically limited to 2.5 times their folded length. Here, we report investigations on the mechanical properties of individual molecules of ankyrin-R, β-catenin, and clathrin, which are representative examples of over 800 predicted human proteins composed of tightly packed α-helical repeats (termed ANK, ARM, or HEAT repeats, respectively) that form spiral-shaped protein domains. Using atomic force spectroscopy, we find that these polypeptides possess unprecedented stretch ratios on the order of 10–15, exceeding that of other proteins studied so far, and their extension and relaxation occurs with minimal energy dissipation. Their sequence-encoded elasticity is governed by stepwise unfolding of small repeats, which upon relaxation of the stretching force rapidly and forcefully refold, minimizing the hysteresis between the stretching and relaxing parts of the cycle. Thus, we identify a new class of proteins that behave as highly reversible nanosprings that have the potential to function as mechanosensors in cells and as building blocks in springy nanostructures. Our physical view of the protein component of cells as being comprised of predominantly inextensible structural elements under tension may need revision to incorporate springs. PMID:20550922
Banudevi, Sivanantham; Elumalai, Perumal; Sharmila, Govindaraj; Arunkumar, Ramachandran; Senthilkumar, Kalimuthu; Arunakaran, Jagadeesan
2011-09-01
Previous studies have suggested that zinc exerts anticarcinogenic and antiproliferative effects against prostate cancer both in vitro and in rat ventral prostate. Zinc accumulation diminishes early in the course of prostate malignancy and it inhibits the growth of several carcinoma cells through induction of cell cycle arrest and apoptosis. In this study, we have investigated the influence of zinc on N-methyl-N-nitrosourea (MNU) and testosterone (T)-induced prostatic intraepithelial neoplasia in the dorsolateral prostate of Sprague Dawley (SD) rats. The results indicate that zinc plays an important role in prostate carcinogenesis. Increased tumor incidence was accompanied by a decrease in prostatic acid phosphatase activity, citrate, zinc, glutathione-S-transferase, reduced glutathione, p53, B-cell lymphoma protein (Bcl-2)-associated X protein and caspase-3 levels in MNU + T-treated rats. On the contrary, significantly increased phase I drug metabolizing enzyme activities, lipid peroxide, hydrogen peroxide, proliferating cell nuclear antigen, Bcl-2 and Bcl-X(L) protein levels were observed in the dorsolateral prostate of MNU + T-treated rats. Simultaneous zinc supplementation significantly reversed these effects in MNU + T-treated rats. Signs of dysplasia, a characteristic of prostatic intraepithelial neoplasia, were evident in the dorsolateral prostatic tissue sections by MNU + T administration. However, zinc supplementation has reversed these effects in the dorsolateral prostatic histoarchitecture. These results suggest that zinc may act as an essential trace element against MNU and testosterone-induced prostatic preneoplastic progression in SD rats.
A facile method for isolation of recombinant human apolipoprotein A-I from E. coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikon, Nikita; Shearer, Jennifer; Liu, Jianfang
Apolipoprotein (apo) A-I is the major protein component of high-density lipoprotein (HDL) and plays key roles in the Reverse Cholesterol Transport pathway. In the past decade, reconstituted HDL (rHDL) has been employed as a therapeutic agent for treatment of atherosclerosis. The ability of rHDL to promote cholesterol efflux from peripheral cells has been documented to reduce the size of atherosclerotic plaque lesions. However, development of apoA-I rHDL-based therapeutics for human use requires a cost effective process to generate an apoA-I product that meets “Good Manufacturing Practice” standards. Methods available for production and isolation of unmodified recombinant human apoA-I at scalemore » are cumbersome, laborious and complex. To overcome this obstacle, a streamlined two-step procedure has been devised for isolation of recombinant untagged human apoA-I from E. coli that takes advantage of its ability to re-fold to a native conformation following denaturation. Heat treatment of a sonicated E. coli supernatant fraction induced precipitation of a large proportion of host cell proteins (HCP), yielding apoA-I as the major soluble protein. Reversed-phase HPLC of this material permitted recovery of apoA-I largely free of HCP and endotoxin. In conclusion, purified apoA-I possessed α-helix secondary structure, formed rHDL upon incubation with phospholipid and efficiently promoted cholesterol efflux from cholesterol loaded J774 macrophages.« less
A facile method for isolation of recombinant human apolipoprotein A-I from E. coli
Ikon, Nikita; Shearer, Jennifer; Liu, Jianfang; ...
2017-03-20
Apolipoprotein (apo) A-I is the major protein component of high-density lipoprotein (HDL) and plays key roles in the Reverse Cholesterol Transport pathway. In the past decade, reconstituted HDL (rHDL) has been employed as a therapeutic agent for treatment of atherosclerosis. The ability of rHDL to promote cholesterol efflux from peripheral cells has been documented to reduce the size of atherosclerotic plaque lesions. However, development of apoA-I rHDL-based therapeutics for human use requires a cost effective process to generate an apoA-I product that meets “Good Manufacturing Practice” standards. Methods available for production and isolation of unmodified recombinant human apoA-I at scalemore » are cumbersome, laborious and complex. To overcome this obstacle, a streamlined two-step procedure has been devised for isolation of recombinant untagged human apoA-I from E. coli that takes advantage of its ability to re-fold to a native conformation following denaturation. Heat treatment of a sonicated E. coli supernatant fraction induced precipitation of a large proportion of host cell proteins (HCP), yielding apoA-I as the major soluble protein. Reversed-phase HPLC of this material permitted recovery of apoA-I largely free of HCP and endotoxin. In conclusion, purified apoA-I possessed α-helix secondary structure, formed rHDL upon incubation with phospholipid and efficiently promoted cholesterol efflux from cholesterol loaded J774 macrophages.« less
Determination of vigabatrin in plasma by reversed-phase high-performance liquid chromatography.
Tsanaclis, L M; Wicks, J; Williams, J; Richens, A
1991-05-01
A method is described for the determination of vigabatrin in 50 microliters of plasma by isocratic high-performance liquid chromatography using fluorescence detection. The procedure involves protein precipitation with methanol followed by precolumn derivatisation with o-phthaldialdehyde reagent. Separation of the derivatised vigabatrin was achieved on a Microsorb C18 column using a mobile phase of 10 mM orthophosphoric acid:acetonitrile:methanol (6:3:1) at a flow rate of 2.0 ml/min. Assay time is 15 min and chromatograms show no interference from commonly coadministered anticonvulsant drugs. The total analytical error within the range of 0.85-85 micrograms/ml was found to be 7.6% with the within-replicates error of 2.76%. The minimum detection limit was 0.08 micrograms/ml and the minimum quantitation limit was 0.54 micrograms/ml.
APPLICATION OF A SPRAY DEPOSITION METHOD FOR REVERSED PHASE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY
Four coal gasification wastewater samples were analyzed for nonvolatile and polar organics by liquid chromatography-mass spectrometry (LC/MS). Samples were separated on a reverse phase liquid chromatographic column using an aqueous solvent as the eluant. A special spray depositio...
Dong, Shuya; He, Jiao; Hou, Huiping; Shuai, Yaping; Wang, Qi; Yang, Wenling; Sun, Zheng; Li, Qing; Bi, Kaishun; Liu, Ran
2017-12-01
A novel, improved, and comprehensive method for quality evaluation and discrimination of Herba Leonuri has been developed and validated based on normal- and reversed-phase chromatographic methods. To identify Herba Leonuri, normal- and reversed-phase high-performance thin-layer chromatography fingerprints were obtained by comparing the colors and R f values of the bands, and reversed-phase high-performance liquid chromatography fingerprints were obtained by using an Agilent Poroshell 120 SB-C18 within 28 min. By similarity analysis and hierarchical clustering analysis, we show that there are similar chromatographic patterns in Herba Leonuri samples, but significant differences in counterfeits and variants. To quantify the bio-active components of Herba Leonuri, reversed-phase high-performance liquid chromatography was performed to analyze syringate, leonurine, quercetin-3-O-robiniaglycoside, hyperoside, rutin, isoquercitrin, wogonin, and genkwanin simultaneously by single standard to determine multi-components method with rutin as internal standard. Meanwhile, normal-phase high-performance liquid chromatography was performed by using an Agilent ZORBAX HILIC Plus within 6 min to determine trigonelline and stachydrine using trigonelline as internal standard. Innovatively, among these compounds, bio-active components of quercetin-3-O-robiniaglycoside and trigonelline were first determined in Herba Leonuri. In general, the method integrating multi-chromatographic analyses offered an efficient way for the standardization and identification of Herba Leonuri. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...
2016-07-18
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.; Phillips, M.; Miller, C.
1986-11-05
Charybdotoxim is a high-affinity specific inhibitor of the high-conductance Ca/sup 2 +/-activated K/sup +/ channel found in the plasma membranes of many vertebrate cell types. Using Ca/sup 2 +/-activated K/sup +/ channels reconstituted into planar lipid bilayer membranes as an assay, the authors have purified the toxin from the venom of the scorpion Leiurus quinquestriatus by a two-step procedure involving chromatofocusing on SP-Sephadex, followed by reversed-phase high-performance liquid chromatography. Charybdotoxin is shown to be a highly basic protein with a mass of 10 kDa. Under the standard assay conditions, the purified toxin inhibits the Ca/sup 2 +/-activated K/sup +/ channelmore » with an apparent dissociation constant of 3.5 nM. The protein is unusually stable, with inhibitory potency being insensitive to boiling or exposure to organic solvents. The toxin's activity is sensitive to chymotrypsin treatment and to acylation of lysine groups. The protein may be radioiodinated without loss of activity.« less
Quissell, D O; Deisher, L M
1992-04-01
Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.
Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L.; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C.; Staudt, Louis M.; Niesvizky, Ruben; Moore, Malcolm A. S.
2012-01-01
Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy. PMID:22718837
Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C; Staudt, Louis M; Niesvizky, Ruben; Moore, Malcolm A S; Chen-Kiang, Selina
2012-08-02
Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.
Belstrøm, Daniel; Jersie-Christensen, Rosa R; Lyon, David; Damgaard, Christian; Jensen, Lars J; Holmstrup, Palle; Olsen, Jesper V
2016-01-01
The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. To identify characteristics of diseased and healthy saliva we thus wanted to compare saliva metaproteomes from patients with periodontitis and dental caries to healthy individuals. Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. The proteins in the saliva samples were subjected to denaturing buffer and digested enzymatically with LysC and trypsin. The resulting peptide mixtures were cleaned up by solid-phase extraction and separated online with 2 h gradients by nano-scale C18 reversed-phase chromatography connected to a mass spectrometer through an electrospray source. The eluting peptides were analyzed on a tandem mass spectrometer operated in data-dependent acquisition mode. We identified a total of 35,664 unique peptides from 4,161 different proteins, of which 1,946 and 2,090 were of bacterial and human origin, respectively. The human protein profiles displayed significant overexpression of the complement system and inflammatory markers in periodontitis and dental caries compared to healthy controls. Bacterial proteome profiles and functional annotation were very similar in health and disease. Overexpression of proteins related to the complement system and inflammation seems to correlate with oral disease status. Similar bacterial proteomes in healthy and diseased individuals suggests that the salivary microbiota predominantly thrives in a planktonic state expressing no disease-associated characteristics of metabolic activity.
Podust, Vladimir N; Sim, Bee-Cheng; Kothari, Dharti; Henthorn, Lana; Gu, Chen; Wang, Chia-wei; McLaughlin, Bryant; Schellenberger, Volker
2013-11-01
XTEN, unstructured biodegradable proteins, have been used to extend the in vivo half-life of genetically fused therapeutic proteins and peptides. To expand the applications of XTEN technology to half-life extension of other classes of molecules, XTEN protein polymers and methods for chemical XTENylation were developed. Two XTEN precursors were engineered to contain enzymatically removable purification tags. The proteins were readily expressed in bacteria and purified to homogeneity by chromatography techniques. As proof-of-principle, GLP2-2G peptide was chemically conjugated to each of the two XTEN protein polymers using maleimide-thiol chemistry. The monodisperse nature of XTEN protein polymer enabled reaction monitoring as well as the detection of peptide modifications in the conjugated state using reverse phase-high performance liquid chromatography (RP-HPLC) and electrospray ionization mass spectrometry. The resulting GLP2-2G-XTEN conjugates were purified by preparative RP-HPLC to homogeneity. In comparison with recombinantly fused GLP2-2G-XTEN, chemically conjugated GLP2-2G-XTEN molecules exhibited comparable in vitro activity, in vitro plasma stability and pharmacokinetics in rats. These data suggest that chemical XTENylation could effectively extend the half-life of a wide spectrum of biologically active molecules, therefore broadening its applicability.
Quantitation of total protein deposits on contact lenses by means of amino acid analysis.
Yan, G; Nyquist, G; Caldwell, K D; Payor, R; McCraw, E C
1993-04-01
This study was done to characterize and quantify the protein deposits on worn contact lenses and to measure the residual deposits after extraction in 2% sodium dodecyl sulfate and the total protein deposits on worn vifilcon, atlafilcon, and tefilcon lenses (Food and Drug Administration Types IV, II, and I, respectively). Contact lens extracts were separated with gel electrophoresis, and the amount of protein was estimated after silver staining and densitometry. To determine the residual deposits, the contact lenses were hydrolyzed, and amino acid analysis was carried out by reverse-phase high-performance liquid chromatography after precolumn derivatization with phenylisothiocyanate. Refinement of the hydrolysis conditions was undertaken to minimize interference by the lens polymers. The extraction removed only approximately 25% of the protein deposits. Mild hydrolytic conditions, 20 hr in 6 N HCl at 105 degrees C, were found to cause minimal polymer interference. Of the 350, 10, and 20 micrograms of protein typically determined on whole vifilcon, atlafilcon, and tefilcon lenses, the polymers were estimated to account for 4, 0.5, and less than 0.4 micrograms, respectively. Hydrolysis of worn contact lenses with subsequent amino acid separation can be applied to determine the total protein deposits without the uncertainty inherent in extraction of the deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Song; Shi, Tujin; Fillmore, Thomas L.
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined withmore » precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.« less
Siriwardana, Gamini; Seligman, Paul A
2015-01-01
Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. PMID:25825542
Structure of a group II intron in complex with its reverse transcriptase.
Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei
2016-06-01
Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.
Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V
2016-02-01
A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omenn, Gilbert; States, David J.; Adamski, Marcin
2005-08-13
HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasetsmore » had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan. These PPP results on complexity, dynamic range, incomplete sampling, false-positive matches, and integration of diverse datasets for plasma and serum proteins lay a foundation for development and validation of circulating protein biomarkers in health and disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, V.; Fitz, D.E.; Kouri, D.J.
1980-09-15
The effect of phase choice and partial wave parameter choice on CS and IOS inelastic degeneracy averaged differential cross sections is studied. An approximate simplified CS scattering amplitude for l-bar=1/2(l'+l) is derived and is shown to have a form which closely resembles the McGuire--Kouri scattering amplitude for odd ..delta..j transitions and reduces to it for even ..delta..j transitions. The choice of phase in the CS wave function is shown to result in different approximations which yield significantly different shapes for the degeneracy averaged differential cross section. Time reversal symmetry arguments are employed to select the proper phase choice. IOS calculationsmore » of the degeneracy averaged differential cross sections of He--CO, He--Cl and Ne--HD using l-bar=1/2(l+l') and the phase choice which ensures proper time reversal symmetry are found to correct the phase disagreement which was previously noted for odd ..delta..j transitions using l-bar=l or l' and either the time reversal phase or other phase choices.« less
Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key
Das, Utpal; Hariprasad, Gururao; Ethayathulla, Abdul S.; Manral, Pallavi; Das, Taposh K.; Pasha, Santosh; Mann, Anita; Ganguli, Munia; Verma, Amit K.; Bhat, Rajiv; Chandrayan, Sanjeev Kumar; Ahmed, Shubbir; Sharma, Sujata; Kaur, Punit; Singh, Tej P.; Srinivasan, Alagiri
2007-01-01
Background Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. Methodology We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Aβ1-42) peptide is modified. Changes in the hydrodynamic volume of Aβ1-42 in the presence of arginine measured by size exclusion chromatography show that arginine binds to Aβ1-42. Arginine increases the solubility of Aβ1-42 peptide in aqueous medium. It decreases the aggregation of Aβ1-42 as observed by atomic force microscopy. Conclusions Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation. PMID:18000547
This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...
A reversed-phase high-performance liquid chromatographic method for the separation and quantitation of a mixture consisting of nitrobenzene, dinitrobenzene isomers, 1,3,5-trinitrobenzene and their reduction products: aniline, nitroanilines and phenylenediamines has been developed...
Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia
2015-05-18
A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.
Ruiz-Estévez, Mercedes; Martín-Blázquez, Rubén; Garrido-Ramos, Manuel A.
