Sample records for reverse phase transition

  1. Reversible Phase Transition with Ultralarge Dielectric Relaxation Behaviors in Succinimide Lithium(I) Hybrids.

    PubMed

    Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui

    2018-02-05

    Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.

  2. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  3. First-order reversal curve of the magnetostructural phase transition in FeTe

    DOE PAGES

    Frampton, M. K.; Crocker, J.; Gilbert, D. A.; ...

    2017-06-05

    We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to the magnetostructural phase transition of Fe 1+yTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe 1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast, Fe 1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introducemore » uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. Finally, the work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.« less

  4. High pressure spectroscopic studies of phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Mishra, K. K.; Ravindran, T. R.; Dhara, Sandip

    2018-04-01

    Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) at a technologically important temperature of 340K. A structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R is also reported via another two intermediate phases of monoclinic M2 and triclinic T. Metastable monoclinic M2 phase of VO2 was synthesized by Mg doping in the vapour transport process. Raman spectroscopic measurements were carried out at high pressure on V1-xMgxO2 microrods. Two reversible structural phase transitions from monoclinic M2 to triclinic T at 1.6 GPa and T to monoclinic M1 at 3.2 GPa are observed and are explained by structural relaxation of the strained phases.

  5. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

    DOE PAGES

    Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...

    2014-11-24

    Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less

  6. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  7. Lattice parameters and structural phase transition of lanthanum titanate perovskite, La0.68(Ti0.95,Al0.05)O3.

    PubMed

    Ali, Roushown; Yashima, Masatomo

    2003-05-01

    Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.

  8. Reversible structure manipulation by tuning carrier concentration in metastable Cu2S

    PubMed Central

    Tao, Jing; Chen, Jingyi; Li, Jun; Mathurin, Leanne; Zheng, Jin-Cheng; Li, Yan; Lu, Deyu; Cao, Yue; Wu, Lijun; Cava, Robert Joseph; Zhu, Yimei

    2017-01-01

    The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects––electronic or structural––is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure. PMID:28855335

  9. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  10. Effect of phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, V.; Fitz, D.E.; Kouri, D.J.

    1980-09-15

    The effect of phase choice and partial wave parameter choice on CS and IOS inelastic degeneracy averaged differential cross sections is studied. An approximate simplified CS scattering amplitude for l-bar=1/2(l'+l) is derived and is shown to have a form which closely resembles the McGuire--Kouri scattering amplitude for odd ..delta..j transitions and reduces to it for even ..delta..j transitions. The choice of phase in the CS wave function is shown to result in different approximations which yield significantly different shapes for the degeneracy averaged differential cross section. Time reversal symmetry arguments are employed to select the proper phase choice. IOS calculationsmore » of the degeneracy averaged differential cross sections of He--CO, He--Cl and Ne--HD using l-bar=1/2(l+l') and the phase choice which ensures proper time reversal symmetry are found to correct the phase disagreement which was previously noted for odd ..delta..j transitions using l-bar=l or l' and either the time reversal phase or other phase choices.« less

  11. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    PubMed

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

    PubMed Central

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445

  13. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions.

    PubMed

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.

  14. Vibrational spectroscopic study on polymorphism of erucic acid and palmitoleic acid: γ1→α1 and γ→α reversible solid state phase transitions

    NASA Astrophysics Data System (ADS)

    Kaneko, Fumitoshi; Yamazaki, Kazuhiro; Kobayashi, Masamichi; Sato, Kiyotaka; Suzuki, Masao

    1994-08-01

    The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid ( cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid ( cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [ J. Phys. Chem.90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.

  15. Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures

    NASA Astrophysics Data System (ADS)

    Ander Arregi, Jon; Horký, Michal; Fabianová, Kateřina; Tolley, Robert; Fullerton, Eric E.; Uhlíř, Vojtěch

    2018-03-01

    The effects of mesoscale confinement on the metamagnetic behavior of lithographically patterned FeRh structures are investigated via Kerr microscopy. Combining the temperature- and field-dependent magnetization reversal of individual sub-micron FeRh structures provides specific phase-transition characteristics of single mesoscale objects. Relaxation of the epitaxial strain caused by patterning lowers the metamagnetic phase transition temperature by more than 15 K upon confining FeRh films below 500 nm in one lateral dimension. We also observe that the phase transition becomes highly asymmetric when comparing the cooling and heating cycles for 300 nm-wide FeRh structures. The investigation of FeRh under lateral confinement provides an interesting platform to explore emergent metamagnetic phenomena arising from the interplay of the structural, magnetic and electronic degrees of freedom at the mesoscopic length scale.

  16. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  17. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  18. A reversible transition in liquid Bi under pressure.

    PubMed

    Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y

    2018-01-21

    The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.

  19. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    PubMed

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Amorphous-amorphous transition in a porous coordination polymer.

    PubMed

    Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki

    2017-07-04

    The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.

  1. Electric control of magnetization reorientation in FeRh /BaTiO3 mediated by a magnetic phase transition

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2017-10-01

    Employing first-principles calculations we predict magnetization reorientation in FeRh films epitaxially grown on BaTiO3 by reversing the electric polarization or applying the strain effect, which is associated with the recently discovered voltage-induced interfacial magnetic-phase transition by R. O. Cherifi et al. [Nat. Mater. 13, 345 (2014), 10.1038/nmat3870]. We propose that this transition from antiferromagnetic to ferromagnetic phase is the results of the mutual mechanisms of the polarization-reversal-induced volume/strain expansion in the interfacial FeRh layers and the competition between direct and indirect exchange interactions. These mechanisms are mainly driven by the ferroelectrically driven hybridization between Fe and Ti 3 d orbital states at the interface. Such a strong hybridization can further involve Rh 4 d states with large spin-orbit coupling, which, rather than the Fe 3 d orbitals, is responsible for magnetization reorientation at the magnetic-phase transition. These findings point toward the feasibility of electric field control of magnetization switching associated with the magnetic-phase transition in an antiferromagnet structure.

  2. Confirming Time-reversal Symmetry of a Directed Percolation Phase Transition in a Model of Neutral Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Ordway, Stephen; King, Dawn; Bahar, Sonya

    Reaction-diffusion processes, such as branching-coalescing random walks, can be used to describe the underlying dynamics of nonequilibrium phase transitions. In an agent-based, neutral model of evolutionary dynamics, we have previously shown that our system undergoes a continuous, nonequilibrium phase transition, from extinction to survival, as various system parameters were tuned. This model was shown to belong to the directed percolation (DP) universality class, by measuring the critical exponents corresponding to correlation length ξ⊥, correlation time ξ| |, and particle density β. The fourth critical exponent that defines the DP universality class is β', which measures the survival probability of growth from a single seed organism. Since DP universality is theorized to have time-reversal symmetry, it is assumed that β = β '. In order to confirm the existence of time-reversal symmetry in our model, we evaluate the system growth from a single asexually reproducing organism. Importantly, the critical exponent β' could be useful for comparison to experimental studies of phase transitions in biological systems, since observing growth of microbial populations is significantly easier than observing death. This research was supported by funding from the James S. McDonnell Foundation.

  3. CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.

    PubMed

    Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng

    2016-07-01

    Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of a metal oxide with a room-temperature photoreversible phase transition.

    PubMed

    Ohkoshi, Shin-Ichi; Tsunobuchi, Yoshihide; Matsuda, Tomoyuki; Hashimoto, Kazuhito; Namai, Asuka; Hakoe, Fumiyoshi; Tokoro, Hiroko

    2010-07-01

    Photoinduced phase-transition materials, such as chalcogenides, spin-crossover complexes, photochromic organic compounds and charge-transfer materials, are of interest because of their application to optical data storage. Here we report a photoreversible metal-semiconductor phase transition at room temperature with a unique phase of Ti(3)O(5), lambda-Ti(3)O(5). lambda-Ti(3)O(5) nanocrystals are made by the combination of reverse-micelle and sol-gel techniques. Thermodynamic analysis suggests that the photoinduced phase transition originates from a particular state of lambda-Ti(3)O(5) trapped at a thermodynamic local energy minimum. Light irradiation causes reversible switching between this trapped state (lambda-Ti(3)O(5)) and the other energy-minimum state (beta-Ti(3)O(5)), both of which are persistent phases. This is the first demonstration of a photorewritable phenomenon at room temperature in a metal oxide. lambda-Ti(3)O(5) satisfies the operation conditions required for a practical optical storage system (operational temperature, writing data by short wavelength light and the appropriate threshold laser power).

  5. Avalanche criticality in thermal-driven martensitic transitions: the asymmetry of the forward and reverse transitions in shape-memory materials

    NASA Astrophysics Data System (ADS)

    Planes, Antoni; Vives, Eduard

    2017-08-01

    Martensitic transitions take place intermittently as a sequence of avalanches which are accompanied by the emission of acoustic waves. The study of this acoustic emission (AE) reveals the scale-free nature of the avalanches. In a number of shape memory materials undergoing a martensitic transition it has been found that, in spite of relatively low hysteresis, the dynamics of forward and reverse transitions are different, which may explain the fact that the AE activity is different in both forward and reverse transitions. The asymmetry could be a consequence of the fact that, while nucleation is required for the transition from the parent to martensitic phase to take place, reverse transition occurs by fast shrinkage of martensitic domains. We have analysed in detail the distribution of avalanches in cooling and heating runs in Fe-Pd and Cu-Zn-Al shape-memory alloys. In the former, the martensitic transition is weakly first order while it shows a significant first order character in the latter. We have found that in Fe-Pd the distributions are power law for the forward and reverse transitions characterized by the same critical exponents. For Cu-Zn-Al the distribution of avalanches is critical in forward transitions but exponentially damped in the reverse transition. It is suggested that this different behaviour could originate from the different dynamic mechanisms in forward and reverse transitions. This paper is dedicated to our friend Ekhard Salje in the occasion of his 70th birthday.

  6. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    PubMed

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  7. Topological transitions for lattice bosons in a magnetic field

    PubMed Central

    Huber, Sebastian D.; Lindner, Netanel H.

    2011-01-01

    The Hall response provides an important characterization of strongly correlated phases of matter. We study the Hall conductivity of interacting bosons on a lattice subjected to a magnetic field. We show that for any density or interaction strength, the Hall conductivity is characterized by an integer. We find that the phase diagram is intersected by topological transitions between different values of this integer. These transitions lead to surprising effects, including sign reversal of the Hall conductivity and extensive regions in the phase diagram where it acquires a negative sign, which implies that flux flow is reversed in these regions—vortices there flow upstream. Our findings have immediate applications to a wide range of phenomena in condensed matter physics, which are effectively described in terms of lattice bosons. PMID:22109548

  8. Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system

    PubMed Central

    Rathee, Vikram; Krishnaswamy, Rema; Pal, Antara; Raghunathan, V. A.; Impéror-Clerc, Marianne; Pansu, Brigitte; Sood, A. K.

    2013-01-01

    We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature in weakly swollen isotropic and lamellar mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below , which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the phase to an phase induced by shear flow, before the nucleation of the phase. Shear diagram of the phase constructed in the parameter space of shear rate vs. temperature exhibits and transitions above the equilibrium crystallization temperature , in addition to the irreversible shear-driven nucleation of in the phase below . In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems. PMID:23986497

  9. Solid-state transformations in the β-form of chlorpropamide on cooling to 100 K.

    PubMed

    Drebushchak, Tatiana N; Drebushchak, Valeri A; Boldyreva, Elena V

    2011-04-01

    A single-crystal X-ray diffraction study of the effect of cooling down to 100 K on the β-form of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, has revealed reversible phase transitions at ∼257 K and between 150 and 125 K: β (Pbcn, Z' = 1) ⇔ β(II) (P2/c, Z' = 2) ⇔ β(III) (P2/n, a' = 2a, Z' = 4); the sequence corresponds to cooling. Despite changes in the space group and number of symmetry-independent molecules, the volume per molecule changes continuously in the temperature range 100-300 K. The phase transition at ∼257 K is accompanied by non-merohedral twinning, which is preserved on further cooling and through the second phase transition, but the original single crystal does not crack. DSC (differential scanning calorimetry) and X-ray powder diffraction investigations confirm the phase transitions. Twinning disappears on heating as the reverse transformations take place. The second phase transition is related to a change in conformation of the alkyl tail from trans to gauche in 1/4 of the molecules, regularly distributed in the space. Possible reasons for the increase in Z' upon cooling are discussed in comparison to other reported examples of processes (crystallization, phase transitions) in which organic crystals with Z' > 1 have been formed. Implications for pharmaceutical applications are discussed. © 2011 International Union of Crystallography

  10. Origin of phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Sardar, Manas; Dhara, Sandip

    2018-04-01

    Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) along with a structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R via another two intermediate phases of monoclinic M2 and triclinic T at a technologically important temperature of 340K. In the present work, besides synthesizing M1 phase of VO2, we also stabilized M2 and T phases at room temperature by introducing native defects in the system and observed an increase in transition temperature with increase in native defects. Raman spectroscopic measurements were carried out to confirm the pure VO2 phases. Since the MIT is accompanied by SPT in these systems, the origin of the phase transition is still under debate. The controversy between MIT and SPT, whether electron-phonon coupling or strong electron-electron correlation triggers the phase transition in VO2 is also resolved by examining the presence of intermediate phase M2 during phase transition.

  11. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  12. The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates

    NASA Astrophysics Data System (ADS)

    Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.

    2018-05-01

    Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.

  13. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    PubMed

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  14. The role played by amine and ethyl group in the reversible thermochromic process of [(C2H5)2NH2]2CuCl4 probing by FTIR and 2D-COS analysis

    NASA Astrophysics Data System (ADS)

    Xie, Dongjin; Xu, Jing; Cheng, Haifeng; Wang, Nannan; Zhou, Qun

    2018-06-01

    Thermochromic compound [(C2H5)2NH2]2CuCl4 displays a solid-solid phase transition at 52 °C apparent with color changing from green to yellow, induced by the geometry of [CuCl4]2- anion (regarded as chromophore of the compound) ranging from square-planar to flattened tetrahedral structure. Fourier transform infrared (FTIR) spectroscopy and two-dimensional correlation (2D-COS) analysis have been applied to study the role played by the amine and ethyl group of the ammonium cation during the phase transition process in heating and cooling process. With temperature increasing, strength weakening of the N-H…Cl H-bond and thermal disordering of the alkyl chain both occur in the phase transition. 2D-COS analysis reveals the N-H…Cl H-bond responds to increasing temperature in the first place, and may the dominating driving force for the structure variation of [CuCl4]2- anion. Although the thermochromic process of [(C2H5)2NH2]2CuCl4 is a reversible process, the sequential order of the variation of NH2+ and alkyl group of [(C2H5)2NH2]2CuCl4 derived by 2D-COS analysis during heating and cooling process are reverse, indicating the dynamic process of the phase transition is not perfect reversible. The existence of undercooling phenomenon in the cooling process has been revealed by 2D-COS analysis.

  15. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  16. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  17. Simultaneous Stress and Field Control of Sustainable Switching of Ferroelectric Phases

    PubMed Central

    Finkel, P.; Staruch, M.; Amin, A.; Ahart, M.; Lofland, S.E.

    2015-01-01

    In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40 × 106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2 MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices. PMID:26345729

  18. On the reversibility of the Meissner effect and the angular momentum puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu

    It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay ofmore » eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes. - Highlights: • The normal-superconductor phase transition is reversible. • Within the conventional theory, Foucault currents give rise to irreversibility. • To suppress Foucault currents, charge has to flow in direction perpendicular to the phase boundary. • The charge carriers have to be holes. • This solves also the angular momentum puzzle associated with the Meissner effect.« less

  19. The reversibility and first-order nature of liquid–liquid transition in a molecular liquid

    PubMed Central

    Kobayashi, Mika; Tanaka, Hajime

    2016-01-01

    Liquid–liquid transition is an intriguing phenomenon in which a liquid transforms into another liquid via the first-order transition. For molecular liquids, however, it always takes place in a supercooled liquid state metastable against crystallization, which has led to a number of serious debates concerning its origin: liquid–liquid transition versus unusual nano-crystal formation. Thus, there have so far been no single example free from such debates, to the best of our knowledge. Here we show experimental evidence that the transition is truly liquid–liquid transition and not nano-crystallization for a molecular liquid, triphenyl phosphite. We kinetically isolate the reverse liquid-liquid transition from glass transition and crystallization with a high heating rate of flash differential scanning calorimetry, and prove the reversibility and first-order nature of liquid–liquid transition. Our finding not only deepens our physical understanding of liquid–liquid transition but may also initiate a phase of its research from both fundamental and applications viewpoints. PMID:27841349

  20. Reversible phase transition in vanadium oxide films sputtered on metal substrates

    NASA Astrophysics Data System (ADS)

    Palai, Debajyoti; Carmel Mary Esther, A.; Porwal, Deeksha; Pradeepkumar, Maurya Sandeep; Raghavendra Kumar, D.; Bera, Parthasarathi; Sridhara, N.; Dey, Arjun

    2016-11-01

    Vanadium oxide films, deposited on aluminium (Al), titanium (Ti) and tantalum (Ta) metal substrates by pulsed RF magnetron sputtering at a working pressure of 1.5 x10-2 mbar at room temperature are found to display mixed crystalline vanadium oxide phases viz., VO2, V2O3, V2O5. The films have been characterized by field-emission scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy, and their thermo-optical and electrical properties have been investigated. Studies of the deposited films by DSC have revealed a reversible-phase transition found in the temperature range of 45-49 °C.

  1. Temperature-triggered reversible dielectric and nonlinear optical switch based on the one-dimensional organic-inorganic hybrid phase transition compound [C6H11NH3]2CdCl4.

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi

    2014-10-20

    The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.

  2. Electric-Field Control of Oxygen Vacancies and Magnetic Phase Transition in a Cobaltite/Manganite Bilayer

    NASA Astrophysics Data System (ADS)

    Cui, B.; Song, C.; Li, F.; Zhong, X. Y.; Wang, Z. C.; Werner, P.; Gu, Y. D.; Wu, H. Q.; Saleem, M. S.; Parkin, S. S. P.; Pan, F.

    2017-10-01

    Manipulation of oxygen vacancies (VO ) in single oxide layers by varying the electric field can result in significant modulation of the ground state. However, in many oxide multilayers with strong application potentials, e.g., ferroelectric tunnel junctions and solid-oxide fuel cells, understanding VO behavior in various layers under an applied electric field remains a challenge, owing to complex VO transport between different layers. By sweeping the external voltage, a reversible manipulation of VO and a corresponding fixed magnetic phase transition sequence in cobaltite/manganite (SrCoO3 -x/La0.45Sr0.55MnO3 -y ) heterostructures are reported. The magnetic phase transition sequence confirms that the priority of electric-field-induced VO formation or annihilation in the complex bilayer system is mainly determined by the VO formation energies and Gibbs free-energy differences, which is supported by theoretical analysis. We not only realize a reversible manipulation of the magnetic phase transition in an oxide bilayer but also provide insight into the electric-field control of VO engineering in heterostructures.

  3. Unusual magnetoelectric memory and polarization reversal in the kagome staircase compound N i3V2O8

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Wang, J. F.; He, Z. Z.; Lu, C. L.; Xia, Z. C.; Ouyang, Z. W.; Liu, C. B.; Chen, R.; Matsuo, A.; Kohama, Y.; Kindo, K.; Tokunaga, M.

    2018-05-01

    We study the electric polarization of the kagome staircase N i3V2O8 in magnetic fields up to 30 T and report a magnetoelectric memory effect controlled by bias electric fields. The explored ferroelectric phase in 19 -24 T is electrically controlled, whereas the ferroelectric phase in 2 -11 T exhibits unusual memory effects. We determine a characteristic critical magnetic field H3=11 T , below which strong memory exists and the polarization is frozen even in opposite bias fields. But when magnetic fields exceed H3, the frozen polarization is released and polarization reversal appears by tuning bias electric fields. We ascribe these phenomena to the pinning-depinning mechanism: nucleation and the accompanying pinning of chiral domain walls cooperatively induce the frozen behavior; the polarization reversal results from the depinning through the ferroelectrtic-to-paraelectric phase transition in high magnetic fields. Our experimental results reveal that the first-order phase transition plays an important role in these unusual memory effects.

  4. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  5. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  6. Disorder-driven topological phase transition in B i 2 S e 3 films

    DOE PAGES

    Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam; ...

    2016-10-03

    Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi 2Se 3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that theremore » is a change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less

  7. Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav

    Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less

  8. Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2

    DOE PAGES

    Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav; ...

    2017-12-21

    Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less

  9. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  10. Pressure-induced structural transition in chalcopyrite ZnSiP2

    NASA Astrophysics Data System (ADS)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.

    2017-05-01

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.

  11. Zeeman-Field-Tuned Topological Phase Transitions in a Two-Dimensional Class-DIII Superconductor

    PubMed Central

    Deng, W. Y.; Geng, H.; Luo, W.; Sheng, L.; Xing, D. Y.

    2016-01-01

    We investigate the topological phase transitions in a two-dimensional time-reversal invariant topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, we find that the system exhibits a number of topologically distinct phases with changing the out-of-plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we demonstrate that the zero bias conductance provides clear transport signatures of the different topological phases, which are robust against symmetry-breaking perturbations. PMID:27148675

  12. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less

  13. Liquid-solid phase transition alloy as reversible and rapid molding bone cement.

    PubMed

    Yi, Liting; Jin, Chao; Wang, Lei; Liu, Jing

    2014-12-01

    Acrylic bone cement has been an essential non-metallic implant used as fixing agent in the cemented total joint arthroplasty (THA). However, the currently available materials based mainly on polymethylmethacrylate (PMMA) still encounter certain limitations, such as time-consuming polymerization, thermal and chemical necrosis and troublesome revision procedure. Here from an alternative way, we proposed for the first time to adopt the injectable alloy cement to address such tough issues through introducing its unique liquid-solid phase transition mechanism. A typical cement along this way is thus made of an alloy Bi/In/Sn/Zn with a specifically designed low melting point 57.5 °C, which enables its rapid molding into various desired shapes with high plasticity and ultimate metallic behaviors. The fundamental characteristics including the mechanical strength, biocompatibility and phase transition-induced thermal effects have been clarified to demonstrate the importance of such alloy as unconventional cement with favorable merits. In addition, we also disclosed its advantage as an excellent contrast agent for radiation imaging on the bone interior structure which is highly beneficial for guiding the surgery and monitoring the therapeutic effects. Particularly, the proposed alloy cement with reversible phase transition feature significantly simplifies the revision of the cement and prosthesis. This study opens the way for employing the injectable alloy materials as reversible bone cement to fulfill diverse clinical needs in the coming time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  15. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  16. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene.

    PubMed

    Uchida, Emi; Sakaki, Kouji; Nakamura, Yumiko; Azumi, Reiko; Hirai, Yuki; Akiyama, Haruhisa; Yoshida, Masaru; Norikane, Yasuo

    2013-12-16

    Photoinduced phase transitions caused by photochromic reactions bring about a change in the state of matter at constant temperature. Herein, we report the photoinduced phase transitions of crystals of a photoresponsive macrocyclic compound bearing two azobenzene groups (1) at room temperature on irradiation with UV (365 nm) and visible (436 nm) light. The trans/trans isomer undergoes photoinduced phase transitions (crystal-isotropic phase-crystal) on UV light irradiation. The photochemically generated crystal exhibited reversible phase transitions between the crystal and the mesophase on UV and visible light irradiation. The molecular order of the randomly oriented crystals could be increased by irradiating with linearly polarized visible light, and the value of the order parameter was determined to be -0.84. Heating enhances the thermal cis-to-trans isomerization and subsequent cooling returned crystals of the trans/trans isomer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Field-induced antiferroelectric to ferroelectric transitions in (Pb 1–xLa x)(Zr 0.90Ti 0.10) 1–x/ 4O 3 investigated by in situ X-ray diffraction

    DOE PAGES

    Ciuchi, Ioana V.; Chung, Ching -Chang; Fancher, Christopher M.; ...

    2017-06-17

    Phase transitions and field-induced preferred orientation in (Pb 1-xLa x)(Zr 0.90Ti 0.10) 1–x/ 4O 3 (PLZT x/90/10) ceramics upon electric field cycling using in situ X-ray diffraction were studied. The evolution of the {200} pc and {111} pc diffraction line profiles indicate that PLZT 4/90/10 and PLZT 3/90/10 compositions undergo an antiferroelectric (AFE)–ferroelectric (FE) phase switching. Both PLZT 4/90/10 and PLZT 3/90/10 exhibit irreversible preferred orientation after experiencing the field-induced AFE-to-FE phase switching. An electric field-induced structure develops in both compositions which has a reversible character during the field decreasing in PLZT 4/90/10 and an irreversible character in PLZT 3/90/10.more » In addition, structural analysis of pre-poled PLZT 3/90/10 ceramics show that it is possible to induce consecutive FE-to-AFE and AFE-to-FE transitions when fields of reversed polarity are applied in sequence. The field range required to induce the AFE phase is broad, and the phase transition is kinetically slow. In conclusion, this kind of transition has rarely been reported before.« less

  18. Field-induced antiferroelectric to ferroelectric transitions in (Pb 1–xLa x)(Zr 0.90Ti 0.10) 1–x/ 4O 3 investigated by in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuchi, Ioana V.; Chung, Ching -Chang; Fancher, Christopher M.

    Phase transitions and field-induced preferred orientation in (Pb 1-xLa x)(Zr 0.90Ti 0.10) 1–x/ 4O 3 (PLZT x/90/10) ceramics upon electric field cycling using in situ X-ray diffraction were studied. The evolution of the {200} pc and {111} pc diffraction line profiles indicate that PLZT 4/90/10 and PLZT 3/90/10 compositions undergo an antiferroelectric (AFE)–ferroelectric (FE) phase switching. Both PLZT 4/90/10 and PLZT 3/90/10 exhibit irreversible preferred orientation after experiencing the field-induced AFE-to-FE phase switching. An electric field-induced structure develops in both compositions which has a reversible character during the field decreasing in PLZT 4/90/10 and an irreversible character in PLZT 3/90/10.more » In addition, structural analysis of pre-poled PLZT 3/90/10 ceramics show that it is possible to induce consecutive FE-to-AFE and AFE-to-FE transitions when fields of reversed polarity are applied in sequence. The field range required to induce the AFE phase is broad, and the phase transition is kinetically slow. In conclusion, this kind of transition has rarely been reported before.« less

  19. Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe5

    NASA Astrophysics Data System (ADS)

    Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; Griffin, Sinéad M.; Neaton, Jeffrey B.; Potter, Andrew C.; Analytis, James G.

    2018-01-01

    We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe5, a system that is thought to be near a topological phase transition. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semimetal. However, on increasing temperature across a corresponding transport anomaly, all signatures of this Dirac-like nature are completely suppressed, providing the first thermodynamic evidence of a possible topological phase transition in this compound. ZrTe5 may thus provide a rare, experimentally accessible example in which such phase transitions can be studied directly.

  20. Topological superconductivity in the extended Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ <0 , we find a competition between a time-reversal symmetry-breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  1. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    PubMed Central

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-01-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178

  2. Direct evidence of an incommensurate phase in NaNbO{sub 3} and its implication in NaNbO{sub 3}-based lead-free antiferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hanzheng; Randall, Clive A., E-mail: car4@psu.edu; Shimizu, Hiroyuki

    2015-09-14

    Hot-stage in situ transmission electron microscopy was employed to investigate the temperature-induced complex sequence of phase transitions in NaNbO{sub 3} polycrystalline. In addition to the commonly recognized P (Pbma) → R (Pmnm) → S (Pnmm) phase transitions, incommensurate phases were observed to exist in P and R phase regions. The former (in the P → R transition region) is coincident with a diffused dielectric peak appearing at ∼170 °C, and the latter (in the R → S transition region) serves as an intermediate structure to bridge the two sub-phases in the R phase region. The incommensurate phase in the P phasemore » region can be inferred from the polarization current density and differential dielectric permittivity anomalies, and it provides the bridge structure during the electric field-induced polarization reversal and antiferroelectric-to-ferroelectric transition in NaNbO{sub 3} solid solutions.« less

  3. Buckling of a circular plate made of a shape memory alloy due to a reverse thermoelastic martensite transformation

    NASA Astrophysics Data System (ADS)

    Movchan, A. A.; Sil'chenko, L. G.

    2008-02-01

    We solve the axisymmetric buckling problem for a circular plate made of a shape memory alloy undergoing reverse martensite transformation under the action of a compressing load, which occurs after the direct martensite transformation under the action of a generally different (extending or compressing) load. The problem was solved without any simplifying assumptions concerning the transverse dimension of the supplementary phase transition region related to buckling. The mathematical problem was reduced to a nonlinear eigenvalue problem. An algorithm for solving this problem was proposed. It was shown that the critical buckling load under the reverse transition, which is obtained by taking into account the evolution of the phase strains, can be many times lower than the same quantity obtained under the assumption that the material behavior is elastic even for the least (martensite) values of the elastic moduli. The critical buckling force decreases with increasing modulus of the load applied at the preliminary stage of direct transition and weakly depends on whether this load was extending or compressing. In shape memory alloys (SMA), mutually related processes of strain and direct (from the austenitic into the martensite phase) or reverse thermoelastic phase transitions may occur. The direct transition occurs under cooling and (or) an increase in stresses and is accompanied by a significant decrease (nearly by a factor of three in titan nickelide) of the Young modulus. If the direct transition occurs under the action of stresses with nonzero deviator, then it is accompanied by accumulation of macroscopic phase strains, whose intensity may reach 8%. Under the reverse transition, which occurs under heating and (or) unloading, the moduli increase and the accumulated strain is removed. For plates compressed in their plane, in the case of uniform temperature distribution over the thickness, one can separate trivial processes under which the strained plate remains plane and the phase ratio has a uniform distribution over the thickness. For sufficiently high compressing loads, the trivial process of uniform compression may become unstable in the sense that, for small perturbations of the plate deflection, temperature, the phase ratio, or the load, the difference between the corresponding perturbed process and the unperturbed process may be significant. The results of several experiments concerning the buckling of SMA elements are given in [1, 2], and the statement and solution of the corresponding boundary value problems can be found in [3-11]. The experimental studies [2] and several analytic solutions obtained for the Shanley column [3, 4], rods [5-7], rectangular plates under direct [8] and reverse [9] transitions showed that the processes of thermoelastic phase transitions can significantly (by several times) decrease the critical buckling loads compared with their elastic values calculated for the less rigid martensite state of the material. Moreover, buckling does not occur in the one-phase martensite state in which the elastic moduli are minimal but in the two-phase state in which the values of the volume fractions of the austenitic and martensite phase are approximately equal to each other. This fact is most astonishing for buckling, studied in the present paper, under the reverse transition in which the Young modulus increases approximately half as much from the beginning of the phase transition to the moment of buckling. In [3-9] and in the present paper, the static buckling criterion is used. Following this criterion, the critical load is defined to be the load such that a nontrivial solution of the corresponding quasistatic problem is possible under the action of this load. If, in the problems of stability of rods and SMA plates, small perturbations of the external load are added to small perturbations of the deflection (the critical force is independent of the amplitude of the latter), then the critical forces vary depending on the value of perturbations of the external load [5, 8, 9]. Thus, in the case of small perturbations of the load, the problem of stability of SMA elements becomes indeterminate. The solution of the stability problem for SMA elements also depends on whether the small perturbations of the phase ratio and the phase strain tensor are taken into account. According to this, the problem of stability of SMA elements can be solved in the framework of several statements (concepts, hypotheses) which differ in the set of quantities whose perturbations are admissible (taken into account) in the process of solving the problem. The variety of these statements applied to the problem of buckling of SMA elements under direct martensite transformation is briefly described in [4, 5]. But, in the problem of buckling under the reverse transformation, some of these statements must be changed. The main question which we should answer when solving the problem of stability of SMA elements is whether small perturbations of the phase ratio (the volume fraction of the martensite phase q) are taken into account, because an appropriate choice significantly varies the results of solving the stability problem. If, under the transition to the adjacent form of equilibrium, the phase ratio of all points of the body is assumed to remain the same, then we deal with the "fixed phase atio" concept. The opposite approach can be classified as the "supplementary phase transition" concept (which occurs under the transition to the adjacent form of equilibrium). It should be noted that, since SMA have temperature hysteresis, the phase ratio in SMA can endure only one-sided small variations. But if we deal with buckling under the inverse transformation, then the variation in the volume fraction of the martensite phase cannot be positive. The phase ratio is not an independent variable, like loads or temperature, but, due to the constitutive relations, its variations occur together with the temperature variations and, in the framework of connected models for a majority of SMA, together with variations in the actual stresses. Therefore, the presence or absence of variations in q is determined by the presence or absence of variations in the temperature, deflection, and load, as well as by the system of constitutive relations used in this particular problem. In the framework of unconnected models which do not take the influence of actual stresses on the phase ratio into account, the "fixed phase ratio" concept corresponds to the case of absence of temperature variations. The variations in the phase ratio may also be absent in connected models in the case of specially chosen values of variations in the temperature and (or) in the external load, as well as in the case of SMA of CuMn type, for which the influence of the actual stresses on the phase compound is absent or negligible. In the framework of the "fixed phase ratio" hypothesis, the stability problem for SMA elements has a solution coinciding in form with the solution of the corresponding elastic problem, with the elastic moduli replaced by the corresponding functions of the phase ratio. In the framework of the supplementary phase transition" concept, the result of solving the stability problem essentially depends on whether the small perturbations of the external loads are taken into account in the process of solving the problem. The point is that, when solving the problem in the connected setting, the supplementary phase transition region occupies, in general, not the entire cross-section of the plate but only part of it, and the location of the boundary of this region depends on the existence and the value of these small perturbations. More precisely, the existence of arbitrarily small perturbations of the actual load can result in finite changes of the configuration of the supplementary phase transition region and hence in finite change of the critical values of the load. Here we must distinguish the "fixed load" hypothesis where no perturbations of the external loads are admitted and the "variable load" hypothesis in the opposite case. The conditions that there no variations in the external loads imply additional equations for determining the boundary of the supplementary phase transition region. If the "supplementary phase transition" concept and the "fixed load" concept are used together, then the solution of the stability problem of SMA is uniquely determined in the same sense as the solution of the elastic stability problem under the static approach. In the framework of the "variable load" concept, the result of solving the stability problem for SMA ceases to be unique. But one can find the upper and lower bounds for the critical forces which correspond to the cases of total absence of the supplementary phase transition: the upper bound corresponds to the critical load coinciding with that determined in the framework of the "fixed phase ratio" concept, and the lower bound corresponds to the case where the entire cross-section of the plate experiences the supplementary phase transition. The first version does not need any additional name, and the second version can be called as the "all-round supplementary phase transition" hypothesis. In the present paper, the above concepts are illustrated by examples of solving problems about axisymmetric buckling of a circular freely supported or rigidly fixed plate experiencing reverse martensite transformation under the action of an external force uniformly distributed over the contour. We find analytic solutions in the framework of all the above-listed statements except for the case of free support in the "fixed load" concept, for which we obtain a numerical solution.

