Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M
1996-03-01
Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.
2007-05-08
deoxynucleotide triphosphates, from Sigma. Sequences for glyceraldehyde-3-phosphate dehydrogenase ( G3PDH ), IL-8,and TNF-a were amplified with primer...This was accomplished by normalizing all samples to the mRNA for the moderately expressed housekeeping function glyceraldehyde-3 -phosphate...without and with isolation of cells before reverse transcription and PCR. G3PDH mRNA target amplifies at 983 base pairs. The 630 base pair band is the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, He, E-mail: herenrh@yahoo.com.cn; Zhao, Tiansuo; Wang, Xiuchao
2010-03-26
The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breastmore » cancer.« less
Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin
2010-01-01
The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.
Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA.
Fujino, Tomoko; Yasumoto, Ken-ichi; Yamazaki, Naomi; Hasome, Ai; Sogawa, Kazuhiro; Isobe, Hiroyuki
2011-11-04
A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kauschke, S G; Knorr, A; Heke, M; Kohlmeyer, J; Schauer, M; Theiss, G; Waehler, R; Burchardt, E R
1999-11-15
Using a novel quantitative reverse transcriptase-polymerase chain reaction assay, we have determined the amount of specific mRNA for procollagen alpha(1) (III) (PIIIP) in the carbon tetrachloride (CCl(4)) model of liver fibrosis in rats. After a single week of CCl(4) application, the amount of PIIIP mRNA was increased approximately 10 times over the untreated control group and continued to increase to approximately 30 times after 7 weeks of intoxication. In this model substantial fibrosis was demonstrated by computer-aided morphometry after 5 to 7 weeks of treatment. Using recombinant murine N-terminal procollagen alpha(1) (III) propeptide (PIIINP), a novel sensitive immunoassay for the measurement of circulating PIIINP in rodent sera was established. An increase in PIIINP serum levels was observed after 5 to 7 weeks of CCl(4) intoxication. Our results suggest PIIIP gene expression is an early marker of tissue fibrosis. Early PIIIP gene expression is correlated with the extent of the subsequent fibrosis. PIIIP mRNA levels increase much earlier than conventional histological examination or PIIINP levels. PIIINP measurements with our new serum assay, on the other hand, are a good noninvasive marker of manifest fibrosis but are a poor marker of fibrogenesis. Copyright 1999 Academic Press.
Lin, J H; Levin, H L
1997-01-15
All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.
Irmak, M Kemal; Oztas, Yesim; Oztas, Emin
2012-06-07
Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to "caveolar-mediated endocytosis signaling" pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature.The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases.
2012-01-01
Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature. The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases. PMID:22676860
Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases
Zajac, Pawel; Islam, Saiful; Hochgerner, Hannah; Lönnerberg, Peter; Linnarsson, Sten
2013-01-01
Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells. PMID:24392002
Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase
Kopera, Huira C.; Moldovan, John B.; Morrish, Tammy A.; Moran, John V.
2011-01-01
Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase. PMID:21940498
Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.
Kopera, Huira C; Moldovan, John B; Morrish, Tammy A; Garcia-Perez, Jose Luis; Moran, John V
2011-12-20
Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.
Amendola, R
1994-11-01
The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.
Mirzazadeh, Azin; Kheirollahi, Majid; Farashahi, Ehsan; Sadeghian-Nodoushan, Fatemeh; Sheikhha, Mohammad Hasan; Aflatoonian, Behrouz
2017-01-01
Glioblastoma (GBM) is the most common and aggressive brain tumor, which has a poor prognosis despite the advent of different therapeutic strategies. There are numerous molecular biomarkers to contribute diagnosis, prognosis, and prediction of response to the current therapy in GBM. One of the most important markers that are potentially valuable is immortalization-specific or immortalization-associated marker named "hTERT messenger ribonucleic acid (mRNA)" the key subunit of telomerase enzyme, which is expressed in more than 85% of cancer cells, in spite of the majority of normal somatic cells. In this study, we investigated the effects of resveratrol (RSV) on this mRNA marker level, leading to cancer progression. U-87MG cell line was obtained from Pasteur Institute of Iran and treated with various concentrations of 0-160 μg/mL of RSV and at different time points (24, 48, and 72 h). To evaluate viability of U-87MG cells, standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. Real-time polymerase chain reaction (RT-PCR) was used for comparative and quantitative assessment of human telomerase reverse transcriptase (hTERT) mRNA copy number versus control-untreated group. The results of our investigation suggested that RSV effectively inhibited cell growth and caused cell death in dose-dependent ( P < 0.05) and not in time-dependent manner ( P > 0.05), in vitro . Interestingly, quantitative RT-PCR analysis demonstrated that at half inhibition concentration, RSV dramatically decreased mRNA expression of hTERT, the catalytic subunit of telomerase enzyme, which leads to prevention of cell division and tumor progression. With regard to downregulation of this immortalization-associated marker, RSV may potentially be used as a therapeutic agent against GBM.
miR-128 inhibits telomerase activity by targeting TERT mRNA
Guzman, Herlinda; Sanders, Katie; Idica, Adam; Bochnakian, Aurore; Jury, Douglas; Daugaard, Iben; Zisoulis, Dimitrios G; Pedersen, Irene Munk
2018-01-01
Telomerase is a unique cellular reverse transcriptase (RT) essential for maintaining telomere stability and required for the unlimited proliferation of cancer cells. The limiting determinant of telomerase activity is the catalytic component TERT, and TERT expression is closely correlated with telomerase activity and cancer initiation and disease progression. For this reason the regulation of TERT levels in the cell is of great importance. microRNAs (miRs) function as an additional regulatory level in cells, crucial for defining expression boundaries, proper cell fate decisions, cell cycle control, genome integrity, cell death and metastasis. We performed an anti-miR library screen to identity novel miRs, which participate in the control of telomerase. We identified the tumor suppressor miR (miR-128) as a novel endogenous telomerase inhibitor and determined that miR-128 significantly reduces the mRNA and protein levels of Tert in a panel of cancer cell lines. We further evaluated the mechanism by which miR-128 regulates TERT and demonstrated that miR-128 interacts directly with the coding sequence of TERT mRNA in both HeLa cells and teratoma cells. Interestingly, the functional miR-128 binding site in TERT mRNA, is conserved between TERT and the other cellular reverse transcriptase encoded by Long Interspersed Elements-1 (LINE-1 or L1), which can also contribute to the oncogenic phenotype of cancer. This finding supports the novel idea that miRs may function in parallel pathways to inhibit tumorigenesis, by regulating a group of enzymes (such as RT) by targeting conserved binding sites in the coding region of both enzymes. PMID:29568354
TNF α is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats
Zheng, Xuexing; Ouyang, Handong; Liu, Shue; Mata, Marina; Fink, David J.; Hao, Shuanglin
2011-01-01
In patients with HIV/AIDS, neuropathic pain is a common neurological complication. Infection with the HIV itself may lead to neuropathic pain, and painful symptoms are enhanced when patients are treated with nucleoside reverse transcriptase inhibitors (NRTI). The mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In the current studies, we tested the role of TNFα in antiretroviral drug-induced neuropathic pain. We administered 2′,3′-dideoxycytidine (ddC, one of the NRTIs) systemically to induce mechanical allodynia. We found that ddC induced overexpression of both mRNA and proteins of GFAP and TNFα in the spinal dorsal horn. TNFα was colocalized with GFAP in the spinal dorsal horn and with NeuN in the DRG. Knockdown of TNFα with siRNA blocked the mechanical allodynia induced by ddC. Intrathecal administration of glial inhibitor or recombinant TNF soluble receptor, reversed mechanical allodynia induced by ddC. These results suggest that TNFα is involved in NRTI-induced neuropathic pain. PMID:21741472
Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.
Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko
2011-01-01
HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors. © 2010 John Wiley & Sons A/S.
The mechano-chemistry of a monomeric reverse transcriptase
Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei
2017-01-01
Abstract Retroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex. PMID:29165701
Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y
2001-04-01
Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.
Cardiomyogenic Differentiation in Cardiac Myxoma Expressing Lineage-Specific Transcription Factors
Kodama, Hiroaki; Hirotani, Takashi; Suzuki, Yusuke; Ogawa, Satoshi; Yamazaki, Kazuto
2002-01-01
We investigated five cases of cardiac myxoma and one case of cardiac undifferentiated sarcoma by light and electron microscopy, in situ hybridization, immunohistochemical staining, and reverse transcriptase-polymerase chain reaction for cardiomyocyte-specific transcription factors, Nkx2.5/Csx, GATA-4, MEF2, and eHAND. Conventional light microscopy revealed that cardiac myxoma and sarcoma cells presented variable cellular arrangements and different histological characteristics. Ultrastructurally, some of the myxoma cells exhibited endothelium-like or immature mesenchymal cell differentiation. Immunohistochemistry for Nkx2.5/Csx, GATA-4, and eHAND was slightly to intensely positive in all myxoma cases. MEF2 immunoreactivity was observed in all cases including the case of sarcoma, thus suggesting myogenic differentiation of myxoma or sarcoma cells. In situ hybridization for Nkx2.5/Csx also revealed that all myxoma cells, but not sarcoma cells, expressed mRNA of the cardiac homeobox gene, Nkx2.5/Csx. Furthermore, nested reverse transcriptase-polymerase chain reaction from formalin-fixed, paraffin-embedded tissue was performed and demonstrated that the Nkx2.5/Csx and eHAND gene product to be detected in all cases, and in three of six cases, respectively. In conclusion, cardiac myxoma cells were found to express various amounts of cardiomyocyte-specific transcription factor gene products at the mRNA and protein levels, thus suggesting cardiomyogenic differentiation. These results support the concept that cardiac myxoma might arise from mesenchymal cardiomyocyte progenitor cells. PMID:12163362
Allawi, H T; Dong, F; Ip, H S; Neri, B P; Lyamichev, V I
2001-01-01
A rapid and simple method for determining accessible sites in RNA that is independent of the length of target RNA and does not require RNA labeling is described. In this method, target RNA is allowed to hybridize with sequence-randomized libraries of DNA oligonucleotides linked to a common tag sequence at their 5'-end. Annealed oligonucleotides are extended with reverse transcriptase and the extended products are then amplified by using PCR with a primer corresponding to the tag sequence and a second primer specific to the target RNA sequence. We used the combination of both the lengths of the RT-PCR products and the location of the binding site of the RNA-specific primer to determine which regions of the RNA molecules were RNA extendible sites, that is, sites available for oligonucleotide binding and extension. We then employed this reverse transcription with the random oligonucleotide libraries (RT-ROL) method to determine the accessible sites on four mRNA targets, human activated ras (ha-ras), human intercellular adhesion molecule-1 (ICAM-1), rabbit beta-globin, and human interferon-gamma (IFN-gamma). Our results were concordant with those of other researchers who had used RNase H cleavage or hybridization with arrays of oligonucleotides to identify accessible sites on some of these targets. Further, we found good correlation between sites when we compared the location of extendible sites identified by RT-ROL with hybridization sites of effective antisense oligonucleotides on ICAM-1 mRNA in antisense inhibition studies. Finally, we discuss the relationship between RNA extendible sites and RNA accessibility. PMID:11233988
Ye, F; Jin, Y; Kong, Y; Shi, J Z; Qiu, H T; Zhang, X; Zhang, S L; Lin, S M
2013-05-01
This study aimed to confirm that vertical transmission of hepatitis B virus (HBV) can occur via the infected ovum. Specimens studied were obtained from discarded test-tube embryos from mothers with chronic HBV infection who had received in vitro fertilization treatment. Single-cell reverse transcriptase-polymerase chain reaction was used to detect HBV mRNA in the embryos. HBV mRNA was detected in the cleavage embryos of patients with chronic HBV infection, with a detection rate of 13.2% (5/38). The level of serum HBV DNA was not related to the HBV mRNA positivity rates in embryos. In this study, HBV mRNA was detected in test-tube embryos from HBV-infected mothers who had received in vitro fertilization treatment. This confirms the theory of vertical transmission of HBV via the ovum, thereby providing an important theoretical basis for further study on the mechanism of HBV vertical transmission, influencing factors and blocking measures.
Decorte, Inge; Van der Stede, Yves; Nauwynck, Hans; De Regge, Nick; Cay, Ann Brigitte
2013-08-01
This study evaluated the effect of extraction-amplification methods, storage temperature and saliva stabilisers on detection of porcine reproductive and respiratory syndrome virus (PRRSV) RNA by quantitative reverse transcriptase real-time PCR (qRT-PCR) in porcine oral fluid. The diagnostic performance of different extraction-amplification methods was examined using a dilution series of oral fluid spiked with PRRSV. To determine RNA stability, porcine oral fluid, with or without commercially available saliva stabilisers, was spiked with PRRSV, stored at 4°C or room temperature and tested for the presence of PRRSV RNA by qRT-PCR. PRRSV RNA could be detected in oral fluid using all extraction-amplification combinations, but the limit of detection varied amongst different combinations. Storage temperature and saliva stabilisers had an effect on the stability of PRRSV RNA, which could only be detected for 7 days when PRRSV spiked oral fluid was kept at 4°C or stabilised at room temperature with a commercial mRNA stabiliser. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aragão, Filipa; Vera, José; Vaz Pinto, Inês
2012-01-01
Introduction Current Portuguese HIV treatment guidelines recommend initiating antiretroviral therapy with a regimen composed of two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor (2NRTI+NNRTI) or two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor (2NRTI+PI/r). Given the lower daily cost of NNRTI as the third agent when compared to the average daily costs of PI/r, it is relevant to estimate the long term impact of each treatment option in the Portuguese context. Methods We developed a microsimulation discrete events model for cost-effectiveness analysis of HIV treatment, simulating individual paths from ART initiation to death. Four driving forces determine the course of events: CD4+ cell count, viral load, resistance and adherence. Distributions of time to event are conditional to individuals’ characteristics and past history. Time to event was modeled using parametric survival analysis using Stata 11®. Disease progression was structured according to therapy lines and the model was parameterized with cohort Portuguese observational data. All resources were valued at 2009 prices. The National Health Service’s perspective was assumed considering a lifetime horizon and a 5% annual discount rate. Results In this analysis, initiating therapy with two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor reduces the average number of switches by 17%, saves 19.573€ per individual and increases life expectancy by 1.7 months showing to be a dominant strategy in 57% of the simulations when compared to two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor. Conclusion This study suggests that, when clinically valid, initiating therapy with two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor is a cost-saving strategy and equally effective when compared to two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor as the first regimen. PMID:23028618
Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R
1990-01-01
Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202
NASA Astrophysics Data System (ADS)
Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din
2015-04-01
The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.
Blastic natural killer cell leukaemia in a dog--a case report.
Bonkobara, Makoto; Saito, Taro; Yamashita, Masahiro; Tamura, Kyoichi; Yagihara, Hiroko; Isotani, Mayu; Sato, Takashi; Washizu, Tsukimi
2007-11-01
A case of canine non-T, non-B lymphoid leukaemia was determined to be of natural killer (NK) cell lineage by detecting specific expression of canine CD56 mRNA by reverse transcriptase polymerase chain reaction analysis. Although NK cells are usually considered to be morphologically large granular lymphocytes, the malignant NK cells in this case were agranular and blast-like, resembling human blastic NK cell leukaemia. The prognosis of human NK cell leukaemia is usually poor. In this case, the dog died 10 days after initial presentation, despite chemotherapy.
Nucleotide Sequence Analysis of RNA Synthesized from Rabbit Globin Complementary DNA
Poon, Raymond; Paddock, Gary V.; Heindell, Howard; Whitcome, Philip; Salser, Winston; Kacian, Dan; Bank, Arthur; Gambino, Roberto; Ramirez, Francesco
1974-01-01
Rabbit globin complementary DNA made with RNA-dependent DNA polymerase (reverse transcriptase) was used as template for in vitro synthesis of 32P-labeled RNA. The sequences of the nucleotides in most of the fragments resulting from combined ribonuclease T1 and alkaline phosphatase digestion have been determined. Several fragments were long enough to fit uniquely with the α or β globin amino-acid sequences. These data demonstrate that the cDNA was copied from globin mRNA and contained no detectable contaminants. Images PMID:4139714
fbpABC gene cluster in Neisseria meningitidis is transcribed as an operon.
Khun, H H; Deved, V; Wong, H; Lee, B C
2000-12-01
The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR.
fbpABC Gene Cluster in Neisseria meningitidis Is Transcribed as an Operon
Khun, Heng H.; Deved, Vinay; Wong, Howard; Lee, B. Craig
2000-01-01
The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR. PMID:11083849
Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H
2010-09-01
Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.
Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A
1997-11-01
Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.
Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro
2003-01-01
We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.
The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines
Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona
2010-01-01
Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977
(PCG) Protein Crystal Growth HIV Reverse Transcriptase
NASA Technical Reports Server (NTRS)
1992-01-01
HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.
Mirzazadeh, Azin; Kheirollahi, Majid; Farashahi, Ehsan; Sadeghian-Nodoushan, Fatemeh; Sheikhha, Mohammad Hasan; Aflatoonian, Behrouz
2017-01-01
Background: Glioblastoma (GBM) is the most common and aggressive brain tumor, which has a poor prognosis despite the advent of different therapeutic strategies. There are numerous molecular biomarkers to contribute diagnosis, prognosis, and prediction of response to the current therapy in GBM. One of the most important markers that are potentially valuable is immortalization-specific or immortalization-associated marker named “hTERT messenger ribonucleic acid (mRNA)” the key subunit of telomerase enzyme, which is expressed in more than 85% of cancer cells, in spite of the majority of normal somatic cells. In this study, we investigated the effects of resveratrol (RSV) on this mRNA marker level, leading to cancer progression. Materials and Methods: U-87MG cell line was obtained from Pasteur Institute of Iran and treated with various concentrations of 0–160 μg/mL of RSV and at different time points (24, 48, and 72 h). To evaluate viability of U-87MG cells, standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. Real-time polymerase chain reaction (RT-PCR) was used for comparative and quantitative assessment of human telomerase reverse transcriptase (hTERT) mRNA copy number versus control–untreated group. Results: The results of our investigation suggested that RSV effectively inhibited cell growth and caused cell death in dose-dependent (P < 0.05) and not in time-dependent manner (P > 0.05), in vitro. Interestingly, quantitative RT-PCR analysis demonstrated that at half inhibition concentration, RSV dramatically decreased mRNA expression of hTERT, the catalytic subunit of telomerase enzyme, which leads to prevention of cell division and tumor progression. Conclusion: With regard to downregulation of this immortalization-associated marker, RSV may potentially be used as a therapeutic agent against GBM. PMID:28706881
The Discovery of Reverse Transcriptase.
Coffin, John M; Fan, Hung
2016-09-29
In 1970 the independent and simultaneous discovery of reverse transcriptase in retroviruses (then RNA tumor viruses) by David Baltimore and Howard Temin revolutionized molecular biology and laid the foundations for retrovirology and cancer biology. In this historical review we describe the formulation of the controversial provirus hypothesis by Temin, which ultimately was proven by his discovery of reverse transcriptase in Rous sarcoma virus virions. Baltimore arrived at the same discovery through his studies on replication of RNA-containing viruses, starting with poliovirus and then moving to vesicular stomatitis virus, where he discovered a virion RNA polymerase. Subsequent studies of reverse transcriptase led to the elucidation of the mechanism of retrovirus replication, the discovery of oncogenes, the advent of molecular cloning, the search for human cancer viruses, and the discovery and treatment of HIV/AIDS.
Collins, Kathleen; Nilsen, Timothy W
2013-08-01
Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.
NASA Astrophysics Data System (ADS)
Schuschereba, Steven T.; Bowman, Phillip D.; Ujimore, Veronica; Hoxie, Stephen W.; Pizarro, Jose M.; Cross, Michael E.; Lund, David J.
1996-04-01
The purpose of this study was to identify cytokines produced by the retina after laser injury. With the aid of a scanning laser ophthalmoscope (SLO), right eyes of mice received lesions from a continuous wave argon laser. Left eyes served as unirradiated controls. At 2, 4, 6, 12, 24, and 48 hr after laser irradiation groups of 3 mice were euthanized and retinas fixed for histology or isolated for RNA. Messenger RNA (mRNA) was reverse-transcribed into complementary DNA (cDNA) and subjected to polymerase chain reaction for the following cytokines: tumor necrosis factor-(alpha) (TNF-(alpha) ), interleukin-1(alpha) /(Beta) (IL- 1(alpha) /(Beta) ), interleukin-6 (IL-6), transforming growth factor-(Beta) 1 (TGF- (Beta) 1), macrophage colony stimulating factor (M-CSF), inducible nitric oxide synthase (iNOS), and glyceraldehyde 3-phosphate dehydrogenase (G3PDH). Histologically, lesions were confined to the photoreceptors, retinal pigment epithelium, and choroid. In laser-injured retinas, mRNA levels were elevated for IL-1(alpha) , TGF-(Beta) 1, iNOS, and G3PDH, but not TNF-(alpha) , IL-1(Beta) , or IL-6. It appears that the retina, in response to laser injury, upregulates a select number of cytokines in a time-course dependent fashion.
Wu, Yang; Ji, Jinkai; Yang, Ran; Zhang, Xiaoqiang; Li, Yuanhui; Pu, Yuepu; Li, Xinsong
2013-01-01
In this report, a series of well-defined glucose- and guanidine-based cationic copolymers as gene carriers were developed to inhibit human telomerase reverse transcriptase (hTERT) gene expression. First of all, guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers (guanidinylated GAPMA-s-APMA, abbreviated as GGA) were prepared via aqueous reversible addition--fragmentation chain transfer polymerization (RAFT). Then, three target hTERT siRNA TERT-1, TERT-2 and TERT-3 were designed and combined with GGA copolymers to form siRNA/GGA polyplexes. The polyplexes were examined by dynamic light scattering and agarose gel electrophoresis. The results indicated that GGA copolymers can condense siRNA effectively to form particles with the diameter from 157 nm to 411 nm and zeta potential values in the range from +3.7 to +15.8 mV at various charge ratios (N/P). The MTT assay data of siRNA/GGA polyplexes on human hepatocellular liver carcinoma cells (HepG2) indicated that GGA copolymer had better cell viabilities than polyethylenimine (PEI). Furthermore, the transfection of siRNA/GGA polyplexes was detected by real-time quantitative PCR (RT-qPCR) in HepG2. It was found that siRNA/GGA polyplexes could effectively silence hTERT mRNA expression in serum-free media (p<0.01). In the presence of serum, the hTERT mRNA expression in HepG2 cells have significant difference (p<0.01) between siRNA/GGA3 polyplexes and blank. The results showed that the GAPMA component can reduce the aggregation of protein in serum media. Therefore, the enhancement of transfection may be attributed to the combination of guadino groups and glucose component. And, the guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers might be promise in gene delivery.
Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity
Fowler, Benjamin J.; Gelfand, Bradley D.; Kim, Younghee; Kerur, Nagaraj; Tarallo, Valeria; Hirano, Yoshio; Amarnath, Shoba; Fowler, Daniel H.; Radwan, Marta; Young, Mark T.; Pittman, Keir; Kubes, Paul; Agarwal, Hitesh K.; Parang, Keykavous A.; Hinton, David R.; Bastos-Carvalho, Ana; Li, Shengjian; Yasuma, Tetsuhiro; Mizutani, Takeshi; Yasuma, Reo; Wright, Charles; Ambati, Jayakrishna
2014-01-01
Nucleoside reverse transcriptase inhibitors (NRTIs) are mainstay therapeutics for HIV that block retrovirus replication. Alu (an endogenous retroelement that also requires reverse transcriptase for its life cycle)-derived RNAs activate P2X7 and the NLRP3 inflammasome to cause cell death of the retinal pigment epithelium (RPE) in geographic atrophy, a type of age-related macular degeneration. We found that NRTIs inhibit P2X7-mediated NLRP3 inflammasome activation independent of reverse transcriptase inhibition. Multiple approved and clinically relevant NRTIs prevented caspase-1 activation, the effector of the NLRP3 inflammasome, induced by Alu RNA. NRTIs were efficacious in mouse models of geographic atrophy, choroidal neovascularization, graft-versus-host disease (GVHD), and sterile liver inflammation. Our findings suggest that NRTIs are ripe for drug repurposing in P2X7-driven diseases. PMID:25414314
Evidence for retrovirus infections in green turtles Chelonia mydas from the Hawaiian islands
Casey, R.N.; Quackenbush, S.L.; Work, Thierry M.; Balazs, G.H.; Bowser, P.R.; Casey, J.W.