2017-01-01
We report and discuss the results of a quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the expression patterns of seven three amino acid loop extension (TALE) homeobox genes (four KNOTTED-like homeobox (KNOX) and three BEL1-like homeobox (BELL) genes) identified after next generation sequencing (NGS) and assembly of the sporophyte and gametophyte transcriptomes of the endangered fern species Vandenboschia speciosa. Among the four KNOX genes, two belonged to the KNOX1 class and the other two belonged to the KNOX2 class. Analysis of the deduced amino acid sequences supported the typical domain structure of both types of TALE proteins, and the homology to TALE proteins of mosses, lycophytes, and seed plant species. The expression analyses demonstrate that these homeodomain proteins appear to have a key role in the establishment and development of the gametophyte and sporophyte phases of V. speciosa lifecycle, as well as in the control of the transition between both phases. Vandenboschia speciosa VsKNAT3 (a KNOX2 class protein) as well as VsBELL4 and VsBELL10 proteins have higher expression levels during the sporophyte program. On the contrary, one V. speciosa KNOX1 protein (VsKNAT6) and one KNOX2 protein (VsKNAT4) seem important during the development of the gametophyte phase. TALE homeobox genes might be among the key regulators in the gametophyte-to-sporophyte developmental transition in regular populations that show alternation of generations, since some of the genes analyzed here (VsKNAT3, VsKNAT6, VsBELL4, and VsBELL6) are upregulated in a non-alternating population in which only independent gametophytes are found (they grow by vegetative reproduction outside of the range of sporophyte distribution). Thus, these four genes might trigger the vegetative propagation of the gametophyte and the repression of the sexual development in populations composed of independent gametophytes. This study represents a comprehensive identification and characterization of TALE homeobox genes in V. speciosa, and gives novel insights about the role of these genes in fern development. PMID:29039766
Ruiz-Estévez, Mercedes; Bakkali, Mohammed; Martín-Blázquez, Rubén; Garrido-Ramos, Manuel A
2017-10-17
We report and discuss the results of a quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the expression patterns of seven three amino acid loop extension ( TALE ) homeobox genes (four KNOTTED-like homeobox ( KNOX ) and three BEL1-like homeobox ( BELL ) genes) identified after next generation sequencing (NGS) and assembly of the sporophyte and gametophyte transcriptomes of the endangered fern species Vandenboschia speciosa . Among the four KNOX genes, two belonged to the KNOX1 class and the other two belonged to the KNOX2 class. Analysis of the deduced amino acid sequences supported the typical domain structure of both types of TALE proteins, and the homology to TALE proteins of mosses, lycophytes, and seed plant species. The expression analyses demonstrate that these homeodomain proteins appear to have a key role in the establishment and development of the gametophyte and sporophyte phases of V. speciosa lifecycle, as well as in the control of the transition between both phases. Vandenboschia speciosa VsKNAT3 (a KNOX2 class protein) as well as VsBELL4 and VsBELL10 proteins have higher expression levels during the sporophyte program. On the contrary, one V. speciosa KNOX1 protein (VsKNAT6) and one KNOX2 protein (VsKNAT4) seem important during the development of the gametophyte phase. TALE homeobox genes might be among the key regulators in the gametophyte-to-sporophyte developmental transition in regular populations that show alternation of generations, since some of the genes analyzed here ( VsKNAT3 , VsKNAT6 , VsBELL4 , and VsBELL6 ) are upregulated in a non-alternating population in which only independent gametophytes are found (they grow by vegetative reproduction outside of the range of sporophyte distribution). Thus, these four genes might trigger the vegetative propagation of the gametophyte and the repression of the sexual development in populations composed of independent gametophytes. This study represents a comprehensive identification and characterization of TALE homeobox genes in V. speciosa , and gives novel insights about the role of these genes in fern development.
Protein arginine methylation: a prominent modification and its demethylation.
Wesche, Juste; Kühn, Sarah; Kessler, Benedikt M; Salton, Maayan; Wolf, Alexander
2017-09-01
Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
Amodeo, Dionisio A.; Grospe, Gena; Zang, Hui; Dwivedi, Yogesh; Ragozzino, Michael E.
2016-01-01
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced BDNF levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder. PMID:27267245
Tautz, J; Casas, J; Sandeman, D
2001-11-01
Forager honeybees dancing on the comb are able to attract dance-followers from distances across the comb that are too remote for tactile or visual signals to play a role. An alternative signal could be the vibrations of the comb at 200-300 Hz generated by dancing bees but which, without amplification, may not be large enough to alert remote dance-followers. We describe here, however, an unexpected property of honeycomb when it is subjected to vibration at around 200 Hz that would represent an effective amplification of the vibratory signals for remote dance-followers. We find that, at a specific distance from the origin of an imposed vibration, the walls across a single comb cell abruptly reverse the phase of their displacement and move in opposite directions to one another. Behavioural measurements show that the distance from which the majority of remote dance-followers are recruited coincides with the location of this phase-reversal phenomenon relative to the signal source. We propose that effective signal amplification by the phase-reversal phenomenon occurs when bees straddle a cell across which the phase reversal is expressed. Such a bee would be subjected to a situation in which the legs were moving towards and away from one another instead of in the same direction. In this manner, remote dance-followers could be alerted to a dancer performing in their vicinity.
Characterization of retentivity of reversed phase liquid chromatography columns.
Ying, P T; Dorsey, J G
1991-03-01
There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".
Antioxidant Activity of Oxygen Evolving Enhancer Protein 1 Purified from Capsosiphon fulvescens.
Kim, Eun-Young; Choi, Youn Hee; Lee, Jung Im; Kim, In-Hye; Nam, Taek-Jeong
2015-06-01
This study was conducted to determine the antioxidant activity of a protein purified from Capsosiphon fulvescens. The purification steps included sodium acetate (pH 6) extraction and diethylaminoethyl-cellulose, reversed phase Shodex C4P-50 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the molecular weight of the purified protein was 33 kDa. The N-terminus and partial peptide amino acid sequence of this protein was identical to the sequence of oxygen evolving enhancer (OEE) 1 protein. The antioxidant activity of the OEE 1 was determined in vitro using a scavenging test with 4 types of reactive oxygen species (ROS), including the 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical, superoxide anion, and hydrogen peroxide (H2 O2 ). OEE 1 had higher H2 O2 scavenging activity, which proved to be the result of enzymatic antioxidants rather than nonenzymatic antioxidants. In addition, OEE 1 showed less H2 O2 -mediated ROS formation in HepG2 cells. In conclusion, this study demonstrates that OEE 1 purified from C. fulvescens is an excellent antioxidant. © 2015 Institute of Food Technologists®
Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.
Hoke, Glenn D; Ramos, Corrine; Hoke, Nicholas N; Crossland, Mary C; Shawler, Lisa G; Boykin, Joseph V
2016-01-01
Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.
Chen, Lisa S.; Yang, Ji-Yeon; Liang, Han; Cortes, Jorge E.; Gandhi, Varsha
2017-01-01
Pim kinases phosphorylate and regulate a number of key AML cell survival proteins, and Pim inhibitors have recently entered clinical trial for hematological malignancies. AZD1208 is a small molecule pan-Pim kinase inhibitor and AZD1208 treatment resulted in growth inhibition and cell size reduction in AML cell lines including FLT3-WT (OCI-AML-3, KG-1a, MOLM-16) and FLT3-ITD mutated (MOLM-13, MV-4-11). There was limited apoptosis induction (<10% increase) in the AML cell lines evaluated with up to 3 μM AZD1208 for 24h, suggesting that growth inhibition is not through apoptosis induction. Using reverse phase protein array (RPPA) and immunoblot analysis, we identified that AZD1208 resulted in suppression of mTOR signaling, including inhibition of protein phosphorylation of mTOR(Ser2448), p70S6K(Thr389), S6(Ser235/236) and 4E-BP1(Ser65). Consistent with mTOR inhibition, there was also a reduction in protein synthesis that correlated with cell size reduction and growth inhibition with AZD1208; our study provide insights into the mechanism of AZD1208. PMID:27054578
Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing
Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.
2016-01-01
Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833
Castany, P; Yang, Y; Bertrand, E; Gloriant, T
2016-12-09
In bcc metastable β titanium alloys, and particularly in superelastic alloys, a unique {332}⟨113⟩ twinning system occurs during plastic deformation. However, in situ synchrotron x-ray diffraction during a tensile test shows that the β phase totally transforms into α^{''} martensite under stress in a Ti-27Nb (at. %) alloy. {332}⟨113⟩_{β} twins are thus not formed directly in the β phase but are the result of the reversion of {130}⟨310⟩_{α^{''}} parent twins occurring in martensite under stress. The formation of an interfacial twin boundary ω phase is also observed to accommodate strains induced during the phase reversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yufeng; Tolic, Nikola; Piehowski, Paul D.
We report development of an approach providing high-resolution RPLC of proteins and its utility for mass spectrometry-based top-down proteomics. A chromatographic peak capacity of ~450 was achieved for proteins and large polypeptides having MWs up to 43 kDa in the context of proteomics applications. RPLC column lengths from 20 to 200 cm, particle sizes from 1.5 to 5 m, bonding alkyl chains from C1 to C2, C4, C8, and C18, and particle surface structures that spanned porous, superficially porous (porous shell, core-shell), and nonporous were investigated at pressures up to14K psi. Column length was found as the most important factormore » for >20 kDa proteins in gradient RPLC, and shortening column length degraded RPLC resolution and sensitivity regardless of the size and surface structure of the packing particles used. The alkyl chains bonded to the silica particle surface significantly affected the RPLC recovery and efficiency, and short alkyl C1-C4 phases provided higher sensitivity and resolution than C8 and C18 phases. Long gradient separations (e.g., >10 hours) with long columns (e.g., 100 cm) were particularly effective in conjunction with use of high accuracy mass spectrometers (e.g., the Orbitrap Elite) for top-down proteomics with improved proteoform coverage by allowing multiple HCD, CID, and ETD dissociation modes. It was also found that HCD produced small fragments useful for proteoform identification, while low energy CID and ETD often complemented HCD by providing large fragments.« less
NASA Technical Reports Server (NTRS)
Burke, Michael; Judge, Russell; Pusey, Marc
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.