  4. Entropy generation and momentum transfer in the superconductor-normal and normal-superconductor phase transformations and the consistency of the conventional theory of superconductivity

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2018-05-01

    Since the discovery of the Meissner effect, the superconductor to normal (S-N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N-S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S-N transition and the N-S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.

  5. Fragility, network adaptation, rigidity- and stress- transitions in homogenized binary GexS100-x glasses

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shibalik; Boolchand, Punit

    2014-03-01

    Binary GexS100-x glasses reveal elastic and chemical phase transitions driven by network topology. With increasing Ge content x, well defined rigidity (xc(1) =19.3%) and stress(xc(2) =24.85%) transitions and associated optical elasticity power-laws are observed in Raman scattering. Calorimetric measurements reveal a square-well like minimum with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum with edges that nearly coincide with the reversibility window. These results are signatures of the isostatically rigid nature of the elastic phase formed between the rigidity and stress transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization of non-stoichiometric batch compositions reacted at high temperatures. Homogenization of chalcogenides melts/glasses over a scale of a few microns is a pre-requisite to observe the intrinsic physical properties of these materials. Supported by NSF Grant DMR 0853957.

  6. Pressure-induced structural transition in chalcopyrite ZnSiP 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less

  7. Local Peltier-effect-induced reversible metal–insulator transition in VO{sub 2} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takami, Hidefumi; Kanki, Teruo, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp; Tanaka, Hidekazu, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp

    2016-06-15

    We report anomalous resistance leaps and drops in VO{sub 2} nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO{sub 2} nanowires because one straight current path through the electronicmore » domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    K., S C; M., T C

    Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less

  9. Evolution and control of the phase competition morphology in a manganite film

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-01

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  10. Evolution and control of the phase competition morphology in a manganite film.

    PubMed

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-25

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  11. Evidence for a Cosmological Phase Transition on the TeVScale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindesay, James V.; Noyes, H.Pierre; /SLAC

    Examining the reverse evolution of the universe from the present, long before reaching Planck density dynamics one expects major modifications from the de-coherent thermal equations of state, suggesting a prior phase that has macroscopic coherence properties. The assumption that the phase transition occurs during the radiation dominated epoch, and that zero-point motions drive the fluctuations associated with this transition, specifies a class of cosmological models in which the cosmic microwave background fluctuation amplitude at last scattering is approximately 10{sup -5}. Quantum measurability constraints (e.g. uncertainly relations) define cosmological scales whose expansion rates can be at most luminal.

  12. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  13. Reversible water uptake/release by thermoresponsive polyelectrolyte hydrogels derived from ionic liquids.

    PubMed

    Deguchi, Yuki; Kohno, Yuki; Ohno, Hiroyuki

    2015-06-07

    Thermoresponsive polyelectrolyte hydrogels, derived from tetra-n-alkylphosphonium 3-sulfopropyl methacrylate-type ionic liquid monomers, show reversible water uptake/release, in which the gels absorb/desorb water for at least ten cycles via a lower critical solution temperature-type phase transition.

  14. Raman spectroscopic study of hydrogen ordered ice XIII and of its reversible phase transition to disordered ice V.

    PubMed

    Salzmann, Christoph G; Hallbrucker, Andreas; Finney, John L; Mayer, Erwin

    2006-07-14

    Raman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios. On thermal cycling between 80 and 120 K, the reversible phase transition to disordered ice V is observed. The remarkable effect of HCl (DCl) on orientational ordering in ice V and its phase transition to ordered ice XIII, first reported in a powder neutron diffraction study of DCl doped D(2)O ice V (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758), is demonstrated by Raman spectroscopy and discussed. The dopants KOH and HF have only a minor effect on hydrogen ordering in ice V, as shown by the Raman spectra.

  15. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlir, V.; Arregi, J. A.; Fullerton, E. E.

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less

  16. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    DOE PAGES

    Uhlir, V.; Arregi, J. A.; Fullerton, E. E.

    2016-10-11

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less

  17. Ice polyamorphism in the minimal Mercedes-Benz model of water.

    PubMed

    Cartwright, Julyan H E; Piro, Oreste; Sánchez, Pedro A; Sintes, Tomás

    2012-12-28

    We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.

  18. Ice polyamorphism in the minimal Mercedes-Benz model of water

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.; Piro, Oreste; Sánchez, Pedro A.; Sintes, Tomás

    2012-12-01

    We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.

  19. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE PAGES

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin; ...

    2017-11-08

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  20. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  1. Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.

    2013-02-15

    Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less

  2. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  3. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  4. Unusual structural phase transition in [N(C2H5)4][N(CH3)4][ZnBr4

    NASA Astrophysics Data System (ADS)

    Krawczyk, Monika K.; Ingram, Adam; Cach, Ryszard; Czapla, Zbigniew; Czupiński, Olaf; Dacko, Sławomir; Staniorowski, Piotr

    2018-04-01

    The new hybrid organic-inorganic crystal [N(C2H5)4][N(CH3)4][ZnBr4] was grown and its physical properties and structural phase transition are presented. On the basis of thermal analysis (DSC (differential scanning calorimetry), DTA (differential thermal analysis), DTG), X-ray structural, dilatometric and dielectric studies as well as optical observation, the reversible first-order phase transition at 490/488 K on heating and cooling run, respectively, has been found. An appearance of domain structure of ferroelastic type gives evidence for an untypical lowering of crystal symmetry during the phase transition. At room temperature, the satisfying crystal structure solution was found in the tetragonal system, in the P?21m space group.

  5. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  6. Quantum vertex model for reversible classical computing.

    PubMed

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  7. Quantum vertex model for reversible classical computing

    NASA Astrophysics Data System (ADS)

    Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.

    2017-05-01

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  8. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN

    DOE PAGES

    Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...

    2017-04-10

    III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.

  9. Role of relativity in high-pressure phase transitions of thallium.

    PubMed

    Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev

    2017-02-20

    We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.

  10. Kinetic mechanism for reversible structural transition in MoTe2 induced by excess charge carriers

    NASA Astrophysics Data System (ADS)

    Rubel, O.

    2018-06-01

    Kinetic of a reversible structural transition between insulating (2H) and metallic (1T ') phases in a monolayer MoTe2 due to an electrostatic doping is studied using first-principle calculations. The driving force for the structural transition is the energy gained by transferring excess electrons from the bottom of the conduction band to lower energy gapless states in the metallic phase as have been noticed in earlier studies. The corresponding structural transformation involves dissociation of Mo-Te bonds (one per formula unit), which results in a kinetic energy barrier of 0.83 eV. The transformation involves a consecutive movement of atoms similar to a domain wall motion. The presence of excess charge carriers modifies not only the total energy of the initial and final states, but also lowers an energy of the transition state. An experimentally observed hysteresis in the switching process can be attributed to changes in the kinetic energy barrier due to its dependence on the excess carrier density.

  11. ARTICLES: Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.

    1984-04-01

    The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.

  12. Phase Transition in Biopolymer Hydrogels Based on Glycine (g), Valine (v), Proline (p), and Isoleucine (i)

    NASA Astrophysics Data System (ADS)

    Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.

    2000-03-01

    Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.

  13. Microgels: Structure, Dynamics, and Possible Applications.

    NASA Astrophysics Data System (ADS)

    McKenna, John; Streletzky, Kiril

    2007-03-01

    We cross-linked Hydropxypropylcellulose (HPC) polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a transition to a fewer modes around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. Our experiments prove that microgel particles shrink under volume phase transition. The shrinkage is reversible and depends on the amount of cross-linker, salt and polymer concentrations and rate of heating. Reversibility of microgel volume phase transition property might be particularly useful for a controlled drug delivery and release.

  14. Thermotropic phase transition in an adsorbed melissic acid film at the n-hexane-water interface

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. M.

    2017-06-01

    A reversible thermotropic phase transition in an adsorption melissic acid film at the interface between n-hexane and an aqueous solution of potassium hydroxide (pH ≈ 10) is investigated by X-ray reflectometry and diffuse scattering using synchrotron radiation. The experimental data indicate that the interface "freezing" transition is accompanied not only by the crystallization of the Gibbs monolayer but also by the formation of a planar smectic structure in the 300-Å-thick adsorption film; this structure is formed by 50-Å-thick layers.

  15. Thermochromic halide perovskite solar cells.

    PubMed

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  16. Thermochromic halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  17. Compare the phase transition properties of VO2 films from infrared to terahertz range

    NASA Astrophysics Data System (ADS)

    Liang, Shan; Shi, Qiwu; Huang, Wanxia; Peng, Bo; Mao, Zhenya; Zhu, Hongfu

    2018-06-01

    VO2 with reversible semiconductor-metal phase transition properties is particularly available for the application in smart opto-electrical devices. However, there are rare reports on comparing its phase transition properties at different ranges. In this study, the VO2 films are designed with the similar crystalline structure and stoichiometry, but different morphologies by inorganic and organic sol-gel methods, and their phase transition characteristics are compared both at infrared and terahertz range. The results indicate that the VO2 film prepared by inorganic sol-gel method shows more compact nanostructure. It results in larger resistivity change, infrared and terahertz switching ratio in the VO2 film. Moreover, it presents that the phase transition intensity of VO2 film in terahertz range is more sensitive to its microstructure. This work is helpful for understanding the susceptibility of terahertz switching properties of VO2 to its microstructure. And it can provide insights for the applications of VO2 in terahertz smart devices.

  18. Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure.

    PubMed

    Graham, Alexander J; Banu, Ana-Maria; Düren, Tina; Greenaway, Alex; McKellar, Scott C; Mowat, John P S; Ward, Kenneth; Wright, Paul A; Moggach, Stephen A

    2014-06-18

    Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2-BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2-BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites.

  19. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition

    NASA Astrophysics Data System (ADS)

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen

    2018-03-01

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam

    Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi 2Se 3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that theremore » is a change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less

  1. Optomechanically-induced transparency in parity-time-symmetric microresonators

    PubMed Central

    Jing, H.; Özdemir, Şahin K.; Geng, Z.; Zhang, Jing; Lü, Xin-You; Peng, Bo; Yang, Lan; Nori, Franco

    2015-01-01

    Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. PMID:26169253

  2. The Steens Mountain (Oregon) geomagnetic polarity transition: 1. Directional history, duration of episodes, and rock magnetism

    USGS Publications Warehouse

    Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.

    1985-01-01

    The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity data document very erratic geomagnetic field behavior during the polarity transition. Changes in magnetic field direction were variable and occurred either (1) in a regular, progressive manner, (2) with sudden, extremely rapid angular changes (58°±21°/year), or (3) with little or no movement for periods of the order of 600±200 years. Changes in magnetic intensity occurred in a like manner and were sometimes correlated with changes in direction, but during other periods both directional and intensity changes occurred independently. Directional changes following the polarity transition occurred in a seemingly normal manner, although intensity fluctuations attest to some instability of the newly reestablished dipole.

  3. Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.

    2018-03-01

    We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

  4. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    DOE PAGES

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less

  6. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  7. Flexibility transition and guest-driven reconstruction in a ferroelastic metal-organic framework†Electronic supplementary information (ESI) available: Atomic coordinates and lattice parameter data. CCDC 1016797. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ce01572jClick here for additional data file.

    PubMed

    Hunt, Sarah J; Cliffe, Matthew J; Hill, Joshua A; Cairns, Andrew B; Funnell, Nicholas P; Goodwin, Andrew L

    2015-01-14

    The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below T f = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across T f . The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.

  8. Osmotically Induced Reversible Transitions in Lipid-DNA Mesophases

    PubMed Central

    Danino, Dganit; Kesselman, Ellina; Saper, Gadiel; Petrache, Horia I.; Harries, Daniel

    2009-01-01

    We follow the effect of osmotic pressure on isoelectric complexes that self-assemble from mixtures of DNA and mixed neutral and cationic lipids. Using small angle x-ray diffraction and freeze-fracture cryo-electron microscopy, we find that lamellar complexes known to form in aqueous solutions can reversibly transition to hexagonal mesophases under high enough osmotic stress exerted by adding a neutral polymer. Using molecular spacings derived from x-ray diffraction, we estimate the reversible osmotic pressure-volume (Π-V) work needed to induce this transition. We find that the transition free energy is comparable to the work required to elastically bend lipid layers around DNA. Consistent with this, the required work is significantly lowered by an addition of hexanol, which is known to soften lipid bilayers. Our findings not only help to resolve the free-energy contributions associated with lipid-DNA complex formation, but they also demonstrate the importance that osmotic stress can have to the macromolecular phase geometry in realistic biological environments. PMID:19348739

  9. β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture.

    PubMed

    Galven, Cyrille; Pagnier, Thierry; Rosman, Noël; Le Berre, Françoise; Crosnier-Lopez, Marie-Pierre

    2018-06-18

    The present work concerns the tellurate Na 2 TeO 4 which has a 1D structure and could then present a CO 2 capture ability. It has been synthesized in a powder form via a solid-state reaction and structurally characterized by thermal X-ray diffraction experiments, Raman spectroscopy, and differential scanning calorimetry. The room temperature structure corresponds to the β-Na 2 TeO 4 orthorhombic form, and we show that it undergoes a reversible structural transition near 420 °C toward a monoclinic system. Ab initio computations were also performed on the room temperature structure, the Raman vibration modes calculated, and a normal mode attribution proposed. In agreement with our expectations, this sodium oxide is able to trap CO 2 by a two-step mechanism: Na + /H + exchange and carbonation of the released sodium as NaHCO 3 . This capture is reversible since CO 2 can be released upon heating by recombination of the mother phase.

  10. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.

  11. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  12. Linear dynamics of classical spin as Mobius transformation

    DOE PAGES

    Galda, Alexey; Vinokur, Valerii М.

    2017-04-26

    Though the overwhelming majority of natural processes occur far from the equilibrium, general theoretical approaches to non-equilibrium phase transitions remain scarce. Recent breakthroughs introduced a description of open dissipative systems in terms of non-Hermitian quantum mechanics enabling the identification of a class of non-equilibrium phase transitions associated with the loss of combined parity (reflection) and time-reversal symmetries. Here we report that the time evolution of a single classical spin (e.g. monodomain ferromagnet) governed by the Landau-Lifshitz-Gilbert-Slonczewski equation in the absence of magnetic anisotropy terms is described by a Mobius transformation in complex stereographic coordinates. We identify the parity-time symmetry-breaking phasemore » transition occurring in spin-transfer torque-driven linear spin systems as a transition between hyperbolic and loxodromic classes of Mobius transformations, with the critical point of the transition corresponding to the parabolic transformation. However, this establishes the understanding of non-equilibrium phase transitions as topological transitions in configuration space.« less

  13. Pressure induced phase transformations in NaZr{sub 2}(PO{sub 4}){sub 3} studied by X-ray diffraction and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamali, K.; Ravindran, T.R., E-mail: trr@igcar.gov.in; Chandra Shekar, N.V.

    2015-01-15

    Raman spectroscopic and x-ray diffraction measurements on NaZr{sub 2}(PO{sub 4}){sub 3} were carried out up to 30 GPa at close intervals of pressure, revealing two structural phase transformations around 5 and 6.6 GPa. The second phase at 5.4 GPa is indexed to R3 space group similar to that of RbTi{sub 2}(PO{sub 4}){sub 3}. Bulk modulus decreases abruptly from 53 GPa (B′=4) to 36 GPa (B′=4) in the second phase above 5 GPa. The structure of the phase III at 8.2 GPa is indexed as orthorhombic similar to the case of high temperature phase of monoclinic LiZr{sub 2}(PO{sub 4}){sub 3}. Bulkmore » modulus of this phase III is found to be 65 GPa (B′=4), which is higher than that of the ambient phase. In high pressure Raman studies, modes corresponding to 72 and 112 cm{sup −1} soften in the ambient phase whereas around 5 GPa, the ones at 60, 105, 125 and 190 cm{sup −1} soften with pressure contributing negatively to overall thermal expansion. - Graphical abstract: High pressure study of NaZr{sub 2}(PO{sub 4}){sub 3} shows a reversible phase transition from R-3c to R3 structure at 5 GPa accompanied by an increase in compressibility signaling a polyhedral tilt transition. - Highlights: • NaZr{sub 2}(PO{sub 4}){sub 3} undergoes two reversible phase transitions at 5 and 6.7 GPa. • The transition at 5 is from rhombohedral R-3c to R3 structure. • Bulk modulus of NaZr{sub 2}(PO{sub 4}){sub 3} is lower than that for the isostructural RbTi{sub 2}(PO{sub 4}){sub 3.} • Compressibility increases with substitution of a smaller cation (Na). • Zr-translational and PO{sub 4} librational modes contribute to phase transition.« less

  14. Epidemic models for phase transitions: application to a physical gel

    NASA Astrophysics Data System (ADS)

    Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.

    2017-09-01

    Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.

  15. Mechanism of the α -ɛ phase transformation in iron

    NASA Astrophysics Data System (ADS)

    Dewaele, A.; Denoual, C.; Anzellini, S.; Occelli, F.; Mezouar, M.; Cordier, P.; Merkel, S.; Véron, M.; Rausch, E.

    2015-05-01

    The α -Fe↔ɛ -Fe pressure-induced transformation under pure hydrostatic static compression has been characterized with in situ x-ray diffraction using α -Fe single crystals as starting samples. The forward transition starts at 14.9 GPa, and the reverse at 12 GPa, with a width of α -ɛ coexistence domain of the order of 2 GPa. The elastic stress in the sample increases in this domain, and partially relaxes after completion of the transformation. Orientation relations between parent α -Fe and child ɛ -Fe have been determined, which definitely validates the Burgers path for the direct transition. On the reverse transition, an unexpected variant selection is observed. X-ray diffraction data, complemented with ex situ microstructural observations, suggest that this selection is caused by defects and stresses accumulated during the direct transition.

  16. On the reversibility of the Meissner effect and the angular momentum puzzle

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-10-01

    It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes.

  17. Raman spectroscopic study of DL valine under pressure up to 20 GPa

    NASA Astrophysics Data System (ADS)

    Rêgo, F. S. C.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Polian, A.

    2016-04-01

    DL-valine crystal was studied by Raman spectroscopy under hydrostatic pressure using a diamond anvil cell from ambient pressure up to 19.4 GPa in the spectral range from 40 to 3300 cm-1. Modifications in the spectra furnished evidence of the occurrence of two structural phase transitions undergone by this racemic amino acid crystal. The classification of the vibrational modes, the behavior of their wavenumber as a function of the pressure and the reversibility of the phase transitions are discussed.

  18. Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction

    DOE PAGES

    Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.; ...

    2016-10-13

    The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less

  19. Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.

    The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less

  20. A detailed record of paleomagnetic field change from Searles Lake, California: 1. Long-term secular variation bounding the Gauss/Matuyama polarity reversal

    NASA Astrophysics Data System (ADS)

    Glen, Jonathan M. G.; Liddicoat, Joseph C.; Coe, Robert S.

    1999-06-01

    More than 33 m of 2.5 Ma sediment from Searles Lake, California was studied in order to construct a record of secular variation (SV) across the Gauss/Matuyama (G/M) normal-to-reverse polarity transition. The behavior of the field preceding and following the reversal is considered here, while in a companion paper [Glen et al., this issue] the details of the transition are discussed. The record encompasses an interval of roughly 183,000 years beginning 50 kyr (9 m) before and extending more than 128 kyr (23 m) beyond the transition, while the main phase of the transition lasts for nearly 5 kyr (1 m). Because the core was rotary drilled, and declinations lost, SV was characterized by the inclination and its angular dispersion. Inclination-only statistics reveal that (1) the record displays overall higher than expected values of angular dispersion (normal S˜20°; reverse S˜19°; expected S˜15.5°), suggesting that the field proximal to transitions may be more noisy than the distal field. In addition, normal data from immediately before the transition display higher S than reverse data immediately following it, implying that the postransitional field is more stable than the pretransitional field. One of the most prominent features of this record is an excursion of the field occurring roughly 4 kyr prior to the onset of the reversal. A record of the G/M transition from Chinese loess (R. Zhu et al., submitted manuscript, 1999) displays a similar event (also occurring roughly 4 kyr before the transition). This and the fact that the event is associated with anomalously low intensities suggest that the disturbance may be global in nature. The fact that comparable features are associated with other transitions [Hartl and Tauxe, 1996; Clement, 1992] intimates that the field may commonly show signs of early instability. This precursory event is actually one of a sequence of oscillations (in inclination and intensity) preceding the transition. That these fluctuations occur at roughly 4 kyr intervals leading up to the reversal (which also appears at this same interval) strongly suggests that an oscillatory disturbance in the core, active over at least 15 kyr prior to the transition, had eventually triggered the reversal. In addition, that these waveforms are absent from the postransitional record suggests the reversal process actively rejuvenates and stabilizes the field.

  1. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3

    NASA Astrophysics Data System (ADS)

    Yao, Lide; Inkinen, Sampo; van Dijken, Sebastiaan

    2017-02-01

    Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.

  2. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.

    2015-08-15

    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less

  3. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  4. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  5. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and Z 2 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Song, Zhi-Gang; Li, Shu-Shen; Wei, Su-Huai; Luo, Jun-Wei

    2018-05-01

    Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, but the transition may also occur between different classes of topological Dirac phases. However, it is a fundamental challenge to realize quantum transition between Z2 nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because Z2 TI and TCI are hardly both co-exist in a single material due to their contradictory requirement on the number of band inversions. The Z2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas, the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Here, take PbSnTe2 alloy as an example, we show that at proper alloy composition the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z2 TI phase when the alloy is ordered from a random phase into a stable CuPt phase. Our results suggest that atomic-ordering provides a new platform to switch between different topological phases.

  6. Berezinskii-Kosterlitz-Thouless transition in the time-reversal-symmetric Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-01-01

    Assuming that two-component Fermi gases with opposite artificial magnetic fields on a square optical lattice are well described by the so-called time-reversal-symmetric Hofstadter-Hubbard model, we explore the thermal superfluid properties along with the critical Berezinskii-Kosterlitz-Thouless (BKT) transition temperature in this model over a wide range of its parameters. In particular, since our self-consistent BCS-BKT approach takes the multiband butterfly spectrum explicitly into account, it unveils how dramatically the interband contribution to the phase stiffness dominates the intraband one with an increasing interaction strength for any given magnetic flux.

  7. Raman and infrared spectroscopic investigations of a ferroelastic phase transition in B a2ZnTe O6 double perovskite

    NASA Astrophysics Data System (ADS)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson

    2018-05-01

    The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.

  8. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition.

    PubMed

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C Austen

    2018-03-09

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  10. 0 - π Quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.

    2018-05-01

    In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.

  11. Phase transition and strength of vanadium under shock compression up to 88 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuying, E-mail: yuyinyu@caep.cn; Tan, Ye; Dai, Chengda

    A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than themore » BCC phase, which is contrast to the findings from DAC experiments and theoretical work.« less

  12. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

    PubMed

    Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2010-08-16

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

  13. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    PubMed

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mixed metal films with switchable optical properties

    NASA Astrophysics Data System (ADS)

    Richardson, T. J.; Slack, J. L.; Farangis, B.; Rubin, M. D.

    2002-02-01

    Thin, Pd-capped metallic films containing magnesium and first-row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte. Reversion to the reflecting state is achieved by exposure to air or by anodic polarization. The films were prepared by cosputtering from one magnesium target and one manganese, iron, or cobalt target. Both the dynamic optical switching range and the speed of the transition depend on the magnesium-transition metal ratio. Infrared spectra of films in the transparent, hydrided (deuterided) states support the presence of the intermetallic hydride phases Mg3MnH7, Mg2FeH6, and Mg2CoH5.

  15. The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration.

    PubMed

    St George-Hyslop, Peter; Lin, Julie Qiaojin; Miyashita, Akinori; Phillips, Emma C; Qamar, Seema; Randle, Suzanne J; Wang, GuoZhen

    2018-04-30

    Many RNA binding proteins, including FUS, contain moderately repetitive, low complexity, intrinsically disordered domains. These sequence motifs have recently been found to underpin reversible liquid: liquid phase separation and gelation of these proteins, permitting them to reversibly transition from a monodispersed state to liquid droplet- or hydrogel-like states. This function allows the proteins to serve as scaffolds for the formation of reversible membraneless intracellular organelles such as nucleoli, stress granules and neuronal transport granules. Using FUS as an example, this review examines the biophysics of this physiological process, and reports on how mutations and changes in post-translational state alter phase behaviour, and lead to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Copyright © 2018. Published by Elsevier B.V.

  16. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA).

    PubMed

    Pei, Yiwen; Lowe, Andrew B; Roth, Peter J

    2017-01-01

    Polymerization-induced self-assembly (PISA) is an extremely versatile method for the in situ preparation of soft-matter nanoparticles of defined size and morphologies at high concentrations, suitable for large-scale production. Recently, certain PISA-prepared nanoparticles have been shown to exhibit reversible polymorphism ("shape-shifting"), typically between micellar, worm-like, and vesicular phases (order-order transitions), in response to external stimuli including temperature, pH, electrolytes, and chemical modification. This review summarises the literature to date and describes molecular requirements for the design of stimulus-responsive nano-objects. Reversible pH-responsive behavior is rationalised in terms of increased solvation of reversibly ionized groups. Temperature-triggered order-order transitions, conversely, do not rely on inherently thermo-responsive polymers, but are explained based on interfacial LCST or UCST behavior that affects the volume fractions of the core and stabilizer blocks. Irreversible morphology transitions, on the other hand, can result from chemical post-modification of reactive PISA-made particles. Emerging applications and future research directions of this "smart" nanoparticle behavior are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetization reversal mechanism and coercivity enhancement in three-dimensional granular Nd-Fe-B magnets studied by micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog

    2017-08-01

    We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.

  18. Topological phase transition and unexpected mass acquisition of Dirac fermion in TlBi(S1-xSex)2

    NASA Astrophysics Data System (ADS)

    Niu, Chengwang; Dai, Ying; Zhu, Yingtao; Lu, Jibao; Ma, Yandong; Huang, Baibiao

    2012-10-01

    Based on first-principles calculations and effective Hamiltonian analysis, we predict a topological phase transition from normal to topological insulators and the opening of a gap without breaking the time-reversal symmetry in TlBi(S1-xSex)2. The transition can be driven by modulating the Se concentration, and the rescaled spin-orbit coupling and lattice parameters are the key ingredients for the transition. For topological surface states, the Dirac cone evolves differently as the explicit breaking of inversion symmetry and the energy band can be opened under asymmetry surface. Our results present theoretical evidence for experimental observations [Xu et al., Science 332, 560 (2011); Sato et al., Nat. Phys. 7, 840 (2011)].

  19. Picosecond view of a martensitic transition and nucleation in the shape memory alloy M n50N i40S n10 by four-dimensional transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Sun, Shuaishuai; Li, Zhongwen; Li, Xingyuan; Guo, Cong; Li, Zian; Yang, Huaixin; Li, Jianqi

    2017-11-01

    The photoinduced martensitic (MT) transition and reverse transition in a shape memory alloy M n50N i40S n10 have been examined by using high spatiotemporal resolution four-dimensional transmission electron microscopy (4D-TEM), and the experimental results clearly demonstrate that the MT transition and reverse transition in this Heusler alloy contain a variety of structural dynamic features at picosecond time scales. The 4D-TEM imaging and diffraction observations clearly show that MT transition and MT domain nucleation, which are related to cooperative atomic motions, occur at between 10 and 20 ps, depending on the thickness of the sample. Moreover, a strong coupling between the MT transition and lattice breathing mode is discovered in this system, which can result in a periodic structural oscillation between the MT phase and austenitic (AUS) phase. This allows us to directly observe the MT nucleation and domain wall motions in transient states using high spatiotemporal imaging. A careful analysis of the ultrafast images demonstrates the presence of remarkable transient states, which exhibit the essential features of MT nucleation, lattice symmetry breaking, and a rapid growth of MT plates. These results not only provide insights into the time-resolved structural dynamics and elementary mechanisms that govern the MT transition but also contribute to the development of a novel technique for future 4D-TEM investigations.

  20. Microstructure characterization of a food-grade U-type microemulsion system by differential scanning calorimetry and electrical conductivity techniques.

    PubMed

    Zhang, Hui; Taxipalati, Maierhaba; Que, Fei; Feng, Fengqin

    2013-12-01

    The microstructure transitions of a food-grade U-type microemulsion system containing glycerol monolaurate and propionic acid at a 1:1 mass ratio as oil phase and Tween 80 as surfactant were investigated along a water dilution line at a ratio of 80:20 mass% surfactant/oil phase, based on a previously studied phase diagram. From the water thermal behaviours detected by differential scanning calorimetry, three structural regions are identified along the dilution line. In the first region, all water molecules are confined to the water core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, transforms into bicontinuous in the second region, and finally the microemulsion become o/w in the third region. The thermal transition points coincide with the structural phase transitions by electrical conductivity measurements, indicating that the structural transitions occur at 35 and 65 mass% of water along the dilution line. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Anisotropic dielectric phase transition triggered by pendulum-like motion coupled with proton transfer in a layered hybrid crystalline material (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhu, Chun-li; Qin, Liu-lei; Zheng, Xiao-yuan; Liu, Zun-qi

    2018-07-01

    The organic-inorganic hybrid phase-transition material, (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2 (1), was successfully synthesized. The organic (4-nitroanilinium) (18-crown-6)+ supramolecular cation layer and inorganic phosphate anion layer were arranged alternately. Differential scanning calorimetry (DSC), temperature-dependent dielectric measurements, and variable-temperature single-crystal X-ray diffraction analysis confirmed the reversible isostructural phase transition of 1 with the same space group Pbca at 225 K, wherein the synergistic effect between the pendulum-like motion of organic cations and the proton transfer in the Osbnd H⋯O hydrogen bonding of inorganic anions was mainly responsible for the phase-transition behavior of 1. The most striking dielectric property was the remarkable anisotropy along various crystallographic axes. A potential-energy calculation further supported the possibility of dynamic motion of cations in the crystal.

  2. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    PubMed

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  3. Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.

    1984-04-01

    Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.

  4. Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite wires.

    PubMed

    Guo, Hangwen; Noh, Joo H; Dong, Shuai; Rack, Philip D; Gai, Zheng; Xu, Xiaoshan; Dagotto, Elbio; Shen, Jian; Ward, T Zac

    2013-08-14

    Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.

  5. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  6. Influence of Discharge Current on Phase Transition Properties of High Quality Polycrystalline VO2 Thin Film Fabricated by HiPIMS

    PubMed Central

    Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2017-01-01

    To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990

  7. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    DOE PAGES

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe; ...

    2017-11-15

    In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less

  8. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe

    In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less

  9. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    NASA Astrophysics Data System (ADS)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  10. Pore closure in zeolitic imidazolate frameworks under mechanical pressure.

    PubMed

    Henke, Sebastian; Wharmby, Michael T; Kieslich, Gregor; Hante, Inke; Schneemann, Andreas; Wu, Yue; Daisenberger, Dominik; Cheetham, Anthony K

    2018-02-14

    We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im) 2 ; M 2+ = Co 2+ or Zn 2+ , im - = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore ( op ) phase with continuous porosity (space group Pbca , bulk modulus ∼1.4 GPa) to a closed pore ( cp ) phase with inaccessible porosity (space group P 2 1 / c , bulk modulus ∼3.3-4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op-cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M 2+ ions (3d 10 for Zn 2+ and 3d 7 for Co 2+ ). Our results present the first examples of op-cp phase transitions ( i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.

  11. Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.

    2015-03-01

    This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explainmore » the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.« less

  12. A phase transition caught in mid-course: independent and concomitant analyses of the monoclinic and triclinic structures of (nBu4N)[Co(orotate)2(bipy)]·3H2O.