1997-01-01
Apparently normal Hawaiian green turtles Chelonia mydas and those displaying fibropapillomas were analyzed for infection by retroviruses. Strikingly, all samples were positive for polymerase enhanced reverse transcriptase (PERT) with levels high enough to quantitate by the conventional reverse transcriptase (RT) assay. However, samples of skin, even from asymptomatic turtles, were RT positive, although the levels of enzyme activity in healthy turtles hatched and raised in captivity were much lower than those observed in asymptomatic free-ranging turtles. Turtles with fibropapillomas displayed a broad range of reverse transcriptase activity. Skin and eye fibropapillomas and a heart tumor were further analyzed and shown to have reverse transcriptase activity that banded in a sucrose gradient at 1.17 g ml-1. The reverse transcriptase activity purified from the heart tumor displayed a temperature optimum of 37??C and showed a preference for Mn2+ over Mg2+. Sucrose gradient fractions of this sample displaying elevated reverse transcriptase activity contained primarily retrovitalsized particles with prominent envelope spikes, when negatively stained and examined by electron microscopy. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of gradient-purified virions revealed a conserved profile among 4 independent tumors and showed 7 prominent proteins having molecular weights of 116, 83, 51, 43, 40, 20 and 14 kDa. The data suggest that retroviral infections are widespread in Hawaiian green turtles and a comprehensive investigation is warranted to address the possibility that these agents cause green turtle fibropapillomatosis (GTFP).
Boivin, Vincent; Deschamps-Francoeur, Gabrielle; Couture, Sonia; Nottingham, Ryan M; Bouchard-Bourelle, Philia; Lambowitz, Alan M; Scott, Michelle S; Abou-Elela, Sherif
2018-07-01
Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. S tructured n on c oding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing. © 2018 Boivin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Alvarez, Marta B; Childress, Paul; Philip, Binu K; Gerard-O'Riley, Rita; Hanlon, Michael; Herbert, Brittney-Shea; Robling, Alexander G; Pavalko, Fredrick M; Bidwell, Joseph P
2012-05-01
Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism. Copyright © 2011 Wiley Periodicals, Inc.
Wang, Rui; Pan, Yunjian; Li, Chenguang; Hu, Haichuan; Zhang, Yang; Li, Hang; Luo, Xiaoyang; Zhang, Jie; Fang, Zhaoyuan; Li, Yuan; Shen, Lei; Ji, Hongbin; Garfield, David; Sun, Yihua; Chen, Haiquan
2012-09-01
Approximately 3% to 7% of non-small cell lung cancers (NSCLC) harbor an ALK fusion gene, thus defining a tumor group that may be responsive to targeted therapy. The breakpoint in ALK consistently occurs at exon 20 and EML4 or other fusion partners, thus driving a strong expression of ALK kinase domain and resulting in an unbalanced expression in 5' and 3' portions of ALK transcripts. We have developed a rapid and accurate method by simultaneously detecting the expression in 5' and 3' portions of ALK mRNA. Quantitative real-time reverse transcriptase PCR (qRT-PCR) was used to examine expression levels of the 5' and 3' portions of ALK transcripts in177 NSCLCs, in which EGFR, KRAS, HER2, and BRAF mutations were absent. If unbalanced ALK mRNA expression was seen, ALK rearrangement was assumed to exist. ALK FISH was used to confirm the accuracy of qRT-PCR. RT-PCR and 5' RACE coupling sequencing identified the fusion variants. Real-time RT-PCR showed excellent sensitivity and specificity (100% and 100%, respectively) for detection of ALK rearrangements in resected specimens. In addition, six novel ALK fusion variants were identified, including one KIF5B-ALK (E17;A20) and five EML4-ALK variants (E6a;A19, E6a/b ins 18;A20, E17b ins 39;A20, E10a/b, E13;A20, and E17 ins 65;A20). Real-time RT-PCR is a rapid and accurate method for diagnosing ALK-rearranged lung cancers. Coupling of 5' RACE to this method should further facilitate rapid identification of novel ALK fusion genes. ©2012 AACR.
Sekizawa, Akihiko; Ventura, Walter; Koide, Keiko; Hori, Kyouko; Okai, Takashi; Masashi, Yoshida; Furuya, Kenichi; Mizumoto, Yoshifumi
2014-01-01
We compared the levels of cell-free human placental lactogen (hPL) messenger RNA (mRNA) in maternal plasma at 28 to 32 weeks of gestation between women with diagnosis of placenta previa or invasive placenta and women with an uneventful pregnancy. Sensitivity and specificity of hPL mRNA for the prediction of invasive placenta were further explored. Plasma hPL mRNA were quantified by real-time reverse-transcriptase polymerase chain reaction in women with placenta previa (n = 13), invasive placenta (n = 5), and normal pregnancies (n = 92). Median (range) hPL mRNA was significantly higher in women with placenta previa, 782 (10-2301) copies/mL of plasma, and in those with invasive placenta, 615 (522-2102) copies/mL of plasma, when compared to normal pregnancies, 90 (4-4407) copies/mL of plasma, P < .01 and P < .05, respectively. We found a sensitivity of 100% and a specificity of 61.5% for the prediction of invasive placenta among women with placenta previa. In conclusion, expression of hPL mRNA is increased in plasma of women with placenta previa and invasive placenta at 28 to 32 weeks of gestation. PMID:23744883
Kawashima, Akihiro; Sekizawa, Akihiko; Ventura, Walter; Koide, Keiko; Hori, Kyouko; Okai, Takashi; Masashi, Yoshida; Furuya, Kenichi; Mizumoto, Yoshifumi
2014-02-01
We compared the levels of cell-free human placental lactogen (hPL) messenger RNA (mRNA) in maternal plasma at 28 to 32 weeks of gestation between women with diagnosis of placenta previa or invasive placenta and women with an uneventful pregnancy. Sensitivity and specificity of hPL mRNA for the prediction of invasive placenta were further explored. Plasma hPL mRNA were quantified by real-time reverse-transcriptase polymerase chain reaction in women with placenta previa (n = 13), invasive placenta (n = 5), and normal pregnancies (n = 92). Median (range) hPL mRNA was significantly higher in women with placenta previa, 782 (10-2301) copies/mL of plasma, and in those with invasive placenta, 615 (522-2102) copies/mL of plasma, when compared to normal pregnancies, 90 (4-4407) copies/mL of plasma, P < .01 and P < .05, respectively. We found a sensitivity of 100% and a specificity of 61.5% for the prediction of invasive placenta among women with placenta previa. In conclusion, expression of hPL mRNA is increased in plasma of women with placenta previa and invasive placenta at 28 to 32 weeks of gestation.
Base modifications affecting RNA polymerase and reverse transcriptase fidelity.
Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L
2018-06-20
Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.
HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F
2001-03-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.
Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.
2001-01-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043
[Expression of gamma interferon during HPV and Chlamydia trachomatis infection in cervical samples].
Colín-Ferreyra, María Del Carmen; Mendieta-Zerón, Hugo; Romero-Figueroa, María Del Socorro; Martínez-Madrigal, Migdania; Martínez-Pérez, Sergio; Domínguez-García, María Victoria
2015-02-01
The aim of this study was to mesure the expression of gamma interferon in HPV and Chlamydia trachomatis infection in squamous intraepithelial lesions. Samples from 100 patients diagnosed by colposcopy with or without squamous intraepithelial lesions were used in the present study. Each patient was found to be infected by HPV and C.trachomatis. Relative gamma interferon mRNA expression was assessed using a real-time reverse transcriptase PCR assay (RT-PCR). The relative units of expression of gamma interferon mRNA were 13, 1.8 and 0.3, for HPV and C.trachomatis co-infection, or HPV or C.trachomatis infection, respectively. HPV and C.trachomatis could overstimulate the expression of gamma interferon. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity
House, M.L.; Kim, C.H.; Reno, P.W.
1998-01-01
Disseminated neoplasia (DN), a proliferative cell disorder of the circulatory system of bivalves, was first reported in oysters in 1969. Since that time, the disease has been determined to be transmissible through water-borne exposure, but the etiological agent has not been unequivocally identified. In order to determine if a viral agent, possibly a retrovirus, could be the causative agent of DN, transmission experiments were performed, using both a cell-free filtrate and a sucrose gradient-purified preparation of a cell-free filtrate of DN positive materials. Additionally, a PCR-enhanced reverse transcriptase assay was used to determine if reverse transcriptase was present in tissues or hemolymph from DN positive soft shell clams Mya arenaria. DN was transmitted to healthy clams by injection with whole DN cells, but not with cell-free flitrates prepared from either tissues from DN positive clams, or DN cells. The cell-free preparations from DN-positive tissues and hemolymph having high levels of DN cells in circulation exhibited positive reactions in the PCR-enhanced reverse transcriptase assay. Cell-free preparations of hemolymph from clams having low levels of DN (<0.1% of cells abnormal), hemocytes from normal soft shell clams, and normal soft shell clam tissues did not produce a positive reaction in the PCR enhanced reverse transcriptase assay.
Wainberg, Mark A.
2012-01-01
The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679
Kosaka, Yoshimasa; Inoue, Hiroshi; Ohmachi, Takahiro; Yokoe, Takeshi; Matsumoto, Toshifumi; Mimori, Koshi; Tanaka, Fumiaki; Watanabe, Masahiko; Mori, Masaki
2007-09-01
Tripartite motif-containing 29 (TRIM29) belongs to the TRIM protein family, which has unique structural characteristics, including multiple zinc finger motifs and a leucine zipper motif. TRIM29, also known as ataxia telangiectasia group D complementing gene, possesses radiosensitivity suppressor functions. Although TRIM29 has been reported to be underexpressed in prostate and breast cancer, its expression in gastrointestinal cancer has not been studied. By use of real-time reverse transcriptase-polymerase chain reaction, we analyzed TRIM29 mRNA expression status with respect to various clinicopathological parameters in 124 patients with gastric cancer. An immunohistochemical study was also conducted. The expression of TRIM29 was far higher in gastric cancer tumor tissue. Increased TRIM29 mRNA expression was markedly associated with such parameters as histological grade, large tumor size, extent of tumor invasion, and lymph node metastasis. In the TRIM29 high-expression group, it was an independent predictor for lymph node metastasis. Furthermore, patients with high TRIM29 mRNA expression showed a far poorer survival rate than those with low TRIM29 mRNA expression. TRIM29 expression may serve as a good marker of lymph node metastasis in gastric cancer.
Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G
1994-08-02
The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.
Tavallaee, Mahkam; Steiner, David F; Zehnder, James L; Folkins, Ann K; Karam, Amer K
2018-04-03
Low-grade serous carcinomas only rarely coexist with or progress to high-grade tumors. We present a case of low-grade serous carcinoma with transformation to carcinosarcoma on recurrence in the lymph node. Identical BRAF V600E and telomerase reverse transcriptase promoter mutations were identified in both the original and recurrent tumor. Given that telomerase reverse transcriptase promotor mutations are thought to play a role in progression of other tumor types, the function of telomerase reverse transcriptase mutations in BRAF mutated low-grade serous carcinoma deserves investigation.
Eungwanichayapant, P D; Popluechai, S
2009-02-01
Catechins are a group of polyphenols found in tea (Camellia sinensis var. sinensis) at high levels. They are beneficial for health. From the study on accumulation of catechins in shoots and mature leaves of a tea cultivar, Oolong No. 17, using high-performance liquid chromatography (HPLC), it was found that the amounts of most catechins in the shoots were higher than those in the mature leaves, with an exception of catechins gallate (CG) that was found in trace amounts in both the shoots and mature leaves. mRNA accumulation of genes involved in catechin synthesis was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that the mRNA accumulation of the genes were higher in the shoots than in the mature leaves. These genes included genes of phenylalanine ammonia-lyase 1 (PAL1; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), leucoanthocyanidin reductase (LCR; EC 1.17.1.3), and flavanone 3-hydroxylase (F3H; EC 1.14.11.9).
BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...
Wang, Dongmao; Mohammad, Mardhiah; Wang, Yanyan; Tan, Rachel; Murray, Lydia S; Ricardo, Sharon; Dagher, Hayat; van Agtmael, Tom; Savige, Judy
2017-07-01
X-linked Alport syndrome (OMIM 301050) is caused by COL4A5 missense variants in 40% of families. This study examined the effects of chemical chaperone treatment (sodium 4-phenylbutyrate) on fibroblast cell lines derived from men with missense mutations. Dermal fibroblast cultures were established from 2 affected men and 3 normals. Proliferation rates were examined, the collagen IV α5 chain localized with immunostaining, and levels of the intra- and extracellular chains quantitated with an in-house enzyme-linked immunosorbent assay. COL4A5 mRNA was measured using quantitative reverse transcriptase polymerase chain reaction. Endoplasmic reticulum (ER) size was measured on electron micrographs and after HSP47 immunostaining. Markers of ER stress (ATF6, HSPA5, DDIT3), autophagy (ATG5, BECN1, ATG7), and apoptosis (CASP3, BAD, BCL 2 ) were also quantitated by quantitative reverse transcriptase polymerase chain reaction. Measurements were repeated after 48 hours of incubation with 10 mM sodium 4-phenylbutyrate acid. Both COL4A5 missense variants were associated with reduced proliferation rates on day 6 ( P = 0.01 and P = 0.03), ER enlargement, and increased mRNA for ER stress and autophagy (all P values < 0.05) when compared with normal. Sodium 4-phenylbutyrate treatment increased COL4A5 transcript levels ( P < 0.01), and reduced ER size ( P < 0.01 by EM and P < 0.001 by immunostaining), ER stress (p HSPA5 and DDIT3, all P values < 0.01) and autophagy (ATG7, P < 0.01). Extracellular collagen IV α5 chain was increased in the M1 line only ( P = 0.06). Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.
Malhotra, Rewa; Urs, Aadithya B; Chakravarti, Anita; Kumar, Suman; Gupta, V K; Mahajan, Bhawna
2016-07-01
Oral squamous cell carcinoma (OSCC) accounts for 90 % of malignant lesions of oral cavity. The study assessed the potential of Cyfra 21-1 as a tumor marker in OSCC. The study included 50 patients of OSCC to evaluate levels of Cyfra 21-1 in serum and saliva by electrochemiluminescent immunoassay (ECLIA) and CK19 messenger RNA (mRNA) expression in tissue by florescent quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) along with healthy individuals as control. The salivary and serum Cyfra 21-1 levels in patients of OSCC were significantly higher compared to controls (p value < 0.01). There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases compared to controls. A significant positive correlation was found between serum and salivary Cyfra 21-1, serum Cyfra 21-1, and CK19 mRNA expression and between salivary Cyfra 21-1 and CK19 mRNA expression. Among these, correlation between serum and salivary Cyfra 21-1 was highly significant. Salivary and serum Cyfra 21-1 showed significantly elevated levels in grade II OSCC compared to grade I histopathologically. Elevated levels of salivary Cyfra 21-1 were associated with recurrence in OSCC patients. Reverse operating curve constructed using 3 ng/ml as a cutoff for serum Cyfra 21-1 revealed the sensitivity and specificity to be 88 and 78.2 %, respectively. Using a cutoff value of 8.5 ng/ml for salivary Cyfra 21-1, the sensitivity was found to be 93.8 % and specificity 84.3 %. We advocate salivary Cyfra 21-1 as a better diagnostic marker over serum Cyfra 21-1 as well as a potential marker in the prognosis of OSCC.
Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu
2018-02-02
Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.
David-Schwartz, Rakefet; Runo, Steven; Townsley, Brad; Machuka, Jesse; Sinha, Neelima
2008-01-01
It has been shown that the parasitic plant dodder (Cuscuta pentagona) establishes a continuous vascular system through which water and nutrients are drawn. Along with solutes, viruses and proteins, mRNA transcripts are transported from the host to the parasite. The path of the transcripts and their stability in the parasite have yet to be revealed. To discover the route of mRNA transportation, the in situ reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to locally amplify host transcript within parasitic tissue. The stability of host mRNA molecules was also checked by monitoring specific transcripts along the growing dodder thread. Four mRNAs, alpha and beta subunits of PYROPHOSPHATE (PPi)-DEPENDENT PHOSPHOFRUCTOKINASE (LePFP), the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and GIBBERELLIC ACID INSENSITIVE (LeGAI), were found to move from host (tomato (Solanum lycopersicum)) to dodder. LePFP mRNA was localized to the dodder parenchyma cells and to the phloem. LePFP transcripts were found in the growing dodder stem up to 30 cm from the tomato-dodder connection. These results suggest that mRNA molecules are transferred from host to parasite via symplastic connections between parenchyma cells, move towards the phloem, and are stable for a long distance in the parasite. This may allow developmental coordination between the parasite and its host.
2010-01-01
Background The existence of circulating tumor cells (CTCs) in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Methods Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA) mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. Results The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA) × 106] was set at 100. Forty-five of 123 patients (36.6%) were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001). Recurrent disease was found in 44 of 123 cases (35.8%), and 25 of these (56.8%) were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P < 0.001). Only histological grade and CEA mRNA positivity were independent factors for disease-free survival using multivariate analysis. Conclusions CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients. PMID:21040522
Qiu, Miao-Zhen; Li, Zhuang-Hua; Zhou, Zhi-Wei; Li, Yu-Hong; Wang, Zhi-Qiang; Wang, Feng-Hua; Huang, Peng; Aziz, Fahad; Wang, Dao-Yuan; Xu, Rui-Hua
2010-10-31
The existence of circulating tumor cells (CTCs) in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA) mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA) × 106] was set at 100. Forty-five of 123 patients (36.6%) were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001). Recurrent disease was found in 44 of 123 cases (35.8%), and 25 of these (56.8%) were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P < 0.001). Only histological grade and CEA mRNA positivity were independent factors for disease-free survival using multivariate analysis. CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients.
Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip.
Xia, Yanling; Qu, Haomiao; Lu, Binshan; Zhang, Qiang; Li, Heping
2018-04-01
Molecular cloning and bioinformatics analysis of annexin A2 ( ANXA2 ) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer ( Cervus Nippon hortulorum ) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus . Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.
Tomley, F. M.; Armstrong, S. J.; Mahy, B. W.; Owen, L. N.
1983-01-01
Lymphoid tissue from 43 cases of canine lymphosarcoma and from 40 clinically normal dogs have been examined for markers of retrovirus infection. From 69-76% of culture supernatants from lymphosarcomas were shown to contain particles of retroviral density and to possess poly rC-oligo dG templated polymerase (reverse transcriptase) activity compared with 17-24% of culture supernatants from normal canine lymphoid cells. In 6 culture supernatants from cases of lymphosarcoma, high molecular weight 60-70S RNA was detected and shown to be found in association with this particulate reverse transcriptase activity. No such RNA was detected in 6 culture supernatants from normal canine lymphoid cells. PMID:6186265
Hussey, Richard S; Huang, Guozhong; Allen, Rex
2011-01-01
Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.
Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...
NASA Astrophysics Data System (ADS)
Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.
2009-12-01
In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.
Medlin, H K; Zhu, Y Q; Remington, K M; Phillips, T R; North, T W
1996-01-01
We have selected and plaque purified a mutant of feline immunodeficiency virus (FIV) that is resistant to 2',3'-dideoxycytidine (ddC). This mutant was selected in cultured cells in the continuous presence of 25 microM ddC. The mutant, designated DCR-5c, was fourfold resistant to ddC, threefold resistant to 2',3'-dideoxyinosine, and more than fourfold resistant to phosphonoformic acid. DCR-5c displayed little or no resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine, 3'-azido-3'-deoxythymidine, or 9-(2-phosphonylmethoxyethyl) adenine. Reverse transcriptase purified from DCR-5c was less susceptible to inhibition by ddCTP, phosphonoformic acid, ddATP, or azido-dTTP than the wild-type FIV reverse transcriptase. Sequence analysis of DCR-5c revealed a single base change (G to C at nucleotide 2342) in the reverse transcriptase-encoding region of FIV. This mutation results in substitution of His for Asp at codon 3 of FIV reverse transcriptase. The role of this mutation in ddC resistance was confirmed by site-directed mutagenesis. PMID:8849258
A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...
Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research
Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in
A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2010-01-01
The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.
Andrievskaia, Olga; Tangorra, Erin
2014-12-01
Contamination of rendered animal byproducts with central nervous system tissues (CNST) from animals with bovine spongiform encephalopathy is considered one of the vehicles of disease transmission. Removal from the animal feed chain of CNST originated from cattle of a specified age category, species-labeling of rendered meat products, and testing of rendered products for bovine CNST are tasks associated with the epidemiological control of bovine spongiform encephalopathy. A single-step TaqMan real-time reverse transcriptase (RRT) PCR assay was developed and evaluated for specific detection of bovine glial fibrillary acidic protein (GFAP) mRNA, a biomarker of bovine CNST, in rendered animal by-products. An internal amplification control, mammalian b -actin mRNA, was coamplified in the duplex RRT-PCR assay to monitor amplification efficiency, normalize amplification signals, and avoid false-negative results. The functionality of the GFAP mRNA RRT-PCR was assessed through analysis of laboratory-generated binary mixtures of bovine central nervous system (CNS) and muscle tissues treated under various thermal settings imitating industrial conditions. The assay was able to detect as low as 0.05 % (wt/wt) bovine brain tissue in binary mixtures heat treated at 110 to 130°C for 20 to 60 min. Further evaluation of the GFAP mRNA RRT-PCR assay involved samples of industrial rendered products of various species origin and composition obtained from commercial sources and rendering plants. Low amounts of bovine GFAP mRNA were detected in several bovine-rendered products, which was in agreement with declared species composition. An accurate estimation of CNS tissue content in industrial-rendered products was complicated due to a wide range of temperature and time settings in rendering protocols. Nevertheless, the GFAP mRNA RRT-PCR assay may be considered for bovine CNS tissue detection in rendered products in combination with other available tools (for example, animal age verification) in inspection programs.
Dreier, Jens; Störmer, Melanie; Kleesiek, Knut
2004-01-01
The incidence of platelet bacterial contamination is approximately 1 per 2,000 units and has been acknowledged as the most frequent infectious risk from transfusion. In preliminary studies, the sterility of platelet concentrates (PCs) was tested with an automated bacterial blood culturing system and molecular genetic assays. Two real-time reverse transcriptase PCR (RT-PCR) assays performed in a LightCycler instrument were developed and compared regarding specificity and sensitivity by the use of different templates to detect the majority of the clinically important bacterial species in platelets. Primers and probes specific for the conserved regions of the eubacterial 23S rRNA gene or the groEL gene (encoding the 60-kDa heat shock protein Hsp60) were designed. During the development of the 23S rRNA RT-PCR, problems caused by the contamination of reagents with bacterial DNA were noted. Treatment with 8-methoxypsoralen and UV irradiation reduced the level of contaminating DNA. The sensitivity of the assays was greatly influenced by the enzyme system which was used. With rTth DNA polymerase in a one-enzyme system, we detected 500 CFU of Escherichia coli or Staphylococcus epidermidis/ml. With a two-enzyme system consisting of Moloney murine leukemia virus RT and Taq DNA polymerase, we detected 16 CFU/ml. With groEL mRNA as the target of RT-PCR under optimized conditions, we detected 125 CFU of E. coli/ml, and no problems with false-positive results caused by reagent contamination or a cross-reaction with human nucleic acids were found. Furthermore, the use of mRNA as an indicator of viability was demonstrated. Here we report the application of novel real-time RT-PCR assays for the detection of bacterial contamination of PCs that are appropriate for transfusion services. PMID:15472337
Growth hormone mRNA in mammary gland tumors of dogs and cats.
Mol, J A; van Garderen, E; Selman, P J; Wolfswinkel, J; Rijinberk, A; Rutteman, G R
1995-01-01
We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals. Images PMID:7738169
The Nucleotide Sequence and Spliced pol mRNA Levels of the Nonprimate Spumavirus Bovine Foamy Virus
Holzschu, Donald L.; Delaney, Mari A.; Renshaw, Randall W.; Casey, James W.