Mi, Yan-jun; Liang, Yong-ju; Huang, Hong-bing; Zhao, Hong-yun; Wu, Chung-Pu; Wang, Fang; Tao, Li-yang; Zhang, Chuan-zhao; Dai, Chun-Ling; Tiwari, Amit K.; Ma, Xiao-xu; Wah To, Kenneth Kin; Ambudkar, Suresh V.; Chen, Zhe-Sheng; Fu, Li-wu
2010-01-01
Apatinib, a small-molecule multi-targeted tyrosine kinase inhibitor, is in phase III clinical trial for treatment of patients with non-small cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (P-gp, ABCB1), multidrug resistance protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr and HEK293/ABCB1 cells overexpressing ABCB1 and S1-M1-80, MCF-7/FLV1000 and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photolabeling of both ABCB1 and ABCG2 with [125I]-iodoarylazidoprazosin in a concentration-dependent fashion. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration the produced a reversal of MDRl, did not significantly alter the expression of the ABCB1 or ABCG2 protein or mRNA levels or the phosphorylation of AKT and ERK1/2. Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1 resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs. PMID:20876799
Børud, Bente; Bårnes, Guro K; Brynildsrud, Ola Brønstad; Fritzsønn, Elisabeth; Caugant, Dominique A
2018-03-19
Species within the genus Neisseria display significant glycan diversity associated with the O -linked protein glycosylation ( pgl ) systems due to phase variation, polymorphic genes and gene content. The aim of this study was to examine in detail the pgl genotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about two months apart, were analyzed with whole genome sequencing. The O -linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the PubMLST.org database. Immunoblotting with glycan specific antibodies were used to investigate the protein glycosylation phenotype. All major pgl locus polymorphisms identified in N. meningitidis to date were present in our isolate collection, with the variable presence of pglG-pglH, both in combination with either pglB or pglB2. We identified significant changes and diversity in the pgl genotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase variable expression of the involved glycosyltransferases and the O-acetyltransferase. To our knowledge, this is the first characterization of the pgl genotype and glycosylation phenotype in a larger strain collection. This study thus provides important insight into glycan diversity in N. meningitidis and phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage. Importance Bacterial meningitis is a serious global health problem and one of the major causative organisms is Neisseria meningitidis , which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface exposed antigenic structures that are involved in the interaction between bacteria and host, are frequently subjected to homologous recombination and phase variation. These mechanisms are well described in Neisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease. Copyright © 2018 American Society for Microbiology.
Enyaru, John C.; Carr, Steven A.; Pearson, Terry W.
2013-01-01
Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification. PMID:23951171
Eyford, Brett A; Ahmad, Rushdy; Enyaru, John C; Carr, Steven A; Pearson, Terry W
2013-01-01
Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a 'deep-mining" proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.
Odintsova, Tatyana I; Müller, Eva-Christina; Ivanov, Anton V; Egorov, Tsezi A; Bienert, Ralf; Vladimirov, Serguei N; Kostka, Susanne; Otto, Albrecht; Wittmann-Liebold, Brigitte; Karpova, Galina G
2003-04-01
The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.
2012-01-01
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J
2012-02-21
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.
Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers
Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.
1977-01-01
DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713
Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives
Abidi, Sharon L.
1989-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...
Zhu, Gui-Qin; Liu, Su; He, Duan-Duan; Liu, Yue-Peng; Song, Xue-Jun
2014-08-01
The objective of this study was to explore the role of cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling in the development of bone cancer pain in rats. Female Sprague-Dawley rats (N=48) were divided randomly into four groups: sham (n=8), tumor cell implantation (TCI) (n=16), TCI+saline (n=8), and TCI+PKA inhibitor (n=16). Bone cancer-induced pain behaviors - thermal hyperalgesia and mechanical allodynia - were tested at postoperative days -3, -1, 1, 3, 5, 7, 10, and 14. A PKA inhibitor, Rp-cAMPS (1 mmol/l/20 μl), was injected intrathecally on postoperative days 3, 4, and 5 (early phase) or 7, 8, and 9 postoperative days (late phase). The expression of PKA mRNA in dorsal root ganglia (DRG) was detected by reverse transcription-PCR. The concentration of cAMP and activity of PKA in DRG and spinal cord were measured by enzyme-linked immunosorbent assay. TCI treatment induced significant pain behaviors, manifested as thermal hyperalgesia and mechanical allodynia. Spinal administration of the PKA inhibitor Rp-cAMPS during the early phase and late phase significantly delayed or reversed, respectively, TCI-induced thermal hyperalgesia and mechanical allodynia. TCI treatment also led to obvious tumor growth and bone destruction. The level of PKA mRNA in the DRG, as well as the concentration of cAMP and the activity of PKA, in both the DRG and spinal cord were significantly increased after TCI treatment (P<0.01). We conclude that the inhibition of the cAMP-PKA signaling pathway may reduce bone cancer pain.
Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.
Himata, K; Noda, M; Ando, S; Yamada, Y
2000-01-01
This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method.
Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M
2013-07-16
In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.
Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M.; Climent, Víctor; Sanz, Jesús M.
2014-01-01
We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field. PMID:24498237
Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M; Climent, Víctor; Sanz, Jesús M
2014-01-01
We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.
Turak, Fatma; Güzel, Remziye; Dinç, Erdal
2017-04-01
A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.
Risse, Fabian; Gedig, Erk T; Gutmann, Jochen S
2018-04-30
The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.
Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2013-11-15
A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.
The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event
NASA Astrophysics Data System (ADS)
Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.
2016-02-01
In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.
NASA Technical Reports Server (NTRS)
Leung, K. C.
1989-01-01
Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.
Reversible Rigidity Control Using Low Melting Temperature Alloys
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans
Roux, Antoine E.; Langhans, Kelley; Huynh, Walter; Kenyon, Cynthia
2017-01-01
Summary Cells can enter quiescent states in which cell cycling and growth are suspended. We find that during a long developmental arrest (quiescence) induced by starvation, newly-hatched C. elegans acquire features associated with impaired proteostasis and aging: mitochondrial fission, ROS production, protein aggregation, decreased proteotoxic-stress resistance, and at the organismal level, decline of mobility and high mortality. All signs of aging but one, the presence of protein aggregates, were reversed upon return to development induced by feeding. The endoplasmic reticulum receptor IRE-1 is completely required for recovery, and the downstream transcription factor XBP-1, as well as a protein kinase, KGB-1, are partially required. Interestingly, kgb-1(−) mutants that do recover fail to reverse aging-like mitochondrial phenotypes and have a short adult lifespan. Our study describes the first pathway that reverses phenotypes of aging at the exit of prolonged quiescence. PMID:27304510
Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein
Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.
2016-01-01
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774
Vanhoenacker, Gerd; Dos Santos Pereira, Alberto; Kotsuka, Takashi; Cabooter, Deirdre; Desmet, Gert; Sandra, Pat
2010-05-07
The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 degrees C (optimal flow 0.5 mL/min) to 2.4 at 150 degrees C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 degrees C within the pH range 1-9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC-MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Begnini, Fernanda R; Jardim, Isabel C S F
2013-07-05
A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Myxococcus xanthus Swarms Are Driven by Growth and Regulated by a Pacemaker ▿
Kaiser, Dale; Warrick, Hans
2011-01-01
The principal social activity of Myxococcus xanthus is to organize a dynamic multicellular structure, known as a swarm. Although its cell density is high, the swarm can grow and expand rapidly. Within the swarm, the individual rod-shaped cells are constantly moving, transiently interacting with one another, and independently reversing their gliding direction. Periodic reversal is, in fact, essential for creating a swarm, and the reversal frequency controls the rate of swarm expansion. Chemotaxis toward nutrient has been thought to drive swarming, but here the nature of swarm growth and the impact of genetic deletions of members of the Frz family of proteins suggest otherwise. We find that three cytoplasmic Frz proteins, FrzCD, FrzF, and FrzE, constitute a cyclic pathway that sets the reversal frequency. Within each cell these three proteins appear to be connected in a negative-feedback loop that produces oscillations whose frequencies are finely tuned by methylation and by phosphorylation. This oscillator, in turn, drives MglAB, a small G-protein switch, to oscillate between its GTP- and GDP-bound states that ultimately determine when the cell moves forward or backward. The periodic reversal of interacting rod-shaped cells promotes their alignment. Swarm organization ensures that each cell can move without blocking the movement of others. PMID:21856842
Seiss, Ellen; Klippel, Marie; Hope, Christopher; Boy, Frederic; Sumner, Petroc
2014-01-01
One of the potential explanations for negative compatibility effects (NCE) in subliminal motor priming tasks has been perceptual prime-target interactions. Here, we investigate whether the characteristic tri-phasic LRP pattern associated with the NCE is caused by these prime-target interactions. We found that both the prime-related phase and the critical reversal phase remain present even on trials where the target is omitted, confirming they are elicited by the prime and mask, not by prime-target interactions. We also report that shape and size of the reversal phase are associated with response speed, consistent with a causal role for the reversal for the subsequent response latency. Additionally, we analysed sequential modulation of the NCE by previous conflicting events, even though such conflict is subliminal. In accordance with previous literature, this modulation is small but significant. PMID:24728088
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
Tsutsumi, K; Otsuki, Y; Kinoshita, T
1982-09-10
The simultaneous determination of azathioprine and its metabolite 6-mercaptopurine in serum by reversed-phase high-performance liquid chromatography is described. 6-Mercaptopurine was converted to a derivative, 6-mercaptopurine-N-ethylmaleimide, which is stable against autoxidation, on reaction with N-ethylmaleimide. Since the N-ethylmaleimide derivative was more hydrophobic than the parent compound, it could be extracted into ethyl acetate together with azathioprine and the derivative was retained on the reversed-phase column better than 6-mercaptopurine. In addition, 6-mercaptopurine-N-ethylmaleimide absorbed at the same wavelength (280 nm) as azathioprine. Consequently, this derivatization procedure enabled the simultaneous extraction, separation, and detection of these compounds.