    PubMed

    Castro, Miguel; Falvello, Larry R; Forcén-Vázquez, Elena; Guerra, Pablo; Al-Kenany, Nuha A; Martínez, Gema; Tomás, Milagros

    2017-09-01

    The preparation and characterization of the n Bu 4 N + salts of two bis-orotate(2-) complexes of cobalt, namely bis(tetra-n-butylammonium) diaquabis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide-6-carboxylato-κ 2 N 1 ,O 6 )cobalt(II) 1.8-hydrate, (C 16 H 36 N) 2 [Co(C 5 H 2 N 2 O 4 ) 2 (H 2 O) 2 ]·1.8H 2 O, (1), and tetra-n-butylammonium (2,2'-bipyridine-κ 2 N,N')bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide-6-carboxylato-κ 2 N 1 ,O 6 )cobalt(III) trihydrate, (C 16 H 36 N)[Co(C 5 H 2 N 2 O 4 ) 2 (C 10 H 8 N 2 )]·3H 2 O, (2), are reported. The Co III complex, (2), which is monoclinic at room temperature, presents a conservative single-crystal-to-single-crystal phase transition below 200 K, producing a triclinic twin. The transition, which involves a conformational change in one of the n Bu groups of the cation, is reversible and can be cycled. Both end phases have been characterized structurally and the system was also characterized structurally in a two-phase intermediate state, using single-crystal diffraction techniques, with both the monoclinic and triclinic phases present. Thermal analysis allows a rough estimate of the small energy content, viz. 0.25 kJ mol -1 , for both the monoclinic-to-triclinic transformation and the reverse transition, in agreement with the nature of the structural changes involving only the n Bu 4 N + cation.

  13. Comparison of molecular orientation and phase transition behaviors in the two kinds of ordered ultrathin films of reversed duckweed polymer ES-3 studied by infrared grazing reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xu, Weiqing; Zhao, Bing

    2003-03-01

    A multilayer LB film and a casting film of reversed duckweed polymer ES-3 on Au-evaporated glass slides were investigated by Fourier Transform infrared grazing reflection-absorption spectroscopy. It is found that the two kinds of ordered ultrathin films have different orientation of alkyl chains, nearly perpendicular to the substrate surface for the LB film while rather tilted for the casting film. The studies on their thermal transition behaviors indicate that both of the films have three phase transition processes, respectively, occurring near 65, 105 and 140 °C for the former while near 80, 105 and 140 °C for the latter, but show different transition behavior in the each corresponding transition process. It is referred that at room temperature there are island-like domain structures formed in the LB film, but no ones in the casting film; however, the latter can form the domain structures between the first two transition points due to the desorption of solvents. The formation of domain structure seems to play two important roles, one of which is to make alkyl chains more perpendicular to the substrate surface, and the other to make alkyl chains more packed closely. Thermal cyclic experiments reveal that neither of the films could return to its original state after thermal cyclic treatment up to the temperature, which is above the third transition point, although its alkyl chain becomes highly ordered again.

  14. Quantum phase transition and protected ideal transport in a Kondo chain

    DOE PAGES

    Tsvelik, A. M.; Yevtushenko, O. M.

    2015-11-30

    We study the low energy physics of a Kondo chain where electrons from a one-dimensional band interact with magnetic moments via an anisotropic exchange interaction. It is demonstrated that the anisotropy gives rise to two different phases which are separated by a quantum phase transition. In the phase with easy plane anisotropy, Z2 symmetry between sectors with different helicity of the electrons is broken. As a result, localization effects are suppressed and the dc transport acquires (partial) symmetry protection. This effect is similar to the protection of the edge transport in time-reversal invariant topological insulators. The phase with easy axismore » anisotropy corresponds to the Tomonaga-Luttinger liquid with a pronounced spin-charge separation. The slow charge density wave modes have no protection against localizatioin.« less

  15. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices

    PubMed Central

    Raeis-Hosseini, Niloufar; Rho, Junsuk

    2017-01-01

    Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196

  16. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  17. Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.

    Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less

  18. Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe

    DOE PAGES

    Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.; ...

    2017-06-13

    Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less

  19. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.

    PubMed

    Wereszczynski, Jeff; Andricioaei, Ioan

    2006-10-31

    A precise understanding of the flexibility of double stranded nucleic acids and the nature of their deformed conformations induced by external forces is important for a wide range of biological processes including transcriptional regulation, supercoil and catenane removal, and site-specific recombination. We present, at atomic resolution, a simulation of the dynamics involved in the transitions from B-DNA and A-RNA to Pauling (P) forms and to denatured states driven by application of external torque and tension. We then calculate the free energy profile along a B- to P-transition coordinate and from it, compute a reversible pathway, i.e., an isotherm of tension and torque pairs required to maintain P-DNA in equilibrium. The reversible isotherm maps correctly onto a phase diagram derived from single molecule experiments, and yields values of elongation, twist, and twist-stretch coupling in agreement with measured values. We also show that configurational entropy compensates significantly for the large electrostatic energy increase due to closer-packed P backbones. A similar set of simulations applied to RNA are used to predict a novel structure, P-RNA, with its associated free energy, equilibrium tension, torque and structural parameters, and to assign the location, on the phase-diagram, of a putative force-torque-dependent RNA "triple point."

  20. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  1. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  2. Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Basso, Vittorio; Sasso, Carlo P.; Skokov, Konstantin P.; Gutfleisch, Oliver; Khovaylo, Vladimir V.

    2012-01-01

    Hysteresis features of the direct and inverse magnetocaloric effect associated with first-order magnetostructural phase transitions in Ni-Mn-X (X = Ga, Sn) Heusler alloys have been disclosed by differential calorimetry measurements performed either under a constant magnetic field, H, or by varying H in isothermal conditions. We have shown that the magnetocaloric effect in these alloys crucially depends on the employed measuring protocol. Experimentally observed peculiarities of the magnetocaloric effect have been explained in the framework of a model that accounts for different contributions to the Gibbs energy of austenitic gA and martensitic gM phases. Obtained experimental results have been summarized by plotting a phase fraction of the austenite xA versus the driving force gM-gA. The developed approach allows one to predict reversible and irreversible features of the direct as well as inverse magnetocaloric effect in a variety of materials with first-order magnetic phase transitions.

  3. Experimental investigation on local mechanical response of superelastic NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-01-01

    In this paper, primary attention is paid to the local mechanical response of NiTi shape memory alloy (SMA) under uniaxial tension. With the help of in situ digital image correlation, sets of experiments are conducted to measure the local strain field at various thermomechanical conditions. Two types of mechanical responses of NiTi SMA are identified. The residual strain localization phenomena are observed, which can be attributed to the localized phase transformation (PT) and we affirm that most of the irreversibility is accumulated simultaneously during PT. It is found that temperature and PT play important roles in inducing delocalization of the reverse transformation. We conclude that forward transformation has more influence on the transition of mechanical response in NiTi SMA than reverse transformation in terms of the critical transition temperature for inducing delocalized reverse transformation.

  4. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    PubMed

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-07

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in the water/ice phase diagram, and on a metastable triple point where ice XIII, ice V and ice II are in equilibrium.

  5. Structural and electronic phase transitions of MoTe2 induced by Li ionic gating

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae

    2017-12-01

    Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.

  6. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    NASA Astrophysics Data System (ADS)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  7. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    PubMed

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  8. Thermodynamic and kinetic characterization of polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography.

    PubMed

    Howerton, Samuel B; McGuffin, Victoria L

    2003-07-15

    The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.

  9. Analysis of microalloy precipitate reversion in steels

    NASA Technical Reports Server (NTRS)

    Michal, G. M.; Locci, I. E.

    1988-01-01

    The influence of the ferrite to austenite allotropic transformation on the stability of MXn precipitates in an iron matrix is studied. In the MX phase, M is a group IVb or Vb transition metal, such as niobium, titanium, or vanadium. X is carbon or nitrogen and n is in the range of 0.75-1.0. The application of the present model to the case of vanadium carbide reversion in a microalloyed steel is discussed.

  10. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries.

    PubMed

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni(4+)/Ni(3+)/Ni(2+) redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  11. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film.

    PubMed

    Lin, Tsung-Hsien; Li, Yannian; Wang, Chun-Ta; Jau, Hung-Chang; Chen, Chun-Wei; Li, Cheng-Chung; Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan

    2013-09-25

    A new light-driven chiral molecular switch doped in a stable blue phase (BP) liquid crystal allows wide optical tunability of three-dimensional cubic nanostructures with a selective reflection wavelength that is reversibly tuned through the visible region. Moreover, unprecedented reversible light-directed red, green, and blue reflections of the self-organized three-dimensional cubic nanostructure in a single film are demonstrated for the first time. Additionally, unusual isothermal photo-stimulated less ordered BP II to more ordered BP I phase transition was observed in the system. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

    PubMed Central

    Klemm, Matthias; Horn, Siegfried; Woydt, Mathias

    2011-01-01

    Summary Magnéli-type vanadium oxides form the homologous series VnO2 n -1 and exhibit a temperature-induced, reversible metal–insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired. PMID:21977416

  13. The α–ω phase transition in shock-loaded titanium

    DOE PAGES

    Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.; ...

    2017-07-28

    Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less

  14. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  15. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    PubMed

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  16. Phase transitions, optical and electronic properties of the layered perovskite hybrid [NH3(CH2)2COOH ]2CdCl4 of Y-aminobutyric acid (GABA)

    NASA Astrophysics Data System (ADS)

    AlShammari, Mohammed B.; Kaiba, A.; Guionneau, P.; Geesi, Mohammed H.; Aljohani, Talal; Riadi, Yassine

    2018-06-01

    A new organic-inorganic hybrid with the formula (NH3C3H6CO2H)2CdCl4 has been crystallized and investigated by X-ray diffraction. Structural investigations highlight a first-order reversible structural phase transition occurring within the range (290-370 K) between a chiral (phase II) and non-centrosymmetric (Phase I) crystal packing. This strong structural reorganization is the result of conformational changes in the organic chains accompanied by a decrease in octahedral distortion. The accurate crystallographic analysis illustrates the crucial role of organic moieties. The experimental energy gap value (3.65 eV) is in good agreement with the theoretical value obtained by density functional theory.

  17. Reversibility of temperature driven discrete layer-by-layer formation of dioctyl-benzothieno-benzothiophene films.

    PubMed

    Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O

    2017-03-22

    Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.

  18. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

    PubMed Central

    Lewis, R N; McElhaney, R N

    2000-01-01

    The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908

  19. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression.

    PubMed

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-11-28

    Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  20. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression

    DOE PAGES

    McDermott, Danielle; Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2016-11-11

    In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements ofmore » particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.« less

  1. Naphthalocyanine as a New Photothermal Actuator for Lipid-Based Drug Delivery Systems.

    PubMed

    Du, Joanne D; Hong, Linda; Tan, Angel; Boyd, Ben J

    2018-02-08

    One approach to address the substantial global burden of ocular diseases such as aged related macular degeneration is using light-activated drug delivery to obviate the need for highly invasive and frequent, costly intravitreal injections. To enable such systems, new light responsive materials are required. This communication reports the use of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (SiNC), a small molecule photosensitizer, as a new actuator for triggering light responsive lipid-based drug delivery systems. Small-angle X-ray scattering was used to confirm that the addition of SiNC imparted light sensitivity to the lipid systems, resulting in a complete phase transition within 20 s of near-infrared irradiation. The phase transition was also reversible, suggesting the potential for on-demand drug delivery. When compared to the phase transitions induced using alternative light responsive actuators, gold nanorods and graphene, there were some differences in phase behavior. Namely, the phytantriol with SiNC system transitioned directly to the inverse micellar phase, skipping the intermediate inverse hexagonal structure. The photodynamic properties and efficiency in controlling the release of drug suggest that SiNC-actuated lipid systems have the potential to reduce the burden of repeated intravitreal injections.

  2. Calculation of the absolute free energy of a smectic-A phase

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  3. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  4. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  5. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.

    PubMed

    Limmer, David T; Chandler, David

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  6. Orientation of Vanadium Dioxide Grains on Various Substrates

    NASA Astrophysics Data System (ADS)

    Rivera, Felipe; Davis, Robert; Vanfleet, Richard

    2010-10-01

    Crystalline vanadium dioxide VO2 experiences a fast and reversible semiconductor-to-metal structural phase transition near 68^oC. The changes exhibited during this phase transition comprise a well known change in resistivity of several orders of magnitude, as well as a significant drop in optical transmittance in the infrared. Due to the changes in these optical and electronic properties, vanadium dioxide shows promise as a material to be used in many applications ranging from thermochromic window coatings to optoelectronic devices. However, since there is a structural component to the phase transition of VO2, it is of interest to study the orientation of the crystalline grains deposited. Substrates such as glass, SiO2, Sapphire, and TiO2 have been used for the deposition of this material. We used orientation imaging microscopy to study and characterize the orientation of the grains deposited on several of these substrates. Here we present results on this study.

  7. Metal-Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials.

    PubMed

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  8. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    PubMed Central

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-01-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials. PMID:27892519

  9. Low-temperature phase transitions in a soluble oligoacene and their effect on device performance and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, J. W.; Goetz, K. P.; Obaid, A.

    The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material.more » Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices.« less

  10. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    NASA Astrophysics Data System (ADS)

    Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Mączka, M.; Hermanowicz, K.; Hanuza, J.

    2010-08-01

    New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ˜162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  11. Dynamical and structural transitions in periodically-driven emulsions: Reversibility loss and random hyper-unifom organization

    NASA Astrophysics Data System (ADS)

    Weijs, Joost H.; Jeanneret, Raphaël; Dreyfus, Rémi; Bartolo, Denis

    2015-03-01

    We present experiments and numerical simulations of a microfluidic echo process, in which a large number of droplets interact in a periodically driven viscous fluid [Jeanneret & Bartolo, Nature Comm. 5, 3474 (2013)]. Upon increasing the driving amplitude we demonstrate the collective reversibility loss of the droplet dynamics. In addition we show that this genuine dynamical phase transition is associated with a structural one: at the onset of irreversibility the droplet ensemble self-organises into a random hyperuniform state. Numerical simulations evidence that the purely reversible hydrodynamic interactions together with hard-core repulsion account for most of our experimental findings. Hyperuniformity is relevant for the production of large-band-gap materials, but are difficult to construct both numerically and experimentally. The hydrodynamic echo-process may provide a robust, fast, and simple way to produce hyper uniform structures over a wide range of packing fractions.

  12. Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2017-10-01

    The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

  13. Temperature and electric field induced metal-insulator transition in atomic layer deposited VO2 thin films

    NASA Astrophysics Data System (ADS)

    Tadjer, Marko J.; Wheeler, Virginia D.; Downey, Brian P.; Robinson, Zachary R.; Meyer, David J.; Eddy, Charles R.; Kub, Fritz J.

    2017-10-01

    Amorphous vanadium oxide (VO2) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 °C for 1-2 h under a low oxygen pressure (10-4 to 10-5 Torr). Under these conditions the crystalline VO2 phase was maintained, while formation of the V2O5 phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 °C range, with an ROFF/RON ratio of up to about 750 and ΔTC ≅ 7-10 °C. Lateral electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO2 sample processed with the 2 h long O2 anneal. Both the width and slope of the field induced MIT I-V hysteresis were dependent upon the VO2 crystalline quality.

  14. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2

    PubMed Central

    Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae

    2015-01-01

    Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612

  15. Disordering Chain Motions in Fluoropolymers

    NASA Astrophysics Data System (ADS)

    Holt, David B.; Farmer, Barry L.

    1998-03-01

    Rotational and conformational disorder play important roles in the solid state phases of fluoropolymers such as polytetrafluoro- ethylene (PTFE). Modeling disordering processes and transitions which occur in fluoropolymers has been hampered due to a lack of force field parameters that adequately describe both the intra- and intermolecular characteristics (conformations and distances) of these polymers in the solid state. A force field has been developed which overcomes these inadequacies and has been utilized in molecular dynamics simulations on a system of PTFE oligomers to investigate two of the primary disordering processes that occur in the solid phases: rotations of chains about their helical axes and the formation and subsequent behavior of helix reversals. The simulation results confirm helix reversal activity at low temperatures and demonstrate correlations between chain segment rotations or librations and helix reversal motion. A mechanism for large scale chain segment rotations is proposed.

  16. Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation

    DOE PAGES

    Sun, Zhe; Tian, Ye; Hom, Wendy L.; ...

    2016-12-28

    The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO 45-PDEAm x-PDBAm 12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined in this paper. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G'≈10 Pa) free-standing physical gels after 10 min at 55 °C. PEO 45-PDEAm 89-PDBAm 12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 °C for 10more » min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. Finally, the composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies.« less

  17. Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8

    NASA Astrophysics Data System (ADS)

    Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.

    2017-08-01

    We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.

  18. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function

    PubMed Central

    Murakami, Tetsuro; Qamar, Seema; Lin, Julie Qiaojin; Schierle, Gabriele S. Kaminski; Rees, Eric; Miyashita, Akinori; Costa, Ana R.; Dodd, Roger B.; Chan, Fiona T.S.; Michel, Claire H.; Kronenberg-Versteeg, Deborah; Li, Yi; Yang, Seung-Pil; Wakutani, Yosuke; Meadows, William; Ferry, Rodylyn Rose; Dong, Liang; Tartaglia, Gian Gaetano; Favrin, Giorgio; Lin, Wen-Lang; Dickson, Dennis W.; Zhen, Mei; Ron, David; Schmitt-Ulms, Gerold; Fraser, Paul E.; Shneider, Neil A.; Holt, Christine; Vendruscolo, Michele; Kaminski, Clemens F.; St George-Hyslop, Peter

    2015-01-01

    Summary The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. PMID:26526393

  19. Microstructural fingerprints of phase transitions in shock-loaded iron

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.

  20. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    NASA Astrophysics Data System (ADS)

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  1. Hexafluorobenzene under Extreme Conditions.

    PubMed

    Pravica, Michael; Sneed, Daniel; Wang, Yonggang; Smith, Quinlan; White, Melanie

    2016-03-17

    We report the results from three high pressure experiments on hexafluorobenzene (C6F6). In the first experiment, Raman spectra were recorded up to 34.4 GPa. A phase transition from I → II was observed near 2 GPa. Near 8.8 GPa, a phase transition to an unreported phase (III) commenced. Above 20.6 GPa, yet another phase was observed (IV). Pressure cycling was employed to determine that, below 25.6 GPa, all pressure-induced alterations were reversible. However, at pressures above 20 GPa, dramatic spectral changes and broadening were observed at 25.6 and 34.4 GPa. The sample irreversibly changed into a soft solid with waxlike consistency when pressure was reduced to ambient and was recoverable. In the second experiment, IR spectra were collected up to 14.6 GPa. The phase transition (II → III) near 8.8 GPa was confirmed. An angular dispersive X-ray diffraction experiment was conducted to 25.6 GPa. Phase transitions above 1.4 GPa (I → II), above 5.5 GPa (II → III), above 10 GPa (III → IV), and above 15.5 GPa (IV → V) were observed. Near 25.6 GPa, long-range crystalline order was lost as the X-ray diffraction spectrum presented evidence of an amorphous solid.

  2. Topological transitions induced by antiferromagnetism in a thin-film topological insulator

    NASA Astrophysics Data System (ADS)

    Yin, Gen; He, Qinglin; Yu, Luyan; Pan, Lei; Wang, Kang

    Ferromagnetism introduced in topological insulators (TIs) opens a non-trivial exchange band gap, providing an exciting platform to control the topological order through an external magnetic field. The magnetization induces a topological transition that breaks time-reversal symmetry, resulting in anomalous Hall effects. Recently, it was experimentally shown that the surface of an antiferromagnetic (AFM) thin film can magnetize the surface Dirac fermions in a TI thin film similar to the case induced by ferromagnetism. Here, we show that when a TI thin film is sandwiched between two antiferromagnetic layers, an unsynchronized magnetic reversal introduces two intermediate spin configurations during the scan of the external field, resulting in a new topological phase with second Chern numbers. This topological phase introduces two counter-propagating chiral edge modes inside the exchange gap, changing the total number of transport channels drastically when the fermi level is close to the Dirac point. Induced by this change, the magnetoresistance of the channel presents an antisymmetric feature during the field scan. With the the help of the high ordering temperature of AFM layers, this transport signature of the phase transition persists up to 90K experimentally. This work is supported by (i) SHINES, an EFRC by US-DOE, Office of Science, BES, #SC0012670. (ii) US-NSF (DMR-1411085), (iii) ARO program W911NF-15-1-10561, and (iv) FAME Center in STARnet, an SRC program by MARCO and DARPA.

  3. Structures and phase transitions in a new ferroelectric -- pyridinium chlorochromate -- studied by X-ray diffraction, DSC and dielectric methods.

    PubMed

    Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław

    2012-04-01

    Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).

  4. Solid-Solid Phase Transition Kinetics of FOX-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A K; Weese, R K; Wang, R

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transitionmore » shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.« less

  5. Relative phase of oscillations of cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations during sleep

    NASA Astrophysics Data System (ADS)

    Pierro, Michele L.; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio

    2012-02-01

    We present a near-infrared spectroscopy study of the instantaneous phase difference between spontaneous oscillations of cerebral deoxy-hemoglobin and oxy-hemoglobin concentrations ([Hb] and [HbO], respectively) in the low-frequency range, namely 0.04-0.12 Hz. We report phase measurements during the transitions between different sleep stages in a whole-night study of a human subject. We have found that the phase difference between [Hb] and [HbO] low-frequency oscillations tends to be greater in deep sleep (by ~96° on average) and REM sleep (by ~77° on average) compared to the awake state. In particular, we have observed progressive phase increases as the subject transitions from awake conditions into non-REM sleep stages N1, N2, and N3. Corresponding phase decreases were recorded in the reversed transitions from sleep stages N3 to N2, and N2 to awake. These results illustrate the physiological information content of phase measurements of [Hb] and [HbO] oscillations that reflect the different cerebral hemodynamic conditions of the different sleep stages, and that can find broader applicability in a wide range of near-infrared spectroscopy brain studies.

  6. Thermodynamic glass transition in a spin glass without time-reversal symmetry

    PubMed Central

    Baños, Raquel Alvarez; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvion, Jose Miguel; Gordillo-Guerrero, Antonio; Guidetti, Marco; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancon, Alfonso; Tellez, Pedro; Tripiccione, Raffaele; Yllanes, David

    2012-01-01

    Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method. PMID:22493229

  7. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2016-09-01

    Reversible polymorphism of monolayer transition-metal dichalcogenides (TMDC) has currently attracted much attention from both academic and applied perspectives. Of special interest is MoTe2, where the stable semiconducting 2 H and metastable (semi)metallic 1 T' phases have a rather small energy difference implying the low-energy cost of such a transition. In this work, using first-principles calculations, we demonstrate that there exists a previously unknown phase of MoTe2, namely a distorted trigonal prismatic phase with alternating shorter and longer bonds and bond angles, that is formed in the electronically excited state due to population inversion. This phase, which is unstable and decays to the ground 2 H state after cessation of the excitation, is metallic and can act to lower the energy barrier on the way to the metastable 1 T' phase. Our findings indicate that there exists a previously unexplored route of ultrafast local and selective band-structure control in monolayer TMDC using electronic excitation, which will significantly broaden the application spectrum of these materials.

  8. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  9. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  10. Optimal community structure for social contagions

    NASA Astrophysics Data System (ADS)

    Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.

    2018-05-01

    Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halevy, I.; Zamir, G; Winterrose, M

    The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a {approx} 0.632) to Hexagonal (c/a {approx} 1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction {beta}-Ti/{alpha}-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The {alpha} phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume changemore » is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released.« less

  12. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ Xray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SSNMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na 0.66Ni 0.33-xZn xMn 0.67O 2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na 0.66Ni 0.33Mn 0.67O 2. Zincmore » doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni 4+/Ni 3+/ Ni 2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.« less

  13. Synthesis, structural characterization and high pressure phase transitions of monolithium hydronium sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis, E-mail: debasis.banerjee@stonybrook.edu; Plonka, Anna M.; Kim, Sun Jin

    2013-01-15

    A three dimensional lithium hydronium sulfate LiSO{sub 4}{center_dot}H{sub 3}O [1], [space group Pna2{sub 1}a=8.7785(12) A, b=9.1297(12) A, c=5.2799(7) A, V=423.16(10) A{sup 3}] was synthesized via solvothermal methods using 1,5-naphthalenedisulfonic acid (1,5-NSA) as the source of sulfate ions. The structure of [1], determined by single crystal X-ray diffraction techniques, consists of corner sharing LiO{sub 4} and SO{sub 4} tetrahedra, forming an anionic 3-D open framework that is charge balanced by hydronium ions positioned within channels running along [001] and forming strong H-bonding with the framework oxygen atoms. Compound [1] undergoes two reversible phase transitions, involving reorientation of SO{sub 4}{sup 2-} ionsmore » at pressures of approximately 2.5 and 5 GPa at room temperature, as evident from characteristic discontinuous frequency drops in the {nu}{sub 1} mode of the Raman spectra. Additionally, compound [1] forms dense {beta}-lithium sulfate at 300 Degree-Sign C, as evident from temperature dependent powder XRD and combined reversible TGA-DSC experiments. - Graphical abstract: Left: View of corner-shared LiO{sub 4} and SO{sub 4} tetrahedra along [001] direction with hydronium ions situated in the channels. Right: (a) Photograph of the loaded DAC (b) Ambient pressure Raman spectrum of compound [1] (c) Evolution of the {nu}{sub 1} mode with the increasing and decreasing pressure indicating transitions to high-pressure phases at {approx}2.5 (red curves) and {approx}5 GPa (blue curves) and at {approx}3.5 GPa upon decompression. Highlights: Black-Right-Pointing-Pointer A 3-D lithium hydronium sulfate is synthesized by solvothermal methods. Black-Right-Pointing-Pointer Two high pressure phase transition occurs due to rotation of sulfate groups. Black-Right-Pointing-Pointer The framework undergoes a high temperature structural transformation, to form {beta}-Li{sub 2}SO{sub 4} phase.« less

  14. A phase transition caught in mid-course: independent and concomitant analyses of the monoclinic and triclinic structures of (nBu4N)[Co(orotate)2(bipy)]·3H2O

    PubMed Central

    Castro, Miguel; Falvello, Larry R.; Forcén-Vázquez, Elena; Al-Kenany, Nuha A.; Martínez, Gema

    2017-01-01

    The preparation and characterization of the nBu4N+ salts of two bis-orotate(2−) complexes of cobalt, namely bis­(tetra-n-butyl­ammonium) di­aqua­bis­(2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ide-6-carboxyl­ato-κ2 N 1,O 6)cobalt(II) 1.8-hydrate, (C16H36N)2[Co(C5H2N2O4)2(H2O)2]·1.8H2O, (1), and tetra-n-butyl­ammonium (2,2′-bi­pyridine-κ2 N,N′)bis­(2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ide-6-carbox­yl­ato-κ2 N 1,O 6)cobalt(III) trihydrate, (C16H36N)[Co(C5H2N2O4)2(C10H8N2)]·3H2O, (2), are reported. The CoIII complex, (2), which is monoclinic at room tem­perature, presents a conservative single-crystal-to-single-crystal phase transition below 200 K, producing a triclinic twin. The transition, which involves a conformational change in one of the nBu groups of the cation, is reversible and can be cycled. Both end phases have been characterized structurally and the system was also characterized structurally in a two-phase inter­mediate state, using single-crystal diffraction techniques, with both the monoclinic and triclinic phases present. Thermal analysis allows a rough estimate of the small energy content, viz. 0.25 kJ mol−1, for both the monoclinic-to-triclinic transformation and the reverse transition, in agreement with the nature of the structural changes involving only the nBu4N+ cation. PMID:28872072

  15. Simulation studies of GST phase change alloys

    NASA Astrophysics Data System (ADS)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  16. Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.

    PubMed

    Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao

    2007-09-01

    Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.

  17. Low-energy inelastic response in the superconducting phases of PrOs4Sb12

    NASA Astrophysics Data System (ADS)

    Setty, Chandan; Wang, Yuxuan; Phillips, Philip W.

    2017-08-01

    Recent ac susceptibility and polar Kerr effect measurements in the skutterudite superconductor PrOs4Sb12 (POS) (E. M. Levenson-Falk, E. R. Schemm, M. B. Maple, and A. Kapitulnik, arXiv:1609.07535) uncovered the nature of the superconducting double transition from a high-temperature, high-field, time-reversal symmetric phase (or the A phase) to a low-temperature, low-field, time-reversal symmetry-broken phase (or the B phase). Starting from a microscopic model, we derive a Ginzburg-Landau expansion relevant to POS that describes this entrance into the time-reversal symmetry-broken phase along the temperature axis. We also provide a study of the low-energy inelastic (Raman) response in both the A and B phases of POS, and seek additional signatures which could help reveal the exact form of the gap functions previously proposed in these phases. By appropriately manipulating the incoming and scattered light geometries, along with additional subtraction procedures and suitable assumptions, we show that one can access the various irreducible representations contained in the point group describing POS. We demonstrate how to use this technique on example order parameters proposed in POS. Depending on whether there exist nodes along the c axis, we find additional low-energy spectral weight within the superconducting gap in the Eg geometry, a feature that could pinpoint the location of nodes on the Fermi surface.

  18. Pore closure in zeolitic imidazolate frameworks under mechanical pressure† †Electronic supplementary information (ESI) available: Experimental details; synthetic procedures; supplementary data analyses; additional PXRD, thermal and elemental analyses as well as IR and 1H NMR spectroscopy data. See DOI: 10.1039/c7sc04952h

    PubMed Central

    Wharmby, Michael T.; Kieslich, Gregor; Hante, Inke; Schneemann, Andreas; Wu, Yue; Daisenberger, Dominik; Cheetham, Anthony K.

    2018-01-01

    We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im)2; M2+ = Co2+ or Zn2+, im– = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore (op) phase with continuous porosity (space group Pbca, bulk modulus ∼1.4 GPa) to a closed pore (cp) phase with inaccessible porosity (space group P21/c, bulk modulus ∼3.3–4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op–cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M2+ ions (3d10 for Zn2+ and 3d7 for Co2+). Our results present the first examples of op–cp phase transitions (i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics. PMID:29675212

  19. Static and Dynamic Properties of Ferroelectric Thin Film Memories.

    NASA Astrophysics Data System (ADS)

    Duiker, Hendrik Matthew

    Several properties of ferroelectric thin-film memories have been modeled. First, it has been observed experimentally that the bulk phase KNO_3 has a first-order phase transition, and that the transition temperature of KNO_3 thin-films increases as the thickness of the film is decreased. A Landau theory of first-order phase transitions in bulk systems has been generalized by adding surface terms to the free energy expansion to account for these transition properties. The model successfully describes the observed transition properties and predicts the existence of films in which the surfaces are ordered at temperatures higher than the bulk transition temperature. Second, the Avrami model of polarization-reversal kinetics has been modified to describe the following cases: ferroelectrics composed of a large number of small grains; ferroelectric thin-films in which nucleation occurs at the surfaces, not in the bulk; ferroelectrics in which long-range dipolar interactions significantly affect the nucleation rate; and non-square wave switching pulses. The models were verified by applying them to the results of two-dimensional Ising model simulations. It was shown that the models allow the possibility of directly obtaining microscopic parameters, such as the nucleation rate and domain wall velocity, from bulk measurements. Finally, a model describing the fatigue of ferroelectric memories has been developed. As a ferroelectric memory fatigues the spontaneous polarization per unit volume decreases, the switching time decreases, and eventually the memory "shorts out" and becomes conducting. The model assumes the following: during each polarization reversal the film undergoes, every unit cell in the film has a chance of "degrading" and thus losing an ion. Degraded cells no longer contribute to the polarization. The ions are allowed to diffuse to the surfaces of the film and form, with other ions, conducting dendrites which grow into the bulk of the film. Computer simulations performed on a two dimensional lattice with the above model successfully described the phenomena observed during the fatigue of PZT and other types of ferroelectric thin-film memories films.

  20. Microfluidic mixing triggered by an external LED illumination.

    PubMed

    Venancio-Marques, Anna; Barbaud, Fanny; Baigl, Damien

    2013-02-27

    The mixing of confined liquids is a central yet challenging operation in miniaturized devices. Microfluidic mixing is usually achieved with passive mixers that are robust but poorly flexible, or active mixers that offer dynamic control but mainly rely on electrical or mechanical transducers, which increase the fragility, cost, and complexity of the device. Here, we describe the first remote and reversible control of microfluidic mixing triggered by a light illumination simply provided by an external LED illumination device. The approach is based on the light-induced generation of water microdroplets acting as reversible stirrers of two continuous oil phase flows containing samples to be mixed. We demonstrate many cycles of reversible photoinduced transitions between a nonmixing behavior and full homogenization of the two oil phases. The method is cheap, portable, and adaptable to many device configurations, thus constituting an essential brick for the generation of future all-optofluidic chip.

  1. Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa.

    PubMed

    Geballe, Z M; Raju, S V; Godwal, B K; Jeanloz, R

    2013-10-16

    We use x-ray diffraction in a resistively heated diamond anvil cell to extend the melting curve of AuGa2 beyond its minimum at 5.5 GPa and 720 K, and to constrain the high-temperature phase boundaries between cubic (fluorite structure), orthorhombic (cottunite structure) and monoclinic phases. We document a large change in Clapeyron slope that coincides with the transitions from cubic to lower symmetry phases, showing that a structural transition is the direct cause of the change in slope. In addition, moderate (~30 K) to large (90 K) hysteresis is detected between melting and freezing, from which we infer that at high pressures, AuGa2 crystals can remain in a metastable state at more than 5% above the thermodynamic melting temperature.