1998-01-01
We have determined the complete nucleotide sequence of a replication-competent clone of bovine foamy virus (BFV) and have quantitated the amount of splice pol mRNA processed early in infection. The 544-amino-acid Gag protein precursor has little sequence similarity with its primate foamy virus homologs, but the putative nucleocapsid (NC) protein, like the primate NCs, contains the three glycine-arginine-rich regions that are postulated to bind genomic RNA during virion assembly. The BFV gag and pol open reading frames overlap, with pro and pol in the same translational frame. As with the human foamy virus (HFV) and feline foamy virus, we have detected a spliced pol mRNA by PCR. Quantitatively, this mRNA approximates the level of full-length genomic RNA early in infection. The integrase (IN) domain of reverse transcriptase does not contain the canonical HH-CC zinc finger motif present in all characterized retroviral INs, but it does contain a nearby histidine residue that could conceivably participate as a member of the zinc finger. The env gene encodes a protein that is over 40% identical in sequence to the HFV Env. By comparison, the Gag precursor of BFV is predicted to be only 28% identical to the HFV protein. PMID:9499074
Fisher, M A; Mehne, C; Means, J C; Ide, C F
2006-01-01
The Kalamazoo River Superfund site in Michigan is contaminated with polychlorinated biphenyls (PCBs), which were heavily discharged into the river from several paper companies as part of the deinking process in the 1950s through 1970s. We characterized biomarkers of chronic PCB exposure in a resident fish population using real-time reverse transcriptase-polymerase chain reaction to examine mRNA expression levels of multiple genes in carp (Cyprinus carpio) liver from PCB contaminated and reference sites in the Kalamazoo River. We also measured these same genes in juvenile carp exposed to dietary PCBs for 4 months. Kalamazoo River carp had significantly increased levels of cytochrome P450 1A (CYP1A) mRNA as did carp fed PCBs in the laboratory. No significant mRNA upregulation occurred in the specific oxidative stress genes (gamma-glutamylcysteine synthetase and magnesium superoxide dismutase) and metabolic genes (phosphoenolpyruvate carboxykinase and nucleolin) examined. These data are consistent with the idea that carp from the Kalamazoo River Superfund Site are responding to PCB exposure via upregulation of CYP1A independent of activation of the oxidative stress response genes normally thought to be co-regulated with CYP1A.
Akiyama, Masaharu; Kawano, Takeshi; Mikami-Terao, Yoko; Agawa-Ohta, Miyuki; Yamada, Osamu; Ida, Hiroyuki; Yamada, Hisashi
2011-03-01
We evaluated the molecular mechanism of telomerase activation by erythropoietin (EPO) in human erythroleukemic JAS-REN-A cells. Telomerase activity increased 3-4 fold after 3-24h of culture with EPO and was associated with increases in c-myc mRNA after 1-3h, of c-Myc protein after 3-6h, and of human telomerase reverse transcriptase (hTERT) mRNA and hTERT protein after 6-24h. Simultaneously EPO induced phosphorylation of signal transducer activator of transcription 5 (STAT5), AKT, and extracellular signal-regulated kinase (ERK). Telomerase activity induced by EPO was significantly inhibited by AG490, PD98059, and LY294002. AG490 downregulated c-myc and hTERT mRNA expression with inhibited STAT5 and AKT phosphorylation. PD98059 also reduced c-myc and hTERT expression and inhibited ERK phosphorylation. However, LY294002 did not inhibit c-myc or hTERT mRNA expression despite inhibiting STAT5 and AKT phosphorylation. These results suggest that EPO activates telomerase in JAS-REN-A cells through dual regulation: hTERT gene transcription by Janus tyrosine kinase 2/STAT5/c-Myc and hTERT protein phosphorylation by phosphatidylinositol 3'-kinase/AKT. Copyright © 2010 Elsevier Ltd. All rights reserved.
Winzer, T; Bairl, A; Linder, M; Linder, D; Werner, D; Müller, P
1999-03-01
A nodule-specific 53-kDa protein (GmNOD53b) of the symbiosome membrane from soybean was isolated and its LysC digestion products were microsequenced. cDNA clones of this novel nodulin, obtained from cDNA library screening with an RT-PCR (reverse-transcriptase polymerase chain reaction)-generated hybridization probe exhibited no homology to proteins identified so far. The expression of GmNOD53b coincides with the onset of nitrogen fixation. Therefore, it is a late nodulin. Among other changes, the GmNOD53b is significantly reduced in nodules infected with the Bradyrhizobium japonicum mutant 184 on the protein level as well as on the level of mRNA expression, compared with the wild-type infected nodules. The reduction of GmNOD53b mRNA is related to an inactivation of the sipF gene in B. japonicum 184, coding for a functionally active signal peptidase.
Cercós, M; Santamaría, S; Carbonell, J
1999-04-01
A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.
Belotte, Jimmy; Fletcher, Nicole M; Awonuga, Awoniyi O; Alexis, Mitchell; Abu-Soud, Husam M; Saed, Mohammed G; Diamond, Michael P; Saed, Ghassan M
2014-04-01
To investigate the role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer (EOC). Two parent EOC cell lines (MDAH-2774 and SKOV-3) and their chemoresistant counterparts (cisplatin, 50 µmol/L) were used. Total RNA was extracted and subjected to real-time reverse transcriptase polymerase chain reaction to evaluate the expression of glutathione reductase (GSR) and inducible nitric oxide synthase (iNOS), as well as nitrate/nitrite levels. Analysis of variance was used for main effects and Tukey for post hoc analysis at P < .05 for statistical significance. Both cisplatin resistant cell lines displayed a significant decrease in GSR messenger RNA (mRNA) levels and activity (P < .01). As compared to sensitive controls, nitrate/nitrite levels were significantly higher in SKOV-3 cisplatin resistant cells while iNOS mRNA levels were significantly higher in MDAH-2774 cisplatin resistant cells (P < .05). Our data suggest that the development of cisplatin resistance tilts the balance toward a pro-oxidant state in EOC.
Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells
NASA Astrophysics Data System (ADS)
Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.
2017-07-01
Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.
Layman, Lawrence C.; Ullmann, Reinhard; Shen, Yiping; Ha, Kyungsoo; Rehman, Khurram; Looney, Stephen; McDonough, Paul G.; Kim, Hyung-Goo; Carr, Bruce R.
2014-01-01
Background 46,XY sex reversal is a rare disorder and familial cases are even more rare. The purpose of the present study was to determine the molecular basis for a family with three affected siblings who had 46,XY sex reversal. Methods DNA was extracted from three females with 46,XY sex reversal, two normal sisters, and both unaffected parents. All protein coding exons of the SRY and NR5A1 genes were subjected to PCR-based DNA sequencing. In addition, array comparative genomic hybridization was performed on DNA from all seven family members. A deletion was confirmed using quantitative polymerase chain reaction. Expression of SOX9 gene was quantified using reverse transcriptase polymerase chain reaction. Results A 349kb heterozygous deletion located 353kb upstream of the SOX9 gene on the long arm of chromosome 17 was discovered in the father and three affected siblings, but not in the mother. The expression of SOX9 was significantly decreased in the affected siblings. Two of three affected sisters had gonadoblastomas. Conclusion This is the first report of 46,XY sex reversal in three siblings who have a paternally inherited deletion upstream of SOX9 associated with reduced SOX9 mRNA expression. PMID:24907458
T-lymphocyte cytokine mRNA expression in cystic echinococcosis.
Fauser, S; Kern, P
1997-04-01
In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.
Oh, Bong-Kyeong; Kim, Young-Joo; Park, Young Nyun; Choi, Jinsub; Kim, Kyung Sik; Park, Chanil
2006-04-01
Telomerase reverse transcriptase (hTERT) is the rate-limiting determinant of telomerase, which is critical for carcinogenesis. Dysplastic nodules (DNs) appear to be preneoplastic lesions of hepatocellular carcinomas (HCCs). In this study, in order to characterize DNs, hTERT mRNA, hTERT gene dosage, and mRNA for c-myc, a transcriptional activator of hTERT were studied in human multi-step hepatocarcinogenesis. Fifty four hepatic nodules including 5 large regenerative nodules, 14 low-grade DNs, 7 high-grade DNs, 11 DNs with HCC foci and 17 HCCs, 23 livers with chronic hepatitis/cirrhosis, and 6 normal livers were examined. Transcript levels were measured by real-time quantitative RT-PCR and gene dosages by real-time PCR and Southern blotting. The hTERT mRNA levels increased with the progression of hepatocarcinogenesis, and a significant induction in the transition between low- and high-grade DNs was seen. Most high-grade DNs strongly expressed hTERT mRNA at levels similar to those of HCCs. Twenty-one percent of low-grade DNs had high levels of hTERT mRNA, up to those of high-grade DNs and there was no difference in the pathological features between low-grade DNs with and without increased hTERT mRNA levels. No correlation was found between hTERT mRNA levels, hTERT gene dosage, and c-myc mRNA levels. These results suggest that the induction of hTERT mRNA is an important early event and that its measurement by real-time quantitative RT-PCR is a useful tool to detect premalignant/malignant tendencies in hepatic nodules. However, hTERT gene dosage and c-myc expression are not the main mechanisms regulating hTERT expression in hepatocarcinogenesis.
Zhang, Ye; Zhou, Ting; Duan, Jingjing; Xiao, Zhijun; Li, Guihua; Xu, Feng
2013-10-01
Chemotherapy is important in the systematic treatment of breast cancer. While multidrug resistance (MDR) is the main obstacle in chemotherapy, a reversal reagent with high reversal effect but low toxicity is the hotspot issue at present to overcome MDR. Antidepressant fluoxetine (FLX) is a potential new highly effective chemosensitizer, however, the possible mechanism is unclear. In this study, the effect of FLX on multidrug resistance mediated by P-glycoprotein (P-gp) and glutathione S-transferase-pi (GST-π) were researched in resistant/sensitive breast cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to determine the cells viability after being incubated with FLX/Adriamycin (ADM)/Paclitaxel (PTX) alone or FLX-ADM, FLX-PTX combination. Western blot was performed to assay the expression of P-gp and GST-π proteins. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) were performed to assay the level of MDR1 mRNA. The results showed that pre-treatment with FLX enhance cytotoxicity significantly both on resistant and sensitive cells, downregulated the expression of P-gp and GST-π proteins in resistance cells, decreased the MDR1 mRNA by FLX-PTX combination only. No P-gp and GST-π were detected in sensitive cells. Our research thus indicated that FLX reverse the breast cancer cell's resistance and enhance the chemosensitivity by regulating P-gp and GST-π levels. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.
Zhao, Chen; Pyle, Anna Marie
2017-12-01
The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.
Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro
2013-03-01
Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.
Chaklader, M; Das, P; Pereira, J A; Chatterjee, S; Basak, P; Law, A; Banerjee, T; Chauhan, S; Law, S
2011-06-01
To evaluate the efficacy of intraperitoneal vincristine administration into ascitic sarcoma-180 bearing mice as a model of human malignant ascites regarding various peritoneal/retroperitoneal sarcomatosis, and to evaluate the flowcytometric telomerase reverse transcriptase expression for the diagnostic and prognostic purposes. Present study included disease induction by intraperitoneal homologous ascitic sarcoma-180 transplantation followed by in vivo intraperitoneal drug administration to study mitotic index, flowcytometric cell cycle and telomerase reverse transcriptase expression pattern, erythrosin-B dye exclusion study for malignant cell viability assessment. Besides, in vitro malignant ascite culture in presence and absence of vincristine sulfate and survival study were also taken into consideration. Intraperitoneal vincristine administration (concentration 0.5 mg/kg body weight) significantly diminished the mitotic index in diseased subjects in comparison to untreated control subjects. Treated group of animals showed increased life span and median survival time. Cell viability assessment during the course of drug administration also revealed gradual depression on cell viability over time. Flowcytometric cell cycle analysis showed a good prognostic feature of chemotherapeutic administration schedule by representing high G2/M phase blocked cells along with reduced telomerase reverse transcriptase positive cells in treated animals. We conclude that long term administration of vincristine sulfate in small doses could be a good pharmacological intervention in case of malignant peritoneal ascites due to sarcomatosis as it indirectly reduced the level of telomerase reverse transcriptase expression in malignant cells by directly regulating cell cycle and simultaneously increased the life expectancy of the diseased subjects.
Low-level lasers and mRNA levels of reference genes used in Escherichia coli
NASA Astrophysics Data System (ADS)
Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.
2016-11-01
Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.
Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus.
Mustafa, Roma; Shafiq, Muhammad; Mansoor, Shahid; Briddon, Rob W; Scheffler, Brian E; Scheffler, Jodi; Amin, Imran
2016-01-01
The study described here has optimized the conditions for virus-induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum, and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloroplastos alterados 1 (AtCLA1) gene, involved in chloroplast development, in G. herbaceum, G. arboreum, and six commercial G. hirsutum cultivars. All plants inoculated with the TRV vector to silence CLA1 developed a typical albino phenotype indicative of silencing this gene. Although silencing in G. herbaceum and G. arboreum was complete, silencing efficiency differed for each G. hirsutum cultivar. Reverse transcriptase polymerase chain reaction (PCR) and real-time quantitative PCR showed a reduction in mRNA levels of the CLA1 homolog in all three species, with the highest efficiency (lowest CLA1 mRNA levels) in G. arboreum followed by G. herbaceum and G. hirsutum. The results indicate that TRV is a useful vector for VIGS in Gossypium species. However, selection of host cultivar is important. With the genome sequences of several cotton species recently becoming publicly available, this system has the potential to provide a very powerful tool for the rapid, large-scale reverse-genetic analysis of genes in Gossypium spp.
Blanca, Giuseppina; Baldanti, Fausto; Paolucci, Stefania; Skoblov, Alexander Yu; Victorova, Lyubov; Hübscher, Ulrich; Gerna, Giuseppe; Spadari, Silvio; Maga, Giovanni
2003-05-02
Recombinant HIV-1 reverse transcriptase (RT) carrying non-nucleoside inhibitors (NNRTIs) resistance mutation at codon 181 showed reduced incorporation and high efficiency of phosphorolytic removal of stavudine, a nucleoside RT inhibitor. These results reveal a new mechanism for cross-resistance between different classes of HIV-1 RT inhibitors.
A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...
Shulman, Nancy S; Delgado, Jamael; Bosch, Ronald J; Winters, Mark A; Johnston, Elizabeth; Shafer, Robert W; Katzenstein, David A; Merigan, Thomas C
2005-05-01
HIV-1 isolates harboring multiple nucleoside reverse transcriptase inhibitor (NRTI) resistance mutations are more susceptible ("hypersusceptible") to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) than isolates lacking NRTI resistance mutations, but this has only been reported with a single-cycle replication phenotypic assay. In fact, there was a report that a commercial multicycle assay did not readily detect hypersusceptibility. To see whether NNRTI hypersusceptibility can be demonstrated in other types of phenotypic assays, including multicycle assays and enzyme inhibition assays. The susceptibility of HIV-1 clones derived from different patients in multicycle assays was tested in peripheral blood mononuclear cells (PBMCs) and in an established cell line. In addition, the reverse transcriptase (RT) of many of these clones was expressed and their susceptibility tested in an RT inhibition assay. Nevirapine and efavirenz susceptibilities were tested and compared with a control wild-type virus or RT. Hypersusceptibility to nevirapine and efavirenz was detected using each of the methods described above. R values correlating the other methods with single-cycle assay values were between 0.66 and 0.96. In addition to the high correlations, the different methods gave similar numeric results. NNRTI hypersusceptibility is readily seen in multicycle susceptibility assays and in enzyme inhibition assays.
Sun, Bing; Zheng, Yun-Ling
2018-01-01
Currently there is no sensitive, precise, and reproducible method to quantitate alternative splicing of mRNA transcripts. Droplet digital™ PCR (ddPCR™) analysis allows for accurate digital counting for quantification of gene expression. Human telomerase reverse transcriptase (hTERT) is one of the essential components required for telomerase activity and for the maintenance of telomeres. Several alternatively spliced forms of hTERT mRNA in human primary and tumor cells have been reported in the literature. Using one pair of primers and two probes for hTERT, four alternatively spliced forms of hTERT (α-/β+, α+/β- single deletions, α-/β- double deletion, and nondeletion α+/β+) were accurately quantified through a novel analysis method via data collected from a single ddPCR reaction. In this chapter, we describe this ddPCR method that enables direct quantitative comparison of four alternatively spliced forms of the hTERT messenger RNA without the need for internal standards or multiple pairs of primers specific for each variant, eliminating the technical variation due to differential PCR amplification efficiency for different amplicons and the challenges of quantification using standard curves. This simple and straightforward method should have general utility for quantifying alternatively spliced gene transcripts.
Choi, Jae-Suk; Jeon, Min-Hee; Moon, Woi-Sook; Moon, Jin-Nam; Cheon, Eun Jin; Kim, Joo-Wan; Jung, Sung Kyu; Ji, Yi-Hwa; Son, Sang Wook; Kim, Mi-Ryung
2014-01-01
The potential hair growth-promoting activity of rice bran supercritical CO2 extract (RB-SCE) and major components of RB-SCE, linoleic acid, policosanol, γ-oryzanol, and γ-tocotrienol, were evaluated with the histological morphology and mRNA expression levels of cell growth factors using real-time reverse transcriptase-polymerase chain reaction (PCR) in C57BL/6 mice. RB-SCE showed hair growth-promoting potential to a similar extent as 3% minoxidil, showing that the hair follicles were induced to be in the anagen stage. The numbers of the hair follicles were significantly increased. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and keratinocyte growth factor (KGF) were also significantly increased and that of transforming growth factor-β (TGF-β) decreased in RB-SCE-treated groups. Among the major components of RB-SCE, linoleic acid and γ-oryzanol induced the formation of hair follicles according to examination of histological morphology and mRNA expression levels of cell growth factors. In conclusion, our results demonstrate that RB-SCE, particularly linoleic acid and γ-oryzanol, promotes hair growth and suggests RB-SCE can be applied as hair loss treatment.
Rybicka, Marta; Stachowska, Ewa; Gutowska, Izabela; Parczewski, Miłosz; Baśkiewicz, Magdalena; Machaliński, Bogusław; Boroń-Kaczmarska, Anna; Chlubek, Dariusz
2011-04-27
The aim of this study was to investigate the effect of conjugated linoleic acids (CLAs) on macrophage reactive oxygen species synthesis and the activity and expression of antioxidant enzymes, catalase (Cat), glutathione peroxidase (GPx), and superoxide dismutase (SOD). The macrophages were obtained from the THP-1 monocytic cell line. Cells were incubated with the addition of cis-9,trans-11 CLA or trans-10,cis-12 CLA or linoleic acid. Reactive oxygen species (ROS) formation was estimated by flow cytometry. Enzymes activity was measured spectrophotometrically. The antioxidant enzyme mRNA expression was estimated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was based on nonparametric statistical tests [Friedman analysis of variation (ANOVA) and Wilcoxon signed-rank test]. cis-9,trans-11 CLA significantly increased the activity of Cat, while trans-10,cis-12 CLA notably influenced GPx activity. Both isomers significantly decreased mRNA expression for Cat. Only trans-10,cis-12 significantly influenced mRNA for SOD-2 expression. The CLAs activate processes of the ROS formation in macrophages. Adverse metabolic effects of each isomer action were observed.
Wan, Zheng-Yong; Yao, Jin; Tao, Yuan; Mao, Tian-Qi; Wang, Xin-Long; Lu, Yi-Pei; Wang, Hai-Feng; Yin, Hong; Wu, Yan; Chen, Fen-Er; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-06-05
A novel series of piperidin-4-yl-aminopyrimidine derivatives were designed fusing the pharmacophore templates of etravirine-VRX-480773 hybrids our group previously described and piperidine-linked aminopyrimidines. Most compounds displayed significantly improved activity against wild-type HIV-1 with EC50 values in single-digit nanomolar concentrations compared to etravirine-VRX-480773 hybrids. Selected compounds were also evaluated for activity against reverse transcriptase, and had lower IC50 values than that of nevirapine. The improved potency observed in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits reverse transcriptase, and represents a remarkable step forward in the development of AIDS therapeutics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua
2013-01-01
Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened.
Rampazzo, Enrica; Del Bianco, Paola; Bertorelle, Roberta; Boso, Caterina; Perin, Alessandro; Spiro, Giovanna; Bergamo, Francesca; Belluco, Claudio; Buonadonna, Angela; Palazzari, Elisa; Leonardi, Sara; De Paoli, Antonino; Pucciarelli, Salvatore; De Rossi, Anita
2018-01-01
Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT=T0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4–8 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. Results: Plasma levels of TERT were significantly lower at T2 (P<0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73–0.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10–4.11)-fold and 4.55 (95% CI 1.48–13.95)-fold higher, respectively, than those with undetectable plasma TERT levels. Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy. PMID:29449673
Deshpande, Alaka; Jauvin, Valerie; Pinson, Patricia; Jeannot, Anne Cecile; Fleury, Herve J
2009-06-01
Analysis of reverse transcriptase (RT) sequences of 382 HIV-1 isolates from untreated and treated patients recruited in JJ Hospital (Mumbai, India) between 2002 and 2008 shows that subtype C is largely predominant (98%) and that non-C sequences cluster with A1, B, CRF01_AE, and CRF06_cpx.
Chahorm, Kanchana; Prakitchaiwattana, Cheunjit
2018-01-02
The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004). In comparison with the detection of the Vibrio profiles in fourteen food samples using standard method, Reverse Transcriptase-PCR-DGGE resulted in 100%, 75% and 50% similarity in 3, 1 and 6 food samples, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Chun; Li, Runqin; Zhang, Yinglin; Gong, Jianping
2017-10-01
Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.
Li, Runqin; Zhang, Yinglin
2016-01-01
Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632
2011-01-01
Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030
Biological significance of PinX1 telomerase inhibitor in esophageal carcinoma treatment
Fan, Xiang-Kui; Yan, Rui-Hua; Geng, Xiang-Qun; Li, Jing-Shan; Chen, Xiang-Ming; Li, Jian-Zhe
2016-01-01
In the present study, to investigate the expression of PinX1 gene and its functional effects in human esophageal carcinoma (Eca)-109 cell line, expression vectors of human PinX1 (pEGFP-C3-PinX1) and its small interfering RNA (PinX1-FAM-siRNA) were constructed and transfected into Eca-109 cells using Lipofectamine 2000. Firstly, the mRNA expression level of PinX1 was examined using reverse transcription-polymerase chain reaction (RT-PCR). Once successful transfection was achieved, the effects on the mRNA level of human telomerase reverse transcriptase (hTERT), telomerase activity, cell proliferation and apoptosis were examined by semi-quantitative RT-PCR, stretch PCR, MTT assay and flow cytometry, respectively. Analysis of restriction and sequencing demonstrated that the recombining plasmids were successfully constructed. The results also indicated that transfection with pEGFP-C3-PinX1 and PinX1-FAM-siRNA into Eca-109 cells significantly increased PinX1 mRNA, decreased hTERT mRNA by 29.9% (P<0.05), and significantly reduced telomerase activity (P<0.05), inhibited cell growth, and increased the cell apoptotic index from 19.27±0.76 to 49.73±2%. The transfected PinX1-FAM-SiRNA exhibited PinX1 mRNA expression levels that were significantly decreased by 70% (P<0.05), whereas the remaining characteristics of Eca-109 cells, including cell growth, mRNA level of hTERT, telomerase activity and cell apoptotic index were not altered. Exogenous PinX1 has been demonstrated to be highly expressed in human Eca. PinX1 can inhibit human telomerase activity and the expression of hTERT mRNA, reduce tumor cell growth and induce apoptosis. Notably, these inhibitory functions were inhibited by silencing PinX1 in Eca with PinX1-FAM-siRNA. PinX1 was successfully increased and decreased in the present study, demonstrating that it may be a potential telomerase activity inhibitor. As PinX1 is an endogenous telomerase inhibitor, it may be used as a novel tumor-targeted gene therapy. PMID:27698711
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2010-03-01
Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.
Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.
De Clercq, Erik
2009-04-01
In 2008, 25 years after the human immunodeficiency virus (HIV) was discovered as the then tentative aetiological agent of acquired immune deficiency syndrome (AIDS), exactly 25 anti-HIV compounds have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine); protease inhibitors (PIs: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir); cell entry inhibitors [fusion inhibitors (FIs: enfuvirtide) and co-receptor inhibitors (CRIs: maraviroc)]; and integrase inhibitors (INIs: raltegravir). These compounds should be used in drug combination regimens to achieve the highest possible benefit, tolerability and compliance and to diminish the risk of resistance development.
Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.
Vadivelan, S; Deeksha, T N; Arun, S; Machiraju, Pavan Kumar; Gundla, Rambabu; Sinha, Barij Nayan; Jagarlapudi, Sarma A R P
2011-03-01
The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.
Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk
2015-06-01
The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.