NASA Technical Reports Server (NTRS)
Cross, James H., II
1990-01-01
The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.
Loukanov, Alexandre; Emin, Saim
2016-09-01
We report the microemulsion synthesis of vanadium and chromium sulfide nanoparticles (NPs) and their biological application as nanoprobes for colocalization of membrane proteins. Spherical V2 S3 and Cr2 S3 NPs were prepared in reverse microemulsion droplets, as nanoreactors, obtained by the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in nonpolar organic phase (heptane). Electron microscopic data indicated that the size distribution of the nanoparticles was uniform with an average diameter between 3 ÷ 5 nm. The prepared hydrophobic nanocrystals were transferred in aqueous phase by surface cap exchange of AOT with biotin-dihydrolipoic ligands. This substitution allows the nanoparticles solubility in aqueous solutions and confer their bioactivity. In addition, we report the conjugation procedure between α-Lipoic acid (LA) and biotin (abbreviated as biotin-LA). The biotin-LA structure was characterized by 1D and 2D NMR spectroscopy. The biotinylated vanadium and chromium sulfide nanoparticles were tested as probes for colocalization of glutamate receptors on sodium-dodecyl-sulfate-digested replica prepared from rat hippocampus. The method suggests their high labeling efficiency for study of membrane biological macromolecules. Microsc. Res. Tech. 79:799-805, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.
2009-12-01
In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.
P19-dependent and P19-independent reversion of F1-V gene silencing in tomato.
Alvarez, M Lucrecia; Pinyerd, Heidi L; Topal, Emel; Cardineau, Guy A
2008-09-01
As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.
Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.
Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana
2016-06-01
Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.
Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive
Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana
2016-01-01
Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547
Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; Grob, Patricia; Nogales, Eva; Geissler, Phillip L.; Niyogi, Krishna K.; Bustamante, Carlos
2014-01-01
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets. PMID:25007326
Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; ...
2014-07-09
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arraysmore » according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.« less
Rai, Alex J; Stemmer, Paul M; Zhang, Zhen; Adam, Bao-Ling; Morgan, William T; Caffrey, Rebecca E; Podust, Vladimir N; Patel, Manisha; Lim, Lih-Yin; Shipulina, Natalia V; Chan, Daniel W; Semmes, O John; Leung, Hon-Chiu Eastwood
2005-08-01
We report on a multicenter analysis of HUPO reference specimens using SELDI-TOF MS. Eight sites submitted data obtained from serum and plasma reference specimen analysis. Spectra from five sites passed preliminary quality assurance tests and were subjected to further analysis. Intralaboratory CVs varied from 15 to 43%. A correlation coefficient matrix generated using data from these five sites demonstrated high level of correlation, with values >0.7 on 37 of 42 spectra. More than 50 peaks were differentially present among the various sample types, as observed on three chip surfaces. Additionally, peaks at approximately 9200 and approximately 15,950 m/z were present only in select reference specimens. Chromatographic fractionation using anion-exchange, membrane cutoff, and reverse phase chromatography, was employed for protein purification of the approximately 9200 m/z peak. It was identified as the haptoglobin alpha subunit after peptide mass fingerprinting and high-resolution MS/MS analysis. The differential expression of this protein was confirmed by Western blot analysis. These pilot studies demonstrate the potential of the SELDI platform for reproducible and consistent analysis of serum/plasma across multiple sites and also for targeted biomarker discovery and protein identification. This approach could be exploited for population-based studies in all phases of the HUPO PPP.
Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon
2010-04-01
Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.
Kuczyńska-Wiśnik, Dorota; Moruno-Algara, María; Stojowska-Swędrzyńska, Karolina; Laskowska, Ewa
2016-11-10
Acetylation of lysine residues is a reversible post-translational modification conserved from bacteria to humans. Several recent studies have revealed hundreds of lysine-acetylated proteins in various bacteria; however, the physiological role of these modifications remains largely unknown. Since lysine acetylation changes the size and charge of proteins and thereby may affect their conformation, we assumed that lysine acetylation can stimulate aggregation of proteins, especially for overproduced recombinant proteins that form inclusion bodies. To verify this assumption, we used Escherichia coli strains that overproduce aggregation-prone VP1GFP protein. We found that in ΔackA-pta cells, which display diminished protein acetylation, inclusion bodies were formed with a delay and processed faster than in the wild-type cells. Moreover, in ΔackA-pta cells, inclusion bodies exhibited significantly increased specific GFP fluorescence. In CobB deacetylase-deficient cells, in which protein acetylation was enhanced, the formation of inclusion bodies was increased and their processing was significantly inhibited. Similar results were obtained with regard to endogenous protein aggregates formed during the late stationary phase in ΔackA-pta and ΔcobB cells. Our studies revealed that protein acetylation affected the aggregation of endogenous E. coli proteins and the yield, solubility, and biological activity of a model recombinant protein. In general, decreased lysine acetylation inhibited the formation of protein aggregates, whereas increased lysine acetylation stabilized protein aggregates. These findings should be considered during the designing of efficient strategies for the production of recombinant proteins in E. coli cells.
The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal
NASA Astrophysics Data System (ADS)
Burge, Matthew; Ringuette, Matthew
2017-11-01
We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.
Shephard, E; Jackson, G M; Groom, M J
2014-01-01
This study examined neurocognitive differences between children and adults in the ability to learn and adapt simple stimulus-response associations through feedback. Fourteen typically developing children (mean age=10.2) and 15 healthy adults (mean age=25.5) completed a simple task in which they learned to associate visually presented stimuli with manual responses based on performance feedback (acquisition phase), and then reversed and re-learned those associations following an unexpected change in reinforcement contingencies (reversal phase). Electrophysiological activity was recorded throughout task performance. We found no group differences in learning-related changes in performance (reaction time, accuracy) or in the amplitude of event-related potentials (ERPs) associated with stimulus processing (P3 ERP) or feedback processing (feedback-related negativity; FRN) during the acquisition phase. However, children's performance was significantly more disrupted by the reversal than adults and FRN amplitudes were significantly modulated by the reversal phase in children but not adults. These findings indicate that children have specific difficulties with reinforcement learning when acquired behaviours must be altered. This may be caused by the added demands on immature executive functioning, specifically response monitoring, created by the requirement to reverse the associations, or a developmental difference in the way in which children and adults approach reinforcement learning. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Coelho, Mirela Batista; Macedo, Maria Lígia Rodrigues; Marangoni, Sérgio; Silva, Desiree Soares da; Cesarino, Igor; Mazzafera, Paulo
2010-03-10
Legumin-like proteins from seeds of Coffea arabica (CaL-1 and CaL-2) and Coffea racemosa (CrL-1 and CrL-2) were characterized and isolated by gel filtration and reverse-phase chromatography. The insecticidal properties of the purified proteins were tested against Callosobruchus maculatus using artificial diets. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses indicated that CaL-1 is composed of two subunits of 33 and 24 kDa, while CaL-2, CrL-1, and CrL-2 were monomeric with a single band of 14 kDa. The LD(50) values were 0.5% (w/w) for CaL-1 and 0.3% (w/w) for CaL-2, CrL-1, and CrL-2. ED(50) at 0.3% was assessed for all protein concentrations. The legumin-like proteins were not digested by midgut homogenates of C. maculatus until 8 h of incubation. CaL-1 and CaL-2 ( C. arabica ) and CrL-1 and CrL-2 ( C. racemosa ) are chitin-binding proteins, and their insecticidal properties toward C. maculatus larvae might be related to their capacity to bind chitin present in the larval gut and their associated low digestibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.
2005-04-01
The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31more » genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.« less
Nayarisseri, Anuraj; Yadav, Mukesh; Wishard, Rohan
2013-12-01
The Translationally Controlled Tumor Protein (TCTP) has been investigated for tumor reversion and is a target of cancer therapy. Down regulators which suppress the expression of TCTP can trigger the process of tumor reversion leading to the transformation of tumor cells into revertant cells. The present investigation is a novel protein-protein docking approach to target TCTP by a set of proteins similar to the protein: sorting nexin 6 (SNX6) which is an established down regulator of TCTP. The established down regulator along with its set of most similar proteins were modeled using the PYTHON based software - MODELLER v9.9, followed by structure validation using the Procheck Package. Further TCTP was docked with its established and prospective down regulators using the flexible docking protocol suite HADDOCK. The results were evaluated and ranked according to the RMSD values of the complex and the HADDOCK score, which is a weighted sum of van der Waal's energy, electrostatic energy, restraints violation energy and desolvation energy. Results concluded the protein sorting nexin 6 of Mus musculus to be a better down regulator of TCTP, as compared to the suggested down regulator (Homo sapiens snx6).
Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo
Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud
2016-01-01
This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992
Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.
Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud
2016-01-19
This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.
Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana
2016-04-14
Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive. Copyright © 2016 Elsevier B.V. All rights reserved.
Carroll, James A.; Olano, L. Rennee; Sturdevant, Daniel E.; Rosa, Patricia A.