  2. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors.

    PubMed

    Chung, Hyunjoong; Dudenko, Dmytro; Zhang, Fengjiao; D'Avino, Gabriele; Ruzié, Christian; Richard, Audrey; Schweicher, Guillaume; Cornil, Jérôme; Beljonne, David; Geerts, Yves; Diao, Ying

    2018-01-18

    Martensitic transition is a solid-state phase transition involving cooperative movement of atoms, mostly studied in metallurgy. The main characteristics are low transition barrier, ultrafast kinetics, and structural reversibility. They are rarely observed in molecular crystals, and hence the origin and mechanism are largely unexplored. Here we report the discovery of martensitic transition in single crystals of two different organic semiconductors. In situ microscopy, single-crystal X-ray diffraction, Raman and nuclear magnetic resonance spectroscopy, and molecular simulations combined indicate that the rotating bulky side chains trigger cooperative transition. Cooperativity enables shape memory effect in single crystals and function memory effect in thin film transistors. We establish a molecular design rule to trigger martensitic transition in organic semiconductors, showing promise for designing next-generation smart multifunctional materials.

  3. Superconductivity. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt₃.

    PubMed

    Schemm, E R; Gannon, W J; Wishne, C M; Halperin, W P; Kapitulnik, A

    2014-07-11

    Models of superconductivity in unconventional materials can be experimentally differentiated by the predictions they make for the symmetries of the superconducting order parameter. In the case of the heavy-fermion superconductor UPt3, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt3 at normal incidence and found that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt3, implying a complex two-component order parameter for superconductivity in this system. Copyright © 2014, American Association for the Advancement of Science.

  4. Optically switchable photonic metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R. F.; MacDonald, K. F.; Hobson, P. A.

    2015-08-24

    We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.

  5. Hierarchical Sol-Gel Transition Induced by Thermosensitive Self-Assembly of an ABC Triblock Polymer in an Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.

    2016-04-29

    Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20more » wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).« less

  6. Chiral liquid phase of simple quantum magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei

    2017-11-07

    We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less

  7. Effect of pressure gradient and new phases for 1,3,5-trinitrohexahydro-s-triazine (RDX) under high pressures.

    PubMed

    Gao, Chan; Zhang, Xueyong; Zhang, Chuanchao; Sui, Zhilei; Hou, Meng; Dai, Rucheng; Wang, Zhongping; Zheng, Xianxu; Zhang, Zengming

    2018-05-17

    Herein, pressure-induced phase transitions of RDX up to 50 GPa were systematically studied under different compression conditions. Precise phase transition points were obtained based on high-quality Raman spectra with small pressure intervals. This favors the correctness of the theoretical formula for detonation and the design of a precision weapon. The experimental results indicated that α-RDX immediately transformed to γ-RDX at 3.5 GPa due to hydrostatic conditions and possible interaction between the penetrating helium and RDX, with helium gas as the pressure-transmitting medium (PTM). Mapping of pressure distribution in samples demonstrates that the pressure gradient is generated in the chamber and independent of other PTMs. The gradient induced the first phase transition starts at 2.3 GPa and completed at 4.1 GPa. The larger pressure gradient promoted phase transition in advance under higher pressures. Experimental results supported that there existed two conformers of AAI and AAE for γ-RDX, as proposed by another group. δ-RDX was considered to only occur in a hydrostatic environment around 18 GPa using helium as the PTM. This study confirms that δ-RDX is independent of PTM and exists under non-hydrostatic conditions. Evidence for a new phase (ζ) was found at about 28 GPa. These 4 phases have also been verified via XRD under high pressures. In addition to this, another new phase (η) may exist above 38 GPa, and it needs to be further confirmed in the future. Moreover, all the phase transitions were reversible after the pressure was released, and original α-RDX was always obtained at ambient pressure.

  8. High pressure studies of A{sub 2}Mo{sub 3}O{sub 12} negative thermal expansion materials (A{sub 2}=Al{sub 2}, Fe{sub 2}, FeAl, AlGa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong

    2016-05-15

    High pressure powder X-ray diffraction studies of several A{sub 2}Mo{sub 3}O{sub 12} materials (A{sub 2}=Al{sub 2}, Fe{sub 2}, FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversiblemore » on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga{sub 2}Mo{sub 3}O{sub 12} suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al{sub 2}Mo{sub 3}O{sub 12} collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A{sub 2}Mo{sub 3}O{sub 12} (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga{sub 2}Mo{sub 3}O{sub 12} undergoes the same sequence of transitions.« less

  9. Topological Classification of Crystalline Insulators through Band Structure Combinatorics

    NASA Astrophysics Data System (ADS)

    Kruthoff, Jorrit; de Boer, Jan; van Wezel, Jasper; Kane, Charles L.; Slager, Robert-Jan

    2017-10-01

    We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries. The results presented match the mathematical structure underlying the topological classification of these crystals in terms of K -theory and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological phases of spinless particles in crystals in class A . Employing this classification, we study transitions between topological phases within class A that are driven by band inversions at high-symmetry points in the first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.

  10. Phase transition and entropy inequality of noncommutative black holes in a new extended phase space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yan-Gang; Xu, Zhen-Ming, E-mail: miaoyg@nankai.edu.cn, E-mail: xuzhenm@mail.nankai.edu.cn

    We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as the noncommutative pressure . In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former dominates the UV regime while the latter does the IR regime, respectively. In addition, by means of themore » reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.« less

  11. A steep-slope transistor based on abrupt electronic phase transition

    NASA Astrophysics Data System (ADS)

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (`sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  12. A steep-slope transistor based on abrupt electronic phase transition.

    PubMed

    Shukla, Nikhil; Thathachary, Arun V; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-07

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  13. Plateau-Plateau Transitions in Disordered Topological Chern Insulators

    NASA Astrophysics Data System (ADS)

    Su, Ying; Avishai, Yshai; Wang, Xiangrong

    Occurrence of the topological Anderson insulator (TAI) in the HgTe quantum well demonstrates that topological phase transition can be driven by disorder, where re-entrant 2e2 / h quantized conductance is contributed by helical edge states. Within a certain extension of the disordered Kane-Mele model for magnetic materials that violate time-reversal symmetry and inversion symmetry, it is shown that the physics of TAI becomes even richer due to lifted spin and valley degeneracies. Tuning either disorder or Fermi energy (in both topologically trivial and nontrivial phases) makes it possible to drive plateau-plateau transitions between distinct TAI phases characterized by different Chern numbers, marked by jumps of the quantized conductance from 0 to e2 / h and from e2 / h to 2e2 / h . An effective medium theory based on the Born approximation yields an accurate description of different TAI phases in parameter space. This work is supported by NSF of China Grant (No. 11374249) and Hong Kong RGC Grants (No. 163011151 and No. 605413). The research of Y.A. is partially supported by Israel Science Foundation Grant No. 400/2012.

  14. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  15. Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.

    PubMed

    Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop

    2015-07-08

    Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.

    Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less

  17. Solid-liquid like phase transition in a confined granular suspension

    NASA Astrophysics Data System (ADS)

    Sakai, Nariaki; Lechenault, Frederic; Adda Bedia, Mokhtar

    We present an experimental study of a liquid-solid like phase transition in a two-dimensional granular media. Particles are placed in a vertical Hele-Show cell filled with a denser solution of cesium-chloride. Thus, when the cell is rotated around its axis, hydrostatic pressure exerts a centripetal force on the particles which confines them towards the center. This force is in competition with gravity, thus by modifying the rotation rate, it is possible to transform continuously and reversibly the sample from a disordered loose state to an ordered packed state. The system presents many similarities with thermal systems at equilibrium like density and interface fluctuations, and the transition between the two phases goes through a coexistence state, where there is nucleation and growth of locally ordered domains which are captured by the correlation function of the hexatic order parameter. We discuss the possibility to extend the grand-canonical formalism to out-of equilibrium systems, in order to uncover a state equation between the density and the pressure in the medium.

  18. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes.

    PubMed

    Voicu, Victor; Sârbu, Costel; Tache, Florentin; Micăle, Florina; Rădulescu, Ştefan Flavian; Sakurada, Koichi; Ohta, Hikoto; Medvedovici, Andrei

    2014-05-01

    The liquid chromatographic behavior observed under bimodal retention conditions (reversed phase and hydrophilic interaction) offers a new basis for the determination of some derived lipophilicity indices. The experiments were carried out on a representative group (30 compounds) of pyridinium oximes, therapeutically tested in acetylcholinesterase reactivation, covering a large range of lipophilic character. The chromatographic behavior was observed on a mixed mode acting stationary phase, resulting from covalent functionalization of high purity spherical silica with long chain alkyl groups terminated by a polar environment created through the vicinal diol substitution at the lasting carbon atoms (Acclaim Mixed Mode HILIC 1 column). Elution was achieved by combining different proportions of 5 mM ammonium formiate solutions in water and acetonitrile. The derived lipophilicity indices were compared with logP values resulting from different computational algorithms. The correlations between experimental and computed data sets are significant. To obtain a better insight on the transition from reversed phase to hydrophilic interaction retention mechanisms, the variation of the thermodynamic parameters determined through the van׳t Hoff approach was also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Pressure-Induced Melting of Confined Ice.

    PubMed

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Harold J W; Lohse, Detlef; Poelsema, Bene

    2017-12-26

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H-O bond simultaneously. This H-O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice-liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius-Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice.

  20. Quantum Vertex Model for Reversible Classical Computing

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  1. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    PubMed

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  2. Spin and topological order in a periodically driven spin chain

    NASA Astrophysics Data System (ADS)

    Russomanno, Angelo; Friedman, Bat-el; Dalla Torre, Emanuele G.

    2017-07-01

    The periodically driven quantum Ising chain has recently attracted a large attention in the context of Floquet engineering. In addition to the common paramagnet and ferromagnet, this driven model can give rise to new topological phases. In this work, we systematically explore its quantum phase diagram by examining the properties of its Floquet ground state. We specifically focus on driving protocols with time-reversal invariant points, and demonstrate the existence of an infinite number of distinct phases. These phases are separated by second-order quantum phase transitions, accompanied by continuous changes of local and string order parameters, as well as sudden changes of a topological winding number and of the number of protected edge states. When one of these phase transitions is adiabatically crossed, the correlator associated to the order parameter is nonvanishing over a length scale which shows a Kibble-Zurek scaling. In some phases, the Floquet ground state spontaneously breaks the discrete time-translation symmetry of the Hamiltonian. Our findings provide a better understanding of topological phases in periodically driven clean integrable models.

  3. Synthesis, structural characterization and high pressure phase transitions of monolithium hydronium sulfate

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasis; Plonka, Anna M.; Kim, Sun Jin; Xu, Wenqian; Parise, John B.

    2013-01-01

    A three dimensional lithium hydronium sulfate LiSO4·H3O [1], [space group Pna21a=8.7785(12) Å, b=9.1297(12) Å, c=5.2799(7) Å, V=423.16(10) Å3] was synthesized via solvothermal methods using 1,5-naphthalenedisulfonic acid (1,5-NSA) as the source of sulfate ions. The structure of [1], determined by single crystal X-ray diffraction techniques, consists of corner sharing LiO4 and SO4 tetrahedra, forming an anionic 3-D open framework that is charge balanced by hydronium ions positioned within channels running along [001] and forming strong H-bonding with the framework oxygen atoms. Compound [1] undergoes two reversible phase transitions, involving reorientation of SO42- ions at pressures of approximately 2.5 and 5 GPa at room temperature, as evident from characteristic discontinuous frequency drops in the ν1 mode of the Raman spectra. Additionally, compound [1] forms dense β-lithium sulfate at 300 °C, as evident from temperature dependent powder XRD and combined reversible TGA-DSC experiments.

  4. Publisher's Note: High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe 2 As 2 under high pressure [Phys. Rev. B 91 , 060508(R) (2015)

    DOE PAGES

    Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...

    2015-03-09

    Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less

  5. Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii.

    PubMed

    Pathan, Ejaj K; Ghormade, Vandana; Deshpande, Mukund V

    2017-01-01

    Benjaminiella poitrasii, a dimorphic non-pathogenic zygomycetous fungus, exhibits a morphological yeast (Y) to hypha (H) reversible transition in the vegetative phase, sporangiospores (S) in the asexual phase and zygospores (Z) in the sexual phase. To study the gene expression across these diverse morphological forms, suitable reference genes are required. In the present study, 13 genes viz. ACT, 18S rRNA, eEF1α, eEF-Tu,eIF-1A, Tub-α, Tub-b, Ubc, GAPDH, Try, WS-21, NADGDH and NADPGDH were evaluated for their potential as a reference, particularly for studying gene expression during the Y-H reversible transition and also for other asexual and sexual life stages of B. poitrasii. Analysis of RT-qPCR data using geNorm, normFinder and BestKeeper software revealed that genes such as Ubc, 18S rRNA and WS-21 were expressed at constant levels in each given subset of RNA samples from all the morphological phases of B. poitrasii. Therefore, these reference genes can be used to elucidate the role of morpho-genes in B. poitrasii. Further, use of the two most stably expressed genes (Ubc and WS-21) to normalize the expression of the ornithine decarboxylase gene (Bpodc) in different morphological forms of B. poitrasii, generated more reliable results, indicating that our selection of reference genes was appropriate.

  6. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi.

    PubMed Central

    Maresca, B; Kobayashi, G S

    1989-01-01

    Several fungi can assume either a filamentous or a unicellular morphology in response to changes in environmental conditions. This process, known as dimorphism, is a characteristic of several pathogenic fungi, e.g., Histoplasma capsulatum, Blastomyces dermatitidis, and Paracoccidioides brasiliensis, and appears to be directly related to adaptation from a saprobic to a parasitic existence. H. capsulatum is the most extensively studied of the dimorphic fungi, with a parasitic phase consisting of yeast cells and a saprobic mycelial phase. In culture, the transition of H. capsulatum from one phase to the other can be triggered reversibly by shifting the temperature of incubation between 25 degrees C (mycelia) and 37 degrees C (yeast phase). Mycelia are found in soil and never in infected tissue, in contrast to the yeast phase, which is the only form present in patients. The temperature-induced phase transition and the events in establishment of the disease state are very likely to be intimately related. Furthermore, the temperature-induced phase transition implies that each growth phase is an adaptation to two critically different environments. A fundamental question concerning dimorphism is the nature of the signal(s) that responds to temperature shifts. So far, both the responding cell component(s) and the mechanism(s) remain unclear. This review describes the work done in the last several years at the biochemical and molecular levels on the mechanisms involved in the mycelium to yeast phase transition and speculates on possible models of regulation of morphogenesis in dimorphic pathogenic fungi. Images PMID:2666842

  7. Oxygen vacancies dependent phase transition of Y2O3 films

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Zhang, Kan; Huang, Hao; Wen, Mao; Li, Quan; Zhang, Wei; Hu, Chaoquan; Zheng, Weitao

    2017-07-01

    Y2O3 films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y2O3) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y2O3 thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (Ts), in which oxygen vacancies increase monotonously with increasing Ts. For as-deposited Y2O3 films, oxygen vacancies present at high Ts can promote the nucleation of monoclinic phase, meanwhile, high Ts can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high Ts. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and maintenance of high hardness.

  8. Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.

    PubMed

    Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N

    2011-12-06

    A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society

  9. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    PubMed

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  10. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.

    2016-05-31

    Three isotypic crystals, SiO 2 (α-cristobalite), ε-Zn(OH) 2 (wülfingite), and Be(OH) 2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH) 2, the transition from the ambient β-behoite phase with the orthorhombic space group P2 12 12 1 and ambient unit cell parameters a = 4.5403(4) Å, bmore » = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO 4 tetrahedra.« less

  11. Thermal conductivity switch: Optimal semiconductor/metal melting transition

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-10-01

    Scrutinizing distinct solid/liquid (s /l ) and solid/solid (s /s ) phase transitions (passive transitions) for large change in bulk (and homogenous) thermal conductivity, we find the s /l semiconductor/metal (S/M) transition produces the largest dimensionless thermal conductivity switch (TCS) figure of merit ZTCS (change in thermal conductivity divided by smaller conductivity). At melting temperature, the solid phonon and liquid molecular thermal conductivities are comparable and generally small, so the TCS requires localized electron solid and delocalized electron liquid states. For cyclic phase reversibility, the congruent phase transition (no change in composition) is as important as the thermal transport. We identify X Sb and X As (X =Al , Cd, Ga, In, Zn) and describe atomic-structural metrics for large ZTCS, then show the superiority of S/M phonon- to electron-dominated transport melting transition. We use existing experimental results and theoretical and ab initio calculations of the related properties for both phases (including the Kubo-Greenwood and Bridgman formulations of liquid conductivities). The 5 p orbital of Sb contributes to the semiconductor behavior in the solid-phase band gap and upon disorder and bond-length changes in the liquid phase this changes to metallic, creating the large contrast in thermal conductivity. The charge density distribution, electronic localization function, and electron density of states are used to mark this S/M transition. For optimal TCS, we examine the elemental selection from the transition, basic, and semimetals and semiconductor groups. For CdSb, addition of residual Ag suppresses the bipolar conductivity and its ZTCS is over 7, and for Zn3Sb2 it is expected to be over 14, based on the structure and transport properties of the better-known β -Zn4Sb3 . This is the highest ZTCS identified. In addition to the metallic melting, the high ZTCS is due to the electron-poor nature of II-V semiconductors, leading to the significantly low phonon conductivity.

  12. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.

    PubMed

    Leito, Jelani T D; Ligtenberg, Antoon J M; Nazmi, Kamran; Veerman, Enno C I

    2009-10-01

    Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 degrees C under aerobic conditions with 5% CO(2). Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.

  13. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    PubMed

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies

    NASA Astrophysics Data System (ADS)

    Sim, Jai S.; Zhou, You; Ramanathan, Shriram

    2012-10-01

    We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.

  15. Semiconductor-to-metal phase change in MoTe2 layers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Davydov, Albert V.; Krylyuk, Sergiy; Kalish, Irina; Meshi, Louisa; Beams, Ryan; Kalanyan, Berc; Sharma, Deepak K.; Beck, Megan; Bergeron, Hadallia; Hersam, Mark C.

    2016-09-01

    Molybdenum ditelluride (MoTe2), which can exist in a semiconducting prismatic hexagonal (2H) or a metallic distorted octahedral (1T') phases, is one of the very few materials that exhibit metal-semiconductor transition. Temperature-driven 2H - 1T' phase transition in bulk MoTe2 occurs at high temperatures (above 900 °C) and it is usually accompanied by Te loss. The latter can exacerbate the control over reversibility of the phase transition. Here, we study effects of high-temperature annealing on phase transition in MoTe2 single crystals. First, MoTe2 were grown in sealed evacuated quartz ampoules from polycrystalline MoTe2 powder in an iodine-assisted chemical vapor transport process at 1000 °C. The 2H and 1T' phases were stabilized by controlling the cooling rate after the growth. In particular, slow cooling at 10 °C/h rate yielded the 2H phase whereas the 1T' phase was stabilized by ice-water quenching. Next, the phase conversion was achieved by annealing MoTe2 single crystals in vacuum-sealed ampoules at 1000 °C with or without additional poly-MoTe2 powder followed by fast or slow cooling. Similarly to the CVT growth, slow cooling and quenching consistently produced 2H and 1T' phases, respectively, regardless of the initial MoTe2 crystal structure. We will discuss structural and optical properties of the as-grown and phase-converted MoTe2 single crystals using TEM, SEM/EDS, XRD, XPS and Raman. Electrical characteristics of two-terminal devices made from metallic 1T' and bottom-gated FETs made from 2H exfoliated crystals will also be presented.

  16. Revisit of pressure-induced phase transition in PbSe: Crystal structure, and thermoelastic and electrical properties

    DOE PAGES

    Wang, Shanmin; Zang, Chengpeng; Wang, Yongkun; ...

    2015-05-04

    Lead selenide, PbSe, an important lead chalcogenide semiconductor, has been investigated using in–situ high–pressure/high–temperature synchrotron x–ray diffraction and electrical resistivity measurements. For the first time, high–quality x-ray diffraction data were collected for the intermediate orthorhombic PbSe. Combined with ab initio calculations, we find a Cmcm, InI–type symmetry for the intermediate phase, which is structurally more favorable than the anti–GeS–type Pnma. At room temperature, the onset of the cubic–orthorhombic transition was observed at ~3.5 GPa with a ~3.4% volume reduction. At an elevated temperature of 1000 K, the reversed orthorhombic–to–cubic transition was observed at 6.12 GPa, indicating a positive Clapeyron slopemore » for the phase boundary. Interestingly, phase–transition induced elastic softening in PbSe was also observed, which can be mainly attributed to the loosely bonded trigonal prisms along the b–axis in the Cmcm structure. Compared with the cubic phase, orthorhombic PbSe exhibits a large negative pressure dependence of electrical resistivity. Additionally, thermoelastic properties of orthorhombic PbSe have been derived from isothermal compression data, such as temperature derivative of bulk modulus and thermally induced pressure.« less

  17. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  18. Universal fieldable assay with unassisted visual detection

    NASA Technical Reports Server (NTRS)

    Chelyapov, Nicolas (Inventor)

    2012-01-01

    A universal detection system based on allosteric aptamers, signal amplification cascade, and eye-detectable phrase transition. A broadly applicable homogeneous detection system is provided. It utilizes components of the blood coagulation cascade in the presence of polystyrene microspheres (MS) as a signal amplifier. Russell's viper venom factor X activator (RVV-X) triggers the cascade, which results in an eye-visible phase transition--precipitation of MS bound to clotted fibrin. An allosteric RNA aptamer, RNA132, with affinity for RVV-X and human vascular endothelial growth factor (VEGF.sub.165) was created. RNA132 inhibits enzymatic activity of RVV-X. The effector molecule, VEGF.sub.165, reverses the inhibitory activity of RNA132 on RVV-X and restores its enzymatic activity, thus triggering the cascade and enabling the phase transition. Similar results were obtained for another allosteric aptamer modulated by a protein tyrosine phosphatase. The assay is instrumentation-free for both processing and readout.

  19. Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator C-Mod L-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Cao, N. M.; Rice, J. E.; White, A. E.; Baek, S. G.; Creely, A. J.; Ennever, P. C.; Hubbard, A. E.; Hughes, J. W.; Irby, J.; Rodriguez-Fernandez, P.; Chilenski, M. A.; Diamond, P. H.; Reinke, M. L.; Alcator C-Mod Team

    2017-10-01

    Intrinsic core toroidal rotation in Alcator C-Mod L-mode plasmas has been observed to spontaneously reverse direction when the minimum value of the normalized collisionality ν*, crosses around 0.4. In Ohmic plasmas, the rotation is co-current in the low density linear Ohmic confinement (LOC) regime and counter-current in the higher density saturated Ohmic confinement (SOC) regime. The reversal manifests a hysteresis loop in ν*, where the critical collisionalities for the forward and reverse transitions differ by 10-15%. Temperature and density profiles of the two rotation states are observed to be indistinguishable to within experimental error estimated with Gaussian process regression. However, qualitative differences between the two rotation states are observed in fluctuation spectra, including the broadening of reflectometry spectra and, under certain conditions, the appearance of high-k features in phase contrast imaging (PCI) spectra (kθρs up to 1). These results suggest that the turbulent state can decouple from local profiles, and that turbulent self-regulation may play a role in the LOC/SOC transition. This work is supported by the US DOE under Grant DE-FC02-99ER54512 (C-Mod).

  20. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2011-10-01

    We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal.

  1. A review on the structural styles of deformation during Late Cretaceous and Paleocene tectonic phases in the southern North Sea area

    NASA Astrophysics Data System (ADS)

    Deckers, Jef; van der Voet, Eva

    2018-04-01

    The Mesozoic rifts in the southern North Sea area were affected by Late Cretaceous to Paleocene inversion. Two main inversion phases were traditionally identified in this interval: the Sub-Hercynian and the Laramide phases. The Sub-Hercynian phase started in the early Late Cretaceous, peaked during the Campanian and ended in the late Maastrichtian, while the Laramide phase started in the late Danian and ended in the Thanetian. The Late Cretaceous Sub-Hercynian phase was strong and occurred in several pulses. These pulses led to basin-scale uplift by large reverse movements along basin-bounding faults and resulted in large amounts of erosion (up to 2 km) of Mesozoic and older sediments. The middle Paleocene Laramide phase on the other hand resulted in mild, domal uplift of some Late Cretaceous inverted basins and subsidence (into depocenters) of others. The subsequent Cenozoic inversion phases displayed similar or lower amplitudes and wavelengths of vertical surface movements as the Laramide phase. The transition from the Sub-Hercynian to the Laramide phase in the southern North Sea area therefore coincides with the overall transition from fault-controlled inversion to broad domal vertical surface movements.

  2. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  3. Single-Photon-Triggered Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zheng, Li-Li; Zhu, Gui-Lei; Wu, Ying

    2018-06-01

    We propose a hybrid quantum model combining cavity QED and optomechanics, which allows the occurrence of an equilibrium superradiant quantum phase transition (QPT) triggered by a single photon. This single-photon-triggered QPT exists in the cases of both ignoring and including the so-called A2 term; i.e., it is immune to the no-go theorem. It originally comes from the photon-dependent quantum criticality featured by the proposed hybrid quantum model. Moreover, a reversed superradiant QPT is induced by the competition between the introduced A2 term and the optomechanical interaction. This work offers an approach to manipulate QPT with a single photon, which should inspire the exploration of single-photon quantum-criticality physics and the engineering of new single-photon quantum devices.

  4. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    NASA Astrophysics Data System (ADS)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  5. Piezochromism and structural and electronic properties of benz[a]anthracene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Zhang, Rong; Yao, Yansun

    2017-01-31

    We report a combined experimental and theoretical study of the high pressure behavior of a herringbone-type hydrocarbon benz[a]anthracene (BaA) using fluorescence spectroscopy, X-ray diffraction, optical absorption, photoconductivity measurements, and first-principles density functional theory (DFT) calculations. The ambient-pressure molecular solid phase of BaA was found to be stable up to ~15.0 GPa. Increasing the external pressure within this region would induce a reversible piezochromic colour change in the sample, from yellow-green to light brown. The reversibility of the colour change was confirmed by both optical observations and fluorescence measurements. Further compression beyond 15 GPa leads to polymerization of the sample andmore » formation of an amorphous hydrogenated carbon. The low pressure crystalline phase is not recoverable when the sample is decompressed from pressure above 15 GPa. DFT investigation of the structures at zero temperature suggests that the formation of a crystalline polymeric phase can take place between 30 and 117 GPa, however the kinetic barriers hinder the process at low pressure regions. The phase transition is therefore suggested to proceed along a gradual transition path to an amorphous phase at a lower reaction threshold, activated by finite temperature effects. Optical absorption measurements reveal that the band gap of BaA decreases at high pressure, from 2.4 eV at 0.5 GPa to 1.0 eV at 50.6 GPa. The DFT calculations further suggest that the band gap of BaA in the molecular phase could reduce to ~0.1 eV at 117 GPa. Photoconductivity measurements show a continuous increase of photocurrent in the molecular phase region, which most likely originated from the increase of carrier mobility under pressure.« less

  6. Modeling of the Wegener Bergeron Findeisen process—implications for aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Kristjánsson, J. E.; Lohmann, U.; Iversen, T.; Kirkevåg, A.; Seland, Ø.

    2008-10-01

    A new parameterization of the Wegener-Bergeron-Findeisen (WBF) process has been developed, and implemented in the general circulation model CAM-Oslo. The new parameterization scheme has important implications for the process of phase transition in mixed-phase clouds. The new treatment of the WBF process replaces a previous formulation, in which the onset of the WBF effect depended on a threshold value of the mixing ratio of cloud ice. As no observational guidance for such a threshold value exists, the previous treatment added uncertainty to estimates of aerosol effects on mixed-phase clouds. The new scheme takes subgrid variability into account when simulating the WBF process, allowing for smoother phase transitions in mixed-phase clouds compared to the previous approach. The new parameterization yields a model state which gives reasonable agreement with observed quantities, allowing for calculations of aerosol effects on mixed-phase clouds involving a reduced number of tunable parameters. Furthermore, we find a significant sensitivity to perturbations in ice nuclei concentrations with the new parameterization, which leads to a reversal of the traditional cloud lifetime effect.

  7. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    PubMed

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg

    2014-09-01

    We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.

  9. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    2001-01-01

    Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase. PMID:11259300

  10. Near-field thermal rectification devices using phase change periodic nanostructure.

    PubMed

    Ghanekar, Alok; Tian, Yanpei; Ricci, Matthew; Zhang, Sinong; Gregory, Otto; Zheng, Yi

    2018-01-22

    We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO 2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO 2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.

  11. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  12. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    PubMed

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  13. High-frequency intrinsic dynamics of the electrocaloric effect from direct atomistic simulations

    NASA Astrophysics Data System (ADS)

    Lisenkov, S.; Ponomareva, I.

    2018-05-01

    We propose a computational methodology capable of harvesting isothermal heat and entropy change in molecular dynamics simulations. The methodology is applied to study high-frequency dynamics of the electrocaloric effect (ECE) in ferroelectric PbTiO3. ECE is associated with a reversible change in temperature under adiabatic application of electric field or with a reversible change in entropy under isothermal application of the electric field. Accurate assessment of electrocaloric performance requires the knowledge of three quantities: isothermal heat, isothermal entropy change, and adiabatic temperature change. Our methodology allows computations of all these quantities directly, that is, without restoring to the reversible thermodynamical models. Consequently, it captures both reversible and irreversible effects, which is critical for ECE simulations. The approach is well suited to address the dynamics of the ECE, which so far remains underexplored. We report the following basic features of the intrinsic dynamics of ECE: (i) the ECE is independent of the electric field frequency, rate of application, or field profile; (ii) the effect persists up to the frequencies associated with the onset of dielectric losses and deteriorates from there due to the creation of irreversible entropy; and (iii) in the vicinity of the phase transition and in the paraelectric phase the onset of irreversible dynamics occurs at lower frequency as compared to the ferroelectric phase. The latter is attributed to lower intrinsic soft-mode frequencies and and larger losses in the paraelectric phase.

  14. Pressure-Induced Melting of Confined Ice

    PubMed Central

    2017-01-01

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H–O bond simultaneously. This H–O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice–liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius–Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice. PMID:29112376

  15. Structural evolution of calcite at high temperatures: Phase V unveiled

    PubMed Central

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  16. In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2

    NASA Astrophysics Data System (ADS)

    Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.

  17. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  18. Electric-field-induced magnetic domain writing in a Co wire

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi

    2018-05-01

    We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

  19. MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles

    DOE PAGES

    Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; ...

    2013-05-14

    We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less

  20. Phase transition studies of Na3Bi system under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun

    2018-03-01

    We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z   =  0 and k z   =  π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.

  1. Structural analyses of polymorphic transitions of sn-1, 3-distearoyl-2-oleoylglycerol (SOS) and sn-1, 3-dioleoyl-2-stearoylglycerol (OSO): assessment on steric hindrance of unsaturated and saturated acyl chain interactions.

    PubMed

    Yano, J; Sato, K; Kaneko, F; Small, D M; Kodali, D R

    1999-01-01

    Polymorphic transformations in two saturated-unsaturated mixed acid triacylglycerols, SOS (sn -1,3-distearoyl-2-oleoylglycerol) and OSO (sn -1,3-dioleoyl-2-stearoylglycerol), have been studied by FT-IR spectroscopy using deuterated specimens in which stearoyl chains are fully deuterated. A reversible phase transition between sub alpha and alpha and a series of irreversible transitions (alpha-->gamma-->beta'-->beta (beta2, beta1) for SOS and alpha-->beta'-->beta for OSO) were studied with an emphasis on the conformational ordering process of stearoyl and oleoyl chains. The alpha-->sub alpha reversible transition was due to the orientational change of stearoyl chains in the lateral directions from the hexagonal subcell to a perpendicularly packed one. As the first stage of the series of irreversible transitions from alpha to beta, the conformational ordering of saturated chains took place in the alpha-->gamma transition of SOS and in the alpha-->beta' transition of OSO; one stearoyl chain in SOS and OSO takes the all-trans conformation and the second stearoyl chain in SOS takes the bent conformation like those observed in the most stable beta-type. As the final stage, the ordering of unsaturated chains occurred in the beta'-->beta transition both for SOS and OSO. A conversion in the layered structure from bilayer to trilayer was also accompanied by the conformational ordering in the alpha-->gamma transition of SOS and in the beta'-->beta transition of OSO.

  2. 40Ar/39Ar chronology and paleomagnetism of Quaternary basaltic lavas from the Perşani Mountains (East Carpathians)

    NASA Astrophysics Data System (ADS)

    Panaiotu, C. G.; Jicha, B. R.; Singer, B. S.; Ţugui, A.; Seghedi, I.; Panaiotu, A. G.; Necula, C.