Yeh, Jung-Yong; Lee, Ji-Hye; Seo, Hyun-Ji; Park, Jee-Yong; Moon, Jin-San; Cho, In-Soo; Choi, In-Soo; Park, Seung-Yong; Song, Chang-Seon; Lee, Joong-Bok
2011-01-01
The aim of this study was to develop a highly sensitive and specific one-step multiplex reverse transcriptase PCR assay for the simultaneous and differential detection of Rift Valley Fever virus (RVFV), bluetongue virus (BTV), rinderpest virus (RPV), and Peste des petits ruminants virus (PPRV). These viruses cause mucosal lesions in cattle, sheep, and goats, and they are difficult to differentiate from one another based solely on their clinical presentation in suspected disease cases. In this study, we developed a multiplex reverse transcriptase PCR to detect these viruses using a novel dual-priming oligonucleotide (DPO). The DPO contains two separate priming regions joined by a polydeoxyinosine linker, which blocks extension of nonspecifically primed templates and consistently allows high PCR specificity even under less-than-optimal PCR conditions. A total of 19 DPO primers were designed to detect and discriminate between RVFV, BTV, RPV, and PPRV by the generation of 205-, 440-, 115-, and 243-bp cDNA products, respectively. The multiplex reverse transcriptase PCR described here enables the early diagnosis of these four viruses and may also be useful as part of a testing regime for cattle, sheep, or goats exhibiting similar clinical signs, including mucosal lesions. PMID:21307219
Combination nucleoside/nucleotide reverse transcriptase inhibitors for treatment of HIV infection.
Akanbi, Maxwell O; Scarsi, Kimberly K; Scarci, Kimberly; Taiwo, Babafemi; Murphy, Robert L
2012-01-01
The combination of two nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTIs) and a third agent from another antiretroviral class is currently recommended for initial antiretroviral therapy. In general, N(t)RTIs remain relevant in subsequent regimens. There are currently six nucleoside reverse transcriptase inhibitors and one nucleotide reverse transcriptase inhibitor drug entities available, and several formulations that include two or more N(t)RTIs in a fixed-dose combination. These entities have heterogeneous pharmacological and clinical properties. Accordingly, toxicity, pill burden, dosing frequency, potential drug-drug interaction, preexisting antiretroviral drug resistance and comorbid conditions should be considered when constructing a regimen. This approach is critical in order to optimize virologic efficacy and clinical outcomes. This article reviews N(t)RTI combinations used in the treatment of HIV-infected adults. The pharmacological properties of each N(t)RTI, and the clinical trials that have influenced treatment guidelines are discussed. It is likely that N(t)RTIs will continue to dominate the global landscape of HIV treatment and prevention, despite emerging interest in N(t)RTI-free combination therapy. Clinical domains where only few alternatives to N(t)RTIs exist include treatment of HIV/HBV coinfection and HIV-2. There is a need for novel N(t)RTIs with enhanced safety and resistance profiles compared with current N(t)RTIs.
Kotler, Moshe; Weinberg, Eynat; Haspel, Osnat; Becker, Yechiel
1972-01-01
Incubation of rat cells transformed by Rous sarcoma virus (RSV) in an arginine-deficient medium resulted in accumulation of particles in the culture medium. Such particles did not appear when the transformed rat cells were incubated in a complete medium nor in the medium of primary rat cells which were incubated either in arginine-deficient or complete media. The particles which were released from the arginine-deprived transformed rat cells resemble C-type particles in their properties. These particles band in sucrose gradients at a density of 1.16 g/ml and contain 35S ribonucleic acid (RNA) molecules and a reverse transcriptase activity. Analysis of the cytoplasm of transformed and primary rat cells, deprived and undeprived of arginine, revealed the presence of reverse transcriptase-containing particles which banded in sucrose gradients at a density of 1.14 g/ml. These particles differed from the particles released into the medium by the arginine-deprived RSV-transformed rat cells. The deoxyribonucleic acid (DNA) molecules synthesized in vitro by the reverse transcriptase present in the particles isolated from the medium of arginine-deprived cells hybridized to RSV RNA, whereas the DNA synthesized by the cell-bound enzyme had no homology to RSV RNA. PMID:4116137
Refahi, Soheila; Pourissa, Masoud; Zirak, Mohammad Reza; Hadadi, GholamHassan
2015-01-01
To evaluate the ability of glycyrrhizic acid (GLA) to reduce the tumor necrosis factor α (TNF-α), release on messenger ribonucleic acid (mRNA) and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group), GLA treatment only (GLA group), irradiation only (XRT group), and GLA treatment plus irradiation (GLA/XRT group). Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs). An enzyme-linked immunosorbant assay (ELISA) assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation.
Refahi, Soheila; Pourissa, Masoud; Zirak, Mohammad Reza; Hadadi, GholamHassan
2015-01-01
To evaluate the ability of glycyrrhizic acid (GLA) to reduce the tumor necrosis factor α (TNF-α), release on messenger ribonucleic acid (mRNA) and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group), GLA treatment only (GLA group), irradiation only (XRT group), and GLA treatment plus irradiation (GLA/XRT group). Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs). An enzyme-linked immunosorbant assay (ELISA) assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation. PMID:26170556
Kurtz, David T.; Feigelson, Philip
1977-01-01
A procedure is presented for the preparation of a 3H-labeled complementary DNA (cDNA) specific for the mRNA coding for α2u-globulin, a male rat liver protein under multihormonal control that represents approximately 1% of hepatic protein synthesis. Rat liver polysomes are incubated with monospecific rabbit antiserum to α2u-globulin, which binds to the nascent α2u-globulin chains on the polysomes. These antibody-polysome complexes are then adsorbed to goat antiserum to rabbit IgG that is covalently linked to p-aminobenzylcellulose. mRNA preparations are thus obtained that contain 30-40% α2u-globulin mRNA. A labeled cDNA is made to this α2u-globulin-enriched mRNA preparation by using RNA-dependent DNA polymerase (reverse transcriptase). To remove the non-α2u-globulin sequences, this cDNA preparation is hybridized to an RNA concentration × incubation time (R0t) of 1000 mol of ribonucleotide per liter × sec with female rat liver mRNA, which, though it shares the vast majority of mRNA sequences with male liver, contains no α2u-globulin mRNA sequences. The cDNA remaining single-stranded is isolated by hydroxylapatite chromatography and is shown to be specific for α2u-globulin mRNA by several criteria. Good correlation was found in all endocrine states studied between the hepatic level of α2u-globulin, the level of functional α2u-globulin mRNA as assayed in a wheat germ cell-free translational system, and the level of α2u-globulin mRNA sequences as measured by hybridization to the α2u-globulin cDNA. Thus, the hormonal control of hepatic α2u-globulin synthesis by sex steroids and thyroid hormone occurs through modulation of the cellular level of α2u-globulin mRNA sequences, presumably by hormonal control of transcriptive synthesis. PMID:73184
Hierholzer, C; Kelly, E; Billiar, T R; Tweardy, D J
1997-01-01
Granulocyte colony-stimulating factor (G-CSF) is the cytokine that is critical for polymorphonuclear neutrophilic granulocyte (PMN) production as well as being a potent agonist of PMN activation. We have recently reported that in the lung and the liver of rats resuscitated after hemorrhagic shock (HS) G-CSF mRNA expression is induced. It is not known if both phases of HS, the ischemic and the reperfusion phase, are required for G-CSF mRNA induction. The present study was designed to test the hypothesis that the upregulation of G-CSF mRNA expression is the consequence of HS followed by resuscitation and that ischemia alone is insufficient to induce G-CSF mRNA expression in the affected organs. Male Sprague-Dawley rats were subjected to resuscitated and unresuscitated shock protocols of varying severity. Control animals were subjected to anesthesia and all surgical preparations except for hemorrhage. Lungs and livers were isolated and their RNA extracted. Using semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrated that G-CSF mRNA was induced in the lung and liver of shock animals above the level observed in control animals. Upregulation of G-CSF mRNA relative to controls occurred only in animals undergoing resuscitated HS and not in ones subjected to unresuscitated HS. These results indicate that G-CSF production specific for the hemorrhage component of shock is dependent on resuscitation. As a consequence, the production of this cytokine may be decreased through modifications in the resuscitation protocols.
Zi, Xiang-Dong; Chen, Da-Wen; Wang, Hong-Mei
2012-02-01
Prolactin (PRL) plays central roles in a wide range of body functions in mammals, and the actions are mediated by the specific cell surface receptor, the prolactin receptor (PRLR). To better understand the role of PRL in the yak (Bos grunniens), in the present study, we first cloned yak PRLR cDNA, and compared its mRNA expression in several tissues with cattle (Bos taurus). By reverse transcriptase-polymerase chain reaction (RT-PCR) strategy, we obtained full-length of yak PRLR cDNA sequence comprised of an open reading frame of 1746bp encoding a 581 amino acid protein, and contained a signal sequence and a transmembrane region. The intracellular domain had two pairs of cysteine residues and a WSXWS motif. The cytoplasmic domain comprised 323 residues and contained box 1 sequence. The yak PRLR shared 66.0-98.5% protein sequence identity with mammalian homologs. Real-time PCR analysis revealed that PRLR mRNA was higher in mammary tissue than in ovary and endometrium (P<0.01). During pregnancy, the ovary and mammary PRLR mRNA expression increased by 33- and 2.9-fold in yak, respectively, and increased by 46- and 3.8-fold in cattle, respectively. PRLR mRNA expression was higher (P<0.05) in mammary tissue and ovary of pregnant cow than that of pregnant yak. It is proposed that the increased ovarian and mammary PRLR mRNA expression during pregnancy may be associated with corpus luteum function for maintenance of pregnancy and mammary development for subsequent lactation. Copyright © 2011 Elsevier Inc. All rights reserved.
Yáñez, Yania; Hervás, David; Grau, Elena; Oltra, Silvestre; Pérez, Gema; Palanca, Sarai; Bermúdez, Mar; Márquez, Catalina; Cañete, Adela; Castel, Victoria
2016-03-01
In metastatic neuroblastoma (NB) patients, accurate risk stratification and disease monitoring would reduce relapse probabilities. This study aims to evaluate the independent prognostic significance of detecting tyrosine hydroxylase (TH) and doublecortin (DCX) mRNAs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral blood (PB) and bone marrow (BM) samples from metastatic NB patients. RT-qPCR was performed on PB and BM samples from metastatic NB patients at diagnosis, post-induction therapy and at the end of treatment for TH and DCX mRNAs detection. High levels of TH and DCX mRNAs when detected in PB and BM at diagnosis independently predicted worse outcome in a cohort of 162 metastatic NB. In the subgroup of high-risk metastatic NB, TH mRNA detected in PB remained as independent predictor of EFS and OS at diagnosis. After the induction therapy, high levels of TH mRNA in PB and DCX mRNA in BM independently predicted poor EFS and OS. Furthermore TH mRNA when detected in BM predicted worse EFS. TH mRNA in PB samples at the end of treatment is an independent predictor of worse outcome. TH and DCX mRNAs levels in PB and BM assessed by RT-qPCR should be considered in new pre-treatment risk stratification strategies to reliable estimate outcome differences in metastatic NB patients. In those high-risk metastatic NB, TH and DCX mRNA quantification could be used for the assessment of response to treatment and for early detection of progressive disease or relapses.
Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research
Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).
The Role of eIF4E Activity in Breast Cancer
2010-08-01
ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less product...have previously shown that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2009-07-01
HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.
The history of antiretrovirals: key discoveries over the past 25 years.
De Clercq, Erik
2009-09-01
Within 25 years after zidovudine (3'-azido-2',3'-dideoxythymidine, AZT) was first described as an inhibitor of HIV replication, 25 anti-HIV drugs have been formally approved for clinical use in the treatment of HIV infections: seven nucleoside reverse transcriptase inhibitors (NRTIs): zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine; one nucleotide reverse transcriptase inhibitor (NtRTI): tenofovir [in its oral prodrug form: tenofovir disoproxil fumarate (TDF)]; four non-nucleoside reverse transcriptase inhibitors (NNRTIs): nevirapine, delavirdine, efavirenz and etravirine; ten protease inhibitors (PIs): saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir; one fusion inhibitor (FI): enfuvirtide; one co-receptor inhibitor (CRI): maraviroc and one integrase inhibitor (INI): raltegravir. These compounds are used in various drug combination (some at fixed dose) regimens so as to achieve the highest possible benefit and tolerability, and to diminish the risk of virus-drug resistance development. (c) 2009 John Wiley & Sons, Ltd.
Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C
2004-09-01
To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.
Bernardino, R L; Alves, M G; Silva, J; Barros, A; Ferraz, L; Sousa, M; Sá, R; Oliveira, P F
2016-06-01
Men with Klinefelter syndrome (KS) present severe hormonal dysregulation, particularly elevated serum estradiol concentration. Estrogens act through specific receptors and regulate testes development and spermatogenesis. Herein, we evaluated GPR30, ERα, and ERβ mRNA expression in testis of KS men and men with 46XY karyotype by reverse transcriptase and quantitative PCR. ERβ transcripts are the most abundant in testicular tissue of 46XY men. Notably, testicular GPR30 transcription in KS men was approximately 12 times higher. Since GPR30 is essential to mediate estrogen effects over steroidogenesis, our data illustrate that GPR30 may underpin the testicular alterations observed in KS men. © Georg Thieme Verlag KG Stuttgart · New York.
Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui
2010-08-06
CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.
Hosseinipour, Mina C.; van Oosterhout, Joep J.G.; Weigel, Ralf; Phiri, Sam; Kamwendo, Debbie; Parkin, Neil; Fiscus, Susan A.; Nelson, Julie A.E.; Eron, Joseph J.; Kumwenda, Johnstone
2010-01-01
Background Over 150 000 Malawians have started antiretroviral therapy (ART), in which first-line therapy is stavudine/lamivudine/nevirapine. We evaluated drug resistance patterns among patients failing first-line ART on the basis of clinical or immunological criteria in Lilongwe and Blantyre, Malawi. Methods Patients meeting the definition of ART failure (new or progressive stage 4 condition, CD4 cell count decline more than 30%, CD4 cell count less than that before treatment) from January 2006 to July 2007 were evaluated. Among those with HIV RNA of more than 1000 copies/ml, genotyping was performed. For complex genotype patterns, phenotyping was performed. Results Ninety-six confirmed ART failure patients were identified. Median (interquartile range) CD4 cell count, log10 HIV-1 RNA, and duration on ART were 68 cells/μl (23–174), 4.72 copies/ml (4.26–5.16), and 36.5 months (26.6–49.8), respectively. Ninety-three percent of samples had nonnucleoside reverse transcriptase inhibitor mutations, and 81% had the M184V mutation. The most frequent pattern included M184V and nonnucleoside reverse transcriptase inhibitor mutations along with at least one thymidine analog mutation (56%). Twenty-three percent of patients acquired the K70E or K65R mutations associated with tenofovir resistance; 17% of the patients had pan-nucleoside resistance that corresponded to K65R or K70E and additional resistance mutations, most commonly the 151 complex. Emergence of the K65R and K70E mutations was associated with CD4 cell count of less than 100 cells/μl (odds ratio 6.1) and inversely with the use of zidovudine (odds ratio 0.18). Phenotypic susceptibility data indicated that the nucleoside reverse transcriptase inhibitor backbone with the highest activity for subsequent therapy was zidovudine/lamivudine/tenofovir, followed by lamivudine/tenofovir, and then abacavir/didanosine. Conclusion When clinical and CD4 cell count criteria are used to monitor first-line ART failure, extensive nucleoside reverse transcriptase inhibitor and nonnucleoside reverse transcriptase inhibitor resistance emerges, with most patients having resistance profiles that markedly compromise the activity of second-line ART. PMID:19417582
Campos, E G; Hamdan, F F
2000-03-01
The protein TCP-1 (t-complex polypeptide 1) is a subunit of the hetero-oligomeric complex CCT (chaperonin containing TCP- 1) present in the eukaryotic cytosol. Chaperone function may be critical for the development and survival of the different life stages of Schistosoma mansoni, a parasite that is exposed to drastic environmental changes during its development. We isolated a full-length S. mansoni TCP-1 cDNA (SmTCP-1A) encoding a protein highly homologous with TCP-1. The deduced SmTCP-1A amino-acid sequence shows up to 65% identity with other eukaryotic CCT family members. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that the mRNA expression levels of SmTCP-1A in adult S. mansoni were down-regulated in worms subjected to heat shock and oxidative stress conditions. This down-regulation of SmTCP-1A mRNA may reflect a switch in CCT subunits as an adaptive response to heat shock and oxidative stress conditions.
Molecular cloning and expression profile analysis of porcine TCAP gene.
Cheng, Hunjun; Xu, Xuewen; Zhao, Shuhong; Liu, Bang; Yu, Mei; Fan, Bin
2010-03-01
The gradually discovered sarcomeric proteins play important roles for structural integrity and signal transduction of sarcomere during myofibril genesis. TCAP (also described as telethonin, T-cap), one of the sarcomeric protein genes, is regulated developmentally. In this study, we reported the molecular characteristics of porcine TCAP gene. A 979 bp TCAP cDNA nucleotide sequence was obtained in pig and the deduced amino acid sequence had 92 and 91% identity to those of human and mouse homologous genes, respectively. One SNP was discovered and the allele frequency analysis showed that G allele frequency was low among 221 unrelated pigs from seven breeds. The tissue distribution patterns revealed that TCAP mRNA was expressed abundantly in skeletal and heart muscle tissue. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) results displayed TCAP mRNA was up-regulated in both Tongcheng and Landrace pigs during prenatal skeletal muscle development stages. This study suggested that TCAP gene might be a prospective candidate gene affecting muscle mass and meat quality traits in the pig, and also implicated the possible significance of TCAP on sarcomere assembly.
Placental expression of D6 decoy receptor in preeclampsia
Cho, Geum Joon; Lee, Eun Sung; Jin, Hye Mi; Lee, Ji Hye; Kim, Yeun Sun; Seol, Hyun-Joo; Hong, Soon-Cheol; Kim, Hai-Joong
2015-01-01
Objective The purpose of this study was to investigate the expression of the D6 decoy receptor that can bind chemokines and target them for degradation, resulting in inhibition of inflammation in placentas from preeclamptic and normal pregnancies. Methods The current study was carried out in 35 pregnant women (23 patients with preeclampsia and 12 healthy, normotensive pregnant women) during the third trimester of pregnancy. The expressions of D6 decoy receptor in the placenta were determined with real time reverse transcriptase polymerase chain reaction and western blotting. Results The mRNA and protein of D6 decoy receptor were detected in all of placentas from preeclamptic and normal pregnancies. Placental D6 decoy receptor mRNA expression was significantly lower in patients with preeclampsia than in patients with normal pregnancies. Western blot analyses revealed decreased protein expression in cases of preeclampsia. Conclusion The expression of the D6 decoy receptor in preeclamptic placentas was significantly lower than in normal placentas. Further studies are needed to clarify the underlying mechanisms that link decreased expression of placental D6 decoy receptor and preeclampsia. PMID:26430656
The Role of elF4E Activity in Breast Cancer
2011-08-01
protein; ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...Reactions were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less...that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem-loop structure6. This
Sivan, Sree Kanth; Manga, Vijjulatha
2010-06-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.
Kee, C; Cheong, K Y; Pham, K; Waterer, G W; Temple, S E L
2008-12-01
Heat shock protein 70 (HSP70) plays a major role in immune responses. Polymorphisms within the gene have been associated with development of septic shock. This study refines the region of the HSP70 gene associated with development of septic shock and confirms its functionality. Subjects (n = 31) were grouped into one of three haplotypes based on their HSPA1B-179C>T and HSPA1B1267A>G genotypes. Mononuclear cells from these subjects were stimulated with heat-killed bacteria (10(7 )colony-forming units/mL Escherichia coli or Streptococcus pneumoniae) for 8 and 21 h. HSP70 and tumour necrosis factor (TNF) mRNA and protein levels were measured by reverse transcriptase-polymerase chain reaction and ELISA, respectively. The HSPA1B-179*C:1267*A haplotype was associated with significantly lower levels of HSPA1B mRNA and protein and higher production of TNF mRNA and protein compared to the other haplotypes. Induction of HSP70 was TNF independent. These results suggest that the HSPA1B-179C>T:1267A>G haplotype is functional and may explain the association of the HSP70 gene with development of septic shock.
Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P
1999-01-01
It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429
Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng
2011-03-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.
Wang, Shuwen; Zhu, Jiyue
2003-05-23
The transcriptional activation of human telomerase reverse transcriptase (hTERT) is an important step during cellular immortalization and tumorigenesis. To study how this activation occurs during immortalization, we have established a set of genetically related pre-crisis cells and their immortal progeny. As expected, hTERT mRNA was detected in our telomerase-positive immortal cells but not in pre-crisis cells or telomerase-negative immortal cells. However, transiently transfected luciferase reporters controlled by hTERT promoter sequences exhibited similar levels of luciferase activity in both telomerase-positive and -negative cells, suggesting that the endogenous chromatin context is likely required for hTERT regulation. Analysis of chromatin susceptibility to DNase I digestion consistently identified a DNase I hypersensitivity site (DHS) near the hTERT transcription initiation site in telomerase-positive cells. In addition, the histone deacetylase inhibitor trichostatin A (TSA) induced hTERT transcription and also a general increase in chromatin sensitivity to DNase treatment in telomerase-negative cells. The TSA-induced hTERT transcription in pre-crisis cells was accompanied by the formation of a DHS at the hTERT promoter. Furthermore, the TSA-induced hTERT transcription and chromatin alterations were not blocked by cycloheximide, suggesting that this induction does not require de novo protein synthesis and that TSA induces hTERT expression through the inhibition of histone deacetylation at the hTERT promoter. Taken together, our results suggest that the endogenous chromatin environment plays a critical role in the regulation of hTERT expression during cellular immortalization.
Jamaluddin, Md Saha; Lin, Peter H.; Yao, Qizhi; Chen, Changyi
2009-01-01
Highly active antiretroviral therapy (HAART) is often associated with endothelial dysfunction and cardiovascular complications. In this study, we determined whether HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) could increase endothelial permeability. Human coronary artery endothelial cells (HCAECs) were treated with EFV (1, 5 and 10 µg/ml) and endothelial permeability was determined by a transwell system with a fluorescence-labeled dextran tracer. HCAECs treated with EFV showed a significant increase of endothelial permeability in a concentration-dependent manner. With real time PCR analysis, EFV significantly reduced the mRNA levels of tight junction proteins claudin-1, occludin, zonula occluden-1 and junctional adhesion molecule-1 compared with controls (P < 0.05). Protein levels of these tight junction molecules were also reduced substantially in the EFV-treated cells by western blot and flow cytometry analyses. In addition, EFV also increased superoxide anion production with dihydroethidium and cellular glutathione assays, while it decreased mitochondrial membrane potential with JC-staining. Antioxidants (ginkgolide B and MnTBAP) effectively blocked EFV-induced endothelial permeability and mitochondrial dysfunction. Furthermore, EFV increased the phosphorylation of MAPK JNK and IκBα, thereby increasing NFκB translocation to the nucleus. Chemical JNK inhibitor and dominant negative mutant JNK and IkBa adenoviruses effectively blocked the effects of EFV on HCAECs. Thus, EFV increases endothelial permeability which may be due to the decrease of tight junction proteins and the increase of superoxide anion. JNK and NFκB activation may be directly involved in the signal transduction pathway of EFV action in HCAECs. PMID:19674747
Hizi, Amnon
2008-01-01
The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5′ end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3′ end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs. PMID:18753200
Hizi, Amnon
2008-11-01
The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5' end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3' end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs.