2015-01-01
The saprophyte Leptospira biflexa is an excellent model for studying the physiology of the medically important Leptospira genus, the pathogenic members of which are more recalcitrant to genetic manipulation and have significantly slower in vitro growth. However, relatively little is known regarding the proteome of L. biflexa, limiting its utility as a model for some studies. Therefore, we have generated a proteomic map of both soluble and membrane-associated proteins of L. biflexa during exponential growth and in stationary phase. Using these data, we identified abundantly produced proteins in each cellular fraction and quantified the transcript levels from a subset of these genes using quantitative reverse transcription-PCR (RT-PCR). These proteins should prove useful as cellular markers and as controls for gene expression studies. We also observed a significant number of L. biflexa membrane-associated proteins with multiple isoforms, each having unique isoelectric focusing points. L. biflexa cell lysates were examined for several posttranslational modifications suggested by the protein patterns. Methylation and acetylation of lysine residues were predominately observed in the proteins of the membrane-associated fraction, while phosphorylation was detected mainly among soluble proteins. These three posttranslational modification systems appear to be conserved between the free-living species L. biflexa and the pathogenic species Leptospira interrogans, suggesting an important physiological advantage despite the varied life cycles of the different species. PMID:26655756
Stewart, Philip E; Carroll, James A; Olano, L Rennee; Sturdevant, Daniel E; Rosa, Patricia A
2016-02-15
The saprophyte Leptospira biflexa is an excellent model for studying the physiology of the medically important Leptospira genus, the pathogenic members of which are more recalcitrant to genetic manipulation and have significantly slower in vitro growth. However, relatively little is known regarding the proteome of L. biflexa, limiting its utility as a model for some studies. Therefore, we have generated a proteomic map of both soluble and membrane-associated proteins of L. biflexa during exponential growth and in stationary phase. Using these data, we identified abundantly produced proteins in each cellular fraction and quantified the transcript levels from a subset of these genes using quantitative reverse transcription-PCR (RT-PCR). These proteins should prove useful as cellular markers and as controls for gene expression studies. We also observed a significant number of L. biflexa membrane-associated proteins with multiple isoforms, each having unique isoelectric focusing points. L. biflexa cell lysates were examined for several posttranslational modifications suggested by the protein patterns. Methylation and acetylation of lysine residues were predominately observed in the proteins of the membrane-associated fraction, while phosphorylation was detected mainly among soluble proteins. These three posttranslational modification systems appear to be conserved between the free-living species L. biflexa and the pathogenic species Leptospira interrogans, suggesting an important physiological advantage despite the varied life cycles of the different species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Sandovall, A.O.; Andrews, K.; Wahab, A.; Choudhary, M.I.; Ahmed, A.
2014-01-01
The RI-INBRE Centralized Core Facility was established in 2003 and participates annually in Undergraduate Summer Research Program. It provides students hands on research experience in key technologies in biomedical sciences. We present here the isolation and purification of water soluble proteins from ginger, a rhizome of the plant, Zingiber officinale. It is an important ingredient of species used in traditional South Asian cuisines. In Indian, Pakistani and Chinese folk medicine, ginger is used for gastro-intestinal disorders, nausea, vomiting, inflammatory diseases, muscle and joint pain. Limited studies have been reported on the bioactive proteins from ginger extract. The water soluble proteins were extracted from ginger root and successfully purified to homogeneity by using two-dimensional liquid chromatography (FPLC/RP-HPLC) approach. The ginger root was washed with distilled water; skin removed and then emulsified using an electric blender. Sample was stirred for four days at 4°C with and without protease inhibitor. Purification of a 42kDa protein was achieved by employing gel filtration, ion-exchange and reversed phase HPLC. The homogeneity of the protein was confirmed by SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. Future work will be conducted on the protein characterization using mass spectrometry and Edman protein sequencing. Supported by grant 5P20GM103430 from the National Institute of General Medical Sciences, NIH, USA.
Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests.
Vanhoenacker, Gerd; Vandenheede, Isabel; David, Frank; Sandra, Pat; Sandra, Koen
2015-01-01
Comprehensive two-dimensional liquid chromatography (LC×LC) is here proposed as a novel tool for peptide mapping of therapeutic monoclonal antibodies in both R&D and routine (QA/QC) environments. This is illustrated by the analysis of the tryptic digest of trastuzumab (Herceptin) applying a commercially available two-dimensional 2D-LC system. Three different LC×LC combinations, i.e., strong cation-exchange × reversed-phase (SCX×RP), reversed-phase × reversed-phase (RP×RP), and hydrophilic interaction × reversed-phase (HILIC×RP), are reported. Detection was carried out using both UV detection (DAD) and mass spectrometry (MS). Several challenges related to the application of LC×LC in peptide mapping and the hyphenation to MS are addressed. The applicability of LC×LC in the assessment of identity, purity, and comparability is demonstrated by the analysis of different Herceptin innovator production batches, a Herceptin biosimilar in development and of stressed samples. The described methodology was shown to be precise in terms of peak volume and (2)D retention time opening interesting perspectives for use in QA/QC testing.
Krungkrai, J; Wutipraditkul, N; Prapunwattana, P; Krungkrai, S R; Rochanakij, S
2001-12-15
A novel nonradioactive, microassay method has been developed to determine simultaneously the two enzymatic activities of orotate phosphoribosyltransferase (OPRTase) and orotidine 5'-monophosphate decarboxylase (ODCase), either as a bifunctional protein (uridine 5'-monophosphate synthase, UMPS) or as separate enzymes. Substrates (orotate for OPRTase or orotidine 5'-monophosphate for ODCase) and a product (UMP) of the enzymatic assay were separated by high-performance liquid chromatography (HPLC) using a reversed-phase column and an ion-pairing system; the amount of UMP was quantified by dual-wavelength uv detection at 260 and 278 nm. This HPLC assay can easily detect picomole levels of UMP in enzymatic reactions using low specific activity UMPS of mammalian cell extracts, which is difficult to do with the other nonradioactive assays that have been described. The HPLC assay is suitable for use in protein purification and for kinetic study of these enzymes. (c)2001 Elsevier Science.
Alhama, José; Romero-Ruiz, Antonio; López-Barea, Juan
2006-02-24
In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.
Zhou, Yu-Xun; Cao, Wei; Luo, Qing-Ping; Ma, Yu-Shu; Wang, Jin-Zhi; Wei, Dong-Zhi
2005-05-01
Adenoregulin is a member of dermaseptin family which are vertebrate antibiotic peptides having lethal effects against a broad spectrum of bacteria, fungi and protozoa. The 99 bp adenoregulin gene was cloned in the expression vector pET32a and transformed into Escherichia coli BL21(DE3). In fed-batch cultivation of BL21(DE3)/pET32a-adr, an exponential feeding strategy was applied to gain 60 g dry cells l-1. The recombinant fusion protein Trx-ADR was expressed in a soluble form. The fusion protein was isolated by Ni2+-chelating chromatography, cleaved with CNBr and purified to homogeneity through reverse phase-HPLC and size exclusion-HPLC. The purified recombinant adenoregulin had antibacterial activity against Escherichia coli K12D31 with apparent Mr of 3.4 kDa, identical to the anticipated value.
Schneiderman, M A; Sharma, A K; Mahanama, K R; Locke, D C
1988-01-01
Vitamin K1 (phylloquinone) is extracted from commercial soy protein-based and milk-based powdered infant formulas by using supercritical fluid extraction with CO2 at 8000 psi and 60 degrees C. Quantitative extraction requires only 15 min, and does not suffer from the problems associated with conventional solvent extraction of lipophilic materials from media such as formulas. Vitamin K1 is determined in the extracts by using reverse-phase liquid chromatography (LC) with reductive mode electrochemical detection at a silver electrode polarized at -1.1 V vs SCE. LC run time is 9 min. The minimum detectable quantity is 80 pg, and response is linear over at least 5 orders of magnitude. Recovery of vitamin K1 from a milk-based powdered formula was 95.6% with RSD of 7.4%, and from a soy protein-based product, 94.4% recovery with RSD of 6.5%.
Santana, Flávia A; Nunes, Francis M F; Vieira, Carlos U; Machado, Maria Alice M S; Kerr, Warwick E; Silva, Wilson A; Bonetti, Ana Maria
2006-03-01
We have compared gene expression, using the Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR) technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.
An, Meichen; Liu, Ning
2010-02-01
A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.
Kramer, S; Blaschke, G
2001-02-10
A sensitive high-performance liquid chromatographic method has been developed for the determination of the beta2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid-liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher 100 RP 18 and a LiChrospher RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.
Universal fieldable assay with unassisted visual detection
NASA Technical Reports Server (NTRS)
Chelyapov, Nicolas (Inventor)
2012-01-01
A universal detection system based on allosteric aptamers, signal amplification cascade, and eye-detectable phrase transition. A broadly applicable homogeneous detection system is provided. It utilizes components of the blood coagulation cascade in the presence of polystyrene microspheres (MS) as a signal amplifier. Russell's viper venom factor X activator (RVV-X) triggers the cascade, which results in an eye-visible phase transition--precipitation of MS bound to clotted fibrin. An allosteric RNA aptamer, RNA132, with affinity for RVV-X and human vascular endothelial growth factor (VEGF.sub.165) was created. RNA132 inhibits enzymatic activity of RVV-X. The effector molecule, VEGF.sub.165, reverses the inhibitory activity of RNA132 on RVV-X and restores its enzymatic activity, thus triggering the cascade and enabling the phase transition. Similar results were obtained for another allosteric aptamer modulated by a protein tyrosine phosphatase. The assay is instrumentation-free for both processing and readout.