    2013-08-01

    Quaternary volcanism in the Perşani Mountains forms an Na-alkali basaltic province inside the bend area of the Carpathians in the southeastern part of Europe. Previous K-Ar ages and paleomagnetic data reveal several transitional virtual geomagnetic poles, which were tentatively associated with the Cobb Mountain subchron and a Brunhes chron excursion. We report a new paleomagnetic and rock-magnetic study coupled with 40Ar/39Ar geochronology to better constrain the age of geomagnetic reversals or excursions that might be recorded and the timing of volcanism. Of the paleomagnetic directions obtained from sampled lava flows 4 are reversed polarity, 19 are normal polarity and 16 have transitional polarity. 40Ar/39Ar plateau ages determined from incremental heating experiments on groundmass indicate that two of the reversely magnetized lavas erupted at 1142 ± 41 and 800 ± 25 ka, four of the normally magnetized lavas erupted at 1060 ± 10, 1062 ± 24, 684 ± 21, and 683 ± 28 ka, and two transitionally magnetized lavas formed at 1221 ± 11 and 799 ± 21 ka. Both the new 40Ar/39Ar ages and the paleomagnetic data suggest at least five episodes of volcanic activity with the most active periods during the Jaramillo and Brunhes chrons. This results shows that the last phases of alkalic and calc-alkaline magmatism in the South-East Carpathians were contemporaneous. The age of the older transitionally magnetized lava flow is within error of recent unspiked K-Ar and astrochronologic ages for the reversal that defines the onset of the Cobb Mountain normal polarity subchron. The age of the younger transitional lava is similar to that of an excursion that preceded the Matuyama-Brunhes polarity reversal and which has come to be known as the Matuyama-Brunhes precursor. Omitting the excursion data, the dispersion of the virtual geomagnetic poles (around 19°) is larger than the expected value around 45°N from the global compilation, but closer to the value obtained only from the Time Averaged geomagnetic Field Initiative studies.

  3. Metastable liquid-liquid transition in a molecular model of water

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.

  4. Metastable liquid-liquid transition in a molecular model of water.

    PubMed

    Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-06-19

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.

  5. Critical Behaviors in Contagion Dynamics.

    PubMed

    Böttcher, L; Nagler, J; Herrmann, H J

    2017-02-24

    We study the critical behavior of a general contagion model where nodes are either active (e.g., with opinion A, or functioning) or inactive (e.g., with opinion B, or damaged). The transitions between these two states are determined by (i) spontaneous transitions independent of the neighborhood, (ii) transitions induced by neighboring nodes, and (iii) spontaneous reverse transitions. The resulting dynamics is extremely rich including limit cycles and random phase switching. We derive a unifying mean-field theory. Specifically, we analytically show that the critical behavior of systems whose dynamics is governed by processes (i)-(iii) can only exhibit three distinct regimes: (a) uncorrelated spontaneous transition dynamics, (b) contact process dynamics, and (c) cusp catastrophes. This ends a long-standing debate on the universality classes of complex contagion dynamics in mean field and substantially deepens its mathematical understanding.

  6. Monostable superrepellent materials

    NASA Astrophysics Data System (ADS)

    Li, Yanshen; Quéré, David; Lv, Cunjing; Zheng, Quanshui

    2017-03-01

    Superrepellency is an extreme situation where liquids stay at the tops of rough surfaces, in the so-called Cassie state. Owing to the dramatic reduction of solid/liquid contact, such states lead to many applications, such as antifouling, droplet manipulation, hydrodynamic slip, and self-cleaning. However, superrepellency is often destroyed by impalement transitions triggered by environmental disturbances whereas inverse transitions are not observed without energy input. Here we show through controlled experiments the existence of a “monostable” region in the phase space of surface chemistry and roughness, where transitions from Cassie to (impaled) Wenzel states become spontaneously reversible. We establish the condition for observing monostability, which might guide further design and engineering of robust superrepellent materials.

  7. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    NASA Astrophysics Data System (ADS)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  8. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Han, F. F.; Inoue, A.; Han, Y.; Kong, F. L.; Zhu, S. L.; Shalaan, E.; Al-Marzouki, F.; Greer, A. L.

    2017-04-01

    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  9. Field-Control, Phase-Transitions, and Life’s Emergence

    PubMed Central

    Mitra-Delmotte, Gargi; Mitra, A. N.

    2012-01-01

    Instances of critical-like characteristics in living systems at each organizational level (bio-molecules to ecosystems) as well as the spontaneous emergence of computation (Langton), do suggest the relevance of self-organized criticality (SOC). But extrapolating complex bio-systems to life’s origins, brings up a paradox: how could simple organics – lacking the “soft-matter” response properties of today’s complex bio-molecules – have dissipated energy from primordial reactions (eventually reducing CO2) in a controlled manner for their “ordering”? Nevertheless, a causal link of life’s macroscopic irreversible dynamics to the microscopic reversible laws of statistical mechanics is indicated via the “functional-takeover” of a soft magnetic scaffold by organics (c.f. Cairns-Smith’s “crystal-scaffold”). A field-controlled structure offers a mechanism for boot-strapping – bottom-up assembly with top-down control: its super-paramagnetic colloidal components obey reversible dynamics, but its dissipation of magnetic (H)-field energy for aggregation breaks time-reversal symmetry. The responsive adjustments of the controlled (host) mineral system to environmental changes would bring about mutual coupling between random organic sets supported by it; here the generation of long-range correlations within organic (guest) networks could include SOC-like mechanisms. And, such cooperative adjustments enable the selection of the functional configuration by altering the inorganic dipolar network’s capacity to assist a spontaneous process. A non-equilibrium dynamics could now drive the kinetically oriented system (trimming the phase-space via sterically coupled organics) toward a series of phase-transitions with appropriate organic replacements “taking-over” its functions. Where available, experiments are cited in support of these speculations and for designing appropriate tests. PMID:23060803

  10. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    PubMed

    Han, F F; Inoue, A; Han, Y; Kong, F L; Zhu, S L; Shalaan, E; Al-Marzouki, F; Greer, A L

    2017-04-13

    Thermal stability and crystallization of three multicomponent glassy alloys, Al 86 Y 7 Ni 5 Co 1 Fe 0.5 Pd 0.5 , Al 85 Y 8 Ni 5 Co 1 Fe 0.5 Pd 0.5 and Al 84 Y 9 Ni 4 Co 1.5 Fe 0.5 Pd 1 , were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic Al x M y (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al 3 Y + Al 9 (Co, Ni) 2  + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent Al x M y ] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable Al x M y compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  11. BCS Theory of Time-Reversal-Symmetric Hofstadter-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Iskin, M.

    2017-08-01

    The competition between the length scales associated with the periodicity of a lattice potential and the cyclotron radius of a uniform magnetic field is known to have dramatic effects on the single-particle properties of a quantum particle, e.g., the fractal spectrum is known as the Hofstadter butterfly. Having this intricate competition in mind, we consider a two-component Fermi gas on a square optical lattice with opposite synthetic magnetic fields for the components, and study its effects on the many-body BCS-pairing phenomenon. By a careful addressing of the distinct superfluid transitions from the semimetal, quantum spin-Hall insulator, or normal phases, we explore the low-temperature phase diagrams of the model, displaying lobe structures that are reminiscent of the well-known Mott-insulator transitions of the Bose-Hubbard model.

  12. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  13. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  14. Laser-irradiated Kondo insulators: Controlling the Kondo effect and topological phases

    NASA Astrophysics Data System (ADS)

    Takasan, Kazuaki; Nakagawa, Masaya; Kawakami, Norio

    2017-09-01

    We investigate theoretically the nature of laser-irradiated Kondo insulators. Using Floquet theory and the slave-boson approach, we study a periodic Anderson model and derive an effective model that describes laser-irradiated Kondo insulators. In this model, we find two generic effects induced by laser light. One is dynamical localization, which suppresses hopping and hybridization. The other is laser-induced hopping and hybridization, which can be interpreted as synthetic spin-orbit coupling or a magnetic field. The first effect drastically changes the behavior of the Kondo effect. In particular, the Kondo effect under laser light qualitatively changes its character depending on whether the hybridization is on-site or off-site. The second effect triggers topological phase transitions. In topological Kondo insulators, linearly polarized laser light realizes phase transitions between trivial, weak topological, and strong topological Kondo insulators. Moreover, circularly polarized laser light breaks time-reversal symmetry and induces Weyl semimetallic phases. Our results make it possible to dynamically control the Kondo effect and topological phases in heavy-fermion systems. We also discuss experimental setups to detect the signatures.

  15. Phase Transition and Structure of Silver Azide at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Hou; F Zhang; C Ji

    2011-12-31

    Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phasesmore » have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.« less

  16. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses.

    PubMed

    Dmowski, W; Gierlotka, S; Wang, Z; Yokoyama, Y; Palosz, B; Egami, T

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  17. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide

    NASA Astrophysics Data System (ADS)

    Lee, Boeun; Yoon, Chong Seung; Lee, Hae Ri; Chung, Kyung Yoon; Cho, Byung Won; Oh, Si Hyoung

    2014-08-01

    Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg-1, larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

  18. Magnetic phase transitions and magnetization reversal in MnRuP

    NASA Astrophysics Data System (ADS)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  19. Chiral phases of superfluid 3He in an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Sauls, J. A.

    2013-12-01

    Recent advances in the fabrication and characterization of anisotropic silica aerogels with exceptional homogeneity provide new insight into the nature of unconventional pairing in disordered anisotropic media. I report theoretical analysis and predictions for the equilibrium phases of superfluid 3He infused into a low-density, homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained aerogels. For 3He in an axially “stretched” aerogel, GL theory predicts a transition from normal liquid into a chiral Anderson-Morel phase at Tc1 in which the chirality axis l̂ is aligned along the strain axis. This orbitally aligned state is protected from random fluctuations in the anisotropy direction, has a positive nuclear magnetic resonance (NMR) frequency shift, a sharp NMR resonance line, and is identified with the high-temperature ESP-1 phase of superfluid 3He in axially stretched aerogel. A second transition into a biaxial phase is predicted to onset at a slightly lower temperature Tc2

  20. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.

    2016-05-31

    Three isotypic crystals, SiO 2 (α-cristobalite), ε-Zn(OH) 2 (wülfingite), and Be(OH) 2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression drivenphase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high pressure γ-phase of beryllium hydroxide and compare it with the high pressure structures of the other two minerals. In Be(OH) 2, the transition from the ambient β-behoite phase with the orthorhombic space group P2 12 12 1 and ambient unit cell parameters a = 4.5403(4)more » Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO 4 tetrahedra.« less

  1. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  2. Folding-unfolding transitions of Rv3221c on the pressure-temperature plane

    NASA Astrophysics Data System (ADS)

    Somkuti, Judit; Jain, Sriyans; Ramachandran, Srinivasan; ászló Smeller, L.

    2013-06-01

    Rv3221c is a biotin-binding protein found in Mycobacterium tuberculosis. It has been reported that an elevated temperature is needed for it to adopt a folded conformation. We determined the complete pressure-temperature phase diagram, and determined the thermodynamical parameters of the denaturation. The phase diagram follows well the Hawley theory. The secondary structure of the protein was found to contain predominantly beta sheet. The pressure unfolding was partially reversible, resulting in pressure-sensitive aggregates, besides the correctly refolded and biotin-bound fraction of proteins.

  3. A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Logvinenko, Vladimir A; Gatilov, Yuri V; Korolkov, Ilya V; Shundrina, Inna K; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-01-07

    The system [FeL2](BF4)2 (1)-EtOH-H2O (L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine) shows a complicated balance between the relative stabilities of solvatomorphs and polymorphs of the complex [FeL2](BF4)2. New solvatomorphs, 1(LS)·EtOH·H2O and β-1(LS)·xH2O, were isolated in this system. They were converted into four daughter phases, 1(A/LS), 1(D/LS), 1(E/LS)·yEtOH·zH2O and 1(F/LS). On thermal cycling in sealed ampoules, the phases 1(LS)·EtOH·H2O and β-1(LS)·xH2O transform into the anhydrous phase 1(A/LS). The hysteresis loop width for the (A/LS) ↔ (A/HS) spin transition depends on the water and ethanol contents in the ampoule and varies from ca. 30 K up to 145 K. The reproducible hysteresis loop of 145 K is the widest ever reported one for a spin crossover complex. The phase 1(A/LS) combines the outstanding spin crossover properties with thermal robustness allowing for multiple cycling in sealed ampoules without degradation. The kinetics of the 1(A/LS) → 1(A/HS) transition is sigmoidal which is indicative of strong cooperative interactions. The cooperativity of the 1(A/LS) → 1(A/HS) transition is related to the formation of a 2D supramolecular structure of the phase 1(A/LS). The activation energy for the spin transition is very high (hundreds of kJ mol(-1)). The kinetics of the 1(A/HS) → 1(A/LS) transition can either be sigmoidal or exponential depending on the water and ethanol contents in the ampoule. The phases 1(D/LS) and 1(F/LS) show gradual crossover, whereas the phase 1(E/LS)·yEtOH·yH2O shows a reversible hysteretic transition associated with the solvent molecule release and uptake.

  4. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  5. Crystal structures and transition mechanism of VO{sub 2}(A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshio; Yao, Takeshi; Yamamoto, Naoichi

    1998-12-01

    Structures of VO{sub 2}(A) have been redetermined by single-crystal diffractometry for low- (LTP) and high-temperature (HTP) phases at 298 and 473 K, respectively. The LTP adopts the tetragonal system P4/ncc with a = 8.4403(9) {angstrom}, c = 7.666(1) {angstrom}, and Z = 16, whereas the HTP adopts the body-centered tetragonal system I4/m with a = 8.476(2) {angstrom}, c = 3.824(2) {angstrom}, and Z = 8. The refinements led to R/R{sub w} = 0.031/0.032 for LTP and 0.012/0.033 for HTP. The structures of both phases consist of edge-sharing VO{sub 6} octahedra and exhibit quite similar oxygen frameworks. Through the transition themore » V{sup 4+}-V{sup 4+} bonding in LTP with a distance of 2.7695(8) {angstrom} is dissociated in HTP to a distance of 3.0794(3) {angstrom}. The transition occurs with cooperative movements of the V atoms, namely, a rotation around the c axis and a shift along the c axis. Strangely, twinning is induced on the LTP to HTP transition but disappears on the reverse transition.« less

  6. Modification of turbulence and turbulent transport associated with a confinement transition in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, Troy

    2009-11-01

    Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.

  7. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao Popuri, Srinivasa; University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac; National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversiblemore » intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.« less

  8. Exploiting pressure to induce a "guest-blocked" spin transition in a framework material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciortino, Natasha F.; Ragon, Florence; Zenere, Katrina A.

    A new functionalized 1,2,4-trizole ligand 4-[(E)-2-(5-methyl-2-thienyl)vinyl]-1,2,4-triazole (thiome) was prepared to assess the structural and magnetic consequence of ligand steric bulk in the resultant framework material [FeIIPd(CN)4(thiome)2]·2(H2O) (A·2(H2O)). Structural studies reveal that the pore size is smaller than realted 2-D Hofmann-type materials and that the water molecules can be reversibly removed with retention of the porous host framework. Magnetic measurements show ‘on-off’ sensing to the presence of water. The hydrated phase is spin crossover (SCO) inactive whereas the dehydrated phase undergoes an abrupt and hysteretic one-step spin transition. Partial dehydration (A·n(H2O), 0 ≤ n ≤ 2) leads to systematically varying spinmore » transition temperatures further demonstrating qualitative sensing. These studies suggest that the SCO properties are governed by internal lattice pressure effects. Variable pressure structure and magnetic studies on the hydrated phase, A·2(H2O), reveal that such internal guest pressure effects can be overcome with moderate external pressure application (0 – 0.68 GPa) resulting in a two-step spin transition at ambient temperatures at 0.68 GPa.« less

  9. Application of phase-change materials in memory taxonomy.

    PubMed

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  10. Phase Stability and Transformations in Vanadium Oxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Bergerud, Amy Jo

    Vanadium oxides are both fascinating and complex, due in part to the many compounds and phases that can be stabilized as well as the phase transformations which occur between them. The metal to insulator transitions (MITs) that take place in vanadium oxides are particularly interesting for both fundamental and applied study as they can be induced by a variety of stimuli ( i.e., temperature, pressure, doping) and utilized in many applications (i.e., smart windows, sensors, phase change memory). Nanocrystals also tend to demonstrate interesting phase behavior, due in part to the enhanced influence of surface energy on material thermodynamics. Vanadium oxide nanocrystals are thus expected to demonstrate very interesting properties in regard to phase stability and phase transformations, although synthesizing vanadium oxides in nanocrystal form remains a challenge. Vanadium sesquioxide (V2O3) is an example of a material that undergoes a MIT. For decades, the low temperature monoclinic phase and high temperature corundum phase were the only known crystal structures of V2O3. However, in 2011, a new metastable polymorph of V2O3 was reported with a cubic, bixbyite crystal structure. In Chapter 2, a colloidal route to bixbyite V2O 3 nanocrystals is presented. In addition to being one of the first reported observations of the bixbyite phase in V2O3, it is also one of the first successful colloidal syntheses of any of the vanadium oxides. The nanocrystals possess a flower-like morphology, the size and shape of which are dependent on synthesis time and temperature, respectively. An aminolysis reaction mechanism is determined from Fourier transform infrared spectroscopy data and the bixbyite crystal structure is confirmed by Rietveld refinement of X-ray diffraction (XRD) data. Phase stability is assessed in both air and inert environments, confirming the metastable nature of the material. Upon heating in an inert atmosphere above 700°C, the nanocrystals irreversibly transform to the bulk stable corundum phase of V2O3 with concurrent particle coarsening. This, in combination with the enhanced stability of the nanocrystals over bulk, suggests that the bixbyite phase may be stabilized due to surface energy effects, a well-known phenomenon in nanocrystal research. In Chapter 3, the reversible incorporation of oxygen in bixbyite V 2O3 is reported, which can be controlled by varying temperature and oxygen partial pressure. Based on XRD and thermogravimetric analysis, it is found that oxygen occupies interstitial sites in the bixbyite lattice. Two oxygen atoms per unit cell can be incorporated rapidly and with minimal changes to the structure while the addition of three or more oxygen atoms destabilizes the structure, resulting in a phase change that can be reversed upon oxygen removal. Density functional theory (DFT) supports the reversible occupation of interstitial sites in bixbyite by oxygen and the 1.1 eV barrier to oxygen diffusion predicted by DFT matches the activation energy of the oxidation process derived from observations by in situ XRD. The observed rapid oxidation kinetics are thus facilitated by short diffusion paths through the bixbyite nanocrystals. Due to the exceptionally low temperatures of oxidation and reduction, this material, made from earth-abundant atoms, is proposed for use in oxygen storage applications, where oxygen is reversibly stored and released. Further oxidation of bixbyite V2O3 under controlled oxygen partial pressure can lead to the formation of nanocrystalline vanadium dioxide (VO2), a material that is studied for its MIT that occurs at 68 C in the bulk. This transformation is accompanied by a change in crystal structure, from monoclinic to rutile phase, and a change in optical properties, from infrared transparent to infrared blocking. Because of this, VO2 is promising for thermochromic smart window applications, where optical properties vary with temperature. Recently, alternative stimuli have been utilized to trigger MITs in VO2, including electrochemical gating. Rather than inducing the expected monoclinic to rutile phase transition as originally proposed, electrochemical gating of the insulating phase was recently shown to induce oxygen vacancy formation in VO2, thereby inducing metallization, while the characteristic V-V dimerization of the monoclinic phase was retained. In Chapter 4, the preparation and electrochemical reduction of VO2 nanocrystal films is presented. The nanocrystalline morphology allows for the study of transformations under conditions that enhance the gating effect by creating a large VO2-electrolyte interfacial area and by reducing the path length for diffusion. The resulting transitions are observed optically, from insulator to metal to insulator and back, with in situ visible-near infrared spectroelectrochemistry and correlated with structural changes monitored by Raman and X-ray absorption spectroscopies. The never-before-seen transition to an insulating phase under progressive electrochemical reduction is attributed to an oxygen defect induced phase transition to a new phase. This is likely enabled by the nanocrystalline nature of the sample, which may enhance the kinetics of oxygen diffusion, support a higher degree of lattice expansion-induced strain, or simply alter the thermodynamics of the system.

  11. Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.

    2010-10-01

    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

  12. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles.

    PubMed

    Hernández-Díaz, Lorenzo; Hernández-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri

    2010-05-19

    We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.

  13. Electric Field-Induced Large Strain in Ni/Sb-co Doped (Bi0.5Na0.5) TiO3-Based Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Hao, Jigong; Xu, Zhijun; Li, Wei; Chu, Ruiqing

    2018-02-01

    Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1- x (Ni0.5Sb0.5) x O3 (BNBT6.5- xNS) have been fabricated using conventional solid sintering technique. The effect of (Ni, Sb) doping on the phase structure and electrical properties of BNBT6.5 ceramics were systematically investigated. Results show that the addition of (Ni, Sb) destroyed the ferroelectric long-range order of BNBT6.5 and shifted the ferroelectric-relaxor transition temperature ( T F-R) down to room temperature. Thus, this process induced an ergodic relaxor phase at zero field in samples with x = 0.005. Under the electric field, the ergodic relaxor phase could reversibly transform to ferroelectric phase, which promotes the strain response with peak value of 0.38% (at 80 kV/cm, corresponding to d 33 * = 479 pm/V) at x = 0.005. Temperature-dependent measurements of both polarization and strain confirmed that the large strain originated from a reversible field-induced ergodic relaxor to ferroelectric phase transformation. The proposed material exhibits potential for nonlinear actuators.

  14. A Raman and Infrared Spectroscopic Study of Anglesite at High Pressures

    NASA Astrophysics Data System (ADS)

    Sawchuk, K. L. S.; Vennari, C.; O'Bannon, E. F., III; Williams, Q.

    2016-12-01

    Raman and infrared spectra of the barite-structured lead sulfate, anglesite (PbSO4), were collected to 40 GPa and 300 K. Our particular interest in this compound is oriented towards determining what post-barite structures sulfates in the deep earth sulfur cycle might ultimately convert to at high pressures. Additionally, the study of ABX4 materials has applications to materials science that include their usage as scintillation detectors, and PbSO4 has been demonstrated to have non-linear optical properties. Measurements were made of the internal modes of the SO4 group that lie between 400 and 1200 cm-1 and lattice vibrations that occur between 50 and 250 cm-1. In accord with previous Raman work of Lee et al. (WJCMP, 2012), two phase transitions initiate at 13 and 23 GPa which are reversible on decompression. The 13 GPa transition is subtle and involves splitting of a few modes, particularly the SO4 tetragonal stretching and bending-derived Raman and associated infrared modes. This transition likely goes to a structure with a greater degree of Davydov splitting between corresponding Raman- and infrared-active vibrations, which may indicate a greater distortion of the SO4 tetrahedra. The transition at 23 GPa is a major, sluggish, transition that causes splitting and/or shifting in all observed Raman and infrared modes. These new peaks are lower in frequency and become the sole spectral features by 42 GPa suggesting a higher symmetry structure than previously inferred. It appears that this transition involves a coexistence of phases until the transition is ultimately complete around 42 GPa. Based on the structural systematics of ABX4 phases and factor group analysis, it is likely the structure goes to the monazite structure at high pressures, but that this transition required marked overpressurization to occur at 300K. The accessing of this monazite-like phase is in general accord with systematics of high-pressure transitions in ABX4 phases, and indicates that monazite-structured polymorphs may be anticipated within subducted high-pressure sulfates within Earth's mantle.

  15. Fracture and healing of elastomers: A phase-transition theory and numerical implementation

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar

    2018-03-01

    A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.

  16. Short-ranged interaction effects on Z2 topological phase transitions: The perturbative mean-field method

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Hung, Hsiang-Hsuan

    2015-02-01

    Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane-Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self-consistent treatments.

  17. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  18. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.

    PubMed

    Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf

    2013-02-07

    Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated.

  19. Pressure response of three-dimensional cyanide-bridged bimetallic magnets.

    PubMed

    Ohba, Masaaki; Kaneko, Wakako; Kitagawa, Susumu; Maeda, Takuho; Mito, Masaki

    2008-04-02

    Effects of pressure on the structures and magnetic properties of three types of 3-D cyanide-bridged bimetallic coordination polymer magnets, MnIICrIII ferrimagnet [Mn(en)]3[Cr(CN)6]2.4H2O (1; en = ethylenediamine), NiIICrIII ferromagnet [Ni(dipn)]3[Cr(CN)6]2.3H2O (2; dipn = N,N-di(3-aminopropyl)amine), and NiIIFeIII ferromagnet [Ni(dipn)]2[Ni(dipn)(H2O)][Fe(CN)6]2.11H2O (3), were systematically examined under hydrostatic pressure up to 19.8 GPa using a piston-cylinder-type pressure cell and a diamond anvil cell. The ferrimagnet 1 showed the reversible crystalline-to-amorphous-like phase change, and the magnetic phase transition temperature (TC) was reversibly changed from 69 K at 0 GPa to 126 K at 4.7 GPa. At higher pressure, the net magnetization was suppressed with increasing pressure, and the magnetic state at 19.8 GPa was assumed to be paramagnetic. The initial ferrimagnetic phase of 1 was not recovered after releasing the pressure from 19.8 GPa. The magnetic phase of 2 was reversibly converted between ferromagnetic and paramagnetic-like phase in the range 0

  20. Photo-induced Low Temperature Structural Transition in the "114" YbaFe 4O 7 oxide

    DOE PAGES

    Duffort, V.; Caignaert, Vincent; Pralong, V.; ...

    2013-11-11

    Synchrotron irradiation of the oxide YBaFe 4O 7.0 below 190 K converts the low temperature monoclinic structure to a higher symmetry tetragonal form analogous to the room temperature structure. This photo-induced metastable tetragonal form is stable even in the absence of irradiation over the range 4-60 K, however, above 60 K the photo-transition is reversible. These structural phenomena are correlated to the magnetic behaviour of this system, suggesting possible spin-lattice coupling. Lastly, a scenario explaining the low temperature photo-induced transition is proposed, based on the different distributions of the valence electrons in the iron sub-lattice of the monoclinic and tetragonalmore » phases.« less

  1. Order parameter analysis of synchronization transitions on star networks

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang

    2017-12-01

    The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Gierlotka, S.; Wang, Z.

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less

  3. Photoinduced metal-to-insulator transition in a manganite thin film.

    PubMed

    Takubo, N; Onishi, I; Takubo, K; Mizokawa, T; Miyano, K

    2008-10-24

    A persistent photoinduced metal-to-insulator transition has been confirmed in a manganite thin film, Pr_(0.55)(Ca_(0.75)Sr_(0.25))_(0.45)MnO3, near a multicritical point by monitoring with transport measurements and x-ray photoemission spectroscopy. Together with the previously reported reverse effect, the photoinduced insulator-to-metal transition, it is found that the relative stability of the metallic and insulating phases interchanges around 80 K in the middle of a very wide hysteresis loop, which is a manifestation of the large potential barrier due to the long-range elastic energy. It is shown that photons are much more effective in overcoming the barrier via the electronically excited intermediate states than via the heat mode.

  4. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  5. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads.

    PubMed

    Takeuchi, I; Famodu, O O; Read, J C; Aronova, M A; Chang, K-S; Craciunescu, C; Lofland, S E; Wuttig, M; Wellstood, F C; Knauss, L; Orozco, A

    2003-03-01

    Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.

  6. Dynamical similarity of geomagnetic field reversals.

    PubMed

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  7. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    PubMed Central

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  8. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  9. Parity-time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systems

    DOE PAGES

    Tripathi, Vikram; Galda, Alexey; Barman, Himadri; ...

    2016-07-05

    Here, we describe the critical behavior of the electric field-driven (dynamic) Mott insulator-to-metal transitions in dissipative Fermi and Bose systems in terms of non-Hermitian Hamiltonians invariant under simultaneous parity (P) and time-reversal (T) operations. The dynamic Mott transition is identified as a PT symmetry-breaking phase transition, with the Mott insulating state corresponding to the regime of unbroken PT symmetry with a real energy spectrum. We also established that the imaginary part of the Hamiltonian arises from the combined effects of the driving field and inherent dissipation. We derive the renormalization and collapse of the Mott gap at the dielectric breakdownmore » and describe the resulting critical behavior of transport characteristics. The critical exponent we obtained is in an excellent agreement with experimental findings.« less

  10. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Gierlotka, S.; Wang, Z.

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less

  11. Dynamic stimulation of quantum coherence in systems of lattice bosons.

    PubMed

    Robertson, Andrew; Galitski, Victor M; Refael, Gil

    2011-04-22

    Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition, however, we show that nonequilibrium driving can be used to reverse this thermal decoherence. This is possible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum property. We demonstrate this in the Bose-Hubbard model by calculating the nonequilibrium spatial correlation function with periodic driving. We show that the nonequilibrium phase boundary between coherent and incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvelik, A. M.; Yevtushenko, O. M.

    We study the low energy physics of a Kondo chain where electrons from a one-dimensional band interact with magnetic moments via an anisotropic exchange interaction. It is demonstrated that the anisotropy gives rise to two different phases which are separated by a quantum phase transition. In the phase with easy plane anisotropy, Z2 symmetry between sectors with different helicity of the electrons is broken. As a result, localization effects are suppressed and the dc transport acquires (partial) symmetry protection. This effect is similar to the protection of the edge transport in time-reversal invariant topological insulators. The phase with easy axismore » anisotropy corresponds to the Tomonaga-Luttinger liquid with a pronounced spin-charge separation. The slow charge density wave modes have no protection against localizatioin.« less

  13. Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...

    2016-09-30

    The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less

  14. Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.

    The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less

  15. REVIEWS OF TOPICAL PROBLEMS: Order-disorder transformations and phase equilibria in strongly nonstoichiometric compounds

    NASA Astrophysics Data System (ADS)

    Gusev, Aleksandr I.

    2000-01-01

    Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.

  16. The phase transition of Pb8F14I2.

    PubMed

    Weil, Matthias

    2017-01-01

    The reversible phase transition of Pb 8 F 14 I 2 is of continuous type and takes place at about 107 °C as monitored by temperature-dependent single crystal and powder X-ray diffraction measurements, optical microscopy, and differential scanning calorimetry. The low-temperature ferroelastic phase crystallizes in the orthorhombic crystal system (23 °C, Bmmb , Z  = 2, a  = 6.0699(6) Å, b  = 6.0165(6) Å, c  = 25.077(2) Å, 1487 structure factors, 41 parameter, R ( F 2 ) = 0.0346, wR ( F 2 ) = 0.0771) and changes its symmetry to the tetragonal crystal system into the high-temperature paraelastic phase (130 °C, I 4/ mmm , Z  = 1, a  = 4.2667(12) Å, c  = 25.388(7) Å, 430 structure factors, 303 parameter, R ( F 2 ) = 0.0575, wR ( F 2 ) = 0.1564). Group-subgroup relationships between the two structures and a hypothetical intermediate structure are presented.

  17. New insights into the structure, chemistry, and properties of Cu 4SnS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman

    The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less

  18. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    NASA Astrophysics Data System (ADS)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  19. New insights into the structure, chemistry, and properties of Cu 4SnS 4

    DOE PAGES

    Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman; ...

    2017-05-25

    The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less

  20. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    PubMed

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  1. FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure

    2017-12-01

    The electrochemical mechanism and performance of FeSi4P4, vs. Na and Li were studied using a combination of operando X-ray diffraction, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. This silicon- and phosphorous-rich material exhibits a high capacity of 1750 mAh/g, retaining 1120 mAh/g after 40 cycles, and reacts through an original reversible mechanism surprisingly involving only slight changes in the chemical environment of the iron. Magnetic measurements and 57Fe Mössbauer spectroscopy at low temperature reveal the reversible but incomplete change of the magnetic moment upon charge and discharge. Such a mild reversible process without drastic phase transition (with the exception of the crystalline to amorphous transition during the first lithiation) can explain the satisfying capacity retention. The electrochemical mechanism appears thus to be significantly different from the classical conversion or alloying/dealloying mechanisms usually observed in Lithium ion batteries for p-group element based materials. The same iron silicon phosphide electrode shows also interesting but significantly lower performance vs. Na, with a limited capacity retention 350 mAh/g.

  2. Sensitivity of Imaging Materials to Electron Beam Irradiation

    DTIC Science & Technology

    1991-04-01

    solvent/nonsolvent ratio, and in the solid state by applying mechanical stresses. The terms thermochromism , solvatochromism, and mechanochromism have been...these examples, the thermochromic phase transitions that occur in solution are reversible [101. The changes in optical absorption for solutions of 3BCMU...three-dimensional perspective, as would be observed in a monomolecular layer of an LB film. Flanking this view are both a side view (14a) and a front

  3. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  4. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    PubMed

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim

    2008-02-15

    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  5. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room temperature makes this system particularly attractive and viable for technological applications. A mechanistic basis for the phase transition is proposed based on charge disproportionation evidenced at room temperature in near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements, ab initio density functional theory calculations of the band structure, and electrical transport data suggesting that transformation to the metallic state is induced by melting of specific charge localization and ordering motifs extant in these materials. In Chapter 4, we report the synthesis of single-crystalline delta-Ag 0.88V2O5 nanowires and unravel pronounced electronic phase transitions induced in response to temperature and applied electric field. Specifically, a pronounced semiconductor---semiconductor transition is evidenced for these materials at ca. 150 K upon heating and a distinctive insulator---conductor transition is observed upon application of an in-plane voltage. An orbital-specific picture of the mechanistic basis of the phase transitions is proposed using a combination of density functional theory (DFT) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Structural refinements above and below the transition temperature, angle-resolved O K-edge NEXAFS spectra, and DFT calculations suggest that the electronic phase transitions in these 2D frameworks are mediated by a change in the overlap of d xy orbitals. The classical orthorhombic layered phase of V2O5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Concluding with Chapter 5, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V 2O5 (zeta-V2O5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.

  6. Chiral Spin Order in Kondo-Heisenberg Systems

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-01

    We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.