Mackie, Nicola E; Dunn, David T; Dolling, David; Garvey, Lucy; Harrison, Linda; Fearnhill, Esther; Tilston, Peter; Sabin, Caroline; Geretti, Anna M
2013-09-10
HIV-1 genetic variability may influence antiretroviral therapy (ART) outcomes. The study aim was to determine the impact of polymorphisms in regions known to harbor major nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations (codons 90-108, 135-138, 179-190, 225-348) on virologic responses to first-line NNRTI-based ART. Reverse transcriptase sequences from ART-naive individuals who commenced efavirenz (EFV) or nevirapine (NVP) with at least two nucleos(t)ide reverse transcriptase inhibitors (NRTIs) without major drug resistance mutations were analyzed. The impact of polymorphisms on week 4 viral load decrease and time to virologic failure was measured over a median 97 weeks. Among 4528 patients, most were infected with HIV-1 subtype B (67%) and commenced EFV-based ART (84%). Overall, 2598 (57%) had at least one polymorphism, most frequently at codons 90, 98, 101, 103, 106, 135, 138, 179, and 238. Virologic failure rates were increased in patients with two (n = 597) or more than two (n = 72) polymorphisms [adjusted hazard ratio 1.43; 95% confidence interval (CI) 1.07-1.92; P = 0.016]. Polymorphisms associated with virologic failure occurred at codons 90 (mostly V90I), 98 (mostly A98S), and 103 (mostly K103R), with adjusted hazard ratios of 1.78 (1.15-2.73; P = 0.009), 1.55 (1.16-2.08; P = 0.003), and 1.75 (1.00-3.05: P = 0.049), respectively. Polymorphisms at codon 179, especially V179D/E/T, predicted reduced week 4 responses (P = 0.001) but not virologic failure. The occurrence of multiple polymorphisms, though uncommon, was associated with a small increase in the risk of NNRTI treatment failure; significant effects were seen with polymorphisms at codon 90, 98, and 103. The mechanisms underlying the slower suppression seen with V179D/E/T deserve further investigation.
Gianella, Sara; Vazquez, Homero; Ignacio, Caroline; Zweig, Adam C.; Richman, Douglas D.; Smith, Davey M.
2014-01-01
Abstract We investigated the pol genotype in two phylogenetically and epidemiologically linked partners, who were both experiencing persistent low-level viremia during antiretroviral therapy. In one partner we identified a new residue insertion between codon 248 and 249 of the HIV-1 RNA reverse transcriptase (RT) coding region (HXB2 numbering). We then investigated the potential impact of identified mutations in RT and antiretroviral binding affinity using a novel computational approach. PMID:24020934
Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M
2014-01-13
Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into 'targetrons.' Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and 'cut-and-pastes' (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.
Xi, Yuan-Di; Ding, Juan; Han, Jing; Zhang, Dan-Di; Liu, Jin-Meng; Feng, Ling-Li; Xiao, Rong
2015-05-01
Synaptic damage is the key factor of cognitive impairment. The purpose of this study was to understand the effect of soybean isoflavone (SIF) on synaptic damage induced by β-amyloid peptide 1-42 (Aβ1-42) in rats. Adult male Wistar rats were randomly divided into control, Aβ1-42, SIF, and SIF + Aβ1-42 (SIF pretreatment) groups according to body weight. SIF was treated orally by gavage in SIF and SIF + Aβ1-42 groups. After 14 days pretreatment with SIF or vehicle, Aβ1-42 was injected into the lateral cerebral ventricle of rats in Aβ1-42 and SIF + Aβ1-42 groups using miniosmotic pump. The level of Aβ1-42 and the expression of N-methyl-D-aspartic-acid receptor (NMDAR) were observed by immunohistochemistry. Reverse transcriptase polymerase chain reaction was used to detect the mRNA levels of NMDAR, calmodulin (CaM), calcium/CaM-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF). The results showed that Aβ1-42 down-regulated mRNA and protein expression of the NR1 and NR2B subunits of NMDAR, SIF pretreatment could reverse these changes. The mRNA expression of CaM, CaMKII, CREB, and BDNF were down-regulated by Aβ1-42, but they were all regulated by SIF pretreatment. These results suggest that SIF pretreatment could antagonize the neuron damage in rats induced by Aβ1-42, and its mechanism might be associated with the NMDA receptor and CaM/CaMKII/CREB/BDNF signaling pathway, which are the synaptic plasticity-related molecules.
Analysis of myosin heavy chain mRNA expression by RT-PCR
NASA Technical Reports Server (NTRS)
Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.
1997-01-01
An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.
Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites
Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You
2013-01-01
AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465
Lee, Richard H; Stanczyk, Frank Z; Stolz, Andrew; Ji, Qing; Yang, Gloria; Goodwin, T Murphy
2008-10-01
We sought to determine relative mRNA expression of AKR1C1 and SRD5A1, which respectively encode for the key progesterone metabolizing enzymes, 20alpha-hydroxysteroid dehydrogenase and 5alpha-reductase type 1, in the myometrium and chorioamniotic membranes during human spontaneous or induced labor and nonlabor. Quantitative real-time reverse-transcriptase polymerase chain reaction was used to compare relative mRNA expression of AKR1C1 and SRD5A1 in the myometrium and chorioamniotic membranes from 20 subjects during three different states of labor: not in labor ( N = 10), spontaneous labor ( N = 5), or induced labor ( N = 5). Labor was defined as regular uterine contractions that resulted in cervical dilation. Myometrial AKR1C1 mRNA expression was significantly greater in spontaneously laboring subjects compared with those not in labor (2.4-fold [1.97 to 2.98], P = 0.02). There was no difference in myometrial AKR1C1 mRNA expression between those with induced labor compared with those not in labor. Regardless of labor status, no differences were observed in the chorioamniotic membrane AKR1C1 mRNA expression between the groups. SRD5A1 mRNA expression was significantly lower in the membranes of both laboring groups when compared with those not in labor (spontaneous: 0.10-fold [0.06 to 0.18], P = 0.007; induced: 0.09-fold [0.03 to 0.25], P = 0.013). Regardless of labor status, there was no difference in SRD5A1 mRNA expression in the myometrium. Our study demonstrated tissue-specific changes in progesterone metabolizing enzyme mRNA expression in human intrauterine tissue at term associated with labor status. These observed changes in mRNA expression may have important implications for progesterone metabolism at those specific sites and thereby may differentially regulate the tissue-specific progesterone concentration and/or the level of specific progesterone metabolites.
Murine Leukemia Virus Reverse Transcriptase: Structural Comparison with HIV-1 Reverse Transcriptase
Coté, Marie L.; Roth, Monica J.
2008-01-01
Recent X-ray crystal structure determinations of Moloney murine leukemia virus reverse transcriptase (MoMLV RT) have allowed for more accurate structure/function comparisons to HIV-1 RT than were formerly possible. Previous biochemical studies of MoMLV RT in conjunction with knowledge of sequence homologies to HIV-1 RT and overall fold similarities to RTs in general, provided a foundation upon which to build. In addition, numerous crystal structures of the MoMLV RT fingers/palm subdomain had also shed light on one of the critical functions of the enzyme, specifically polymerization. Now in the advent of new structural information, more intricate examination of MoMLV RT in its entirety can be realized, and thus the comparisons with HIV-1 RT may be more critically elucidated. Here, we will review the similarities and differences between MoMLV RT and HIV-1 RT via structural analysis, and propose working models for the MoMLV RT based upon that information. PMID:18294720
HIV type 1 genotypic variation in an antiretroviral treatment-naive population in southern India.
Balakrishnan, Pachamuthu; Kumarasamy, Nagalingeswaran; Kantor, Rami; Solomon, Suniti; Vidya, Sundararajan; Mayer, Kenneth H; Newstein, Michael; Thyagarajan, Sadras P; Katzenstein, David; Ramratnam, Bharat
2005-04-01
Most studies of HIV-1 drug resistance have examined subtype B viruses; fewer data are available from developing countries, where non-B subtypes predominate. We determined the prevalence of mutations at protease and reverse transcriptase drug resistance positions in antiretroviral drug-naive individuals in southern India. The pol region of the genome was amplified from plasma HIV-1 RNA in 50 patients. All sequences clustered with HIV-1 subtype C. All patients had at least one protease and/or RT mutation at a known subtype B drug resistance position. Twenty percent of patients had mutations at major protease inhibitor resistance positions and 100% had mutations at minor protease inhibitor resistance positions. Six percent and 14% of patients had mutations at nucleoside reverse transcriptase inhibitor and/or nonnucleoside reverse transcriptase inhibitor resistance positions, respectively. Larger scale studies need to be undertaken to better define the genotypic variation of circulating Indian subtype C viruses and their potential impact on drug susceptibility and clinical outcome in treated individuals.
Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and Meibomian gland.
Yu, Dongfang; Thelin, William R; Randell, Scott H; Boucher, Richard C
2012-10-01
The aim of the study was to elucidate aquaporin (AQP) family member mRNA expression and protein expression/localization in the rat lacrimal functional unit. The mRNA expression of all rat AQPs (AQP0-9, 11-12) in palpebral, fornical, and bulbar conjunctiva, cornea, lacrimal gland, and Meibomian gland was measured by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and real time RT-PCR. Antibodies against AQP1, 3, 4, 5, 9, and 11 were used in Western blotting and immunohistochemistry to determine protein expression and distribution. Our study demonstrated characteristic AQP expression profiles in rat ocular tissues. AQP1, 3, 4, 5, 8, 9, 11, and 12 mRNA were detected in conjunctiva. AQP0, 1, 2, 3, 4, 5, 6, 11, and 12 mRNA were expressed in cornea. AQP0, 1, 2, 3, 4, 5, 7, 8, and 11 mRNA were detected in lacrimal gland. AQP1, 3, 4, 5, 7, 8, 9, 11, and 12 mRNA were identified in Meibomian gland. By Western blot, AQP1, 3, 5, and 11 were detected in conjunctiva; AQP1, 3, 5, and 11 were identified in cornea; AQP1, 3, 4, 5, and 11 were detected in lacrimal gland; and AQP1, 3, 4, 5, 9, and 11 were present in Meibomian gland. Immunohistochemistry localized AQPs to distinct sites in the various tissues. This study rigorously analyzed AQPs expression and localization in rat conjunctiva, cornea, lacrimal gland, and Meibomian gland tissues. Our findings provide a comprehensive platform for further investigation into the physiological or pathophysiological relevance of AQPs in ocular surface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder.
Yasuda, Yuka; Hashimoto, Ryota; Yamamori, Hidenaga; Ohi, Kazutaka; Fukumoto, Motoyuki; Umeda-Yano, Satomi; Mohri, Ikuko; Ito, Akira; Taniike, Masako; Takeda, Masatoshi
2011-05-26
The autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN) 3/4, neurexin (NRXN) 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.
[Significant increase of glucose transport activity in breast cancer].
Li, Juan; Yang, Shou-jing; Zhao, Xi-long; Zhang, Ya-qing; Li, Kai-nan; Cui, Ji-hong; Li, Jing
2008-02-01
To study the expression level and significance of glucose transporter 1 (Glut-1) in normal breast tissue, adenosis, adenoma and breast carcinoma. A total of 147 cases of female breast tissue samples, including 92 cases of invasive ductal carcinoma, 26 cases of breast fibroadenoma, 24 cases of breast adenosis and 5 cases of normal breast tissues, were collected for quantitative detection of the expression of Glut-1 protein by immunohistochemistry (EnVision method) and Western blot, and its mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR). In normal breast tissue and benign lesions of the breast, Glut-1 was undetectable or only weakly detectable in cytoplasm of ductal and acinar epithelia. In contrast, the intensity of Glut-1 staining was significantly higher in invasive ductal carcinomas (P = 0.0002) with protein expression predominantly in cellular membrane and lesser in cytoplasm. Western blot and RT-PCR analyses showed that the expression of Glut-1 protein and mRNA were significantly increased in invasive ductal carcinoma than fibroadenoma (P =0.001 for protein; P <0.05 for mRNA) and adenosis (P =0.001 for protein; P < 0.05 for mRNA). There was a significant difference among groups (P = 0.0002 for protein; P = 0.0001 for mRNA). Glucose transport activity, as indicated by Glut-1 protein and its mRNA expression, significantly increases in breast carcinoma than non-cancerous lesions. The over-expression of Glut-1 in breast carcinoma is tightly coupled with tumor cell proliferation, invasion and metastasis, implying that Glut-1 may serve as a new marker in the early diagnosis and prognostication of breast malignancy as well as a new therapeutic target.
Solassol, J; Burcia, V; Costes, V; Lacombe, J; Mange, A; Barbotte, E; de Verbizier, D; Cartier, C; Makeieff, M; Crampette, L; Boulle, N; Maudelonde, T; Guerrier, B; Garrel, R
2009-01-01
Background: Molecular diagnosis has been proposed to enhance the intra-operative diagnosis of sentinel lymph node (SLN) invasion in head and neck squamous cell carcinoma (HNSCC). Although cytokeratin (CK) mRNA quantification with real-time reverse transcriptase-PCR (QRT–PCR) has produced encouraging results, the more discriminating markers remain to be identified. Methods: Pemphigus vulgaris antigen (PVA), squamous cell carcinoma antigen (SCCA), and CK17 mRNA were quantified using QRT–PCR, and the results were compared with an extensive histopathological examination of the entire SLNs on 78 SLNs harvested from 22 patients with HNSCC. Results: SCCA and CK17 quantification showed significantly higher mRNA values for macrometastases (MAs) than for either negative or isolated tumour cell (ITC) SLNs (P<0.01). Pemphigus vulgaris antigen allowed the discrimination of all MAs and micrometastases from both negative and ITC SLNs (P<0.001). For the neck staging of patients, considering metastatic vs non-metastatic status, receiver-operating characteristic curve analysis found areas under the curve of 93.8, 97.9, and 100% for CK17, SCCA, and PVA, respectively. With PVA, a cutoff value of 562 copies per 100 ng of cDNA permitted the correct distinction between patients with positive as opposed to negative neck nodes in all cases. Conclusion: PVA seems to be a highly promising marker for accurate intra-operative SLN staging in HNSCC by QRT–PCR. PMID:19997107
Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P
2001-07-01
Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.
Perez, Edith A; Baehner, Frederick L; Butler, Steven M; Thompson, E Aubrey; Dueck, Amylou C; Jamshidian, Farid; Cherbavaz, Diana; Yoshizawa, Carl; Shak, Steven; Kaufman, Peter A; Davidson, Nancy E; Gralow, Julie; Asmann, Yan W; Ballman, Karla V
2015-10-01
The N9831 trial demonstrated the efficacy of adjuvant trastuzumab for patients with human epidermal growth factor receptor 2 (HER2) locally positive tumors by protein or gene analysis. We used the 21-gene assay to examine the association of quantitative HER2 messenger RNA (mRNA) gene expression and benefit from trastuzumab. N9831 tested the addition of trastuzumab to chemotherapy in stage I-III HER2-positive breast cancer. For two of the arms of the trial, doxorubicin and cyclophosphamide followed by paclitaxel (AC-T) and doxorubicin and cyclophosphamide followed by paclitaxel and trastuzumab concurrent chemotherapy-trastuzumab (AC-TH), recurrence score (RS) and HER2 mRNA expression were determined by the 21-gene assay (Oncotype DX®) (negative <10.7, equivocal 10.7 to <11.5, and positive ≥11.5 log2 expression units). Cox regression was used to assess the association of HER2 expression with trastuzumab benefit in preventing distant recurrence. Median follow-up was 7.4 years. Of 1,940 total patients, 901 had consent and sufficient tissue. HER2 by reverse transcriptase polymerase chain reaction (RT-PCR) was negative in 130 (14 %), equivocal in 85 (9 %), and positive in 686 (76 %) patients. Concordance between HER2 assessments was 95 % for RT-PCR versus central immunohistochemistry (IHC) (>10 % positive cells = positive), 91 % for RT-PCR versus central fluorescence in situ hybridization (FISH) (≥2.0 = positive) and 94 % for central IHC versus central FISH. In the primary analysis, the association of HER2 expression by 21-gene assay with trastuzumab benefit was marginally nonsignificant (nonlinear p = 0.057). In hormone receptor-positive patients (local IHC) the association was significant (p = 0.002). The association was nonlinear with the greatest estimated benefit at lower and higher HER2 expression levels. Concordance among HER2 assessments by central IHC, FISH, and RT-PCR were similar and high. Association of HER2 mRNA expression with trastuzumab benefit as measured by time to distant recurrence was nonsignificant. A consistent benefit of trastuzumab irrespective of mHER2 levels was observed in patients with either IHC-positive or FISH-positive tumors. Trend for benefit was observed also for the small groups of patients with negative results by any or all of the central assays. Clinicaltrials.gov NCT00005970 . Registered 5 July 2000.
Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia
2008-01-01
Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151
Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong
2016-09-01
We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Production of thrombopoietin (TPO) by rat hepatocytes and hepatoma cell lines.
Shimada, Y; Kato, T; Ogami, K; Horie, K; Kokubo, A; Kudo, Y; Maeda, E; Sohma, Y; Akahori, H; Kawamura, K
1995-12-01
Recently, we purified rat thrombopoietin (TPO) from plasma of irradiated rats (XRP) by measuring its activity that stimulated the production of megakaryocytes from megakaryocyte progenitor cells (CFU-MK) in vitro. We then cloned the cDNAs for rat and human TPO. In this study, we found the production of TPO by hepatocytes isolated with the collagenase perfusion method from both normal and thrombocytopenic rats, by a two-step fractionation of hepatocyte culture medium (CM). Subsequently, CM of rat hepatoma cell lines was screened for the presence of TPO; three cell lines, H4-II-E, McA-RH8994, and HTC, were found to produce TPO. According to the purification procedure for TPO from XRP, TPO was partially purified from 2 L CM of each of three cell lines with a six-step procedure. In the final reverse-phase column, TPO from each cell line was eluted with the same retention time as that from XRP, and the TPO fraction exhibited megakaryocyte colony-stimulating activity (Meg-CSA). TPO-active fraction eluted from the final reverse-phase column was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), extracted from the gel, and assayed. TPO activity from each cell line was found in the respective molecular weight region, indicating the heterogeneity of the TPO molecule. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we detected the expression of TPO mRNA in hepatocytes, three hepatoma cell lines, normal rat liver, and X-irradiated rat liver. Northern blot analysis showed that TPO mRNA was expressed mainly in liver among the various organs tested. These data demonstrate that TPO is produced by rat hepatocytes and hepatoma cell lines and suggest that liver may be the primary organ that produces TPO.
Reverse Transcriptase Activity in Mature Spermatozoa of Mouse
Giordano, Roberto; Magnano, Anna Rosa; Zaccagnini, Germana; Pittoggi, Carmine; Moscufo, Nicola; Lorenzini, Rodolfo; Spadafora, Corrado
2000-01-01
We show here that a reverse transcriptase (RT) activity is present in murine epididymal spermatozoa. Sperm cells incubated with human poliovirus RNA can take up exogenous RNA molecules and internalize them in nuclei. Direct PCR amplification of DNA extracted from RNA-incubated spermatozoa indicate that poliovirus RNA is reverse-transcribed in cDNA fragments. PCR analysis of two-cell embryos shows that poliovirus RNA-challenged spermatozoa transfer retrotranscribed cDNA molecules into eggs during in vitro fertilization. Finally, RT molecules can be visualized on sperm nuclear scaffolds by immunogold electron microscopy. These results, therefore, reveal a novel metabolic function in spermatozoa, which may play a role during early embryonic development. PMID:10725323
Bellucci, Luca; Angeli, Lucilla; Tafi, Andrea; Radi, Marco; Botta, Maurizio
2013-12-23
Targeted molecular dynamics (TMD) simulations allowed for identifying the chemical/structural features of the nucleotide-competitive HIV-1 inhibitor DAVP-1, which is responsible for the disruption of the T-shape motif between Try183 and Trp229 of the reverse transcriptase (RT). DAVP-1 promoted the opening of a connection "gate" between allosteric and catalytic sites of HIV-1 RT, thus explaining its peculiar mechanism of action and providing useful insights to develop novel nucleotide-competitive RT inhibitors.
Van Herrewege, Yven; Michiels, Jo; Van Roey, Jens; Fransen, Katrien; Kestens, Luc; Balzarini, Jan; Lewi, Paul; Vanham, Guido; Janssen, Paul
2004-01-01
The nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 (Dapivirine) effectively prevented human immunodeficiency virus (HIV) infection in cocultures of monocyte-derived dendritic cells and T cells, representing primary targets in sexual transmission. Both drugs had a favorable therapeutic index. A 24-h treatment with 1,000 nM UC-781 or 100 nM TMC120-R147681 prevented cell-free HIV infection, whereas 10-fold-higher concentrations blocked cell-associated HIV. PMID:14693562
Gamma-irradiated bacterial preparation having anti-tumor activity
Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy
1999-01-01
A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.
de Queiroz, Karina Barbosa; Rodovalho, Gisele Vieira; Guimarães, Juliana Bohnen; de Lima, Daniel Carvalho; Coimbra, Cândido Celso; Evangelista, Elísio Alberto; Guerra-Sá, Renata
2012-09-01
The mitochondrial uncoupling proteins (UCPs) of interscapular brown adipose tissue (iBAT) and of muscles play important roles in energy balance. For instance, the expression of UCP1 and UCP3 are modulated by free fatty acid gradients induced by high-sugar diets and acute exercise that is dependent on sympathetic stimulation. However, the effects of endurance training in animals fed with high-sugar diets are unknown. This study aims to evaluate the long-term effects of diet and exercise on UCP1 and UCP3 levels and energy balance efficiency. Rats fed with standard or high-sugar (HSD) diets were simultaneously subjected to running training over an 8-week period. After the training period, the rats were decapitated, and the iBAT and gastrocnemius muscle tissues were removed for evaluation of the β₃-receptor, Ucp1, and Ucp3 mRNA and protein expression, which were analyzed by quantitative reverse transcriptase polymerase chain reaction and Western blot, respectively. Groups fed with an HSD displayed a higher adiposity index and iBAT weight (P < .05), whereas exhibited an up-regulation of Ucp1 mRNA and protein levels (P < .05). Training increased β₃-receptor mRNA in iBAT and reduced the Ucp3 mRNA in muscle tissues. In association with an HSD, training restored the increasing β₃-receptor mRNA and greatly up-regulated the levels of Ucp3 mRNA. Therefore, training blocked the HSD-induced up-regulation of UCP1 expression in iBAT, whereas it up-regulated the expression of Ucp3 mRNA in muscle. These results suggest that training enhances the relationship between Ucp1/Ucp3 mRNA levels, which could result in higher energy efficiency, but not when HSD-induced elevated sympathetic activity is maintained. Copyright © 2012. Published by Elsevier Inc.
Wu, Susan J; Spink, David C; Spink, Barbara C; Kaminsky, Laurence S
2003-01-15
The quantitation of mRNA, essential for assessing mechanisms of enzyme regulation, is normally carried out using reverse transcriptase-polymerase chain reaction (RT-PCR). An alternative method uses a signal-amplification nucleic acid probe assay, which measures RNA directly by the QuantiGene Expression Kit and incorporates branched DNA technology from Bayer and luminometer-based readings of a chemilumigenic alkaline phosphatase substrate. To broaden the utility of this assay, we investigated substitution of a fluorescent substrate, 2'-(2-benzothiazol)-6'-hydroxybenzothiazole phosphate and a fluorometer, and applied the method to quantitation of CYP1A1 and 1B1 mRNA in human T-47D and HepG2 cells following induction by benzo[a]pyrene (B[a]P) and dibenzo[a,h]anthracene (DB[a,h]A). The fluorescence response increased linearly for 200 min without photobleaching and increased linearly (r2=0.997) up to at least 0.2 microg total RNA. The data revealed that at 0.5 and 1.0 microM inducing agent, the induction of CYP1A1 mRNA in HepG2 cells by DB[a,h]A exceeded that by B[a]P by 18- and 6-fold, respectively. In T-47D cells B[a]P induced CYP1A1 mRNA by 23-fold and CYP1B1 mRNA by 3.9-fold. A B[a]P cocontaminant in the environment, arsenite, did not affect B[a]P-induced levels of CYP1A1 or 1B1 mRNA in these cells. The modified analytical system provides a rapid-throughput, reproducible, and less labor-intensive method than RT-PCR for quantifying cellular mRNA levels.
Ramalho-Ortigão, J M; Temporal, P; de Oliveira , S M; Barbosa, A F; Vilela, M L; Rangel, E F; Brazil, R P; Traub-Cseko, Y M
2001-01-01
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Li, Fang; Cui, Jinquan
2015-07-01
Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.