Liquid chromatographic assay of ceftizoxime in sera of normal and uremic patients.
McCormick, E M; Echols, R M; Rosano, T G
1984-01-01
The application of high-pressure liquid chromatography assays for cephalosporin serum concentrations is difficult in uremic patients because of interference from nondialyzable substances. We developed a high-pressure liquid chromatography method for determining the serum concentration of ceftizoxime in normal and uremic patients. The method involves protein precipitation with acetonitrile, followed by removal of the acetonitrile with dichloromethane. Separation was accomplished with a reverse-phase (C-18) column and a mobile phase of 13% acetonitrile and 2.8% acetic acid. UV detection at 310 nm was used to monitor the peaks. This assay produced a linear relationship between peak height ratio and ceftizoxime concentration from 1.5 to 100 micrograms/ml. Samples from 30 patients were assayed by this method and by a bioassay, with a good correlation of results (r = 0.9832). The method was applicable equally to normal and uremic serum samples. PMID:6326665
Predicting the Retention Behavior of Specific O-Linked Glycopeptides.
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2017-09-01
O -Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O -glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O - N -acetylgalactosamine ( O -GalNAc), O - N -acetylglucosamine ( O -GlcNAc), and O -fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.
Predicting the Retention Behavior of Specific O-Linked Glycopeptides
Badgett, Majors J.; Boyes, Barry; Orlando, Ron
2017-01-01
O-Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O-glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O-N-acetylgalactosamine (O-GalNAc), O-N-acetylglucosamine (O-GlcNAc), and O-fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications. PMID:28785176
Walsh, Christine M.; Booth, Victoria; Poe, Gina R.
2011-01-01
This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190
Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth
Grose, John
2018-01-01
The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125–8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of sensitivity to spectral modulation than spectral modulation detection with a flat standard. PMID:29621338
Kayillo, Sindy; Dennis, Gary R; Shalliker, R Andrew
2006-09-08
In this manuscript the retention and selectivity of a set of linear and non-linear PAHs were evaluated on five different reversed-phase columns. These phases included C18 and C18 Aqua stationary phases, as well as three phenyl phases: Propyl-phenyl, Synergi polar-RP and Cosmosil 5PBB phase. Overall, the results revealed that the phenyl-type columns offered better separation performance for the linear PAHs, while the separation of the structural isomer PAHs was enhanced on the C18 columns. The Propyl-phenyl column was found to have the highest molecular-stationary phase interactions, as evidenced by the greatest rate of change in 'S' (0.71) as a function of the molecular weight in the PAH homologous series, despite having the lowest surface coverage (3% carbon load) (where S is the slope of a plot of logk versus the solvent composition). In contrast, the C18 Aqua column, having the highest surface coverage (15% carbon load) was found to have the second lowest molecular-stationary phase interactions (rate of change in S=0.61). Interestingly, the Synergi polar-RP column, which also is a phenyl stationary phase behaved more 'C18-like' than 'phenyl-like' in many of the tests undertaken. This is probably not unexpected since all five phases were reversed phase.
Topological phases in a Kitaev chain with imbalanced pairing
NASA Astrophysics Data System (ADS)
Li, C.; Zhang, X. Z.; Zhang, G.; Song, Z.
2018-03-01
We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. An exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. Such phases are destroyed at the points where the coalescence of ground states occurs, associated with the time-reversal symmetry breaking. We find that the Majorana edge modes also exist in an open chain in the time-reversal symmetry-unbroken region, demonstrating the bulk-edge correspondence in such a non-Hermitian system.
Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen
2016-12-01
The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility.
Wafer, Lucas; Kloczewiak, Marek; Polleck, Sharon M; Luo, Yin
2017-12-15
State functions (e.g., ΔG) are path independent and quantitatively describe the equilibrium states of a thermodynamic system. Isothermal chemical denaturation (ICD) is often used to extrapolate state function parameters for protein unfolding in native buffer conditions. The approach is prudent when the unfolding/refolding processes are path independent and reversible, but may lead to erroneous results if the processes are not reversible. The reversibility was demonstrated in several early studies for smaller proteins, but was assumed in some reports for large proteins with complex structures. In this work, the unfolding/refolding of several proteins were systematically studied using an automated ICD instrument. It is shown that: (i) the apparent unfolding mechanism and conformational stability of large proteins can be denaturant-dependent, (ii) equilibration times for large proteins are non-trivial and may introduce significant error into calculations of ΔG, (iii) fluorescence emission spectroscopy may not correspond to other methods, such as circular dichroism, when used to measure protein unfolding, and (iv) irreversible unfolding and hysteresis can occur in the absence of aggregation. These results suggest that thorough confirmation of the state functions by, for example, performing refolding experiments or using additional denaturants, is needed when quantitatively studying the thermodynamics of protein unfolding using ICD. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.
Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less
Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G
2012-01-01
Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.
Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang
2017-05-26
The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo
2010-12-01
We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fuelled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.
Gillick, Kieran; Pollpeter, Darja; Phalora, Prabhjeet; Kim, Eun-Young; Wolinsky, Steven M.
2013-01-01
The Vif protein of human immunodeficiency virus type 1 (HIV-1) promotes viral replication by downregulation of the cell-encoded, antiviral APOBEC3 proteins. These proteins exert their suppressive effects through the inhibition of viral reverse transcription as well as the induction of cytidine deamination within nascent viral cDNA. Importantly, these two effects have not been characterized in detail in human CD4+ T cells, leading to controversies over their possible contributions to viral inhibition in the natural cell targets of HIV-1 replication. Here we use wild-type and Vif-deficient viruses derived from the CD4+ T cells of multiple donors to examine the consequences of APOBEC3 protein function at natural levels of expression. We demonstrate that APOBEC3 proteins impart a profound deficiency to reverse transcription from the initial stages of cDNA synthesis, as well as excessive cytidine deamination (hypermutation) of the DNAs that are synthesized. Experiments using viruses from transfected cells and a novel method for mapping the 3′ termini of cDNAs indicate that the inhibition of reverse transcription is not limited to a few specific sites, arguing that APOBEC3 proteins impede enzymatic processivity. Detailed analyses of mutation spectra in viral cDNA strongly imply that one particular APOBEC3 protein, APOBEC3G, provides the bulk of the antiviral phenotype in CD4+ T cells, with the effects of APOBEC3F and APOBEC3D being less significant. Taken together, we conclude that the dual mechanisms of action of APOBEC3 proteins combine to deliver more effective restriction of HIV-1 than either function would by itself. PMID:23152537
Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN
Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...
2017-04-10
III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.
Translating HDAC inhibitors in Friedrich's ataxia
Soragni, Elisabetta; Gottesfeld, Joel M
2016-01-01
Introduction Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. Areas covered We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. Expert opinion 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing. PMID:28392990
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Bai, M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone remodeling and may play a role in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for bone marrow mononuclear cells in the vicinity, leading us to investigate whether such mononuclear cells express the CaR. In this study, we used the mouse J774 cell line, which exhibits a pure monocyte-macrophage phenotype. Both immunocytochemistry and Western blot analysis, using polyclonal antisera specific for the CaR, detected CaR protein in J774 cells. The use of reverse transcriptase-polymerase chain reaction with CaR-specific primers, including a set of intron-spanning primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in J774 cells. Exposure of J774 cells to high Ca2+o (2.8 mM or more) or the polycationic CaR agonist, neomycin (100 microM), stimulated both chemotaxis and DNA synthesis in J774 cells. Therefore, taken together, our data strongly suggest that the monocyte-macrophage cell line, J774, possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney.
Pharmacokinetics of warfarin in rats: role of serum protein binding and tissue distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, W.K.
The purpose of this study was to explore the role of serum protein binding and tissue distribution in the non-linear pharmacokinetics of warfarin in rats. The first phase of the research was an attempt to elucidate the causes of intersubject differences in serum protein binding of warfarin in rats. It was found that the distribution of S-warfarin between blood and liver, kidneys, muscle, or fatty tissue was non-linear. Based on the tissue distribution data obtained, a physiologically-based pharmacokinetic model was developed to describe the time course of S-warfarin concentrations in the serum and tissues of rats. The proposed model wasmore » able to display the dose-dependent pharmacokinetics of warfarin in rats. Namely a lower clearance and a smaller apparent volume of distribution with increasing dose, which appear to be due to the presence of capacity-limited, high-affinity binding sites for warfarin in various tissues. To determine if the binding of warfarin to the high-affinity binding sites in the liver of rats is reversible, concentrations of S-warfarin in the liver and serum of rats were monitored for a very long time after an intravenous injection of a 1 mg/kg dose. In another study in rats, non-radioactive warfarin was found to be able to displace tissue-bound C/sup 14/-warfarin which was administered about 200 hours before the i.v. injection of the non-radioactive warfarin, showing that the binding of warfarin to the high-affinity binding sites in the body is persistent and reversible.« less
Aerosolized neutral endopeptidase reverses ozone-induced airway hyperreactivity to substance P.