  7. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant

    NASA Astrophysics Data System (ADS)

    Shvetsov, Sergey A.; Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.

    2017-06-01

    Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

  8. Strontium cobaltite oxygen sponge catalyst and methods of use

    DOEpatents

    Lee, Ho Nyung; Jeen, Hyoungjeen; Choi, Woo Seok; Biegalski, Michael; Folkman, Chad M.; Tung, I-Cheng; Fong, Dillon D.; Freeland, John W.; Shin, Dongwon; Ohta, Hiromichi; Chisholm, Matthew F.

    2017-01-24

    Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200.degree. C., from epitaxially stabilized, oxygen vacancy ordered SrCoO.sub.2.5 and thermodynamically unfavorable perovskite SrCoO.sub.3-.delta.. The fast, low temperature redox activity in SrCoO.sub.3-.delta. may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.

  9. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr 1/3Fe 1/3Mn 1/3O 2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g –1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) →more » (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na + deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+ can be effectively suppressed by Fe 3+ and Mn 4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO 6 octahedral distortion and recovery.« less

  10. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway formore » NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.« less

  11. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE PAGES

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya; ...

    2017-02-14

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr 1/3Fe 1/3Mn 1/3O 2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g –1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) →more » (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na + deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+ can be effectively suppressed by Fe 3+ and Mn 4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO 6 octahedral distortion and recovery.« less

  12. FeTi oxide mineralogy and the origin of normal and reverse remanent magnetization in dacitic pumice blocks from Mt. Shasta, California

    USGS Publications Warehouse

    Lawson, C.A.; Nord, G.L.; Champion, D.E.

    1987-01-01

    Detailed mineralogical analyses and rock magnetic experiments have made it possible to directly identify the FeTi oxide phases responsible for the normal and reverse magnetic components of two dacitic pumice blocks from Mt. Shasta, California. Both samples contain a normal component carried by 100 ??m size multi-domain (MD) titanomagnetite (Usp11-24). One sample also contains a second normal component carried by < 10 ??m size pseudo-single domain (PSD) or single domain (SD) Ti-free magnetite (Usp1) found in the dacitic glass. The MD titanomagnetite and PSD or SD magnetite dominate the strong field magnetic signal, but only the PSD or SD magnetite has any influence on the remanence signal. Unlike the strong field signal, the remanence signal of both samples is dominated by a reverse NRM component. This reverse component is carried by 100 ??m size ferrian ilmenite (Ilm53-65). The compositions of the ilmenites in both samples are within the range of compositions (Ilm50-75) known to have the ability to acquire self-reversing thermoremanent magnetizations (TRM). The results of the Lowric-Fuller test indicate that the remanence signal is dominated by PSD or SD carriers. Because one sample contains only large MD titanomagnetite and no SD Ti-free magnetite (in addition to ferrian ilmenite), the ferrian ilmenite must be a PSD or SD carrier. Oxide and pyroxene geothermometry indicate the FeTi oxides in the pumice crystallized at temperatures between 880 and 945??C. This temperature range is within the disordered region of the ilmenite-hematite phase diagram for Ilm53-65. Previous work on synthetic Ilm70 and Ilm80 has shown that cooling through the order-disorder transition into the ordered region develops a transformation-induced microstructure consisting of cation-ordered domains with disordered domain boundaries. An Ilm58-59 grain from one of the Mt. Shasta samples was examined in the transmission electron microscope and was found to contain 100-200 A?? diameter cation-ordered domains. These domains arose during cooling through the transition temperature, which is estimated at 800??C for Ilm58-59. The presence of the disordered domain boundaries provides an explanation for the magnetic behavior of the ferrian ilmenite. (1) The disordered boundaries are the higher Curie point phase necessary for the operation of the self-reversal mechanism. (2) The disordered domain boundaries either inhibit the formation of magnetic domain walls or restrict magnetic domain wall movement accounting for the PSD or SD behavior of the ferrian ilmenite. ?? 1987.

  13. Structural behavior of ZnCr 2S 4 spinel under pressure

    DOE PAGES

    Efthimiopoulos, I.; Lochbiler, T.; Tsurkan, V.; ...

    2016-12-15

    Here, the series of Cr-chalcogenide spinels ACr 2X 4 (A = Zn, Cd, Hg; X = S, Se) exhibits a rich phase diagram upon compression, as revealed by our recent investigations. There exist, however, some open questions regarding the role of cations in the observed structural transitions. In order to address these queries, we have performed X-ray diffraction and Raman spectroscopic studies on the ZnCr 2S 4 spinel up to 42 GPa, chosen mainly due to the similarity of the Zn 2+ and Cr 3+ cationic radii. Two reversible structural transitions were identified at 22 and 33 GPa, into a I4 1/ amd and an orthorhombic phase, respectively. Close comparison with the behavior of relevant Cr-spinels revealed that the structural transitions are mainly governed by the competition of the magnetic exchange interactions present in these systems, and not by steric effects. In addition, careful inspection of the starting Fdmore » $$\\bar{3}$$m phase revealed a previously unnoticed isostructural transition. The latter is intimately related to changes in the electronic properties of these systems, as evidenced by our Raman studies. Our results provide insights for tuning the physical and chemical properties of these materials, even under moderate compression, as well as promoting the understanding of similar pressure-induced effects in relevant systems.« less

  14. Time-reversal breaking in QCD4, walls, and dualities in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide; Komargodski, Zohar; Seiberg, Nathan

    2018-01-01

    We study SU( N ) Quantum Chromodynamics (QCD) in 3+1 dimensions with N f degenerate fundamental quarks with mass m and a θ-parameter. For generic m and θ the theory has a single gapped vacuum. However, as θ is varied through θ = π for large m there is a first order transition. For N f = 1 the first order transition line ends at a point with a massless η' particle (for all N ) and for N f > 1 the first order transition ends at m = 0, where, depending on the value of N f , the IR theory has free Nambu-Goldstone bosons, an interacting conformal field theory, or a free gauge theory. Even when the 4 d bulk is smooth, domain walls and interfaces can have interesting phase transitions separating different 3 d phases. These turn out to be the phases of the recently studied 3 d Chern-Simons matter theories, thus relating the dynamics of QCD4 and QCD3, and, in particular, making contact with the recently discussed dualities in 2+1 dimensions. For example, when the massless 4 d theory has an SU( N f ) sigma model, the domain wall theory at low (nonzero) mass supports a 3 d massless CP^{N_f-1} nonlinear σ-model with a Wess-Zumino term, in agreement with the conjectured dynamics in 2+1 dimensions.

  15. Poly(dodecyl methacrylate) as solvent of paraffins for phase change materials and thermally reversible light scattering films.

    PubMed

    Puig, Julieta; Williams, Roberto J J; Hoppe, Cristina E

    2013-09-25

    Paraffins are typical organic phase change materials (PCM) used for latent heat storage. For practical applications they must be encapsulated to prevent leakage or agglomeration during fusion. In this study it is shown that eicosane (C20H42 = C20) in the melted state could be dissolved in the hydrophobic domains of poly(dodecyl methacrylate) (PDMA) up to concentrations of 30 wt %, avoiding the need of encapsulation. For a 30 wt % solution, the heat of phase change was close to 69 J/g, a reasonable value for its use as a PCM. The fully converted solution remained transparent at 80 °C with no evidence of phase separation but became opaque by cooling as a consequence of paraffin crystallization. Heating above the melting temperature regenerated a transparent material. A high contrast ratio and abrupt transition between opaque and transparent states was observed for the 30 wt % blends, with a transparent state at 35 °C and an opaque state at 23 °C. This behavior was completely reproducible during consecutive heating/cooling cycles, indicating the possible use of this material as a thermally reversible light scattering (TRLS) film.

  16. The stability of anhydrous phase B, Mg14Si5O24, at mantle transition zone conditions

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Ohtani, Eiji; Shibazaki, Yuki; Ozawa, Shin; Jin, Zhenmin; Suzuki, Akio; Frost, Daniel J.

    2018-06-01

    The stability of anhydrous phase B, Mg14Si5O24, has been determined in the pressure range of 14-21 GPa and the temperature range of 1100-1700 °C with both normal and reversal experiments using multi-anvil apparatus. Our results demonstrate that anhydrous phase B is stable at pressure-temperature conditions corresponding to the shallow depth region of the mantle's transition zone and it decomposes into periclase and wadsleyite at greater depths. The decomposition boundary of anhydrous phase B into wadsleyite and periclase has a positive phase transition slope and can be expressed by the following equation: P(GPa) = 7.5 + 6.6 × 10-3 T (°C). This result is consistent with a recent result on the decomposition boundary of anhydrous phase B (Kojitani et al., Am Miner 102:2032-2044, 2017). However, our phase boundary deviates significantly from this previous study at temperatures < 1400 °C. Subducting carbonates may be reduced at depths > 250 km, which could contribute ferropericlase (Mg, Fe)O or magnesiowustite (Fe, Mg)O into the deep mantle. Incongruent melting of hydrous peridotite may also produce MgO-rich compounds. Anh-B could form in these conditions due to reactions between Mg-rich oxides and silicates. Anh-B might provide a new interpretation for the origin of diamonds containing ferropericlase-olivine inclusions and chromitites which have been found to have ultrahigh-pressure characteristics. We propose that directly touching ferropericlase-olivine inclusions found in natural diamonds might be the retrogressive products of anhydrous phase B decomposing via the reaction (Mg,Fe)14Si5O24 (Anh-B) = (Mg,Fe)2SiO4 (olivine) + (Mg,Fe)O (periclase). This decomposition may occur during the transportation of the host diamonds from their formation depths of < 500 km in the upper part of the mantle transition zone to the surface.

  17. The stability of anhydrous phase B, Mg14Si5O24, at mantle transition zone conditions

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Ohtani, Eiji; Shibazaki, Yuki; Ozawa, Shin; Jin, Zhenmin; Suzuki, Akio; Frost, Daniel J.

    2017-12-01

    The stability of anhydrous phase B, Mg14Si5O24, has been determined in the pressure range of 14-21 GPa and the temperature range of 1100-1700 °C with both normal and reversal experiments using multi-anvil apparatus. Our results demonstrate that anhydrous phase B is stable at pressure-temperature conditions corresponding to the shallow depth region of the mantle's transition zone and it decomposes into periclase and wadsleyite at greater depths. The decomposition boundary of anhydrous phase B into wadsleyite and periclase has a positive phase transition slope and can be expressed by the following equation: P(GPa) = 7.5 + 6.6 × 10-3 T (°C). This result is consistent with a recent result on the decomposition boundary of anhydrous phase B (Kojitani et al., Am Miner 102:2032-2044, 2017). However, our phase boundary deviates significantly from this previous study at temperatures < 1400 °C. Subducting carbonates may be reduced at depths > 250 km, which could contribute ferropericlase (Mg, Fe)O or magnesiowustite (Fe, Mg)O into the deep mantle. Incongruent melting of hydrous peridotite may also produce MgO-rich compounds. Anh-B could form in these conditions due to reactions between Mg-rich oxides and silicates. Anh-B might provide a new interpretation for the origin of diamonds containing ferropericlase-olivine inclusions and chromitites which have been found to have ultrahigh-pressure characteristics. We propose that directly touching ferropericlase-olivine inclusions found in natural diamonds might be the retrogressive products of anhydrous phase B decomposing via the reaction (Mg,Fe)14Si5O24 (Anh-B) = (Mg,Fe)2SiO4 (olivine) + (Mg,Fe)O (periclase). This decomposition may occur during the transportation of the host diamonds from their formation depths of < 500 km in the upper part of the mantle transition zone to the surface.

  18. Emergent Phenomena at Oxide Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burstmore » of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.« less

  19. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries

    NASA Astrophysics Data System (ADS)

    Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen

    2018-07-01

    The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.

  20. Classification of topological insulators and superconductors in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Ryu, Shinsei; Schnyder, Andreas; Furusaki, Akira; Ludwig, Andreas

    2009-03-01

    We systematically study topological phases of insulators and superconductors (or superfluids) in 3D. We find that there exist 3D topologically non-trivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced Z2 topological insulator in the symplectic (or spin-orbit) symmetry class. We show there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in 3D, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically non-trivial phases can be realized as time-reversal invariant superconductors, and in these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a 2D surface, they support stable surface Dirac (Majorana) fermion modes.

  1. Evidence of an Intermediate Phase in bulk alloy oxide glass sysem

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Boolchand, P.

    2011-03-01

    Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases(IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B2 O3)5 (Te O2)95-x (V2O5)x , which is composed of network formers. Bulk glasses are synthesized across the 18% x 35 % composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures Tg (x) steadily decrease with V2O5 content x, and reveal the enthalpy of relaxation at Tg to show a global minimum in the 24% x < 27 range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100cm-1 < ν < 1700cm-1 range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases. Supported by NSF grant DMR 08-53957.

  2. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  3. Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition

    NASA Astrophysics Data System (ADS)

    Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark

    2014-03-01

    A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.

  4. The Thermodynamics of General and Local Anesthesia

    PubMed Central

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-01-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates, and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. Using this analysis, we are able to describe experimentally observed calorimetric profiles and predict the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff effect of long-chain alcohols and the additivity of the effect of general and local anesthetics. PMID:24853743

  5. The Thermodynamics of General and Local Anesthesia

    NASA Astrophysics Data System (ADS)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  6. Inter- and intraplane softening of the vortex structure in Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ: a two-step transition

    NASA Astrophysics Data System (ADS)

    Yazyi, J.; Arribére, A.; Durán, C.; de la Cruz, F.; Mitzi, D. B.; Kapitulnik, A.

    1991-12-01

    High Q mechanical oscillator and AC susceptibility techniques have been used to study vortex dynamics in high quality single crystals of Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ over a wide range of magnetic fields and different relative orientations between the magnetic field and the crystalline c-axis. Our results confirm the existence of two transitions in the vortex response. We show that the transition at lower temperatures is associated to currents flowing across the Cu-O planes and the other one to currents in the planes. This means that the reversible region of the phase diagram is reached in two steps when increasing temperature.

  7. Application of phase-change materials in memory taxonomy

    PubMed Central

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557

  8. Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Kashi, M. Almasi; Ramazani, A.

    2018-05-01

    Magnetic nanowires electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeCoNi NWs with varied diameters (between 60 and 150 nm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. X-ray diffraction patterns indicated the formation of FeCoNi NWs with fcc FeNi and bcc FeCo alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing diameter. First-order reversal curve measurements revealed that, with increasing diameter from 60 to 150 nm, besides a transition from a single domain (SD) state to a pseudo SD state, an increase in the reversible magnetization component of the NWs from 11% to 24% occurred.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  10. Wind reversals in turbulent Rayleigh-Bénard convection.

    PubMed

    Araujo, Francisco Fontenele; Grossmann, Siegfried; Lohse, Detlef

    2005-08-19

    The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-Bénard convection is theoretically analyzed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose dynamics is related to the Lorenz equations. For Prandtl and Rayleigh numbers in the range 10(-2) < or = Pr < or = 10(3) and 10(7) < or = Ra < or = 10(12), the model has the following features: (i) chaotic reversals may be exhibited at Ra > or = 10(7); (ii) the Reynolds number based on the root mean square velocity scales as Re(rms) approximately Ra([0.41...0.47]) (depending on Pr), and as Re(rms) approximately Pr(-[0.66...0.76]) (depending on Ra); and (iii) the mean reversal frequency follows an effective scaling law omega/(nu L(-2)) approximately Pr(-(0.64 +/- 0.01))Ra(0.44 +/- 0.01). The phase diagram of the model is sketched, and the observed transitions are discussed.

  11. Phase diagram of multiferroic KCu3As2O7(OD ) 3

    NASA Astrophysics Data System (ADS)

    Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji

    2017-06-01

    The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .

  12. Giant reversible magnetocaloric effect in the pyrochlore Er 2 Mn 2 O 7 due to a cooperative two-sublattice ferromagnetic order

    DOE PAGES

    Cai, Y. Q.; Jiao, Y. Y.; Cui, Qi; ...

    2017-11-29

    Most magnetic refrigeration materials showing a large and reversible magnetocaloric effect (MCE) undergo a second-order ferromagnetic (FM) transition involving large-moment magnetic species on one sublattice. Furthermore, a stronger MCE is expected near a cooperative FM order of two or more magnetic species with large magnetic moments residing on different sublattices, but experimental realizations are rare. Here we report on the discovery of large MCE in the cubic pyrochlore Er 2Mn 2O 7 near its second-order FM transition at T c ≈ 34K; under the magnetic field change of 1 and 5 T, the maximum magnetic entropy change –ΔS M ismore » 5.27 and 16.1Jkg –1K –1, and the estimated magnetic refrigerant capacity reaches 68 and 522Jkg –1, respectively. These latter values are among the largest for the known MCE materials. The observed giant and reversible MCE in Er 2Mn 2O 7 is mainly attributed to the large saturation moment of 18.9μ B per formula unit owing to a simultaneous FM ordering of the rear-earth Er 3+ and transition-metal Mn 4+ localized moments. Our results suggest that Er 2Mn 2O 7 pyrochlore is a promising candidate for magnetic refrigeration applications in the temperature range 20–80 K. More importantly, this work provides a new material system for developing high-performance MCE materials that can exhibit a strongly coupled FM transition involving two magnetic sublattices of large local moments in a single-phase material.« less

  13. Giant reversible magnetocaloric effect in the pyrochlore Er 2 Mn 2 O 7 due to a cooperative two-sublattice ferromagnetic order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y. Q.; Jiao, Y. Y.; Cui, Qi

    Most magnetic refrigeration materials showing a large and reversible magnetocaloric effect (MCE) undergo a second-order ferromagnetic (FM) transition involving large-moment magnetic species on one sublattice. Furthermore, a stronger MCE is expected near a cooperative FM order of two or more magnetic species with large magnetic moments residing on different sublattices, but experimental realizations are rare. Here we report on the discovery of large MCE in the cubic pyrochlore Er 2Mn 2O 7 near its second-order FM transition at T c ≈ 34K; under the magnetic field change of 1 and 5 T, the maximum magnetic entropy change –ΔS M ismore » 5.27 and 16.1Jkg –1K –1, and the estimated magnetic refrigerant capacity reaches 68 and 522Jkg –1, respectively. These latter values are among the largest for the known MCE materials. The observed giant and reversible MCE in Er 2Mn 2O 7 is mainly attributed to the large saturation moment of 18.9μ B per formula unit owing to a simultaneous FM ordering of the rear-earth Er 3+ and transition-metal Mn 4+ localized moments. Our results suggest that Er 2Mn 2O 7 pyrochlore is a promising candidate for magnetic refrigeration applications in the temperature range 20–80 K. More importantly, this work provides a new material system for developing high-performance MCE materials that can exhibit a strongly coupled FM transition involving two magnetic sublattices of large local moments in a single-phase material.« less

  14. Structural analysis and molecular modelling of the Cu/Zn-SOD from fungal strain Humicola lutea 103

    NASA Astrophysics Data System (ADS)

    Dolashka, Pavlina; Moshtanska, Vesela; Dolashki, Aleksander; Velkova, Lyudmila; Rao, Gita Subba; Angelova, Maria; Betzel, Christian; Voelter, Wolfgang; Atanasov, Boris

    2011-12-01

    The native form of Cu/Zn-superoxide dismutase, isolated from fungal strain Humicola lutea 103 is a homodimer that coordinates one Cu(2+) and one Zn(2+) per monomer. Cu(2+) and Zn(2+) ions play crucial roles in enzyme activity and structural stability, respectively. It was established that HLSOD shows high pH and temperature stability. Thermostability of the glycosylated enzyme Cu/Zn-SOD, isolated from fungal strain H. lutea 103, was determined by CD spectroscopy. Determination of reversibility toward thermal denaturation for HLSOD allowed several thermodynamic parameters to be calculated. In this communication we report the conditions under which reversible denaturation of HLSOD exists. The narrow range over which the system is reversible has been determined using the strongest test of two important thermodynamic independent variables (T and pH). Combining both these variables, the "phase diagram" was determined, as a result of which the real thermodynamic parameters (Δ Cp, ΔHexp°, and ΔGexp°) was established. Because very narrow pH-interval of transitions we assume they are as result of overlapping of two simple transitions. It was found that Δ Ho is independent from pH with a value of 1.3 kcal/mol and 2.8 kcal/mol for the first and the second transition, respectively. Δ Go was pH-dependent in all studied pH-interval. This means that the transitions are entropically driven, these. Based on this, these processes can be described as hydrophobic rearrangement of the quaternary structure. It was also found that glycosylation does not influence the stability of the enzyme because the carbohydrate chain is exposed on the surface of the molecule.

  15. X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO 2 /Pt Cells

    DOE PAGES

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; ...

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  16. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    PubMed

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  17. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  18. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding.

    PubMed

    Tischer, Alexander; Auton, Matthew

    2013-09-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.

  19. Entanglements in Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph

    Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.

  20. Comprehensive physicochemical studies of a new hybrid material: 2-Amino-4-methyl-3-nitropyridinium hydrogen oxalate

    NASA Astrophysics Data System (ADS)

    Bryndal, I.; Kucharska, E.; Wandas, M.; Lorenc, J.; Hermanowicz, K.; Mączka, M.; Lis, T.; Marchewka, M.; Hanuza, J.

    2014-01-01

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ∼240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90 K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound.

  1. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  2. Twisted complex superfluids in optical lattices

    PubMed Central

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-01-01

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721

  3. Toward Design Principles for Diffusionless Transformations: The Frustrated Formation of Co–Co Bonds in a Low-Temperature Polymorph of GdCoSi 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokur, Anastasiya I.; Fredrickson, Daniel C.

    Diffusionless (or displacive) phase transitions allow inorganic materials to show exquisite responsiveness to external stimuli, as is illustrated vividly by the superelasticity, shape memory, and magnetocaloric effects exhibited by martensitic materials. In this Article, we present a new diffusionless transition in the compound GdCoSi 2, whose origin in frustrated bonding points toward generalizable design principles for these transformations. We first describe the synthesis of GdCoSi 2 and the determination of its structure using single crystal X-ray diffraction. While previous studies based on powder X-ray diffraction assigned this compound to the simple CeNi 1–xSi 2 structure type (space group Cmcm), ourmore » structure solution reveals a superstructure variant (space group Pbcm) in which the Co sublattice is distorted to create zigzag chains of Co atoms. DFT-calibrated Hückel calculations, coupled with a reversed approximation Molecular Orbital (raMO) analysis, trace this superstructure to the use of Co–Co isolobal bonds to complete filled 18 electron configurations on the Co atoms, in accordance with the 18–n rule. The formation of these Co–Co bonds is partially impeded, however, by a small degree of electron transfer from Si-based electronic states to those with Co–Co σ* character. The incomplete success of Co–Co bond creation suggests that these interactions are relatively weak, opening the possibility of them being overcome by thermal energy at elevated temperatures. In fact, high-temperature powder and single crystal X-ray diffraction data, as well as differential scanning calorimetry, indicate that a reversible Pbcm to Cmcm transition occurs at about 380 K. This transition is diffusionless, and the available data point toward it being first-order. We expect that similar cases of frustrated interactions could be staged in other rare earth–transition metal–main group phases, providing a potentially rich source of compounds exhibiting diffusionless transformations and the unique properties these transitions mediate.« less

  4. Synthesis and Characterization of A2Mo3O 12 Materials

    NASA Astrophysics Data System (ADS)

    Young, Lindsay Kay

    Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature crystallization may provide the opportunity for exploring the in situ synthesis of polymer composites containing these materials, as the crystallization temperatures are compatible with many polymer systems. In the second part of this thesis, the high pressure behavior of a number of A2Mo3O12 and AA'Mo3O12 materials was studied. The open frameworks of NTE compounds are generally prone to pressure induced phase transitions. NTE materials may have to withstand high pressures during production or regular use of composites, thus understanding the high pressure behavior of these materials is necessary for effective application. Irreversible transitions to new phases or amorphization at high pressures could lead to failure of composites, as these phases are not expected to exhibit any NTE properties. Studies were carried out at the Advanced Photon Source at Argonne National Laboratory at pressures up to 5-7 GPa using a diamond anvil cell. The materials investigated could be divided into three groups based on distinct types of high pressure behavior. The room temperature monoclinic Group1 compounds (A2 = Al2, Fe2, FeAl, AlGa) underwent a similar sequence of reversible subtle phase transitions before undergoing a major structural transition to a common high pressure structure. The unit cell of this high pressure phase was successfully indexed, and the transition was found to be reversible upon decompression. Phase transition pressures increased with decreasing A-site cation radius. In contrast, Group2 materials (A = Cr, Y) retained their low temperature monoclinic structures up to the highest pressures investigated. The remaining materials (A2 = In2, InGa) underwent a different sequence of subtle transitions followed by an irreversible transition at higher pressures. The patterns belonging to these high pressure phases are unlike those of the first group. No patterns similar to InGaMo3O12 were found in the literature, while In2Mo3O12 may transform to the same high pressure polymorph as In2W3O12. The classification of A2Mo3O12 materials into several groups with distinct high pressure behavior adds pertinent knowledge to the field that may help elucidate the structures of previously studied materials, and ultimately may help predict the behavior of compositions that have not yet been explored.

  5. Metal-insulator and charge ordering transitions in oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase. First principles calculations show that the destabilization of the insulating phase during the gating arises due to the formation of oxygen vacancies in VO2; the rutile phase is far more amenable to electrochemical reduction as compared to the monoclinic phase, likely due to its higher electrical conductivity. The generation of oxygen vacancies appears thermodynamically favorable if the removed oxygen atoms from VO2 oxidize the anions in the ionic liquid. Finally, electronic properties of single crystalline, individual nanowires of vanadium oxide bronzes (MxVO 2O5) are presented. The intercalation effects of metal cation and the stoichiometry (x) are explored and discussed. These nanowires exhibit thermally and electrically driven charge ordering and metal to insulator transitions. The electrolyte gating measurements show resistance modulations across the phase transition but the effect is not as dramatic as in VO2.

  6. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  7. Rapid and reversible photoinduced switching of a rotaxane crystal

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Jen; Tsai, Ya-Ching; Suzaki, Yuji; Osakada, Kohtaro; Miura, Atsushi; Horie, Masaki

    2016-11-01

    Crystalline phase transitions caused by external stimuli have been used to detect physical changes in the solid-state properties. This study presents the mechanical switching of crystals of ferrocene-containing rotaxane controlled by focused laser light. The expansion and contraction of the crystals can be driven by turning on and off laser light at 445 nm. The irradiation-induced expansion of the crystal involves elongation along the a, b and c axes at 30 °C, whereas heating of the crystal at 105 °C causes the shortening of c axis. The expansions reversibly occur and have the advantage of a rapid relaxation (reverse) process. Single-crystal X-ray crystallography reveals the detailed structural changes of the molecules, corresponding to a change in the size of the crystals on laser irradiation. This molecular crystal behaviour induced by laser irradiation, is demonstrated for the remote control of objects, namely, microparticle transport and microswitching in an electric circuit.

  8. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes*

    PubMed Central

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-01-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  9. Transitions induced by solubilized fat into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Garti, Nissim

    2005-06-25

    Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.

  10. Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells

    NASA Astrophysics Data System (ADS)

    Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu

    2017-07-01

    Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.

  11. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    NASA Astrophysics Data System (ADS)

    Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang

    2010-04-01

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  12. Chiral Spin Order in Kondo-Heisenberg systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvelik, A. M.; Yevtushenko, O. M.

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  13. (Magneto)caloric refrigeration: Is there light at the end of the tunnel?

    DOE PAGES

    Pecharsky, Vitalij K.; Cui, Jun; Johnson, Duane D.

    2016-07-11

    Here, caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by verymore » small perturbations of the driving field(s).« less

  14. (Magneto)caloric refrigeration: Is there light at the end of the tunnel?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecharsky, Vitalij K.; Cui, Jun; Johnson, Duane D.

    Here, caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by verymore » small perturbations of the driving field(s).« less

  15. Chiral Spin Order in Kondo-Heisenberg systems

    DOE PAGES

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-15

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  16. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  17. Classification of trivial spin-1 tensor network states on a square lattice

    NASA Astrophysics Data System (ADS)

    Lee, Hyunyong; Han, Jung Hoon

    2016-09-01

    Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.

  18. Multi-frame acquisition scheme for efficient energy-dispersive X-ray magnetic circular dichroism in pulsed high magnetic fields at the Fe K-edge

    PubMed Central

    Strohm, Cornelius; Perrin, Florian; Dominguez, Marie-Christine; Headspith, Jon; van der Linden, Peter; Mathon, Olivier

    2011-01-01

    Using a fast silicon strip detector, a multi-frame acquisition scheme was implemented to perform energy-dispersive X-ray magnetic circular dichroism at the iron K-edge in pulsed high magnetic fields. The acquisition scheme makes use of the entire field pulse. The quality of the signal obtained from samples of ferrimagnetic erbium iron garnet allows for quantitative evaluation of the signal amplitude. Below the compensation point, two successive field-induced phase transitions and the reversal of the net magnetization of the iron sublattices in the intermediate phase were observed. PMID:21335909

  19. Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.

    PubMed

    Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B

    2014-01-28

    We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.

  20. Two Topologically Distinct Dirac-Line Semimetal Phases and Topological Phase Transitions in Rhombohedrally Stacked Honeycomb Lattices

    NASA Astrophysics Data System (ADS)

    Hyart, T.; Ojajärvi, R.; Heikkilä, T. T.

    2018-04-01

    Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by first merging the Dirac lines going through the Brillouin zone in a pairwise manner so that they turn into closed loops inside the Brillouin zone, and then by shrinking these loops into points. We show that this kind of topological phase transition can occur in rhombohedrally stacked honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions perpendicular and parallel to the layers. We also discuss the properties of the surface states in the different phases of the model.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yahyaoui, Samia; Rekik, Walid; Laboratoire Sciences Chimiques de Rennes

    The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C{sub 6}H{sub 14}N{sub 2})[Fe(H{sub 2}O){sub 6}](SO{sub 4}){sub 2}, were determined at room temperature and at -173 deg. C from single-crystal X-ray diffraction. At 20 deg. C, it crystallises in the monoclinic symmetry, centrosymmetric space group P2{sub 1}/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) A, {beta}=95.426(5) deg. and V=870.5(8) A{sup 3}. The structure consists of [Fe(H{sub 2}O){sub 6}]{sup 2+} and disordered (C{sub 6}H{sub 14}N{sub 2}){sup 2+} cations and (SO{sub 4}){sup 2-} anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at -2.3 deg. C,more » characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor-ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) A, {beta}=120.2304(8){sup o}, Z=16 and V=6868.7(2) A{sup 3}. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide. - Graphical abstract: The new dabcodiium hexaaquairon(II) bis(sulfate), (C{sub 6}H{sub 14}N{sub 2})[Fe(H{sub 2}O){sub 6}](SO{sub 4}){sub 2}, was prepared and characterized. It exhibits a supramolecular structure and undergoes a reversible order-disorder phase transition at -2.3 deg. C.« less

  2. Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals

    PubMed Central

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu

    2016-01-01

    Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T–cT transition, which is sensitive to lattice strain, and the T–O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction. PMID:27799564

  3. Upper Mammoth Polarity Transition Recorded in the Pu'u Kualakauila volcanic sequence, Wai'anae Volcano, Oahu, Hawaii USA: Paleomagnetic and 40Ar/39Ar Evidence

    NASA Astrophysics Data System (ADS)

    Lau, J. K.; Herrero-Bervera, E.; Jicha, B.; Valet, J.

    2013-12-01

    New paleomagnetic measurements, coupled with Argon-Argon (40Ar/39Ar) radioisotopic dating, are revolutionizing our understanding of the geodynamo by providing detailed terrestrial lava records of the short-term behavior of the paleomagnetic field. As part of an investigation of the Wai'anae Volcano, Oahu, and the short-term behavior of the geomagnetic field, we have sampled a long volcanic section located on the volcano's collapsed flank at a locality known as Pu'u Kaulakauila. Prior paleomagnetic investigations of the Kamaile'unu Volcanic Series (i.e. Herrero-Bervera and Valet, 2005) revealed transitional directions. The silicic composition of lava flows, easy access, and close geographical proximity to K-Ar dated flows made this newly studied 214-m thick sequence of flows an excellent candidate for detailed paleomagnetic analysis. At least eight samples, collected from each of 45 successive flow sites, were stepwise demagnetized by both alternating field (5 mT to 100 mT) and thermal (from 28 °C to 575-650 °C) methods. Mean directions were obtained by principal component analysis. All samples yielded a strong and stable ChRM trending towards the origin of vector demagnetization diagrams based on seven or more demagnetization steps, with thermal and AF results differing insignificantly. Low-field susceptibility vs. temperature (k-T) analysis conducted on individual lava flows indicated approximately half with reversible curves. Curie point determinations from these analyses revealed a temperature close to or equal to 580 °C, indicative of almost pure magnetite ranging from single domain (SD) to pseudosingle domain (PSD) grain sizes for most of the flows. The mean directions of magnetization of the entire section sampled indicate a reversed polarity, with ˜10 m of the section characterized by excursional directions (5 lava flows). Thellier-Coe and microwave paleointensities determinations of these flows indicate a substantial decrease of the absolute paleointensity before and during the transition and a progressive increase of it during the recovery phase of the transition. The corresponding VGPs are located on the western part of Australia. 40Ar/39Ar incremental heating experiments on groundmass from transitional flow sites at different stratigraphic levels yields a weighted mean age of 3.233×0.088 Ma, which, combined with the overall reversed polarity and two older polarity reversals, strongly suggests that the transitional lavas correspond to the Upper Mammoth polarity transition.