Palmieri, Giuseppe; Satriano, Sabrina MR; Budroni, Mario; Cossu, Antonio; Tanda, Francesco; Canzanella, Sergio; Caracò, Corrado; Simeone, Ester; Daponte, Antonio; Mozzillo, Nicola; Comella, Giuseppe; Castello, Giuseppe; Ascierto, Paolo A
2006-01-01
Background Detection of circulating malignant cells (CMCs) through a reverse transcriptase-polymerase chain reaction (RT-PCR) assay seems to be a demonstration of systemic disease. We here evaluated the prognostic role of RT-PCR assays in serially-taken peripheral blood samples from patients with malignant melanoma (MM). Methods One hundred forty-nine melanoma patients with disease stage ranging from I to III were consecutively collected in 1997. A multi-marker RT-PCR assay was used on peripheral blood samples obtained at time of diagnosis and every 6 months during the first two years of follow-up (total: 5 samples). Univariate and multivariate analyses were performed after 83 months of median follow-up. Results Detection of at least one circulating mRNA marker was considered a signal of the presence of CMC (referred to as PCR-positive assay). A significant correlation was found between the rate of recurrences and the increasing number of PCR-positive assays (P = 0.007). Presence of CMC in a high number (≥2) of analysed blood samples was significantly correlated with a poor clinical outcome (disease-free survival: P = 0.019; overall survival: P = 0.034). Multivariate analysis revealed that presence of a PCR-positive status does play a role as independent prognostic factors for overall survival in melanoma patients, adding precision to the predictive power of the disease stage. Conclusion Our findings indicated that serial RT-PCR assay may identify a high risk subset of melanoma patients with occult cancer cells constantly detected in blood circulation. Prolonged presence of CMCs seems to act as a surrogate marker of disease progression or a sign of more aggressive disease. PMID:17107608
Palmieri, Giuseppe; Satriano, Sabrina M R; Budroni, Mario; Cossu, Antonio; Tanda, Francesco; Canzanella, Sergio; Caracò, Corrado; Simeone, Ester; Daponte, Antonio; Mozzillo, Nicola; Comella, Giuseppe; Castello, Giuseppe; Ascierto, Paolo A
2006-11-15
Detection of circulating malignant cells (CMCs) through a reverse transcriptase-polymerase chain reaction (RT-PCR) assay seems to be a demonstration of systemic disease. We here evaluated the prognostic role of RT-PCR assays in serially-taken peripheral blood samples from patients with malignant melanoma (MM). One hundred forty-nine melanoma patients with disease stage ranging from I to III were consecutively collected in 1997. A multi-marker RT-PCR assay was used on peripheral blood samples obtained at time of diagnosis and every 6 months during the first two years of follow-up (total: 5 samples). Univariate and multivariate analyses were performed after 83 months of median follow-up. Detection of at least one circulating mRNA marker was considered a signal of the presence of CMC (referred to as PCR-positive assay). A significant correlation was found between the rate of recurrences and the increasing number of PCR-positive assays (P = 0.007). Presence of CMC in a high number (> or =2) of analysed blood samples was significantly correlated with a poor clinical outcome (disease-free survival: P = 0.019; overall survival: P = 0.034). Multivariate analysis revealed that presence of a PCR-positive status does play a role as independent prognostic factors for overall survival in melanoma patients, adding precision to the predictive power of the disease stage. Our findings indicated that serial RT-PCR assay may identify a high risk subset of melanoma patients with occult cancer cells constantly detected in blood circulation. Prolonged presence of CMCs seems to act as a surrogate marker of disease progression or a sign of more aggressive disease.
Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C; Shak, Steven; Kiefer, Michael C; Esteban, Jose M; Baker, Joffre B
2004-01-01
Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10- micro m FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests.
Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H; Yang, Rui; Killela, Patrick J; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Liang, Junbo; Wang, Sizhen; Jiao, Yuchen; Yan, Hai; Tao, Hou-Quan
2015-05-01
Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them potential therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang
2017-02-06
Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.
SGK is a primary glucocorticoid-induced gene in the human.
Náray-Fejes-Tóth, A; Fejes-Tóth, G; Volk, K A; Stokes, J B
2000-12-01
Serum- and glucocorticoid-induced kinase (sgk) is transcriptionally regulated by corticosteroids in several cell types. Recent findings suggest that sgk is an important gene in the early action of corticosteroids on epithelial sodium reabsorption. Surprisingly, the human sgk was reported not to be transcriptionally regulated by corticosteroids in a hepatoma cell line, and thus far no glucocorticoid response element has been identified in the human SGK gene. Since humans clearly respond to both aldosterone and glucocorticoids in cells where sgk action seems to be important, in this study we determined sgk mRNA levels following dexamethasone treatment for various duration in five human cell lines. These cell lines included epithelial cells (H441, T84 and HT29) and lymphoid/monocyte (U937 and THP-1) lines. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we found that sgk mRNA levels are markedly induced by glucocorticoids in all of the five cell lines studied. Time course analyses revealed that sgk mRNA levels are elevated as early as 30 min after addition of the glucocorticoid, and remain elevated for several hours. Northern analysis in H441 cells confirmed that sgk is an early induced gene. The induction of sgk by dexamethasone was unaffected by cycloheximide, indicating that it does not require de novo protein synthesis. These results indicate that the human sgk, just like its counterparts in other species, is a primary glucocorticoid-induced gene.
Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang
2017-01-01
Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. ‘MAPK cascade’), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway’), reactive oxygen species (ROS) metabolic process (e.g. ‘hydrogen peroxide catabolic process’) and transcription factors (e.g., ‘MYB, ZFP and bZIP’) were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment. PMID:28165059
NASA Astrophysics Data System (ADS)
Boone, R. D.; Rogers, S. L.
2004-12-01
We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.
Wang, Hwai-Shi; Kuo, Pei-Yin; Yang, Chih-Chang; Lyu, Shaw-Ruey
2011-03-01
The severity of cartilage degeneration is positively correlated with the severity of the pathologic change of medial plica. However, knowledge of the pathogenic mechanisms and the impact of plica on cartilage destruction is limited. The aim of the present study was therefore to investigate matrix metalloprotease-3 (MMP-3) expression in the plica isolated from patients with medial compartment osteoarthritis of the knee. Immunohistochemistry showed that MMP-3 was highly expressed in pannus-like tissue and the plica. Western blotting of culture supernatants showed that interleukin-1β (IL-1β) treatment induced MMP-3 release by cells isolated from pannus tissue or the plica. Furthermore, reverse transcriptase polymerase chain reaction and real-time polymerase chain reaction analysis showed that MMP-3 mRNA levels were increased after IL-1β treatment of the cultured cells. MMP-3 and IL-1β mRNAs were expressed in the plica and pannus-like tissue, with MMP-3 mRNA being expressed at significantly higher levels in the plica than in normal synovial membrane and highly expressed in the plica at different stages in osteoarthritis (OA) patients. Pannus-like tissue and the plica express IL-1β and MMP-3. Moreover, MMP-3 mRNA and protein expression in the plica may contribute to the pathogenesis of OA. © 2011 Blackwell Publishing Limited.
Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W
1995-10-01
Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide sequence. Also, differential cross-resistance or sensitivity patterns to NNRTIs were studied in detail among NNRTI-resistant mutants. When tested in combination with AZT, all of the NNRTI's uniformly exhibited synergistic inhibition of HIV-1, suggesting that combination antiviral therapy of NNRTIs with AZT may be therapeutically promising for AIDS treatment.
He, Y F; Liu, F Y; Zhang, W X
2015-10-29
The treatment of obese patients is a topic investigated by an increasing number of researchers. This study aimed to elucidate the possible inhibitory effect of tangeritin on the development and function of fat cells. 3T3-L1 fat cells were grown to confluence and subjected to different concentrations of tangeritin. The most effective tangeritin inhibition concentration was determined by the MTT assay. The treated cells were subjected to real-time reverse transcriptase PCR and western blot analysis, to detect changes in the CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ, and peroxisome proliferator activated receptor (PPAR)γ expression levels. The MTT assay revealed that the fat cell growth was inhibited at a 20 ng/mL concentration of tangeritin. The results of real-time PCR revealed a significant decrease in the expression of C/EBPα, C/EBPβ, and PPARγ mRNA, following the treatment with tangeritin. Western blot analysis also presented similar results at a protein level. Therefore, we concluded that tangeritin inhibits adipogenesis via the down-regulation of C/EBPα, C/EBPβ, and PPARγ mRNA and protein expression in 3T3-L1 cells.
Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D
1997-12-18
Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.
Jahns, H; Browne, J A
2015-01-01
Intestinal adenocarcinomas seen in an inbred herd of farmed sika deer (Cervus nippon) morphologically resembled human hereditary non-polyposis colorectal cancer (HNPCC). Features common to both included multiple de novo sites of tumourigenesis in the proximal colon, sessile and non-polyposis mucosal changes, the frequent finding of mucinous type adenocarcinoma, lymphocyte infiltration into the neoplastic tubules and Crohn's-like lymphoid follicles at the deep margin of the tumour. HNPCC is defined by a germline mutation of mismatch repair (MMR) genes resulting in their inactivation and loss of expression. To test the hypothesis that similar MMR gene inactivation occurs in the deer tumours, the expression of the four most important MMR genes, MSH2, MLH1, MSH6 and PMS2, was examined at the mRNA level by reverse transcriptase polymerase chain reaction (n = 12) and at the protein level by immunohistochemistry (n = 40) in tumour and control tissues. All four genes were expressed equally in normal and neoplastic tissues, so MMR gene inactivation could not be implicated in the carcinogenesis of this tumour in sika deer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Mel S; Trindade, Michael C D; Ikenoue, Takashi; Schurman, David J; Goodman, Stuart B; Smith, R Lane
2003-02-01
To test the effects of intermittent hydrostatic pressure (IHP) on nitric oxide (NO) release induced by shear stress and matrix macromolecule gene expression in human osteoarthritic chondrocytes in vitro. Chondrocytes isolated from cartilage samples from 9 patients with osteoarthritis were cultured and exposed to either shear stress or an NO donor. Nitrite concentration was measured using the Griess reaction. Matrix macromolecule mRNA signal levels were determined using reverse-transcriptase polymerase chain reaction and quantified by imaging analysis software. Exposure to shear stress upregulated NO release in a dose and time-dependent manner. Application of IHP inhibited shear stress induced NO release but did not alter NO release from chondrocytes not exposed to shear stress. Shear stress induced NO or addition of an NO donor (sodium nitroprusside) was associated with decreased mRNA signal levels for the cartilage matrix proteins, aggrecan, and type II collagen. Intermittent hydrostatic pressure blocked the inhibitory effects of sodium nitroprusside but did not alter the inhibitory effects of shear stress on cartilage macromolecule gene expression. Our data show that shear stress and IHP differentially alter chondrocyte metabolism and suggest that a balance of effects between different loading forces preserve cartilage extracellular matrix in vivo.
Lv, Peng; Fan, Li-Juan; Li, Hong-Yun; Meng, Qing-Shun; Liu, Jie
2015-01-01
This study was designed to investigate the preventive effect of thalidomide on acute pancreatitis-associated liver injury in the rat and analyze its relationship with oxidative stress. The acute pancreatitis of rats was induced by the retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Thalidomide (100 mg/kg) was given daily via the intragastric route for 8 days before this injection. The levels of oxidative stress parameters including superoxide dismutase (SOD), glutathione peroxidase (GSHpx), and malondialdehyde (MDA) in the liver were detected by biochemical assay. Nuclear factor-κB p65 (NF-κBp65), tumor necrosis factor α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) protein and mRNA levels in the liver were detected using western blots and reverse transcriptase polymerase chain reaction, respectively. Compared with the untreated model group, liver histopathology, SOD, GSHpx, MDA levels, NF-κBp65, TNF-α, ICAM-1 protein, and mRNA levels in the liver of rats given thalidomide were improved significantly. Results demonstrate that thalidomide may exert its effects on oxidative stress to attenuate the progression of acute pancreatitis-associated liver injury in rats. © 2015 by the Association of Clinical Scientists, Inc.
Horiguchi, Taisuke; Shibata, Masa-Aki; Ito, Yuko; Eid, Nabil A S; Abe, Muneaki; Otsuki, Yoshinori
2002-07-01
The fate of macrophages infiltrating damaged rat skeletal muscle fibers after intramuscular injection of the anesthetic bupivacaine hydrochloride (BPVC) and the possible roles of monocyte chemoattractant protein-1 (MCP-1) were investigated. The number of macrophages reached a maximum level at 2 days after the injection and then gradually decreased. The number of apoptotic cells detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was elevated at 2-4 days and decreased thereafter. In serial sections, TUNEL-positive cells were also immunopositive for RM-4, an antibody specific for identification of macrophages. Electron microscopy further confirmed that it was the macrophages themselves that were undergoing apoptosis. As assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), high levels of MCP-1 mRNA in BPVC-treated muscles were observed and positively correlated with maximum macrophage infiltration. However, the levels of MCP-1 mRNA returned to normal low values coincident with decrease of inflammation and healing of damaged muscle fiber. Local apoptosis of macrophages, under the control of MCP-1, may be involved in healing of BPVC-treated muscles. Copyright 2002 Wiley Periodicals, Inc.
Leblanc-Fournier, Nathalie; Coutand, Catherine; Crouzet, Jerome; Brunel, Nicole; Lenne, Catherine; Moulia, Bruno; Julien, Jean-Louis
2008-06-01
Plants respond to environmental mechanical stimulation, such as wind, by modifying their growth and development. To study the molecular effects of stem bending on 3-week-old walnut trees, a cDNA-AFLP approach was developed. This study allowed the identification of a cDNA, known as Jr-ZFP2, encoding a Cys2/His2-type two-zinc-fingered transcription factor. Reverse transcriptase-polymerase chain reaction analysis confirmed that Jr-ZFP2 mRNA accumulation is rapidly and transiently induced after mechanical stimulation. After bending, Jr-ZFP2 transcript increase was restricted to the stem, the organ where the mechanical solicitation was applied. Furthermore, other abiotic factors, such as cold or salt, did not modify Jr-ZFP2 mRNA accumulation in walnut stems under our experimental conditions, whereas growth studies demonstrated that salt stress was actually perceived by the plants. These results suggest that the regulation of Jr-ZFP2 expression is more sensitive to mechanical stimulus. This gene will be a good marker for studying the early stages of mechanical perception in woody plants.
Nakanishi, Y; Oinuma, T; Sano, M; Fuchinoue, F; Komatsu, K; Seki, T; Obana, Y; Tabata, M; Kikuchi, K; Shimamura, M; Ohmori, K; Nemoto, N
2006-10-01
The beta chain of the interleukin 2/15 receptor (IL-2/15Rbeta) is induced by the expression of the EWS-WT1. A case of desmoplastic small round cell tumour (DSRCT) expressing only an unusual EWS-WT1 treated by us is reported here. To characterise an unusual form of EWS-WT1. Frozen tissue sections of the axillary tumour were examined using a laser-assisted microdissection technique and reverse transcriptase polymerase chain reaction. The novel fusion of exon 8 of EWS and the defective exon 10 of WT1 (-KTS) was detected. Although it was an unusual form, the coexpression of the present EWS-WT1, IL-2/15Rbeta and Janus kinase (JAK1) mRNA was detected in the tumour cells. IL-2 and signal transducers and activators of transcription (STAT5) mRNA were detected in both tumour and stromal cells. The induction of the IL-2/15 receptor signalling pathway may contribute to tumorigenesis in DSRCT through a paracrine or an autocrine system, even though the EWS-WT1 was an unusual form.
Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni
2005-01-01
Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294
Chung, Suhman; Himmel, Daniel M.; Jiang, Jian-Kang; Wojtak, Krzysztof; Bauman, Joseph D.; Rausch, Jason W.; Wilson, Jennifer A.; Beutler, John A.; Thomas, Craig J.; Arnold, Eddy; Le Grice, Stuart F.J.
2011-01-01
The α-hydroxytroplone, manicol (5,7-dihydroxy-2-isopropenyl-9-methyl-1,2,3,4-tetrahydro-benzocyclohepten-6-one) potently and specifically inhibits ribonuclease H (RNase H) activity of human immunodeficiency virus reverse transcriptase (HIV RT) in vitro. However, manicol was ineffective in reducing virus replication in culture. Ongoing efforts to improve the potency and specificity over the lead compound led us to synthesize 14 manicol derivatives that retain the divalent metal-chelating α-hydroxytropolone pharmacophore. These efforts were augmented by a high resolution structure of p66/p51 HIV-1 RT containing the nonnucleoside reverse transcriptase inhibitor (NNRTI), TMC278 and manicol in the DNA polymerase and RNase H active sites, respectively. We demonstrate here that several modified α-hydroxytropolones exhibit antiviral activity at non-cytotoxic concentrations. Inclusion of RNase H active site mutants indicated that manicol analogs can occupy an additional site in or around the DNA polymerase catalytic center. Collectively, our studies will promote future structure-based design of improved α-hydroxytropolones to complement the NRTI and NNRTI currently in clinical use. PMID:21568335
Famiglini, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Pelliccia, Sveva; Brancale, Andrea; Maga, Giovanni; Crespan, Emmanuele; Badia, Roger; Riveira-Muñoz, Eva; Esté, José A; Ferretti, Rosella; Cirilli, Roberto; Zamperini, Claudio; Botta, Maurizio; Schols, Dominique; Limongelli, Vittorio; Agostino, Bruno; Novellino, Ettore; Silvestri, Romano
2014-12-11
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
NASA Astrophysics Data System (ADS)
Hosseini, Yaser; Mollica, Adriano; Mirzaie, Sako
2016-12-01
The human immunodeficiency virus (HIV) which is strictly related to the development of AIDS, is treated by a cocktail of drugs, but due its high propensity gain drug resistance, the rational development of new medicine is highly desired. Among the different mechanism of action we selected the reverse transcriptase (RT) inhibition, for our studies. With the aim to identify new chemical entities to be used for further rational drug design, a set of 3000 molecules from the Zinc Database have been screened by docking experiments using AutoDock Vina software. The best ranked compounds with respect of the crystallographic inhibitor MK-4965 resulted to be five compounds, and the best among them was further tested by molecular dynamics (MD) simulation. Our results indicate that comp1 has a stronger interaction with the subsite p66 of RT than MK-4965 and that both are able to stabilize specific conformational changes of the RT 3D structure, which may explain their activity as inhibitors. Therefore comp1 could be a good candidate for biological tests and further development.
Tarby, Christine M
2004-01-01
Since their discovery, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have become one of the cornerstones of highly active anti-retroviral therapy (HAART). Currently, three NNRTI agents, efavirenz, nevirapine and delavirdine are commercially available. Efavirenz and nevirapine, used in combination with nucleoside reverse transcriptase inhibitors (NRTIs), provide durable regimens with efficacy comparable to protease inhibitor (PI) containing therapies. When virological failure occurs following treatment with an NNRTI, the resistance mutations can confer reduced sensitivity to the entire agent class. Therefore, the strategy for the development of next generation NNRTIs has been to focus on compounds which have improved potencies against the clinically relevant viral mutants. Agents with improved virological profiles and which maintain the ease of administration and favorable safety profiles of the current agents should find use in anti-retroviral naïve patients as well as in components of salvage regimens in the anti-retroviral experienced patient. This review summarizes the recent developments with compounds in clinical trials as of January 2002 as well as to summarize information on new agents appearing in the primary and patent literature between January 2001 and December 2002.
Hawtrey, Arthur; Pieterse, Anton; van Zyl, Johann; Van der Bijl, Pieter; Van der Merwe, Marichen; Nel, William; Ariatti, Mario
2008-09-01
N-Acylated derivatives of 8-(6-aminohexyl) amino-adenosine-5 '-phosphate were prepared and studied with regard to their effect on DNA synthesis by the Moloney leukemia virus reverse transcriptase. N-palmitoyl and N-nicotinyl derivatives and bis-8-(6-aminohexyl) amino-5'-AMP inhibited the enzyme partially using poly (rA).oligo d(pT)(16-18) as template-primer with [(3)H]dTTP. In order to increase hydrophobicity in the acyl component tethered to the 8-(6-aminohexyl) amino group on the adenine nucleotide, N-trityl-L-phenylalanine and the N-trityl derivatives of the o, m, and p-fluoro-DL-phenylalanine were initially examined for inhibition of the enzyme using the above template-primer system. The compounds all inhibited the reverse transcriptase with IC(50) values of approximately 60-80 microM. However, when N-trityl-m-fluoro-DL-phenylalanine was coupled to the nucleotide 8-(6-aminohexyl) amino-adenosine-5'-phosphate, the inhibitory activity of this compound increased significantly (IC(50) = 5 microM).
Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F
2008-10-01
Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon
2015-08-01
The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ishida; Wu; Shi; Fujita; Sauvage; Hammond; Wijelath
2000-03-01
Previous studies of neointima formation on Dacron vascular grafts mainly focused on the late stages using immunohistochemistry staining for von Willebrand factor (vWF) and smooth muscle (SM) alpha-actin. However, it is impossible to use immunohistochemistry to study the early events of neointima formation, because graft samples lack sufficient cellular material. Therefore, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to demonstrate dynamic changes of SM and endothelial markers during the early stages of neointima formation. Preclotted Dacron grafts were implanted in the descending thoracic aorta of 14 mongrel dogs. Specimens were retrieved at 1-4 weeks. Total RNAs were extracted from mid-portion of graft flow surfaces, and RT-PCR for vWF, SM myosin heavy chain (MHC), and SM alpha-actin were performed and expressed as a ratio to the ribosome s17 signal. SM MHC and vWF mRNA expression was low at 1-2 weeks but elevated at 3-4 weeks (P < 0.05). However, SM alpha-actin mRNA levels were expressed consistently throughout the study period. At 3-4 weeks, vWF mRNA expression was inversely correlated to thrombus formation on the graft flow surface. Increased expressions of SM MHC and vWF mRNA corresponded to the formation of neointima and an endothelial layer at the later stages. However, SM alpha-actin mRNA expression did not vary during the healing process. The application of RT-PCR should permit further studies of gene regulation in the early vascular graft healing process in vivo. This model can also be used to study the molecular events that are involved in SM cell differentiation.
Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.
Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi
2014-06-01
We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.
Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes
2012-01-01
Background Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be used for collecting RNA samples, but rigorous testing of their capacity to withstand adverse storage conditions has not been fully explored. Methods Three gametocyte dilutions: 10/μL, 1.0/μL and 0.1/μL were spotted onto Whatman™ 903 Protein Saver Cards, FTA Classic Cards and 3MM filter papers that were stored under frozen, cold chain or tropical conditions for up to 13 weeks . RNA was extracted, then detected by quantitative nucleic acid sequence-based amplification (QT-NASBA) and reverse-transcriptase PCR (RT-PCR). Results Successful gametocyte detection was more frequently observed from the Whatman 903 Protein Saver Card compared to the Whatman FTA Classic Card, by both techniques (p < 0.0001). When papers were stored at higher temperatures, a loss in sensitivity was experienced for the FTA Classic Card but not the 903 Protein Saver Card or Whatman 3MM filter paper. The sensitivity of gametocyte detection was decreased when papers were stored at high humidity. Conclusions This study indicates the Whatman 903 Protein Saver Card is better for Pfs25 mRNA sampling compared to the Whatman FTA Classic Card, and that the Whatman 3MM filter paper may prove to be a satisfactory cheaper option for Pfs25 mRNA sampling. When appropriately dried, filter papers provide a useful approach to Pfs25 mRNA sampling, especially in settings where storage in RNA-protecting buffer is not possible. PMID:22873569
Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes.
Jones, Sophie; Sutherland, Colin J; Hermsen, Cornelus; Arens, Theo; Teelen, Karina; Hallett, Rachel; Corran, Patrick; van der Vegte-Bolmer, Marga; Sauerwein, Robert; Drakeley, Chris J; Bousema, Teun
2012-08-08
Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be used for collecting RNA samples, but rigorous testing of their capacity to withstand adverse storage conditions has not been fully explored. Three gametocyte dilutions: 10/μL, 1.0/μL and 0.1/μL were spotted onto Whatman™ 903 Protein Saver Cards, FTA Classic Cards and 3MM filter papers that were stored under frozen, cold chain or tropical conditions for up to 13 weeks . RNA was extracted, then detected by quantitative nucleic acid sequence-based amplification (QT-NASBA) and reverse-transcriptase PCR (RT-PCR). Successful gametocyte detection was more frequently observed from the Whatman 903 Protein Saver Card compared to the Whatman FTA Classic Card, by both techniques (p<0.0001). When papers were stored at higher temperatures, a loss in sensitivity was experienced for the FTA Classic Card but not the 903 Protein Saver Card or Whatman 3MM filter paper. The sensitivity of gametocyte detection was decreased when papers were stored at high humidity. This study indicates the Whatman 903 Protein Saver Card is better for Pfs25 mRNA sampling compared to the Whatman FTA Classic Card, and that the Whatman 3MM filter paper may prove to be a satisfactory cheaper option for Pfs25 mRNA sampling. When appropriately dried, filter papers provide a useful approach to Pfs25 mRNA sampling, especially in settings where storage in RNA-protecting buffer is not possible.