Murlas, C G; Lang, Z; Williams, G J; Chodimella, V
1992-03-01
We investigated the effects of ozone exposure (3.0 ppm, 2 h) on airway neutral endopeptidase (NEP) activity and bronchial reactivity to substance P in guinea pigs. Reactivity after ozone or air exposure was determined by measuring specific airway resistance in intact unanesthetized spontaneously breathing animals in response to increasing doses of intravenous substance P boluses. The effective dose of substance P (in micrograms) that produced a doubling of baseline specific airway resistance (ED200SP) was determined by interpolation of cumulative substance P dose-response curves. NEP activity was measured in tracheal homogenates made from each animal of other groups exposed to either ozone or room air. By reverse-phase high-pressure liquid chromatography, this activity was characterized by the phosphoramidon-inhibitable cleavage of alanine-p-nitroaniline from succinyl-(Ala)3-p-nitroaniline in the presence of 100 microM amastatin. Mean values of the changes in log ED200SP were 0.27 +/- 0.07 (SE) for the ozone-exposed group and 0.08 +/- 0.04 for the air-exposed group. We found that phosphoramidon significantly increased substance P reactivity in the air-exposed animals (P less than 0.01), but it had no effect in the ozone-exposed group. This finding was associated with a significant reduction in tracheal homogenate NEP activity of ozone-exposed animals compared with controls: mean values were 18.1 +/- 1.9 nmol.min-1.mg protein-1 for the ozone-exposed group and 25.1 +/- 2.4 nmol.min-1.mg protein-1 for air-exposed animals (P less than 0.05). Inhalation of an aerosolized NEP preparation, partially purified from guinea pig kidney, reversed the substance P hyperreactivity produced by ozone exposure.(ABSTRACT TRUNCATED AT 250 WORDS)
Aerosolized neutral endopeptidase reverses ozone-induced airway hyperreactivity to substance P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murlas, C.G.; Lang, Z.; Williams, G.J.
1992-03-01
The authors investigated the effects of ozone exposure (3.0 ppm, 2 h) on airway neutral endopeptidase (NEP) activity and bronchial reactivity to substance P in guinea pigs. Reactivity after ozone or air exposure was determined by measuring specific airway resistance in intact unanesthetized spontaneously breathing animals in response to increasing doses of intravenous substance P boluses. The effective dose of substance P (in micrograms) that produced a doubling of baseline specific airway resistance (ED200SP) was determined by interpolation of cumulative substance P dose-response curves. NEP activity was measured in tracheal homogenates made from each animal of other groups exposed tomore » either ozone or room air. By reverse-phase high-pressure liquid chromatography, this activity was characterized by the phosphoramidon-inhibitable cleavage of alanine-p-nitroaniline from succinyl-(Ala)3-p-nitroaniline in the presence of 100 microM amastatin. Mean values of the changes in log ED200SP were 0.27 +/- 0.07 (SE) for the ozone-exposed group and 0.08 +/- 0.04 for the air-exposed group. We found that phosphoramidon significantly increased substance P reactivity in the air-exposed animals (P less than 0.01), but it had no effect in the ozone-exposed group. This finding was associated with a significant reduction in tracheal homogenate NEP activity of ozone-exposed animals compared with controls: mean values were 18.1 +/- 1.9 nmol.min-1.mg protein-1 for the ozone-exposed group and 25.1 +/- 2.4 nmol.min-1.mg protein-1 for air-exposed animals (P less than 0.05). Inhalation of an aerosolized NEP preparation, partially purified from guinea pig kidney, reversed the substance P hyperreactivity produced by ozone exposure.(ABSTRACT TRUNCATED AT 250 WORDS)« less
Martin-Garrido, Abel; Williams, Holly C.; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K.
2013-01-01
In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle. PMID:24236150
Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K
2013-01-01
In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.
Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya
2008-03-01
Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.
Iwamoto, T; Grove, A; Montal, M O; Montal, M; Tomich, J M
1994-06-01
A strategy for the synthesis of peptides and oligomeric proteins designed to form transmembrane ion channels is described. A folding motif that exhibits a functional ionic pore encompasses amphipathic alpha-helices organized as a four-helix bundle around a central hydrophilic pore. The channel-forming activity of monomeric amphipathic peptides may be examined after reconstitution in lipid bilayers in which peptides self-assemble into conductive oligomers. The covalent attachment of channel-forming peptides to the lysine epsilon-amino groups of a template molecule (KKKPGKEKG) specifies oligomeric number and facilitates the study of ionic permeation and channel blockade. Here we describe detailed protocols for the total synthesis of peptides and template-assembled four-helix bundle proteins, exemplified with the sequence of M2 delta (EKM-STAISVLLAQAVFLLLTSQR), considered involved in lining the pore of the nicotinic acetylcholine receptor channel. For comparison, the synthesis of a second four-helix bundle, T4CaIVS3 with the sequence of predicted transmembrane segment S3 (DPWNVFDFLIVIGSIIDVILSE) of the fourth repeat of the L-type voltage-gated calcium channel, is included. Peptides and proteins are synthesized step-wise by solid-phase methods, purified by reversed-phase HPLC, and homogeneity ascertained by analytical HPLC, capillary zone electrophoresis, SDS/PAGE, amino acid analysis and sequencing. Optimization of synthetic procedures for hydrophobic molecules include reducing resin substitution to avoid steric hindrance and aggregation of the final product. Protocols for the preparation of the samples prior to HPLC purification as well as the conditions and columns required for successful purification are presented. The methods developed are generally applicable for the chemical synthesis, purification and characterization of amphipathic peptides and template directed helical bundle proteins.
TTK/hMPS1 Is an Attractive Therapeutic Target for Triple-Negative Breast Cancer
Maire, Virginie; Baldeyron, Céline; Richardson, Marion; Tesson, Bruno; Vincent-Salomon, Anne; Gravier, Eléonore; Marty-Prouvost, Bérengère; De Koning, Leanne; Rigaill, Guillem; Dumont, Aurélie; Gentien, David; Barillot, Emmanuel; Roman-Roman, Sergio; Depil, Stéphane; Cruzalegui, Francisco; Pierré, Alain; Tucker, Gordon C.; Dubois, Thierry
2013-01-01
Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In order to discover potential therapeutic targets, we searched for protein kinases that are overexpressed in human TNBC biopsies and whose silencing in TNBC cell lines causes cell death. A cohort including human BC biopsies obtained at Institut Curie as well as normal tissues has been analyzed at a gene-expression level. The data revealed that the human protein kinase monopolar spindle 1 (hMPS1), also known as TTK and involved in mitotic checkpoint, is specifically overexpressed in TNBC, compared to the other BC subgroups and healthy tissues. We confirmed by immunohistochemistry and reverse phase protein array that TNBC expressed higher levels of TTK protein compared to the other BC subgroups. We then determined the biological effects of TTK depletion by RNA interference, through analyses of tumorigenic capacity and cell viability in different human TNBC cell lines. We found that RNAi-mediated depletion of TTK in various TNBC cell lines severely compromised their viability and their ability to form colonies in an anchorage-independent manner. Moreover, we observed that TTK silencing led to an increase in H2AX phosphorylation, activation of caspases 3/7, sub-G1 cell population accumulation and high annexin V staining, as well as to a decrease in G1 phase cell population and an increased aneuploidy. Altogether, these data indicate that TTK depletion in TNBC cells induces apoptosis. These results point out TTK as a protein kinase overexpressed in TNBC that may represent an attractive therapeutic target specifically for this poor prognosis associated subgroup of breast cancer. PMID:23700430
Zhang, Hao; Wheat, Heather; Wang, Peter; Jiang, Sha; Baghdoyan, Helen A; Neubig, Richard R; Shi, X Y; Lydic, Ralph
2016-02-01
This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep. © 2016 Associated Professional Sleep Societies, LLC.
Tischer, Alexander; Auton, Matthew
2013-09-01
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.
Li, Xiu-Qing
2012-01-01
Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell. PMID:23028653
Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao
2017-03-01
An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zeno, Wade F; Rystov, Alice; Sasaki, Darryl Y; Risbud, Subhash H; Longo, Marjorie L
2016-05-10
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.
Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.; ...
2016-04-20
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less
NASA Astrophysics Data System (ADS)
Nekrasova, N. A.; Kurbatova, S. V.; Zemtsova, M. N.
2016-12-01
Regularities of the sorption of 1,2,3,4-tetrahydroquinoline derivatives on octadecylsilyl silica gel and porous graphitic carbon from aqueous acetonitrile solutions were investigated. The effect the molecular structure and physicochemical parameters of the sorbates have on their retention characteristics under conditions of reversed phase HPLC are analyzed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environment and a current awareness file of OSHA regulations regarding the safe handling of the chemicals... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reverse Phase Extraction (RPE) Method... Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND...
USDA-ARS?s Scientific Manuscript database
A method of preparation of Chromatorotor or plates with a reversed phase (RP) solid silica gel sorbent layer has been developed for preparative centrifugal chromatography. The RP-rotor plates consist of binder free RP solid SiO2 sorbent layers of different thicknesses paked between two supported cir...