  4. Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars

    NASA Astrophysics Data System (ADS)

    Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce

    2008-03-01

    Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291

  5. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yufeng; Zhou, Yonghui; Guo, Zhaopeng

    Weyl semimetal defines a material with three-dimensional Dirac cones, which appear in pair due to the breaking of spatial inversion or time reversal symmetry. Superconductivity is the state of quantum condensation of paired electrons. Turning a Weyl semimetal into superconducting state is very important in having some unprecedented discoveries. In this work, by doing resistive measurements on a recently recognized Weyl semimetal TaP under pressures up to about 100 GPa, we show the concurrence of superconductivity and a structure transition at about 70 GPa. It is found that the superconductivity becomes more pronounced when decreasing pressure and retains when themore » pressure is completely released. High-pressure x-ray diffraction measurements also confirm the structure phase transition from I41md to P-6m2 at about 70 GPa. More importantly, ab-initial calculations reveal that the P-6m2 phase is a new Weyl semimetal phase and has only one set of Weyl points at the same energy level. Our discovery of superconductivity in TaP by high pressure will stimulate investigations on superconductivity and Majorana fermions in Weyl semimetals.« less

  7. Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kai; Yao, Zhenpeng; Hwang, Sooyeon

    Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less

  8. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca{sub 3}(Ti,Mn){sub 2}O{sub 7} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. Q., E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Wu, J. W.; Shi, X. X.

    2015-05-18

    The hybrid improper ferroelectricity (HIF) has been proposed as a promising way to create multiferroic materials with strong magnetoelectric coupling by the first-principle calculation, and the experimental evidences of HIF in Ruddlesden-Poper Ca{sub 3}(Ti{sub 1−x}Mn{sub x}){sub 2}O{sub 7} (x = 0, 0.05, 0.1, and 0.15) ceramics have been shown in the present work. The room temperature ferroelectric hysteresis loops are observed in these ceramics, and a polar orthorhombic structure with two oxygen tilting modes has been confirmed by the X-ray powder diffraction. A first-order phase transition around 1100 K in Ca{sub 3}Ti{sub 2}O{sub 7} was evidenced, and the temperatures of phase transitions decreasemore » linearly with increasing of the contents of Mn{sup 4+} ions. Based on the result of first-principle calculations, the polarization should be reversed by switching through the mediated Amam phase in Ca{sub 3}Ti{sub 2}O{sub 7} ceramics.« less

  9. Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes

    DOE PAGES

    He, Kai; Yao, Zhenpeng; Hwang, Sooyeon; ...

    2017-08-11

    Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less

  10. Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni-Mn-In-Z Heusler alloys.

    PubMed

    Kazakov, Alexander; Prudnikov, Valerii; Granovsky, Alexander; Perov, Nikolai; Dubenko, Igor; Pathak, Arjun Kumar; Samanta, Tapas; Stadler, Shane; Ali, Naushad; Zhukov, Arcady; Ilyin, Maxim; Gonzalez, Julian

    2012-09-01

    The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.

  11. On a Heat Exchange Problem under Sharply Changing External Conditions

    NASA Astrophysics Data System (ADS)

    Khishchenko, K. V.; Charakhch'yan, A. A.; Shurshalov, L. V.

    2018-02-01

    The heat exchange problem between carbon particles and an external environment (water) is stated and investigated based on the equations of heat conducting compressible fluid. The environment parameters are supposed to undergo large and fast variations. In the time of about 100 μs, the temperature of the environment first increases from the normal one to 2400 K, is preserved at this level for about 60 μs, and then decreases to 300 K during approximately 50 μs. At the same periods of time, the pressure of the external environment increases from the normal one to 67 GPa, is preserved at this level, and then decreases to zero. Under such external conditions, the heating of graphite particles of various sizes, their phase transition to the diamond phase, and the subsequent unloading and cooling almost to the initial values of the pressure and temperature without the reverse transition from the diamond to the graphite phase are investigated. Conclusions about the maximal size of diamond particles that can be obtained in experiments on the shock compression of the mixture of graphite with water are drawn.

  12. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators

    DOE PAGES

    Claassen, Martin; Jiang, Hong -Chen; Moritz, Brian; ...

    2017-10-30

    The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (Smore » j × S k) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. Furthermore, the results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.« less

  13. Study of the thermoluminescence emission of a natural α-cristobalite

    NASA Astrophysics Data System (ADS)

    Correcher, V.; Garcia-Guinea, J.; Bustillo, M. A.; Garcia, R.

    The thermoluminescence (TL) properties of a well-characterised natural α-cristobalite from Lanzarote (Canary Islands, Spain) have been studied. The natural blue emission (at 400 nm) of this silica polymorph of quartz reveals the appearance of three groups of components peaked at 150, 230-240 and 370 °C, which could be associated, respectively, with (i) structural defects (similar to quartz), (ii) the reversible phase transition from α-cristobalite to β-cristobalite and (iii) electron recombination with unstable holes trapped at oxygen vacancies next to Al ions linked to the formation of β-cristobalite. Similar to quartz, the induced TL (ITL) glow curves display four maxima, peaked at 90, 110, 180 and 220 °C, which could be respectively associated with (i) oxygen vacancies, (ii) recombination of electrons with (H3O4)° centres that can act as hole traps, (iii) [GeO4]- centres that are stabilised with monovalent cations (H+, Li+ or Na+) and (iv) [AlO4]° hole-like centres that are created when alkali ions are moving away from Al sites related probably to the reversible phase transition. The dose dependence of the ITL emission of β-irradiated samples at room temperature exhibits a linear increase in the glow intensity of the 180 °C maximum when increasing the dose (r=0.997) in the range 0.5-10 Gy.

  14. O3-type layered transition metal oxide Na(NiCoFeTi) 1/4O 2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE PAGES

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; ...

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi) 1/4O 2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g –1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffractionmore » and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na + deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  15. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs4Sb12

    NASA Astrophysics Data System (ADS)

    Levenson-Falk, E. M.; Schemm, E. R.; Aoki, Y.; Maple, M. B.; Kapitulnik, A.

    2018-05-01

    We present polar Kerr effect measurements of the filled skutterudite superconductor PrOs4 Sb12 . Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θK develops below the superconducting transition, saturating at ˜300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θK(T ) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at TC 2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs4 Sb12 .

  16. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    2014-07-01

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.

  17. Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.

    PubMed

    Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-08-10

    The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.

  18. Two distinct superconducting phases in LiFeAs

    PubMed Central

    Nag, P. K.; Schlegel, R.; Baumann, D.; Grafe, H.-J.; Beck, R.; Wurmehl, S.; Büchner, B.; Hess, C.

    2016-01-01

    A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance. PMID:27297474

  19. Continuous and reversible tuning of the disorder-driven superconductor–insulator transition in bilayer graphene

    PubMed Central

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong

    2015-01-01

    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor–insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes. PMID:26310774

  20. Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene.

    PubMed

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong

    2015-08-27

    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.

  1. The fifth electron in the fully reduced caa(3) from Thermus thermophilus is competent in proton pumping.

    PubMed

    Siletsky, Sergey A; Belevich, Ilya; Soulimane, Tewfik; Verkhovsky, Michael I; Wikström, Mårten

    2013-01-01

    The time-resolved kinetics of membrane potential generation coupled to oxidation of the fully reduced (five-electron) caa(3) cytochrome oxidase from Thermus thermophilus by oxygen was studied in a single-turnover regime. In order to calibrate the number of charges that move across the vesicle membrane in the different reaction steps, the reverse electron transfer from heme a(3) to heme a and further to the cytochrome c/Cu(A) has been resolved upon photodissociation of CO from the mixed valence enzyme in the absence of oxygen. The reverse electron transfer from heme a(3) to heme a and further to the cytochrome c/Cu(A) pair is resolved as a single transition with τ~40 μs. In the reaction of the fully reduced cytochrome caa(3) with oxygen, the first electrogenic phase (τ~30 μs) is linked to OO bond cleavage and generation of the P(R) state. The next electrogenic component (τ~50 μs) is associated with the P(R)→F transition and together with the previous reaction step it is coupled to translocation of about two charges across the membrane. The three subsequent electrogenic phases, with time constants of ~0.25 ms, ~1.4 ms and ~4 ms, are linked to the conversion of the binuclear center through the F→O(H)→E(H) transitions, and result in additional transfer of four charges through the membrane dielectric. This indicates that the delivery of the fifth electron from heme c to the binuclear center is coupled to pumping of an additional proton across the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Structural Evolution of Schreibersite, Fe3P, at High Pressure

    NASA Astrophysics Data System (ADS)

    Howard, J.; Sinogeikin, S.; Nicol, M.; Tschauner, O.

    2007-12-01

    Fe3P schreibersite is an abundant mineral in iron meteorites. Previous work [Scott et. al., Geophys. Res. Lett. (2007) 34, L06302/1-5] reported a phase transition occurred in a powder sample of Fe3P schreibersite above 17 GPa at ambient temperature, but did not identify the structure of this high pressure phase. This high pressure phase is not quenchable to ambient pressure, however, the transition and its reversion may induce characteristic twinning in schreibersite crystals, which may be identified in meteoritic material and, thus, help to constrain shock pressures for iron meteorites. By using a diamond anvil cell with a methanol/ethanol pressure medium to generate pressure, the structure of single crystal Fe3P was studied by X-ray diffraction up to 30 GPa (at room temperature) at end station 16 ID-B of the Advanced Photon Source. Our experiment indicates that the phase transition occurs around 10 GPa and appears to suggest that the material twins during compression. Acknowledgement: The authors thank the HPCAT team for their help, and U.S. DOE Cooperative Agreement No. FC08-06NA27684 with UNLV for supporting the work. Portions of this work were performed at HPCAT (Sector 16), APS, ANL. HPCAT facility is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. The APS is supported by the U. S. DOE-BES under Contract No. W-31-109-Eng-38.

  3. In situ stress measurements during electrochemical cycling of lithium-rich cathodes

    DOE PAGES

    Nation, Leah; Li, Juchuan; James, Christine; ...

    2017-08-29

    Layered lithium transition metal oxides (Li 1+xM 1-xO 2, M= Ni, Mn, Co) are attractive cathode materials for lithium-ion batteries due to their high reversible capacity but suffer from structural changes and voltage fade. In this study, we use stress as a novel way to track irreversible changes in Li 1.2Mn 0.55Ni 0.125Co 0.125O 2 (LR-NMC) cathodes. A unique and unpredicted stress signature is observed during the first delithiation. Initially, a tensile stress is observed, consistent with volume contraction from lithium removal, however, the stress reverses and becomes compressive with continued charging beyond 4 V vs Li/Li +, indicating volumemore » expansion; this phenomenon is present in the first cycle only. The origin of this irreversible stress during delithiation is likely oxygen loss and the resulting cation rearrangement. Here, Raman spectroscopy provides evidence of the layered-to-spinel phase transition after cycling in the LR-NMC films, as well as recovery of the original spectra upon re-annealing in an oxygen environment.« less

  4. Influence of polyethylene glycol on percolation dynamics of reverse microemulsions

    NASA Astrophysics Data System (ADS)

    Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.

    2018-04-01

    We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.

  5. In situ stress measurements during electrochemical cycling of lithium-rich cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nation, Leah; Li, Juchuan; James, Christine

    Layered lithium transition metal oxides (Li 1+xM 1-xO 2, M= Ni, Mn, Co) are attractive cathode materials for lithium-ion batteries due to their high reversible capacity but suffer from structural changes and voltage fade. In this study, we use stress as a novel way to track irreversible changes in Li 1.2Mn 0.55Ni 0.125Co 0.125O 2 (LR-NMC) cathodes. A unique and unpredicted stress signature is observed during the first delithiation. Initially, a tensile stress is observed, consistent with volume contraction from lithium removal, however, the stress reverses and becomes compressive with continued charging beyond 4 V vs Li/Li +, indicating volumemore » expansion; this phenomenon is present in the first cycle only. The origin of this irreversible stress during delithiation is likely oxygen loss and the resulting cation rearrangement. Here, Raman spectroscopy provides evidence of the layered-to-spinel phase transition after cycling in the LR-NMC films, as well as recovery of the original spectra upon re-annealing in an oxygen environment.« less

  6. In situ stress measurements during electrochemical cycling of lithium-rich cathodes

    NASA Astrophysics Data System (ADS)

    Nation, Leah; Li, Juchuan; James, Christine; Qi, Yue; Dudney, Nancy; Sheldon, Brian W.

    2017-10-01

    Layered lithium transition metal oxides (Li1+xM1-xO2, M = Ni, Mn, Co) are attractive cathode materials for lithium-ion batteries due to their high reversible capacity. However, they suffer from structural changes that lead to substantial voltage fade. In this study, we use stress as a novel way to track irreversible changes in Li1.2Mn0.55Ni0.125Co0.125O2 (LR-NMC) cathodes. A unique and unpredicted stress signature is observed during the first delithiation. Initially, a tensile stress is observed, consistent with volume contraction from lithium removal, however, the stress reverses and becomes compressive with continued charging beyond 4 V vs Li/Li+, indicating volume expansion; this phenomenon is present in the first cycle only. This irreversible stress during delithiation is likely to be at least partially due to oxygen loss and the resulting cation rearrangement. Raman spectroscopy provides evidence of the layered-to-spinel phase transition after cycling in the LR-NMC films, as well as recovery of the original spectra upon re-annealing in an oxygen environment.

  7. Superconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s±) or orbital (s++) fluctuation

    NASA Astrophysics Data System (ADS)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.

    2016-01-01

    In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.

  8. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  9. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Zhengcheng; Wen Xiaogang

    2009-10-15

    We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less

  10. Hybridization with a twist: Hidden (hastatic) order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over thirty years. A number of recent experiments have shed new light on the nature of this phase. In particular, de Haas-van Alphen measurements indicate nearly perfectly Ising quasiparticles deep in the hidden order phase, and recent nonlinear susceptibility measurements show that this strong Ising anisotropy persists up to and above the hidden order transition itself. Along with other features, this Ising anisotropy implies that the conduction electrons hybridize with a local Ising moment - a 5f2 state of the uranium atom with integer spin. As the hybridization mixes states of integer and half-integer spin, it is itself a spinor and this ``hastatic'' (hasta: [Latin] spear) order parameter therefore breaks both time-reversal and double time-reversal symmetries. A microscopic theory of hastatic order naturally unites a number of disparate experimental results from the large entropy of condensation to the spin rotational symmetry breaking seen in torque magnetometry, and provides a number of experimental predictions. Moreover, this new spinorial order parameter provides a window into a number of new heavy fermion phases.

  11. The Development of Ni-Containing Cryogenic Steels and Their Industrial Manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Xie, Zhang-long; Li, Cheng-gang; Liu, Zheng-yu

    China has become one the largest energy consumer in the world due to the rapid growth of its economy, leading to the steady increase in the consumption of LPG, LEG and LNG in recent years. Therefore, urgent demands for the steels to be able to contain liquefied gases had emerged. Nickel containing cryogenic steels had been mainly used for liquefied gas tanks as ferritic cryogenic materials, but there are still many problems in regard of industrial production. In the present work, the optimized processing routes for 5Ni and 9Ni steels were developed at laboratory. The effect of Ni addition on the microstructure and cryogenic toughness of Ni containing steels was investigated. The results showed that the prior austenite grain size decreased from 19.8µm to 18.2µm and the ductile-brittle transition temperature decreased as Ni content increased from 5% to 9%. The quenched and tempered microstructures in 5Ni and 9Ni steels were consisted of tempered martensite and small amount of reversed austenite, with the microstructure of 5Ni steel only containing only 0.3%reversed austenite and a large amount of dispersive cementite was precipitated on ferritic matrix. With the increase of Ni addition up to 9%, the volume fraction of reversed austenite increased to about 5% and cementite precipitation was eliminated because the reversed austenite had absorbed carbon atoms from the matrix. It has been shown that cementite was harmful to the toughness of the steelas a hard second phase because it was easy for cracks' initiation and propagation when the cementite was precipitated at grain boundaries or lath boundaries. Fine grain size, more reversed austenite and less cementite precipitation are worked out to be the key factors to decrease the ductile-brittle transition temperature of 9Ni steel.

  12. The 16.6 Ma Steens Mountain Geomagnetic Polarity Reversal: Additional Complexity From a Composite Record of Five Stratigraphic Sections.

    NASA Astrophysics Data System (ADS)

    Jarboe, N. A.; Coe, R. S.; Glen, J. M.; Paul, R. R.

    2007-05-01

    The best known record of the earth's magnetic field behavior during a geomagnetic polarity reversal preserved in volcanic rock is the reverse to normal (R-N) polarity reversal found in the Steens Basalts of SE Oregon. At three locations where reverse to normal sections are found (Steens Mountain, Catlow Peak, and Poker Jim Ridge), four high precision 40Ar/39Ar plateau ages of plagioclase separates from transitionally magnetized rocks were determined. The ages are the same within error and have a weighted mean age of 16.58 ± 0.14 Ma. Errors are two sigma. A more precise constraint on the youngest possible age of the reversal is 16.548 ± 0.050 Ma determined from the normally magnetized Oregon Canyon tuff capping the Catlow Peak section. Comparison of these ages to the new geomagnetic polarity time scale of Gradstein et al. (A Geologic Time Scale 2004, 589 pp., Cambridge University Press, 2004.), after adjustments due to differences in Fish Canyon sanidine (FCs) standard ages (28.02 Ma, this study; 28.24 Ma, Gradstein et al.), shows that the Steens reversal is uniquely identified as the top of the C5Cr chron. The high precision of the ages and the Steens' reversal location in the geomagnetic polarity timescale convincingly demonstrate that these stratigraphically uncorrelated transitional sections were erupted during the same transition and their transitional paths should be combined. The high-quality, detailed benchmark record of this reversal (Mankinen et al., JGR, 90(B), 10.393-10.416, 1985; Prevot et al., Nature, 316, 230-234, 1985) is a composite derived from two sampled sections 2 km apart on Steens Mountain that overlapped significantly, Steens A above and Steens B below. This study showed that the magnetic field during the reversal moved from reverse to normal and then bounced back to transitional before finally returning to normal (a R-T-N-T-N path). The unexamined upper part of the Steens B section was later sampled and revealed an additional bounce of the field during the transition (Camps et al., JGR, 104(B8), 17747- 58, 1999). This increased the reversal's complexity to a R-T-N-T-N-T-N pattern. We have studied a R-N volcanic section at Catlow Peak 70 km SSE of Steens Mountain with 32 flows erupted during the transition. The transitional directions trace a path very close to the Steens A and B reversal path but contain an additional large swing through the reversed field direction, demonstrating an even more complex R-T-N-T-N-T-R-T-N path. We will also report on two R-N sections recently sampled at Poker Jim Ridge 80 km west of Steens Mountain that add new directions to the Steens record. The complex composite Steens reversal path recorded in these high fidelity lavas gives some credence to suggestions of very complex magnetic field behavior during reversals, previously seen only in sediment records where the acquisition of magnetization is less well understood.

  13. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less

  14. EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures

    NASA Astrophysics Data System (ADS)

    Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander

    2007-12-01

    Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.

  15. Detailed Jaramillo field reversals recorded in lake sediments from Armenia - Lower mantle influence on the magnetic field revisited

    NASA Astrophysics Data System (ADS)

    Kirscher, U.; Winklhofer, M.; Hackl, M.; Bachtadse, V.

    2018-02-01

    While it is well established that the Earth's magnetic field is generated by a self sustaining dynamo that reversed its polarity at irregular intervals in the geological past, the very mechanisms causing field reversals remain obscure. Paleomagnetic reconstructions of polarity transitions have been essential for physically constraining the underlying mechanisms in terms of time scale, but thus far remain ambiguous with regard to the transitional field geometry. Here we present new paleomagnetic records from a rapidly deposited lacustrine sediment sequence with extraordinarily stable paleomagnetic signals, which has captured in unprecedented detail the bottom (reverse to normal: R-N) and top (normal to reverse: N-R) transitions of the Jaramillo subchron (at 1.072 Ma and at 0.988 Ma). The obtained virtual geomagnetic pole (VGP) path indicates an oscillatory transitional field behavior with four abrupt transequatorial precursory jumps across the Pacific. The distribution of VGP positions indicates regions of preferred occurrence. Our results are in agreement with previously proposed bands of transitional VGP occurrence over the Americas and Australia/northwest Pacific. Additionally, our VGP positions seem to avoid large low shear velocity provinces (LLSVPs) above the core mantle boundary (CMB). Thus, our data supports the idea that the transitional field geometry is controlled by heat flux heterogeneities at the CMB linked to LLSVPs.

  16. Interplay between topology and disorder in a two-dimensional semi-Dirac material

    NASA Astrophysics Data System (ADS)

    Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich

    2018-01-01

    We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one direction and a parabolic dispersion in the orthogonal direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semimetal, as it generates a momentum-independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three distinct regimes—single-node trivial, two-node trivial, and two-node Chern. We find that disorder can drive topological transitions from both the single- and two-node trivial to the two-node Chern regime. We further analyze these transitions in an appropriate tight-binding Hamiltonian of an anisotropic hexagonal lattice by calculating the real-space Chern number. Additionally, we compute the disorder-averaged entanglement entropy which signals both the topological Lifshitz and Chern transition as a function of the anisotropy of the hexagonal lattice. Finally, we discuss experimental aspects of our results.

  17. Phase transitions and proton ordering in hemimorphite: new insights from single-crystal EPR experiments and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mao, Mao; Li, Zucheng; Pan, Yuanming

    2013-02-01

    Single-crystal electron paramagnetic resonance spectra of gamma-ray-irradiated hemimorphite (Mapimi, Durango, Mexico) after storage at room temperature for 3 months, measured from 4 to 275 K, reveal a hydroperoxy radical HO2 derived from the water molecule in the channel. The EPR spectra of the HO2 radical confirm that hemimorphite undergoes two reversible phase transitions at ~98 and ~21 K and allow determinations of its spin Hamiltonian parameters, including superhyperfine coupling constants of two more-distant protons from the neighboring hydroxyl groups, at 110, 85, 40 and 7 K. These EPR results show that the HO2 radical changes in site symmetry from monoclinic to triclinic related to the ordering and rotation of its precursor water molecule in the channel at <98 K. The monoclinic structure of hemimorphite with completely ordered O-H systems at low temperature has been evaluated by both the EPR spectra of the HO2 radical at <21 K and periodic density functional theory calculations.

  18. Magnetic and thermoelectric properties of electron doped Ca0.85Pr0.15MnO3

    NASA Astrophysics Data System (ADS)

    Hossain Khan, Momin; Pal, Sudipta; Bose, Esa

    2015-10-01

    We have investigated temperature-dependent magnetization (M), magnetic susceptibility (χ) and thermoelectric (S) properties of the electron-doped Ca0.85Pr0.15MnO3. With decrease of temperature, paramagnetic (PM) to antiferromagnetic (AFM) phase transition occurs with a well-defined Néel temperature (TN=122 K). Magnetic susceptibility measurements reveal that the paramagnetic state involves modified Curie-Weiss paramagnetism. Field cooled and zero field cooled magnetization measurements indicate a signature of magnetic frustration. Ferromagnetic (FM) double-exchange interactions associated with doped eg electrons are favored over competing AFM interactions below Tirr=112 K. Magnetization data also shows a second-order phase transition. The sign reversal in S(T) has been interpreted in terms of the change in the electronic structure relating to the orbital degrees of freedom of the doped eg electron. Low temperature (5-140 K) thermoelectric power, S (T) signifies the importance of electron-magnon scattering process.

  19. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  20. Comprehensive physicochemical studies of a new hybrid material: 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate.

    PubMed

    Bryndal, I; Kucharska, E; Wandas, M; Lorenc, J; Hermanowicz, K; Mączka, M; Lis, T; Marchewka, M; Hanuza, J

    2014-01-03

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ~240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the N-H···O and O-H···O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Yield of reversible colloidal gels during flow start-up: release from kinetic arrest.

    PubMed

    Johnson, Lilian C; Landrum, Benjamin J; Zia, Roseanna N

    2018-06-05

    Yield of colloidal gels during start-up of shear flow is characterized by an overshoot in shear stress that accompanies changes in network structure. Prior studies of yield of reversible colloidal gels undergoing strong flow model the overshoot as the point at which network rupture permits fluidization. However, yield under weak flow, which is of interest in many biological and industrial fluids shows no such disintegration. The mechanics of reversible gels are influenced by bond strength and durability, where ongoing rupture and re-formation impart aging that deepens kinetic arrest [Zia et al., J. Rheol., 2014, 58, 1121], suggesting that yield be viewed as release from kinetic arrest. To explore this idea, we study reversible colloidal gels during start-up of shear flow via dynamic simulation, connecting rheological yield to detailed measurements of structure, bond dynamics, and potential energy. We find that pre-yield stress grows temporally with the changing roles of microscopic transport processes: early time behavior is set by Brownian diffusion; later, advective displacements permit relative particle motion that stretches bonds and stores energy. Stress accumulates in stretched, oriented bonds until yield, which is a tipping point to energy release, and is passed with a fully intact network, where the loss of very few bonds enables relaxation of many, easing glassy arrest. This is immediately followed by a reversal to growth in potential energy during bulk plastic deformation and condensation into larger particle domains, supporting the view that yield is an activated release from kinetic arrest. The continued condensation of dense domains and shrinkage of network surfaces, along with a decrease in the potential energy, permit the gel to evolve toward more complete phase separation, supporting our view that yield of weakly sheared gels is a 'non-equilibrium phase transition'. Our findings may be particularly useful for industrial or other coatings, where weak, slow application via shear may lead to phase separation, inhibiting smooth distribution.

  2. Self-organization in P_xGe_xSe_1-2x glasses^*

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Georgiev, Daniel; Boolchand, Punit; Micoulaut, Matthieu

    2003-03-01

    Bulk glasses in the titled ternary, in the 0 < x < 0.26 composition range, are examined in MDSC and Raman scattering measurements. Both fresh and aged samples were studied. Bimodal endotherms are observed but only the high^T endotherm displays a reversing heat flow signal that represents a glass transition. The pre^_Tg endotherm is observed in quenched samples only, and represents an activation energy [1] associated with P4 units (Se^_P(Se_1/2)_3) converting to P3 (P(Se_1/2)_3) ones. T_g(x) accessed from the reversing heat flow are found to increase with x as a power^_law, displaying a cusp near x = 0.04. The non^_reversing enthalpy is found to display a global minimum in the 0.08 < x < 0.145 range identified with the self^_organized phase. Raman scattering reveals the isostatically rigid units ( P3 , P_4, CS and ES Ge(Se_1/2)_4) comprising building blocks of the self^_organized phase. These results are parallel to those encountered in the As^_Ge^_Se ternary [2,3]. ^*Supported by NSF grant DMR ^_01^_01808 1. D.G. Georgiev et al Phys. Rev. B 64,134204(2001) 2.Y. Wang et al Europhys. Lett. 52, 633 (2000) 3. T.Qu et al. companion abstract

  3. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs 4 Sb 12

    DOE PAGES

    Levenson-Falk, Eli M.; Schemm, E. R.; Aoki, Y.; ...

    2018-05-04

    Here, we present polar Kerr effect measurements of the filled skutterudite superconductor PrOs 4Sb 12. Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θ K develops below the superconducting transition, saturating at ~300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θ K(T) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at Tmore » C2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs 4Sb 12.« less

  4. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs 4 Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levenson-Falk, Eli M.; Schemm, E. R.; Aoki, Y.

    Here, we present polar Kerr effect measurements of the filled skutterudite superconductor PrOs 4Sb 12. Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θ K develops below the superconducting transition, saturating at ~300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θ K(T) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at Tmore » C2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs 4Sb 12.« less

  5. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yang; Feng, Xiao; Ou, Yunbo

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less

  6. High-pressure behaviour of Cs{sub 2}V{sub 3}O{sub 8} fresnoite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzechnik, Andrzej, E-mail: grzechnik@xtal.rwth-aachen.de; Yeon, Jeongho; Zur Loye, Hans-Conrad

    2016-06-15

    Crystal structure of Cs{sub 2}V{sub 3}O{sub 8} fresnoite (P4bm, Z=2) has been studied using single-crystal X-ray diffraction in a diamond anvil cell to 8.6 GPa at room temperature. Cs{sub 2}V{sub 3}O{sub 8} undergoes a reversible first-order phase transition at about 4 GPa associated with anomalies in the pressure dependencies of the lattice parameters and unit-cell volume but without any symmetry change. Both structures consist of layers of corner-sharing V{sup 5+}O{sub 4} tetrahedra and V{sup 4+}O{sub 5} tetragonal pyramids separated by the Cs{sup +} cations located between the layers. At low pressures, the compression has little effect on the polarity ofmore » the structure. Above 4 GPa, the pseudosymmetry with respect to the corresponding centrosymmetric space group P4/mbm abruptly increases. The effects of external pressure and of the A{sup +} cation substitution in the vanadate fresnoites A{sub 2}V{sub 3}O{sub 8} (A{sup +}: K{sup +}, Rb{sup +}, NH{sub 4}{sup +}, Cs{sup +}) are discussed. - Graphical abstract: Non-centrosymmetric Cs{sub 2}V{sub 3}O{sub 8} undergoes a reversible first-order phase transition at about 4 GPa associated with an abrupt change of the pseudosymmetry with respect to the centrosymmetric space group P4/mbm. Display Omitted - Highlights: • High-pressure behaviour of vanadate fresnoites depends on alkali metal cations. • The size of the alkali metal cation determines whether the high-pressure phase is centrosymmetric. • No incommensurate structures are observed upon compression.« less

  7. Voltage-induced Metal-Insulator Transitions in Perovskite Oxide Thin Films Doped with Strongly Correlelated Electrons

    NASA Astrophysics Data System (ADS)

    Wang, Yudi; Gil Kim, Soo; Chen, I.-Wei

    2007-03-01

    We have observed a reversible metal-insulator transition in perovskite oxide thin films that can be controlled by charge trapping pumped by a bipolar voltage bias. In the as-fabricated state, the thin film is metallic with a very low resistance comparable to that of the metallic bottom electrode, showing decreasing resistance with decreasing temperature. This metallic state switches to a high-resistance state after applying a voltage bias: such state is non-ohmic showing a negative temperature dependence of resistance. Switching at essentially the same voltage bias was observed down to 2K. The metal-insulator transition is attributed to charge trapping that disorders the energy of correlated electron states in the conduction band. By increasing the amount of charge trapped, which increases the disorder relative to the band width, increasingly more insulating states with a stronger temperature dependence of resistivity are accessed. This metal-insulator transition provides a platform to engineer new nonvolatile memory that does not require heat (as in phase transition) or dielectric breakdown (as in most other oxide resistance devices).

  8. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    DOE PAGES

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...

    2017-07-31

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less

  9. Reversible structure manipulation by tuning carrier concentration in metastable Cu 2S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jing; Chen, Jingyi; Li, Jun

    Harnessing a material’s functionality in applications and for fundamental studies often requires direct manipulation of its crystal symmetry. Here, we manipulate the crystal structure of Cu 2S nanoparticles in a controlled and reversible fashion via variation of the electron dose rate, observed by transmission electron microscopy. Our control method is in contrast to conventional chemical doping, which is irreversible and often introduces unwanted lattice distortions. Our study sheds light on the much-debated question of whether a change in electronic structure can facilitate a change of crystal symmetry, or whether vice versa is always the case. Finally, we show that amore » minimal perturbation to the electronic degree of freedom can drive the structural phase transition in Cu 2S, hence resolving this dilemma.« less

  10. Reversible structure manipulation by tuning carrier concentration in metastable Cu 2S

    DOE PAGES

    Tao, Jing; Chen, Jingyi; Li, Jun; ...

    2017-08-30

    Harnessing a material’s functionality in applications and for fundamental studies often requires direct manipulation of its crystal symmetry. Here, we manipulate the crystal structure of Cu 2S nanoparticles in a controlled and reversible fashion via variation of the electron dose rate, observed by transmission electron microscopy. Our control method is in contrast to conventional chemical doping, which is irreversible and often introduces unwanted lattice distortions. Our study sheds light on the much-debated question of whether a change in electronic structure can facilitate a change of crystal symmetry, or whether vice versa is always the case. Finally, we show that amore » minimal perturbation to the electronic degree of freedom can drive the structural phase transition in Cu 2S, hence resolving this dilemma.« less

  11. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  12. Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua

    2017-05-01

    In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.

  13. Study of structural phase transitions in quinary TiNi(MoFeAg)-based alloys

    NASA Astrophysics Data System (ADS)

    Gunther, Victor; Marchenko, Ekaterina; Chekalkin, Timofey; Baigonakova, Gulsharat; Kang, Ji-hoon; Kim, Ji-soon; Klopotov, Anatoliy

    2017-10-01

    The structural phase transitions of quinary Ti50Ni49.5-X Mo0.3Fe0.2Ag X (X  =  0, 0.1, 0.2, 0.5, 1.0, and 1.5 at%) alloys prepared by vacuum-induction melting were studied by means of the four-point-probe, x-ray diffraction (XRD), and optical microscopy methods after thermal cycling. The two-stage B2 ↔ R ↔ B19‧ reversible martensitic transformation (MT) took place in all the investigated samples. It is found that the substitution of Ag for Ni in the studied alloy when C Ag  =  0-0.5 at%, reduces the T R, M s, and M f characteristic points by 20-30 K, whereas they increase by 15-35 K when the Ag content was varied from 1.0 to 1.5 at% and the B2 ↔ R ↔ B19‧ MT was realized in the high-temperature area. XRD patterns of the studied alloys recorded at the ambient temperature detected the pure Ag phase as well as Ti2Ni precipitate with a small volume fraction (up to 5%) alongside with structural lines of B2, R, and B19‧ phases.