Bell, Eric L.; Klimova, Tatyana A.; Eisenbart, James; Schumacker, Paul T.; Chandel, Navdeep S.
2007-01-01
Physiological hypoxia extends the replicative life span of human cells in culture. Here, we report that hypoxic extension of replicative life span is associated with an increase in mitochondrial reactive oxygen species (ROS) in primary human lung fibroblasts. The generation of mitochondrial ROS is necessary for hypoxic activation of the transcription factor hypoxia-inducible factor (HIF). The hypoxic extension of replicative life span is ablated by a dominant negative HIF. HIF is sufficient to induce telomerase reverse transcriptase mRNA and telomerase activity and to extend replicative life span. Furthermore, the down-regulation of the von Hippel-Lindau tumor suppressor protein by RNA interference increases HIF activity and extends replicative life span under normoxia. These findings provide genetic evidence that hypoxia utilizes mitochondrial ROS as signaling molecules to activate HIF-dependent extension of replicative life span. PMID:17562866
Santana, Flávia A; Nunes, Francis M F; Vieira, Carlos U; Machado, Maria Alice M S; Kerr, Warwick E; Silva, Wilson A; Bonetti, Ana Maria
2006-03-01
We have compared gene expression, using the Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR) technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.
Hackenberg, R; Loos, S; Nia, A H; Kunzmann, R; Schulz, K D
1998-01-01
MFE-280 endometrial cancer cells express PP14 (placental protein 14) in vitro. PP14 is normally found in the secretory endometrium and in placental tissue. MFE-280 cells, which are tumorigenic in nude mice, were derived from a recurrent, poorly differentiated endometrial carcinoma. The cells were initially grown in suspension culture and later transferred to monolayer cultures. Karyotyping revealed near-diploidy with a complex heterogeneous aberration pattern. MFE-280 cells were positive for the cytokeratins 7, 8, 18 and 19 as well as for vimentin. The expression of PP14 in MFE-280 cells was demonstrated by immunochemistry and reverse transcriptase--polymerase chain reaction. PP14-mRNA was also detected in one out of five endometrial cancer specimen. In tumor tissue the expression of PP14 was not dependent on progestins.
Shayakhmetova, Ganna M; Bondarenko, Larysa B; Matvienko, Anatoliy V; Kovalenko, Valentina M
2014-09-01
The aim of the study was to investigate the correlation between spermatogenesis disorders and CYP2E1 mRNA contents in testes of rats with experimental alcoholism or type I diabetes. Two pathological states characterized by CYP2E1 induction were simulated on Wistar male rats: experimental alcoholism and type I diabetes. As controls for each state, equal number of animals (of the same age and weight) were used. Morphological evaluation of rat testes was carried out. The spermatogenic epithelium state was estimated by four points system. CYP2E1 mRNA expression was rated by method of reverse transcriptase polymerase chain reaction. Pearson correlation coefficients were used for describing relationships between variables. The presence of alcoholism and diabetes-mediated quantitative and qualitative changes in male rat spermatogenic epithelium in comparison with norm has been demonstrated. The increased levels of testes CYP2E1 have been fixed simultaneously. CYP2E1 mRNA content negatively strongly correlated with spermatogenic index value (r=-0.99; P<0.001) and positively strongly correlated with epithelium desquamation occurrence (r=0.99; P<0.001) in testes of rats with chronic alcoholism. The strong correlation between CYP2E1 mRNA content and number of spermatogonia (r=0.99; P<0.001) and "windows" occurrence (r=0.96; P<0.001) has been fixed in diabetic rats testes. Present investigation has demonstrated that the testicular failure following chronic ethanol consumption and diabetes type I in male rats accompanied CYP2E1 mRNA over-expression in testes. The correlation between the levels of CYP2E1 mRNA in testes and spermatogenesis disorders allow supposing the involvement of CYP2E1 into the non-specific pathogenetic mechanisms of male infertility under above-mentioned pathologies. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Gamma-irradiated bacterial preparation having anti-tumor activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.
1999-11-16
This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.
Tenofovir-related nephrotoxicity: case report and review of the literature.
James, Christopher W; Steinhaus, Mary C; Szabo, Susan; Dressier, Robert M
2004-03-01
Tenofovir is a nucleotide reverse transcriptase inhibitor for treatment of human immunodeficiency virus (HIV) infection. Several cases of renal failure associated with tenofovir therapy recently have been reported. A 54-year-old man with HIV experienced decreasing renal function and Fanconi's syndrome secondary to tenofovir therapy. His condition gradually improved after discontinuation of the drug. The available medical literature for reported cases of tenofovir-related nephrotoxicity indicates that this complication is apparently rare. However, our case report and literature review underscore the importance of monitoring renal function when treating patients with any nucleotide reverse transcriptase inhibitor.
Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali
2018-01-01
Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (P<0.001). Treadmill exercise (P=0.972) and running wheel exercise (P=0.839) had no significant effects on CYP19 mRNA expression compared to the PCOS group. mRNA expression of StAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.
Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein
Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.
2016-01-01
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro.
Ortega, Joseph T; Suárez, Alirica I; Serrano, Maria L; Baptista, Jani; Pujol, Flor H; Rangel, Hector R
2017-10-12
Plant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside). Compounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay. Both flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition. The results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity.
Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns
Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.
2010-01-01
Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989
Fogel, Jessica M; Clarke, William; Kulich, Michal; Piwowar-Manning, Estelle; Breaud, Autumn; Olson, Matthew T; Marzinke, Mark A; Laeyendecker, Oliver; Fiamma, Agnès; Donnell, Deborah; Mbwambo, Jessie K K; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J; Eshleman, Susan H
2017-02-01
Antiretroviral (ARV) drug treatment benefits the treated individual and can prevent HIV transmission. We assessed ARV drug use in a community-randomized trial that evaluated the impact of behavioral interventions on HIV incidence. Samples were collected in a cross-sectional survey after a 3-year intervention period. ARV drug testing was performed using samples from HIV-infected adults at 4 study sites (Zimbabwe; Tanzania; KwaZulu-Natal and Soweto, South Africa; survey period 2009-2011) using an assay that detects 20 ARV drugs (6 nucleoside/nucleotide reverse transcriptase inhibitors, 3 nonnucleoside reverse transcriptase inhibitors, and 9 protease inhibitors; maraviroc; raltegravir). ARV drugs were detected in 2011 (27.4%) of 7347 samples; 88.1% had 1 nonnucleoside reverse transcriptase inhibitors ± 1-2 nucleoside/nucleotide reverse transcriptase inhibitors. ARV drug detection was associated with sex (women>men), pregnancy, older age (>24 years), and study site (P < 0.0001 for all 4 variables). ARV drugs were also more frequently detected in adults who were widowed (P = 0.006) or unemployed (P = 0.02). ARV drug use was more frequent in intervention versus control communities early in the survey (P = 0.01), with a significant increase in control (P = 0.004) but not in intervention communities during the survey period. In KwaZulu-Natal, a 1% increase in ARV drug use was associated with a 0.14% absolute decrease in HIV incidence (P = 0.018). This study used an objective, biomedical approach to assess ARV drug use on a population level. This analysis identified factors associated with ARV drug use and provided information on ARV drug use over time. ARV drug use was associated with lower HIV incidence at 1 study site.
Update on HIV-1 acquired and transmitted drug resistance in Africa.
Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise
2015-01-01
The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.
Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M
2016-04-01
Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.
Antiviral Activity of MK-4965, a Novel Nonnucleoside Reverse Transcriptase Inhibitor▿
Lai, Ming-Tain; Munshi, Vandna; Touch, Sinoeun; Tynebor, Robert M.; Tucker, Thomas J.; McKenna, Philip M.; Williams, Theresa M.; DiStefano, Daniel J.; Hazuda, Daria J.; Miller, Michael D.
2009-01-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are the mainstays of therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, the effectiveness of NNRTIs can be hampered by the development of resistance mutations which confer cross-resistance to drugs in the same class. Extensive efforts have been made to identify new NNRTIs that can suppress the replication of the prevalent NNRTI-resistant viruses. MK-4965 is a novel NNRTI that possesses both diaryl ether and indazole moieties. The compound displays potency at subnanomolar concentrations against wild-type (WT), K103N, and Y181C reverse transcriptase (RT) in biochemical assays. MK-4965 is also highly potent against the WT virus and two most prevalent NNRTI-resistant viruses (viruses that harbor the K103N or the Y181C mutation), against which it had 95% effective concentrations (EC95s) of <30 nM in the presence of 10% fetal bovine serum. The antiviral EC95 of MK-4965 was reduced approximately four- to sixfold when it was tested in 50% human serum. Moreover, MK-4965 was evaluated with a panel of 15 viruses with NNRTI resistance-associated mutations and showed a superior mutant profile to that of efavirenz but not to that of etravirine. MK-4965 was similarly effective against various HIV-1 subtypes and viruses containing nucleoside reverse transcriptase inhibitor or protease inhibitor resistance-conferring mutations. A two-drug combination study showed that the antiviral activity of MK-4965 was nonantagonistic with each of the 18 FDA-licensed drugs tested vice versa in the present study. Taken together, these in vitro data show that MK-4965 possesses the desired properties for further development as a new NNRTI for the treatment of HIV-1 infection. PMID:19289522
Yun, Bo Seong; Seong, Seok Ju; Cha, Dong Hyun; Kim, Ji Yeon; Kim, Mi-La; Shim, Jeong Yun; Park, Ji Eun
2015-08-01
To evaluate changes in proliferating and apoptotic markers of myoma tissue from patients treated with a selective progesterone receptor modulator (SPRM) or GnRH agonist by measuring expression of PDGF-A mRNA, IGF-1 mRNA, bcl-2 mRNA, and PCNA and caspase-3 protein. Between December 2013 and July 2014, women with symptomatic leiomyoma were divided into control (no treatment before surgery), SPRM (treatment with ulipristal acetate [SPRM] for 3 months before surgery), and GnRHa (treatment with leuprolide acetate [GnRH agonist] for 3 months before surgery) groups. Tissue specimens were collected from the myoma core and normal myometrium of all patients. The expression of mRNA and protein was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction and Western blot. A total of 38 patients were enrolled (control group, n=14; SPRM group, n=13; GnRHa group, n=11). PDGF-A mRNA expression was lower in both the myoma core and normal myometrium tissues of the SPRM compared with the control group, but there was no difference between the control and GnRHa group. There were also no group differences in bcl-2 mRNA or IGF-1 mRNA expression. Both PCNA and caspase-3 protein expression were higher in the leiomyoma tissue of the SPRM compared with the control group, but there was no difference between the control and GnRHa groups in the expression of either protein. Both proliferation and apoptosis were increased in the leiomyoma of patients after SPRM treatment, but there was no change following GnRH agonist treatment, in vivo. However, PDGF-A mRNA was decreased after SPRM treatment, indicating a dual effect of progesterone on the regulation of growth factors. Furthermore, there was an increase in caspase-3 protein, but not bcl-2 mRNA, expression in the SPRM group suggesting that SPRM may exert its effects in pathways other than the bcl-2 apoptotic pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Okello, John B. A.; Rodriguez, Linda; Poinar, Debi; Bos, Kirsten; Okwi, Andrew L.; Bimenya, Gabriel S.; Sewankambo, Nelson K.; Henry, Kenneth R.; Kuch, Melanie; Poinar, Hendrik N.
2010-01-01
Background The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues. Methodology/Principal Findings We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∼1,000 copies, seven of which were sensitive to ∼100 copies, while only 5 were sensitive to ∼10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays. Conclusions/Significance We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation. PMID:21085668
Primer design for a prokaryotic differential display RT-PCR.
Fislage, R; Berceanu, M; Humboldt, Y; Wendt, M; Oberender, H
1997-01-01
We have developed a primer set for a prokaryotic differential display of mRNA in the Enterobacteriaceae group. Each combination of ten 10mer and ten 11mer primers generates up to 85 bands from total Escherichia coli RNA, thus covering expressed sequences of a complete bacterial genome. Due to the lack of polyadenylation in prokaryotic RNA the type T11VN anchored oligonucleotides for the reverse transcriptase reaction had to be replaced with respect to the original method described by Liang and Pardee [ Science , 257, 967-971 (1992)]. Therefore, the sequences of both the 10mer and the new 11mer oligonucleotides were determined by a statistical evaluation of species-specific coding regions extracted from the EMBL database. The 11mer primers used for reverse transcription were selected for localization in the 3'-region of the bacterial RNA. The 10mer primers preferentially bind to the 5'-end of the RNA. None of the primers show homology to rRNA or other abundant small RNA species. Randomly sampled cDNA bands were checked for their bacterial origin either by re-amplification, cloning and sequencing or by re-amplification and direct sequencing with 10mer and 11mer primers after asymmetric PCR. PMID:9108168
Primer design for a prokaryotic differential display RT-PCR.
Fislage, R; Berceanu, M; Humboldt, Y; Wendt, M; Oberender, H
1997-05-01
We have developed a primer set for a prokaryotic differential display of mRNA in the Enterobacteriaceae group. Each combination of ten 10mer and ten 11mer primers generates up to 85 bands from total Escherichia coli RNA, thus covering expressed sequences of a complete bacterial genome. Due to the lack of polyadenylation in prokaryotic RNA the type T11VN anchored oligonucleotides for the reverse transcriptase reaction had to be replaced with respect to the original method described by Liang and Pardee [ Science , 257, 967-971 (1992)]. Therefore, the sequences of both the 10mer and the new 11mer oligonucleotides were determined by a statistical evaluation of species-specific coding regions extracted from the EMBL database. The 11mer primers used for reverse transcription were selected for localization in the 3'-region of the bacterial RNA. The 10mer primers preferentially bind to the 5'-end of the RNA. None of the primers show homology to rRNA or other abundant small RNA species. Randomly sampled cDNA bands were checked for their bacterial origin either by re-amplification, cloning and sequencing or by re-amplification and direct sequencing with 10mer and 11mer primers after asymmetric PCR.
Ngai, Patrick H K; Ng, T B
2003-11-14
From the fruiting bodies of the edible mushroom Lentinus edodes, a novel protein designated lentin with potent antifungal activity was isolated. Lentin was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The N-terminal sequence of lentin manifested similarity to endoglucanase. Lentin, which had a molecular mass of 27.5 kDa, inhibited mycelial growth in a variety of fungal species including Physalospora piricola, Botrytis cinerea and Mycosphaerella arachidicola. Lentin also exerted an inhibitory activity on HIV-1 reverse transcriptase and proliferation of leukemia cells.
Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.
1998-01-01
Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518
HIV Resistance Prediction to Reverse Transcriptase Inhibitors: Focus on Open Data.
Tarasova, Olga; Poroikov, Vladimir
2018-04-19
Research and development of new antiretroviral agents are in great demand due to issues with safety and efficacy of the antiretroviral drugs. HIV reverse transcriptase (RT) is an important target for HIV treatment. RT inhibitors targeting early stages of the virus-host interaction are of great interest for researchers. There are a lot of clinical and biochemical data on relationships between the occurring of the single point mutations and their combinations in the pol gene of HIV and resistance of the particular variants of HIV to nucleoside and non-nucleoside reverse transcriptase inhibitors. The experimental data stored in the databases of HIV sequences can be used for development of methods that are able to predict HIV resistance based on amino acid or nucleotide sequences. The data on HIV sequences resistance can be further used for (1) development of new antiretroviral agents with high potential for HIV inhibition and elimination and (2) optimization of antiretroviral therapy. In our communication, we focus on the data on the RT sequences and HIV resistance, which are available on the Internet. The experimental methods, which are applied to produce the data on HIV-1 resistance, the known data on their concordance, are also discussed.
Pandey, Rajan Kumar; Sharma, Drista; Ojha, Rupal; Bhatt, Tarun Kumar; Prajapati, Vijay Kumar
2018-05-09
The emergence of mutations leading to drug resistance is the main cause of therapeutic failure in the human HIV infection. Chemical system biology approach has drawn great attention to discover new antiretroviral hits with high efficacy and negligible toxicity, which can be used as a prerequisite for HIV drug resistance global action plan 2017-21. To discover potential hits, we docked 49 antiretroviral analogs (n = 6294) against HIV-1 reverse transcriptase Q151M mutant & its wild-type form and narrow downed their number in three sequential modes of docking using Schrödinger suite. Later on, 80 ligands having better docking score than reference ligands (tenofovir and lamivudine) were screened for ADME, toxicity prediction, and binding energy estimation. Simultaneously, the area under the curve (AUC) was estimated using receiver operating characteristics (ROC) curve analysis to validate docking protocols. Finally, single point energy and molecular dynamics simulation approaches were performed for best two ligands (L3 and L14). This study reveals the antiretroviral efficacy of obtained two best ligands and delivers the hits against HIV-1 reverse transcriptase Q151M mutant. Copyright © 2018 Elsevier B.V. All rights reserved.
Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano
2017-01-17
Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.
Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano
2017-01-01
Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth. This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors. PMID:27926505
Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J
1994-01-01
We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096
Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.
Debyser, Z.; De Clercq, E.
1996-01-01
The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406
Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J
1994-02-01
We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.
Do non-nucleoside reverse transcriptase inhibitors contribute to lipodystrophy?
Nolan, David
2005-01-01
Lipodystrophy complications, including lipoatrophy (pathological fat loss) and metabolic complications, have emerged as important long-term toxicities associated with antiretroviral therapy in the current era. The wealth of data that has accumulated over the past 6 years has now clarified the contribution of specific antiretroviral drugs to the risk of these clinical endpoints, with evidence that lipoatrophy is strongly associated with the choice of nucleoside reverse transcriptase inhibitor therapy (specifically, stavudine and to a lesser extent zidovudine). The aetiological basis of metabolic complications of antiretroviral therapy has proven to be complex, in that the risk appears to be modulated by a number of lifestyle factors that have made the metabolic syndrome highly prevalent in the general population, with additional contributions from HIV disease status itself, as well as from individual drugs within the HIV protease inhibitor class. The currently licensed non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs, efavirenz and nevirapine, have been proven to have a favourable safety profile in terms of lipodystrophy complications. However, it must be noted that NNRTI drugs also have individual toxicity profiles that must be accounted for when considering and/or monitoring their use in the treatment of HIV infection.
Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca
2015-08-01
The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission.
Hahnvajanawong, Chariya; Chaiyagool, Jariya; Seubwai, Wunchana; Bhudhisawasdi, Vajarabhongsa; Namwat, Nisana; Khuntikeo, Narong; Sripa, Banchob; Pugkhem, Ake; Tassaneeyakul, Wichittra
2012-01-01
AIM: To determine whether expression of certain enzymes related to 5-fluorouracil (5-FU) metabolism predicts 5-FU chemosensitivity in cholangiocarcinoma (CCA). METHODS: The histoculture drug response assay (HDRA) was performed using surgically resected CCA tissues. Tumor cell viability was determined morphologically with hematoxylin and eosin- and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-stained tissues. The mRNA expression of thymidine phosphorylase (TP), orotate phosphoribosyl transferase (OPRT), thymidylate synthase (TS), and dihydropyrimidine dehydrogenase (DPD) was determined with real-time reverse transcriptase-polymerase chain reaction. The levels of gene expression and the sensitivity to 5-FU were evaluated. RESULTS: Twenty-three CCA tissues were obtained from patients who had been diagnosed with intrahepatic CCA and who underwent surgical resection at Srinagarind Hospital, Khon Kaen University from 2007 to 2009. HDRA was used to determine the response of these CCA tissues to 5-FU. Based on the dose-response curve, 200 μg/mL 5-FU was selected as the test concentration. The percentage of inhibition index at the median point was selected as the cut-off point to differentiate the responding and non-responding tumors to 5-FU. When the relationship between TP, OPRT, TS and DPD mRNA expression levels and the sensitivity of CCA tissues to 5-FU was examined, only OPRT mRNA expression was significantly correlated with the response to 5-FU. The mean expression level of OPRT was significantly higher in the responder group compared to the non-responder group (0.41 ± 0.25 vs 0.22 ± 0.12, P < 0.05). CONCLUSION: OPRT mRNA expression may be a useful predictor of 5-FU chemosensitivity of CCA. Whether OPRT mRNA could be used to predict the success of 5-FU chemotherapy in CCA patients requires confirmation in patients. PMID:22912546
Li, Xiaofeng; Kong, Lixia; Liao, Suhuan; Lu, Jing; Ma, Lin; Long, Xiaohua
2017-01-01
Background/Aim: This study aims to explore the expression and significance of feces cyclooxygensae-2 (COX-2) mRNA in colorectal cancer and colorectal adenomas. Materials and Methods: The expression of feces COX-2 mRNA in colorectal cancer (n = 28), colorectal adenomas (n = 54), and normal control group (n = 11) were examined by reverse transcriptase polymerase chain reaction (RT-PCR). The positive rate of fecal occult blood test (FOBT) were detected in colorectal cancer (n = 30), colorectal adenomas (n = 56), and normal control group (n = 11); the sensitivity of the two methods was also compared. Results: The positive rate of feces COX-2 mRNA in colorectal cancer was 82.1% (25/28), which was significantly higher than colorectal adenomas 59.3% (32/54), and normal tissues 18.2% (2/11), the difference being significant between the three groups (χ2= 13.842, P = 0.001). The positive rate of FOBT in colorectal cancer was 73.3% (10/30), which was significantly higher than colorectal adenomas 10.7% (6/56) and normal tissues 9.1% (1/11), the difference being significant between these three groups (χ2= 7.525, P = 0.023). There was no significant association between feces COX-2 expression and various clinical pathological features of colorectal cancer and colorectal adenomas (P > 0.05). The sensitivity of the RT-PCR method is higher than FOBT, however, the specificity of FOBT is slightly higher than RT-PCR. Conclusions: High expression of feces COX-2 mRNA in colorectal adenomas and colorectal cancer is a common event; it is an early event in the development of colorectal adenomas to colorectal cancer. Feces COX-2 mRNA has a high sensitivity for detect colorectal cancer; combination with FOBT will be the best alternative. Feces COX-2 can be potentially used in the early diagnosis and screening of colorectal cancer. PMID:28139497
Li, Xiaofeng; Kong, Lixia; Liao, Suhuan; Lu, Jing; Ma, Lin; Long, Xiaohua
2017-01-01
This study aims to explore the expression and significance of feces cyclooxygensae-2 (COX-2) mRNA in colorectal cancer and colorectal adenomas. The expression of feces COX-2 mRNA in colorectal cancer (n = 28), colorectal adenomas (n = 54), and normal control group (n = 11) were examined by reverse transcriptase polymerase chain reaction (RT-PCR). The positive rate of fecal occult blood test (FOBT) were detected in colorectal cancer (n = 30), colorectal adenomas (n = 56), and normal control group (n = 11); the sensitivity of the two methods was also compared. The positive rate of feces COX-2 mRNA in colorectal cancer was 82.1% (25/28), which was significantly higher than colorectal adenomas 59.3% (32/54), and normal tissues 18.2% (2/11), the difference being significant between the three groups (χ2= 13.842,P= 0.001). The positive rate of FOBT in colorectal cancer was 73.3% (10/30), which was significantly higher than colorectal adenomas 10.7% (6/56) and normal tissues 9.1% (1/11), the difference being significant between these three groups (χ2= 7.525,P= 0.023). There was no significant association between feces COX-2 expression and various clinical pathological features of colorectal cancer and colorectal adenomas (P > 0.05). The sensitivity of the RT-PCR method is higher than FOBT, however, the specificity of FOBT is slightly higher than RT-PCR. High expression of feces COX-2 mRNA in colorectal adenomas and colorectal cancer is a common event; it is an early event in the development of colorectal adenomas to colorectal cancer. Feces COX-2 mRNA has a high sensitivity for detect colorectal cancer; combination with FOBT will be the best alternative. Feces COX-2 can be potentially used in the early diagnosis and screening of colorectal cancer.