  14. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator

    NASA Astrophysics Data System (ADS)

    Sato, T.; Segawa, Kouji; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Yoichi; Takahashi, T.

    2011-11-01

    The three-dimensional (3D) topological insulator is a novel quantum state of matter where an insulating bulk hosts a linearly dispersing surface state, which can be viewed as a sea of massless Dirac fermions protected by the time-reversal symmetry (TRS). Breaking the TRS by a magnetic order leads to the opening of a gap in the surface state, and consequently the Dirac fermions become massive. It has been proposed theoretically that such a mass acquisition is necessary to realize novel topological phenomena, but achieving a sufficiently large mass is an experimental challenge. Here we report an unexpected discovery that the surface Dirac fermions in a solid-solution system TlBi(S1-xSex)2 acquire a mass without explicitly breaking the TRS. We found that this system goes through a quantum phase transition from the topological to the non-topological phase, and, by tracing the evolution of the electronic states using the angle-resolved photoemission, we observed that the massless Dirac state in TlBiSe2 switches to a massive state before it disappears in the non-topological phase. This result suggests the existence of a condensed-matter version of the `Higgs mechanism' where particles acquire a mass through spontaneous symmetry breaking.

  15. The liquid-liquid transition in supercooled ST2 water: a comparison between umbrella sampling and well-tempered metadynamics.

    PubMed

    Palmer, Jeremy C; Car, Roberto; Debenedetti, Pablo G

    2013-01-01

    We investigate the metastable phase behaviour of the ST2 water model under deeply supercooled conditions. The phase behaviour is examined using umbrella sampling (US) and well-tempered metadynamics (WT-MetaD) simulations to compute the reversible free energy surface parameterized by density and bond-orientation order. We find that free energy surfaces computed with both techniques clearly show two liquid phases in coexistence, in agreement with our earlier US and grand canonical Monte Carlo calculations [Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2012, 137, 214505; Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2009, 131, 104508]. While we demonstrate that US and WT-MetaD produce consistent results, the latter technique is estimated to be more computationally efficient by an order of magnitude. As a result, we show that WT-MetaD can be used to study the finite-size scaling behaviour of the free energy barrier separating the two liquids for systems containing 192, 300 and 400 ST2 molecules. Although our results are consistent with the expected N(2/3) scaling law, we conclude that larger systems must be examined to provide conclusive evidence of a first-order phase transition and associated second critical point.

  16. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    PubMed

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  17. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).

  18. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).

  19. Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides.

    PubMed

    Hao, Chunyan; Zhao, Xiaoming; Morse, David; Yang, Paul; Taguchi, Vince; Morra, Franca

    2013-08-23

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) determination of quaternary ammonium herbicides diquat (DQ) and paraquat (PQ) can be very challenging due to their complicated chromatographic and mass spectrometric behaviors. Various multiple reaction monitoring (MRM) transitions from radical cations M(+) and singly charged cations [M-H](+), have been reported for LC-MS/MS quantitation under different chromatographic and mass spectrometric conditions. However, interference peaks were observed for certain previously reported MRM transitions in our study. Using a Dionex Acclaim(®) reversed-phase and HILIC mixed-mode LC column, we evaluated the most sensitive MRM transitions from three types of quasi-molecular ions of DQ and PQ, elucidated the cross-interference phenomena, and demonstrated that the rarely mentioned MRM transitions from dications M(2+) offered the best selectivity for LC-MS/MS analysis. Experimental parameters, such as IonSpray (IS) voltage, source temperature, declustering potential (DP), column oven temperature, collision energy (CE), acid and salt concentrations in the mobile phases were also optimized and an uncommon electrospray ionization (ESI) capillary voltage of 1000V achieved the highest sensitivity. Employing the proposed dication transitions 92/84.5 for DQ and 93/171 for PQ, the direct aqueous injection LC-MS/MS method developed was able to provide a method detection limit (MDL) of 0.1μg/L for the determination of these two herbicides in drinking water. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyda, Marek; Wunderlich, Bernhard

    2005-11-01

    A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observedmore » at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).« less

  1. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boreyko, Jonathan; Caveney, Patrick M.; Norred, Sarah L.

    ABSTRACT Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changesmore » in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Finally, consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.« less

  2. The anisotropic signal of topotaxy during phase transitions in D″

    NASA Astrophysics Data System (ADS)

    Walker, Andrew M.; Dobson, David P.; Wookey, James; Nowacki, Andy; Forte, Alessandro M.

    2018-03-01

    While observations and modelling of seismic anisotropy in the lowermost mantle offers the possibility of imaging mantle flow close to the core-mantle boundary, current models do not explain all observations. Here, we seek to explain a long-wavelength pattern of shear wave anisotropy observed in anisotropic tomography where vertically polarised shear waves travel faster than horizontally polarised shear waves in the central Pacific and under Africa but this pattern is reversed elsewhere. In particular, we test an explanation derived from experiments on analogues, which suggest that texture may be inherited during phase transitions between bridgmanite (perovskite structured MgSiO3) and post-perovskite, and that such texture inheritance may yield the long-wavelength pattern of anisotropy. We find that models that include this effect correlate better with tomographic models than those that assume deformation due to a single phase in the lowermost mantle, supporting the idea that texture inheritance is an important factor in understanding lowermost mantle anisotropy. It is possible that anisotropy could be used to map the post-perovskite stability field in the lowermost mantle, and thus place constraints on the temperature structure above the core-mantle boundary.

  3. SPECIAL ISSUE DEVOTED TO THE 80TH ANNIVERSARY OF ACADEMICIAN N G BASOV'S BIRTH: Structural rearrangements in the aqueous phase of cell suspensions and protein solutions induced by a light-oxygen effect

    NASA Astrophysics Data System (ADS)

    Zakharov, S. D.; Ivanov, Andrei V.; Wolf, E. B.; Danilov, V. P.; Murina, T. M.; Nguen, K. T.; Novikov, E. G.; Panasenko, N. A.; Perov, S. N.; Skopinov, S. A.; Timofeev, Yu P.

    2003-02-01

    Temperature-dependent transient processes initiated by a direct photogeneration of singlet oxygen in suspensions of human erythrocytes and solutions of serum albumin are studied. The processes appear as anomalous jumps in the temperature dependences of the deformability coefficient of erythrocytes and the refractive index of the extracellular medium and protein solution. In the temperature regions of anomalous jumps, cells and proteins transfer to a metastable state of a lower activity, but they can be isothermally photoreactivated. Simultaneously, a reversible rearrangement of the aqueous phase occurs near the cell and protein surfaces, accompanied by the formation of an extended corona (hydrogel). The transient processes are interpreted as phase transitions in the membrane of erythrocytes and conformation transitions in proteins. The interaction between erythrocytes and albumin via hydrogel is discovered (hydro-conformational interaction). A qualitative physical model of the early stages of the light-oxygen effect is proposed, in which collective magnetic interactions between the electron spins of oxygen molecules and the nuclear magnetic moments of protons in H2O molecules play a dominant role.

  4. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

    DOE PAGES

    Boreyko, Jonathan; Caveney, Patrick M.; Norred, Sarah L.; ...

    2017-07-10

    ABSTRACT Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changesmore » in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Finally, consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.« less

  5. Structural and low temperature transport properties of Fe2B and FeB systems at high pressure

    NASA Astrophysics Data System (ADS)

    Kumar, P. Anand; Satya, A. T.; Reddy, P. V. Sreenivasa; Sekar, M.; Kanchana, V.; Vaitheeswaran, G.; Mani, Awadhesh; Kalavathi, S.; Shekar, N. V. Chandra

    2017-10-01

    The evolution of crystal structure and the ground state properties of Fe2B and FeB have been studied by performing high pressure X-ray diffraction up to a pressure of ∼24 GPa and temperature dependent (4.2-300 K range) high-pressure resistivity measurements up to ∼ 2 GPa. While a pressure induced reversible structural phase transition from tetragonal to orthorhombic structure is observed at ∼6.3 GPa in Fe2B, FeB has been found to be stable in its orthorhombic phase up to the pressure of 24 GPa. In the case of Fe2B, both parent and daughter phases coexist beyond the transition pressure. The bulk modulus of FeB and Fe2B (tetragonal) have been found to be 248 GPa and 235 GPa respectively. First principle electronic structure calculations have been performed using the present experimental inputs and the calculated ground state properties agree quite well with the major findings of the experiments. Debye temperature extracted from the analysis of low temperature resistivity data is observed to decrease with pressure indicating softening of phonons in both the systems.

  6. New structure of high-pressure body-centered orthorhombic Fe 2SiO 4

    DOE PAGES

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki; ...

    2015-08-01

    Here, a structural change in Fe 2SiO 4 spinel and the structure of a new high pressure phase are determined by Rietveld 26 profile fitting of x-ray diffraction data up to 64 GPa at ambient temperature. The compression curve of the spinel is discontinuous at approximately 20 GPa. Fe Kβ x-ray emission measurements at high pressure show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electronic state is gradually enhanced with pressure, which results in an isostructural phase transition. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe 2SiO 4) with space group Imma and Z=4 was observed at approximately 34 GPa. The structure of I-Fe 2SiO 4 has two crystallographically distinct FeO 6 octahedra, which are arranged in layers parallel to (101) and (011) and are very similar to the layers of FeO 6 octahedra that constitute the spinel structure. Silicon also exists in six-fold coordination in I-Fe 2SiO 4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A Martensitic transformation of each slab of the spinel structure with translation vector [more » $$\\vec{1/8}$$ $$\\vec{1/8}$$ $$\\vec{1/8}$$] generates the I-Fe 2SiO 4 structure. Laser heating of I-Fe 2SiO 4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO 2 stishovite.« less

  7. Metastable high-pressure transformations of orthoferrosilite Fs82

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Finkelstein, Gregory J.; Duffy, Thomas S.; Downs, Robert T.; Meng, Yue; Prakapenka, Vitali; Tkachev, Sergey

    2013-08-01

    High-pressure single-crystal X-ray diffraction experiments with natural ferrosilite Fs82 (Fe2+0.82Mg0.16Al0.01Ca0.01)(Si0.99Al0.01)O3 orthopyroxene (opx) reveal that at ambient temperature the sample does not transform to the clinopyroxene (cpx) structure, as reported earlier for a synthetic Fs100 end-member (Hugh-Jones et al., 1996), but instead undergoes a series of two polymorphic transitions, first above 10.1(1) GPa, to the monoclinic P21/c phase β-opx (distinctly different from both P21/c and C2/c cpx), also observed in natural enstatite (Zhang et al., 2012), and then, above 12.3(1) GPa to a high-pressure orthorhombic Pbca phase γ-opx, predicted for MgSiO3 by atomistic simulations (Jahn, 2008). The structures of phases α, β and γ have been determined from the single-crystal data at pressures of 2.3(1), 11.1(1), and 14.6(1) GPa, respectively. The two new high-pressure transitions, very similar in their character to the P21/c-C2/c transformation of cpx, make opx approximately as dense as cpx above 12.3(1) GPa and significantly change the elastic anisotropy of the crystal, with the [1 0 0] direction becoming almost twice as stiff as in the ambient α-opx phase. Both transformations involve mainly tetrahedral rotation, are reversible and are not expected to leave microstructural evidence that could be used as a geobarometric proxy. The high Fe2+ content in Fs82 shifts the α-β transition to slightly lower pressure, compared to MgSiO3, and has a very dramatic effect on reducing the (meta) stability range of the β-phase.

  8. Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; He, Yang; Gu, Meng

    2016-09-21

    Reversible insertion/extraction of ions into a host lattice constitutes the fundamental operating principle of rechargeable battery and electrochromic materials. It is far more commonly observed that insertion of ions into a host lattice can lead to structural evolution of the host lattice, and for the most cases such a lattice evolution is subtle. However, it has never been clear as what kind of factors to control such a lattice structural evolution. Based on tungsten trioxide (WO3) model crystal, we use in situ transmission electron microscopy (TEM) and first principles calculation to explore the nature of Li ions intercalation induced crystalmore » symmetry evolution of WO3. We discovered that Li insertion into the octahedral cavity of WO3 lattice will lead to a low to high symmetry transition, featuring a sequential monoclinic→tetragonal→cubic phase transition. The first principle calculation reveals that the phase transition is essentially governed by the electron transfer from Li to the WO6 octahedrons, which effectively leads to the weakening the W-O bond and modifying system band structure, resulting in an insulator to metal transition. The observation of the electronic effect on crystal symmetry and conductivity is significant, providing deep insights on the intercalation reactions in secondary rechargeable ion batteries and the approach for tailoring the functionalities of material based on insertion of ions in the lattice.« less

  9. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Lim, Herianto; Stavrias, Nikolas; Johnson, Brett C.; Marvel, Robert E.; Haglund, Richard F.; McCallum, Jeffrey C.

    2014-03-01

    Vanadium dioxide (VO2) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator-to-metal transition, the phase transition in VO2 can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO2 with erbium ions (Er3+) and observe their combined properties. The first excited-state luminescence of Er3+ lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er3+ into VO2 could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO2 thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO2 by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ˜800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO2 thin films. We conclude that Er-implanted VO2 can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO2.

  10. Synthesis of new liquid crystals embedded gold nanoparticles for photoswitching properties.

    PubMed

    Rahman, Md Lutfor; Biswas, Tapan Kumar; Sarkar, Shaheen M; Yusoff, Mashitah Mohd; Yuvaraj, A R; Kumar, Sandeep

    2016-09-15

    A new series of liquid crystals decorated gold nanoparticles is synthesized whose molecular architecture has azobenzenes moieties as the peripheral units connected to gold nanoparticles (Au NPs) via alkyl groups. The morphology and mesomorphic properties were investigated by field emission scanning electron microscope, high-resolution transmission electron microscopy, differential scanning calorimetry and polarizing optical microscopy. The thiolated ligand molecules (3a-c) showed enantiotropic smectic A phase, whereas gold nanoparticles (5a-c) exhibit nematic and smectic A phase with monotropic nature. HR-TEM measurement showed that the functionalized Au NPs are of the average size of 2nm and they are well dispersed without any aggregation. The trans-form of azo compounds showed a strong band in the UV region at ∼378nm for the π-π(∗) transition, and a weak band in the visible region at ∼472nm due to the n-π(∗) transition. These molecules exhibit attractive photoisomerization behaviour in which trans-cis transition takes about 15s whereas the cis-trans transition requires about 45min for compound 5c. The extent of reversible isomerization did not decay after 10 cycles, which proved that the photo-responsive properties of 5c were stable and repeatable. Therefore, these materials may be suitably exploited in the field of molecular switches and the optical storage devices. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Electron correlations and magnetism in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Birgeneau, Robert

    We have carried out a comprehensive study of the phase diagram, structures and phase transitions in the system RbxFeySe2-zSz. We find that the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase (y 1.5), the block AF phase (y 1,6) and the iron vacancy-free metallic phase (y 2). These phases are separated by first order transitions. In going from superconducting Rb0.8Fe2Se2 to non-superconducting Rb0.8Fe2S2 we observe in our ARPES experiments little change in the Fermi surface topology but an increase in the overall bandwidth by a factor of 2, hence demonstrating that moderate correlation is essential in achieving high Tc. We show also using neutron scattering that for z =0 there is a sharp magnetic resonance mode well below the superconducting gap which is replaced by a broad hump structure above the gap for z 1. This is accompanied by an insignificant change in Tc. This implies a concomitant change from sign-reversed to sign preserved Cooper-Pairing symmetry driven by the change in electron band width. In this talk we will discuss the overall significance of this rich behavior observed in this alkali Fe-chalcogenide system. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202).

  12. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  13. Rayleigh analysis of domain dynamics across temperature induced polymorphic phase transitions in lead-free piezoceramics (1‑x)(BaTi0.88Sn0.12)–x(Ba0.7Ca0.3)TiO3

    NASA Astrophysics Data System (ADS)

    Abebe, Mulualem; Brajesh, Kumar; Singh Malhotra, Jaskaran; Ranjan, Rajeev

    2018-05-01

    We carried out a Rayleigh analysis of the dielectric permittivity of a lead-free piezoceramic system (1‑x)(BaTi0.88Sn0.12)–x(Ba0.7Ca0.3)TiO3 across the composition and temperature induced polymorphic phase transformations to determine the trend in the reversible and irreversible domain wall motion across the composition and temperature induced structural changes. Experiments were carried out on three representative compositions x  =  0.10, 0.2, and 0.25 exhibiting rhombohedral, orthorhombic, and tetragonal phases at room temperature. While confirming that the irreversible Rayleigh parameter is large in the orthorhombic phase, we discuss a correspondence between the reduction in the coercive field and the corresponding increase in the irreversible Rayleigh parameter. We also show how the proximity of the Curie point to the polymorphic phase boundary greatly undermines this correspondence.

  14. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice

    PubMed Central

    Wang, Xianfeng; Buechler, Nancy L.; Martin, Ayana; Wells, Jonathan; Yoza, Barbara; McCall, Charles E.; Vachharajani, Vidula

    2016-01-01

    Objective Obesity increases morbidity and resource utilization in sepsis patients. Sepsis transitions from early/hyper-inflammatory to late/hypo-inflammatory phase. Majority of sepsis-mortality occurs during the late sepsis; no therapies exist to treat late sepsis. In lean mice, we have shown that sirtuins (SIRTs) modulate this transition. Here, we investigated the role of sirtuins, especially the adipose-tissue abundant SIRT-2 on transition from early to late sepsis in obese with sepsis. Methods Sepsis was induced using cecal ligation and puncture (CLP) in ob/ob mice. We measured microvascular inflammation in response to lipopolysaccharide/normal saline re-stimulation as a “second-hit” (marker of immune function) at different time points to track phases of sepsis in ob/ob mice. We determined SIRT-2 expression during different phases of sepsis. We studied the effect of SIRT-2 inhibition during the hypo-inflammatory phase on immune function and 7-day survival. We used a RAW264.7 (RAW) cell model of sepsis for mechanistic studies. We confirmed key findings in diet induced obese (DIO) mice with sepsis. Results We observed that the ob/ob-septic mice showed an enhanced early inflammation and a persistent and prolonged hypo-inflammatory phase when compared to WT mice. Unlike WT mice that showed increased SIRT1 expression, we found that SIRT2 levels were increased in ob/ob mice during hypo-inflammation. SIRT-2 inhibition in ob/ob mice during the hypo-inflammatory phase of sepsis reversed the repressed microvascular inflammation in vivo via activation of endothelial cells and circulating leukocytes and significantly improved survival. We confirmed the key finding of the role of SIRT2 during hypo-inflammatory phase of sepsis in this project in DIO-sepsis mice. Mechanistically, in the sepsis cell model, SIRT-2 expression modulated inflammatory response by deacetylation of NFκBp65. Conclusion SIRT-2 regulates microvascular inflammation in obese mice with sepsis and may provide a novel treatment target for obesity with sepsis. PMID:27500833

  15. Geomagnetic polarity transitions

    NASA Astrophysics Data System (ADS)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem reasonable to draw the following conclusions with varying degrees of confidence. There appears to be a substantial decrease in the mean intensity of the dipole field during a transition to ˜25% of its usual value. The duration of an average geomagnetic polarity transition is not well known but probably lies between 1000 and 8000 years. Values outside these bounds have been reported, but we give reasons as to why such outliers are likely to be artifacts. The reversal process is probably longer than the manifestation of the reversal at Earth's surface as recorded in paleomagnetic directional data. Convection hiatus during a geomagnetic polarity transition seems unlikely, and free-decay models for reversals appear to be generally incompatible with the data. This implies that certain theorems in dynamo theory, such as Cowling's theorem, should not be invoked to explain the origin of reversals. Unfortunately, the detailed description of directional changes during transitions remains controversial. Contrary to common belief, certain low-degree nondipole fields can produce significant longitudinal confinement of virtual geomagnetic poles (VGP) during a transition. The data are currently inadequate to refute or verify claims of longitudinal dipole confinement, VGP clustering, or other systematics during polarity transitions.

  16. Preparation and characterization of novel anion phase change heat storage materials.

    PubMed

    Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong

    2013-10-01

    In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.

  17. Nonlinear-optical properties of thick composite media with vanadium dioxide nanoparticles. II. Self-focusing of mid-IR radiation

    NASA Astrophysics Data System (ADS)

    Vinogradova, O. P.; Ostrosablina, A. A.; Sidorov, A. I.

    2006-02-01

    This paper presents the experimental and theoretical results of a study of the interaction of pulsed laser radiation with thick composite media containing nanoparticles of vanadium dioxide (VO2). It is established that the reversible semiconductor-metal phase transition that occurs in the VO2 nanoparticles under the action of radiation can produce self-focusing of the mid-IR radiation by the formation of a photoinduced dynamic lens. An analysis is carried out of how the radiation intensity affects the dynamics of the given process.

  18. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    PubMed

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  19. Properties and Degradation of Polarization Reversal of Soft BaTiO3 Ceramics for Ferroelectric Thin-Film Devices

    NASA Astrophysics Data System (ADS)

    Thongrueng, Jirawat; Tsuchiya, Toshio; Masuda, Yoichiro; Fujita, Shigetaka; Nagata, Kunihiro

    1999-09-01

    Soft BaTiO3 ceramics having a very low coercive field of 65 V/mm were prepared by substituting 9 mol% Hf Zr for the Ti-site of BaTiO3, for applications to ferroelectric thin-film devices. Electrical properties of the soft BaTiO3 ceramics were measured and compared with those of normal BaTiO3 ceramics. By substituting Hf Zr for Ti-site, the phase transition temperatures were controlled, and we could select the preferred crystal structure from the tetragonal, orthorhombic and rhombohedral phases at room temperature. In addition, the preparation and characterization of the soft BaTiO3 thin-films using a sol-gel process were carried out.

  20. Crystal structure of simple metals at high pressures

    NASA Astrophysics Data System (ADS)

    Degtyareva, Olga

    2010-09-01

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  1. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    PubMed

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  2. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. Thesemore » cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.« less

  3. Bicollinear antiferromagnetic order, monoclinic distortion, and reversed resistivity anisotropy in FeTe as a result of spin-lattice coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2016-09-08

    The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g ~ 12 between monoclinic lattice distortions and the spin-nematic order parameter with B 2g symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g ~ 12 is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the reversed puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenidesmore » are presented. Here, we conclude that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe.« less

  4. Magnetic properties and magnetocaloric effects in HoPd intermetallic

    NASA Astrophysics Data System (ADS)

    Zhao-Jun, Mo; Jun, Shen; Xin-Qiang, Gao; Yao, Liu; Jian-Feng, Wu; Bao-Gen, Shen; Ji-Rong, Sun

    2015-03-01

    A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the HoPd compound. Under the magnetic field change of and the refrigerant capacity RC for the compound are evaluated to be 20 J/(kg · K) and 342 J/kg, respectively. In particular, large (11.3 J/(kg · K)) and RC (142 J/kg) are achieved under a low magnetic field change of 0-2 T with no thermal hysteresis and magnetic hysteresis loss. The large reversible magnetocaloric effect (both the large -ΔSM and the high RC) indicates that HoPd is a promising material for magnetic refrigeration at low temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 11104337, 51271192, and 11274357) and the Knowledge Innovation Project of the Chinese Academy of Sciences.

  5. Theoretical and Computational Studies of Condensed-Phase Phenomena: The Origin of Biological Homochirality, and the Liquid-Liquid Phase Transition in Network-Forming Fluids

    NASA Astrophysics Data System (ADS)

    Ricci, Francesco

    This dissertation describes theoretical and computational studies of the origin of biological homochirality, and the existence of a liquid-liquid phase transition in pure-component network-forming fluids. A common theme throughout these studies is the use of sophisticated computer simulation and statistical mechanics techniques to study complex condensed-phase phenomena. In the first part of this dissertation, we use an elementary lattice model with molecular degrees of freedom, and satisfying microscopic reversibility, to investigate the effect of reaction reversibility on the evolution of stochastic symmetry breaking via autocatalysis and mutual inhibition in a closed system. We identify conditions under which the system's evolution towards racemic equilibrium becomes extremely slow, allowing for long-time persistence of a symmetry-broken state. We also identify a "monomer purification" mechanism, due to which a nearly homochiral state can persist for long times, even in the presence of significant reverse reaction rates. Order of magnitude estimates show that with reasonable physical parameters a symmetry broken state could persist over geologically-relevant time scales. In the second part of this dissertation, we study a chiral-symmetry breaking mechanism known as Viedma ripening. We develop a Monte Carlo model to gain further insights into the mechanisms capable of reproducing key experimental signatures associated with this phenomenon. We also provide a comprehensive investigation of how the model parameters impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most experimental signatures, and that some form of a solid-phase chiral feedback mechanism (e.g., agglomeration) must be invoked in our model. In the third part of this dissertation, we perform rigorous free energy calculations to investigate the possibility of a liquid-liquid phase transition (LLPT) in the Stillinger-Weber (SW) model of silicon. A similar analysis is also presented for the generalized SW family of models by varying the "tetrahedrality" of the potential. Contrary to previously published findings, we do not find any evidence of the existence of an LLPT for SW silicon, nor for the generalized family of SW models over the range of parameters studied. Our results for the original parameterization of SW silicon are in semi-quantitative agreement with previous free energy calculations for this model, which were only provided at three state points. Explanations for the discrepancies between previous independent studies are provided, along with explicit demonstrations of how these discrepancies may have occurred. Finally, in the fourth part of this dissertation, we perform free energy calculations to demonstrate the existence of an LLPT in the Jagla potential. We also utilize finite-size scaling analysis to calculate the surface tension associated with the LLPT. In addition to the thermodynamics of the model, we investigate the relaxation times for density and bond-orientational order and show that, contrary to assertions in the literature, the characteristic relaxation time of bond-orientational order is not orders of magnitude slower than that of density. We compare our results for the Jagla model with those found in the literature for the ST2 model of water (which has also been rigorously shown to exhibit an LLPT) in order to emphasize key similarities and differences between two models that exhibit pure-component liquid-liquid phase separation.

  6. Magnetically Controlled Shape Memory Behaviour—Materials and Applications

    NASA Astrophysics Data System (ADS)

    Gandy, A. P.; Sheikh, A.; Neumann, K.; Neumann, K.-U.; Pooley, D.; Ziebeck, K. R. A.

    2008-06-01

    For most metals a microscopic change in shape occurs above the elastic limit by the irreversible creation and movement of dislocations. However a large number of metallic systems undergo structural, martensitic, phase transformations which are diffusionless, displacive first order transitions from a high-temperature phase to one of lower symmetry below a certain temperature TM. These transitions which have been studied for more than a century are of vital importance because of their key role in producing shape memory phenomena enabling the system to reverse large deformations in the martensitic phase by heating into the austenite phase. In addition to a change in shape (displacement) the effect can also produce a force or a combination of both. Materials having this unique property are increasing being used in medical applications—scoliosis correction, arterial clips, stents, orthodontic wire, orthopaedic implants etc. The structural phase transition essential for shape memory behaviour is usually activated by a change in temperature or applied stress. However for many applications such as for actuators the transformation is not sufficiently rapid. Poor energy conversion also limits the applicability of many shape memory alloys. In medicine a change of temperature or pressure is often inappropriate and new ferromagnetic materials are being considered in which the phenomena can be controlled by an applied magnetic field at constant temperature. In order to achieve this, it is important to optimise three fundamental parameters. These are the saturation magnetisation σs, the Curie temperature Tc and the martensitic temperature TM. Here, σs is important because the magnetic pressure driving the twin boundary motion is 2σsH. Furthermore the material must be in the martensitic state at the operating temperature which should be at or above room temperature. This may be achieved by alloying or controlling the stoichiometry. Recently new intermetallic compounds based on the ferromagnetic prototype Ni2MnGa have been discovered which offer the possibility of controlling the structural phase transition by a magnetic field, hence opening up new possible applications particularly in the field of medicine. The properties of these new materials will be presented and their suitability for applications discussed.

  7. Topics in Diffusion Limited Reaction Processes

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Cheng

    We study, both theoretically and numerically, the macroscopic particle concentration in a class of simple diffusion-limited reactions: one species coagulation A + A to A, reversible coagulation A + A rightleftharpoons A, A + A to A with particle input, A + A rightleftharpoons A with particle input, single species annihilation A + A to inert, and two species annihilation A + B to inert. The main interest is in the asymptotic behavior of the particle concentration. We review the standard mean-field theory, mass-reaction kinetics and the associated nonlinear rate and diffusion-reaction equations. Theoretically we study the concentration using several closure schemes for truncating the infinite hierarchy of the kinetic equations for the joint density functions. Our goal is to evaluate the quality of some nonsystematic approximations by comparison with exact solutions. It is found that these approximations are very good at capturing the asymptotic behavior of the particle concentrations in the irreversible reactions, while they fail to predict the far-from-equilibrium dynamic phase transition in the one dimensional reversible coagulation reaction predicted by exact results. Numerically we use Monte Carlo simulation to study concentrations in the single species reversible coagulation process. In one dimension the numerical results are in excellent agreement with the exact analytic results. In two dimensions, our simulation data in the transient states suggest an interesting scaling for the deviation of the concentration from its equilibrium value, delta C(t) ~ exp( -beta(C_0)t^{alpha(C_0) }), where alpha(C_0) and beta(C_0) are functions of the initial concentration C_0. However, it seems unlikely to be able to answer the question of the existence of a dynamic phase transition in two dimensions by Monte Carlo simulation within a reasonable CPU time due to the long persistence of the transient states. In an appendix we solve exactly an annihilation-related percolation problem.

  8. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

    PubMed

    Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun

    2014-04-15

    Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Federal transit administration : progress and challenges in implementing and evaluating the job access and reverse commute program.

    DOT National Transportation Integrated Search

    2010-05-01

    Established in 1998, the Job Access and Reverse Commute Program (JARC)administered by the Federal Transit Administration (FTA)awards grants to states and localities to provide transportation to help low-income individuals access jobs. In 2005, ...

  10. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.

    2016-12-01

    We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.

  11. Magnetic, Mössbauer and optical spectroscopic properties of the AFe3O(PO4)3 (A = Ca, Sr, Pb) series of powder compounds

    NASA Astrophysics Data System (ADS)

    El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; Couzi, Michel; Goldner, Philippe; Delmas, Claude

    2014-10-01

    AFe3O(PO4)3 (A = Ca, Sr and Pb) powder compounds were studied by means of X-ray diffraction (XRD), electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A = Sr, Ca and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32-8 K temperature range. Room temperature Mössbauer spectroscopy and associated DFT calculations confirm the existence of three crystallographically non equivalent Fe3+ sites in the three compounds. Mössbauer spectra recorded as a function of temperature in the PbFe3O(PO4)3 compound also establishes the occurrence of two purely magnetic and reversible phase transitions at 32 and 10 K. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ∼10-20 cm2 typical of spin-forbidden and forced electric dipole intraconfigurational transitions.

  12. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms

    PubMed Central

    Bandyopadhyay, Promode R.; Hellum, Aren M.

    2014-01-01

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime—laterally coupled, diffusively—which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common. PMID:25338940

  13. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms.

    PubMed

    Bandyopadhyay, Promode R; Hellum, Aren M

    2014-10-23

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.

  14. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  15. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  16. In-situ study of athermal reversible photocrystallization in a chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Benekou, Vasiliki; Strizik, Lukas; Wagner, Tomas; Yannopoulos, Spyros N.; Greer, A. Lindsay; Orava, Jiri

    2017-11-01

    The time-resolved Raman measurements reveal a three-stage mechanism of the photostructural changes in Ge25.0Ga9.5Sb0.5S65.0 (containing 0.5 at. % of Er3+) glass under continuous-above-bandgap illumination. These changes are reversible and effectively athermal, in that the local temperature rises to about 60% of the glass-transition temperature and the phase transitions take place in the glass/crystal and not in an equilibrium liquid. In the early stages of illumination, the glassy-network dimensionality changes from a predominantly 3-D to a mixture of 2-D/1-D represented by an increase in the fraction of edge-sharing tetrahedra and the emergence of homonuclear (semi)metallic bonds. This incubation period of the structural rearrangements, weakly thermally activated with an energy of ˜0.16 eV, facilitates a reversible photocrystallization. The photocrystallization rate in the glass is comparable to that achieved by thermal crystallization from supercooled liquid at large supercooling. Almost complete re-amorphization can be achieved in about an hour by reducing the incident laser-power density by a factor of ten. Glass-ceramic composites—with varying glass-to-crystal fraction—can be obtained by ceasing the illumination during re-amorphization. Microstructural imaging reveals photoinduced mass transport and the formation of columnar-porous structures. This shows the potential for a bond-specific engineering of glassy structures for photonic applications with a spatial resolution unachievable by thermal annealing.

  17. Accuracy of the adiabatic-impulse approximation for closed and open quantum systems

    NASA Astrophysics Data System (ADS)

    Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.

  18. Application of global kinetic models to HMX beta-delta transition and cookoff processes.

    PubMed

    Wemhoff, Aaron P; Burnham, Alan K; Nichols, Albert L

    2007-03-08

    The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.

  19. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

Top