Viprey, Virginie F; Gregory, Walter M; Corrias, Maria V; Tchirkov, Andrei; Swerts, Katrien; Vicha, Ales; Dallorso, Sandro; Brock, Penelope; Luksch, Roberto; Valteau-Couanet, Dominique; Papadakis, Vassilios; Laureys, Genevieve; Pearson, Andrew D; Ladenstein, Ruth; Burchill, Susan A
2014-04-01
To evaluate the hypothesis that detection of neuroblastoma mRNAs by reverse transcriptase quantitative polymerase chain reaction (RTqPCR) in peripheral blood (PB) and bone marrow aspirates (BM) from children with stage 4 neuroblastoma are clinically useful biomarkers of risk. RTqPCR for paired-like homeobox 2b (PHOX2B), tyrosine hydroxylase (TH), and doublecortin (DCX) mRNA in PB and BM of children enrolled onto the High-Risk Neuroblastoma Trial-1 of the European Society of Pediatric Oncology Neuroblastoma Group (HR-NBL1/SIOPEN) was performed at diagnosis and after induction therapy. High levels of TH, PHOX2B, or DCX mRNA in PB or BM at diagnosis strongly predicted for worse event-free survival (EFS) and overall survival (OS) in a cohort of 290 children. After induction therapy, high levels of these mRNAs predicted worse EFS and OS in BM but not in PB. Combinations of mRNAs in BM did not add to the predictive power of any single mRNA. However, in the original (n = 182) and validation (n = 137) PB cohorts, high TH (log10TH > 0.8) or high PHOX2B (log10PHOX2B > 0.28) identify 19% of children as ultrahigh risk, with 5-year EFS and OS rates of 0%; OS rate was 25% (95% CI, 16% to 36%) and EFS rate was 38% (95% CI, 28% to 49%) in the remaining children. The magnitude of reduction in mRNA level between diagnosis and postinduction therapy in BM or PB was not of additional predictive value. High levels of TH and PHOX2B mRNA in PB at diagnosis objectively identify children with ultrahigh-risk disease who may benefit from novel treatment approaches. The level of TH, PHOX2B, and DCX mRNA in BM and/or PB at diagnosis might contribute to an algorithm to improve stratification of children for treatment.
Bilichodmath, Shivaprasad; Nair, Sruthi K; Bilichodmath, Rekha; Mangalekar, Sachin B
2018-05-01
Several studies have proven the existence of herpesviruses in periodontal pockets of chronic and aggressive periodontitis patients. Recently discovered interferon lambda (IFN-λ) has antiviral properties and is induced by herpesviruses. The present study was aimed at quantitative analysis of mRNA expression of IFN-λs (IFN-λ1, IFN-λ2, IFN-λ3) in the gingival tissues of chronic and aggressive periodontitis patients. A total of 90 participants (50 males and 40 females; age ranging from 19 to 50 years, mean age 31.50±7.8) were categorized into three groups as healthy participants, chronic periodontitis patients and aggressive periodontitis patients. mRNA expression of IFN-λs in gingival tissues was estimated using reverse transcriptase polymerase chain reaction and was correlated with clinical parameters such as gingival index (GI), probing pocket depth (PPD), and clinical attachment level (CAL). mRNA of IFN-λ1, IFN-λ2 and IFN-λ3 was expressed in gingival tissues of healthy participants, chronic and aggressive periodontitis patients. Highest level of IFN-λ1 was observed in aggressive periodontitis patients (3.049±9.793), whereas IFN-λ2 (4.322±11.310) and IFN-λ3 (11.932±27.479) were maximum in chronic periodontitis patients. The difference in the mRNA expression of IFN-λ1 (p = 0.008) and IFN-λ3 (p = 0.043) among three groups was statistically significant CONCLUSION: Increased quantity of IFN-λs in chronic and aggressive periodontitis patients suggests a role in periodontitis. Variation in the expression of IFN-λ1 and IFN-λ3 in periodontitis patients needs to be further evaluated. The mRNA expression of antiviral IFN-λs in gingival tissues might enhance our understanding related to viral pathogenesis of periodontal diseases. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.
Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder
2011-01-01
Background The autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN) 3/4, neurexin (NRXN) 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. Methods We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. Results The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Conclusions Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients. PMID:21615902
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Xiu, Zijuan; Shen, Hui; Tian, Ye; Xia, Liping; Lu, Jing
2015-04-01
To measure the levels of Tumor necrosis factor (TNF)-like ligand 1A (TL1A) and decoy receptor 3 (DcR3) in serum and synovial fluid (SF) of patients with rheumatoid arthritis (RA). To evaluate the effect of recombinant human (rh) TL1A on interleukin (IL)-17 production and IL-17mRNA expression. The serum and SF levels of TL1A and DcR3, and the production of IL-17 by rhTL1A-treated PBMC were measured by enzyme-linked immunosorbent assay (ELISA). The expression of IL-17 mRNA by rhTL1A-treated PBMC was measured by real-time reverse transcriptase polymerase chain reaction (RT-PCR). We also tested the change of TL1A and DcR3 level following TNF-α blockade therapy. Serum TL1A and DcR3 levels were higher in RA patients. This increase was more significant in RF and anti-CCP positive patients. TL1A and DcR3 levels were higher in SF samples than in paired sera. TL1A and DcR3 decreased after anti-TNF treatment. rhTL1A increased the production of IL-17 protein and the expression of IL-17mRNA. TL1A and DcR3 may be of pathogenic and potentially of therapeutic importance in RA patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M
2018-01-01
Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.
copia-like retrotransposons are ubiquitous among plants.
Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R
1992-01-01
Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734
Di Fabio, Francesco; Alvarado, Carlos; Majdan, Agnieszka; Gologan, Adrian; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark
2007-11-01
The human mineralocorticoid receptor (MR) is a steroid receptor widely expressed in colorectal mucosa. A significant role for the MR in the reduction of vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA levels has been demonstrated in vitro. To evaluate a potential contribution of MR to colorectal carcinoma progression, we analyzed the expression of MR in relation to VEGFR-2. Fresh human colorectal cancer tissue and adjacent normal mucosa were harvested from 48 consecutive patients. MR and VEGFR-2 mRNA expression levels were determined by real-time reverse transcriptase-polymerase chain reaction and correlated with clinicopathological parameters. A decline of MR expression was observed in all carcinomas compared to normal mucosa. Expression of MR was a median of 11-fold lower in carcinoma compared to the normal mucosa, irrespective of the location, size, stage, and differentiation. MR was a median of 20-fold underexpressed in carcinomas with VEGFR-2 overexpression vs only 9-fold in carcinomas with VEGFR-2 underexpression (p = 0.035, Mann-Whitney test). These findings support the hypothesis that reduction of MR expression may be one of the early events involved in colorectal carcinoma progression. The inverse association between MR and VEGFR-2 expression in carcinoma suggests a potential tumor-suppressive function for MR.
Elevation of macrophage-derived chemokine in eosinophilic pneumonia: a role of alveolar macrophages.
Manabe, Kazuyoshi; Nishioka, Yasuhiko; Kishi, Jun; Inayama, Mami; Aono, Yoshinori; Nakamura, Yoichi; Ogushi, Fumitaka; Bando, Hiroyasu; Tani, Kenji; Sone, Saburo
2005-02-01
Macrophage-derived chemokine (MDC/CCL22) and thymus-and activation-regulated chemokine (TARC/CCL17) are ligands for CC chemokine receptor 4. Recently, TARC has been reported to play a role in the pathogenesis of idiopathic eosinophilic pneumonia (IEP). The purpose of this study was to evaluate the role of MDC in IEP and other interstitial lung diseases (ILDs). MDC and TARC in the bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay in patients with ILDs and healthy volunteers (HV). We also examined the expression of MDC mRNA in alveolar macrophages (AM) by real-time quantitative reverse transcriptase-polymerase chain reaction. Both MDC and TARC were detected only in BALF obtained from IEP patients. The concentration of MDC was higher than that of TARC in all cases. The level of MDC in IEP correlated with that of TARC. AM from IEP patients expressed a significantly higher amount of MDC than that from HV at the levels of protein and mRNA. MDC in BALF from IEP dramatically decreased when patients achieved remission. These findings suggest that MDC, in addition to TARC, might be involved in the pathogenesis of IEP, and AM play a role in the elevation of MDC in IEP.
Comparative proteomic analysis of outer membrane protein 43 (omp43)-deficient Bartonella henselae.
Kang, Jun-Gu; Lee, Hee-Woo; Ko, Sungjin; Chae, Joon-Seok
2018-01-31
Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae -derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δ omp 43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae . To study the differences in proteomic expression between WT and Δ omp 43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tld D, efp, ntr X, pdh A, pur B, and ATPA mRNA expression and decreases in Rho and yfe A mRNA expression were confirmed in Δ omp 43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.
Zhao, Huiying; Qin, Xiujiao; Wang, Shuai; Sun, Xiwei; Dong, Bin
2017-10-01
Investigating the determinants and dynamics of atherosclerotic plaque instability is a key area of current cardiovascular research. Extracellular matrix degradation from excessive proteolysis induced by enzymes such as cathepsin K (Cat K) is implicated in the pathogenesis of unstable plaques. The current study assessed the expression of Cat K in human unstable atherosclerotic plaques. Specimens of popliteal arteries with atherosclerotic plaques were classified as stable (<40% lipid core plaque area; n=6) or unstable (≥40% lipid core plaque area; n=14) based on histopathological examinations of hematoxylin and eosin stained sections. The expression of Cat K and cystatin C (Cys C) were assessed by immunohistochemical examination and levels of Cat K mRNA were detected by semi-quantitative reverse transcriptase polymerase chain reaction. Morphological changes including a larger lipid core, endothelial proliferation with foam cells and destruction of internal elastic lamina were observed in unstable atherosclerotic plaques. In unstable plaques, the expression of Cat K protein and mRNA was upregulated, whereas Cys C protein expression was downregulated. The interplay between Cat K and Cys C may underlie the progression of plaques from stable to unstable and the current study indicated that Cat K and Cys C are potential targets for preventing and treating vulnerable atherosclerotic plaque ruptures.
Van den Ende, Wim; Michiels, An; Van Wonterghem, Dominik; Vergauwen, Rudy; Van Laere, André
2000-01-01
Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels. PMID:10806226
The HGF Receptor c-Met Is Overexpressed in Esophageal Adenocarcinoma1
Herrera, Luis J; El-Hefnawy, Talal; Queiroz de Oliveira, Pierre E; Raja, Siva; Finkelstein, Sydney; Gooding, William; Luketich, James D; Godfrey, Tony E; Hughes, Steven J
2005-01-01
Abstract The hepatocyte growth factor (HGF) receptor, Met, has established oncogenic properties; however, its expression and function in esophageal adenocarcinoma (EA) remain poorly understood. We aimed to determine the expression and potential alterations in Met expression in EA. Met expression was investigated in surgical specimens of EA, Barrett's esophagus (BE), and normal esophagus (NE) using immunohistochemistry (IHC) and quantitative reverse transcriptase polymerase chain reaction. Met expression, phosphorylation, and the effect of COX-2 inhibition on expression were examined in EA cell lines. IHC demonstrated intense Met immunoreactivity in all (100%) EA and dysplastic BE specimens. In contrast, minimal immunostaining was observed in BE without dysplasia or NE specimens. Met mRNA and protein levels were increased in three EA cell lines, and Met protein was phosphorylated in the absence of serum. Sequence analysis found the kinase domain of c-met to be wild type in all three EA cell lines. HGF mRNA expression was identified in two EA cell lines. In COX-2-overexpressing cells, COX-2 inhibition decreased Met expression. Met is consistently overexpressed in EA surgical specimens and in three EA cell lines. Met dysregulation occurs early in Barrett's dysplasia to adenocarcinoma sequence. Future study of Met inhibition as a potential biologic therapy for EA is warranted. PMID:15720819
Prognostic value of platelet-derived growth factor-A (PDGF-A) in gastric carcinoma.
Katano, M; Nakamura, M; Fujimoto, K; Miyazaki, K; Morisaki, T
1998-01-01
OBJECTIVE: Because our previous study indicated that PDGF-A mRNA expression in biopsy specimens might identify a subgroup of high-risk patients with gastric carcinoma, in this study we analyzed the prognostic value of platelet-derived growth factor-A (PDGF-A) gene expression in gastric carcinoma biopsy specimens. METHODS: Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to analyze the PDGF-A gene expression in 65 gastric carcinoma endoscopic biopsy specimens. The 65 patients were divided into a PDGF-A-positive group (29 patients) and a PDGF-A-negative group (36 patients). RESULTS: On the basis of 2-year follow-up data, the PDGF-A-positive group demonstrated a shorter overall survival rate compared with the PDGF-A-negative group (p < 0.0001). A similar correlation was found in 34 advanced-stage patients (p = 0.003) and in 24 advanced-stage patients who underwent a curative resection (p = 0.003). Multivariance analysis indicated that the transcription of PDGF-A gene is a potent prognostic factor that is independent of the traditional pathologic parameters. CONCLUSIONS: Expression of PDGF-A mRNA in gastric biopsy specimens may be a new preoperative prognostic parameter in gastric carcinoma. Images Figure 1. Figure 5. PMID:9527059
Kreja, Ludwika; Liedert, Astrid; Schlenker, Heiter; Brenner, Rolf E; Fiedler, Jörg; Friemert, Benedikt; Dürselen, Lutz; Ignatius, Anita
2012-10-01
The purpose of this study was to prove the effect of cyclic uniaxial intermittent strain on the mRNA expression of ligament-specific marker genes in human mesenchymal stem cells (MSC) and anterior cruciate ligament-derived fibroblasts (ACL-fibroblasts) seeded onto a novel textured poly(L-lactide) scaffold (PLA scaffold). Cell-seeded scaffolds were mechanically stimulated by cyclic uniaxial stretching. The expression of ligament matrix gene markers: collagen types I and III, fibronectin, tenascin C and decorin, as well as the proteolytic enzymes matrix metalloproteinase MMP-1 and MMP-2 and their tissue specific inhibitors TIMP-1 and TIMP-2 was investigated by analysing the mRNA expression using reverse transcriptase polymerase chain reaction and related to the static control. In ACL-fibroblasts seeded on PLA, mechanical load induced up-regulation of collagen types I and III, fibronectin and tenascin C. No effect of mechanical stimulation on the expression of ligament marker genes was found in undifferentiated MSC seeded on PLA. The results indicated that the new textured PLA scaffold could transfer the mechanical load to the ACL-fibroblasts and improved their ligament phenotype. This scaffold might be suitable as a cell-carrying component of ACL prostheses.
Lee, Ji Yoon; Pajarillo, Edward Alain B; Kim, Min Jeong; Chae, Jong Pyo; Kang, Dae-Kyung
2013-01-04
Lactobacillus johnsonii PF01 has been reported to be highly resistant to bile, a key property of probiotic microorganisms. Here, we examine the nature of the bile-salt tolerance of L. johnsonii PF01. Growth inhibition and surface morphology and physiology aberrations were observed after overnight exposure to bile stress. Quantitative proteomic profiles using iTRAQ-LC-MS/MS technology identified 8307 peptides from both untreated PF01 cells and those exposed to 0.1%, 0.2%, and 0.3% bile salts. Some 215 proteins exhibited changed levels in response to bile stress; of these, levels of 94 peptides increased while those of 121 decreased. These were classified into the following categories: stress responses, cell division, transcription, translation, nucleotide metabolism, carbohydrate transport and metabolism, cell wall biosynthesis, and amino acid biosynthesis, and 16 of unidentified function. Analysis of the mRNA expression of selected genes by quantitative reverse transcriptase-PCR verified the proteomic data. Both proteomic and mRNA data provided evidence for increased phosphotransferase activity and cell wall biosynthesis. In addition, three bile salt hydrolases were significantly upregulated by bile exposure. These findings provide a basis for future evaluations of the tolerance of potential probiotic strains toward the various gastrointestinal challenges, including bile stress.
2004-01-01
Numerous invertebrate species belonging to several phyla cannot synthesize sterols de novo and rely on a dietary source of the compound. SCPx (sterol carrier protein 2/3-oxoacyl-CoA thiolase) is a protein involved in the trafficking of sterols and oxidation of branched-chain fatty acids. We have isolated SCPx protein from Spodoptera littoralis (cotton leafworm) and have subjected it to limited amino acid sequencing. A reverse-transcriptase PCR-based approach has been used to clone the cDNA (1.9 kb), which encodes a 57 kDa protein. Northern blotting detected two mRNA transcripts, one of 1.9 kb, encoding SCPx, and one of 0.95 kb, presumably encoding SCP2 (sterol carrier protein 2). The former mRNA was highly expressed in midgut and Malpighian tubules during the last larval instar. Furthermore, constitutive expression of the gene was detected in the prothoracic glands, which are the main tissue producing the insect moulting hormone. There was no significant change in the 1.9 kb mRNA in midgut throughout development, but slightly higher expression in the early stages. Conceptual translation of the cDNA and a database search revealed that the gene includes the SCP2 sequence and a putative peroxisomal targeting signal in the C-terminal region. Also a cysteine residue at the putative active site for the 3-oxoacyl-CoA thiolase is conserved. Southern blotting showed that SCPx is likely to be encoded by a single-copy gene. The mRNA expression pattern and the gene structure suggest that SCPx from S. littoralis (a lepidopteran) is evolutionarily closer to that of mammals than to that of dipterans. PMID:15149283
Xu, Qianghua; Qin, Ye
2012-09-01
Heat shock protein 60 (HSP60) is a highly conserved and multi-functional molecular chaperone that plays an essential role in both cellular metabolism and stress response. Portunus trituberculatus is an important marine fishery and aquaculture species, and water salinity condition influenced its artificial propagations significantly. In order to investigate the function of P. trituberculatus HSP60 against osmotic stress, P. trituberculatus HSP60 gene was firstly cloned. The full-length cDNA of PtHSP60 contains 1,743 nucleotides encoding 577 amino acids with a calculated molecular weight of 61.25 kDa. Multiple alignments indicated that the deduced amino acid sequences of PtHSP60 shared a high level of identity with invertebrate and vertebrate HSP60 sequence including shrimp, fruit fly, zebrafish, and human. The expression profiles of PtHSP60 at mRNA and protein levels under salinity treatment were investigated by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. It was found that the mRNA transcripts of PtHSP60 gene varied among different tissues under normal salinity conditions, and the antennal gland showed the highest expression level among the tissues tested. As for low salinity challenge, the mRNA expression of PtHSP60 gene was higher in the gill and appendicular muscle compared with other tissues, and gill and hypodermis represented the higher gene expressions during the hyperosmotic stress, which indicated that those tissues were salinity-sensitive tissues. In addition, salinity challenges significantly altered the expression of PtHSP60 at mRNA and protein level in a salinity- and time-dependent manner in P. trituberculatus gill tissue. The results indicate that PtHSP60 played important roles in mediating the salinity stress in P. trituberculatus.
Shiraishi, H; Ishikura, S; Matsuura, K; Deyashiki, Y; Ninomiya, M; Sakai, S; Hara, A
1998-01-01
Human liver contains three isoforms (DD1, DD2 and DD4) of dihydrodiol dehydrogenase with 20alpha- or 3alpha-hydroxysteroid dehydrogenase activity; the dehydrogenases belong to the aldo-oxo reductase (AKR) superfamily. cDNA species encoding DD1 and DD4 have been identified. However, four cDNA species with more than 99% sequence identity have been cloned and are compatible with a partial amino acid sequence of DD2. In this study we have isolated a cDNA clone encoding DD2, which was confirmed by comparison of the properties of the recombinant and hepatic enzymes. This cDNA showed differences of one, two, four and five nucleotides from the previously reported four cDNA species for a dehydrogenase of human colon carcinoma HT29 cells, human prostatic 3alpha-hydroxysteroid dehydrogenase, a human liver 3alpha-hydroxysteroid dehydrogenase-like protein and chlordecone reductase-like protein respectively. Expression of mRNA species for the five similar cDNA species in 20 liver samples and 10 other different tissue samples was examined by reverse transcriptase-mediated PCR with specific primers followed by diagnostic restriction with endonucleases. All the tissues expressed only one mRNA species corresponding to the newly identified cDNA for DD2: mRNA transcripts corresponding to the other cDNA species were not detected. We suggest that the new cDNA is derived from the principal gene for DD2, which has been named AKR1C2 by a new nomenclature for the AKR superfamily. It is possible that some of the other cDNA species previously reported are rare allelic variants of this gene. PMID:9716498
Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.
Cathcart, Mary-Clare; Gray, Steven G; Baird, Anne-Marie; Boyle, Elaine; Gately, Kathy; Kay, Elaine; Cummins, Robert; Pidgeon, Graham P; O'Byrne, Kenneth J
2011-11-15
Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. PGIS expression was reduced/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. Copyright © 2011 American Cancer Society.
[Thyroid dysfunction in adults infected by human immunodeficiency virus].
Abelleira, Erika; De Cross, Graciela A; Pitoia, Fabián
2014-01-01
Patients infected with human immunodeficiency virus (HIV) have a higher prevalence of thyroid dysfunction when compared with the general population. The most frequently observed manifestations are euthyroid sick syndrome, Graves' disease and subclinical hypothyroidism. The relationship between the use of highly active antiretroviral therapy and the increased prevalence of thyroid dysfunction has been demonstrated in several series of patients. Grave's disease is recognized as a consequence of immune restitution syndrome. Besides, several studies have suggested an association between hypothyroidism and the use of nucleoside reverse transcriptase inhibitors, particularly stavudine and non-nucleoside reverse transcriptase inhibitors such as efavirenz. Further studies could provide additional evidence of the need for routine assessment of thyroid function in HIV-infected patients.
Reynolds, Chevonne; de Koning, Charles B; Pelly, Stephen C; van Otterlo, Willem A L; Bode, Moira L
2012-07-07
The human immunodeficiency virus (HIV) causes AIDS (acquired immune deficiency syndrome), a disease in which the immune system progressively deteriorates, making sufferers vulnerable to all manner of opportunistic infections. Currently, world-wide there are estimated to be 34 million people living with HIV, with the vast majority of these living in sub-Saharan Africa. Therefore, an important research focus is development of new drugs that can be used in the treatment of HIV/AIDS. This review gives an overview of the disease and addresses the drugs currently used for treatment, with specific emphasis on new developments within the class of allosteric non-nucleoside reverse transcriptase inhibitors (NNRTIs).
Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase.
Hu, J; Seeger, C
1996-01-01
The heat shock protein Hsp90 is known as an essential component of several signal transduction pathways and has now been identified as an essential host factor for hepatitis B virus replication. Hsp90 interacts with the viral reverse transcriptase to facilitate the formation of a ribonucleoprotein (RNP) complex between the polymerase and an RNA ligand. This RNP complex is required early in replication for viral assembly and initiation of DNA synthesis through a protein-priming mechanism. These results thus invoke a role for the Hsp90 pathway in the formation of an RNP. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8577714
Giacobbi, Nicholas S.
2017-01-01
ABSTRACT Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. PMID:28507107
Skin blood flow response in the rat model of wound healing: expression of vasoactive factors.
Rendell, Marc S; Johnson, Mark L; Smith, Denae; Finney, David; Capp, Christopher; Lammers, Rebecca; Lancaster, Scott
2002-09-01
Although the microvascular blood flow response to wounding is predominantly vasodilation at skin sites with nutritive capillary perfusion (NUTR), there is a significant vasoconstrictive response at sites with high arteriovenous perfusion (AV). There may be a difference between NUTR and AV sites in the vasoactive factors which mediate the blood flow response to wounding. We measured the levels of mRNA expression of several potential mediators of the blood flow response to assess this possible difference. We measured skin blood flow at wounds placed at the back, a NUTR site, and at the paw, an AV site, in 12 Wistar Kyoto rats. Measurements were performed at baseline and then at 7 days post wounding. There was a significant increase in blood flow at back wound sites, with a rise from 4.1 +/- 0.3 ml/min/100 g to 9.8 +/- 1.9 ml/min/100 g. At the undisturbed wound perimeter, outside the zone of granulation tissue, flow rose to 7.3 +/- 1.1 ml/min/100 g. At the paw wound site, Day 0 flow was 8.8 +/- 0.8 ml/min/100 g. At 7 days, there was a significant decrease in flow at wound center to 5.5 +/- 0.5 ml/min/100 g. We measured the levels of inducible nitric oxide synthetase (iNOS), endothelin, endothelin receptor, vascular endothelial growth factor (VEGF), and keratinocyte growth factor (KGF) gene mRNAs using reverse transcriptase PCR. There was a 10-fold increase in NOS mRNA in granulation tissue of both wounds on Day 7. There was a lesser but still substantial increase in the wound perimeter tissue. Levels of endothelin mRNA in the wound and wound perimeter were significantly lower at the paw than at the back. At baseline, the level of endothelin receptor B (ETrB) mRNA was greater at the back than at the paw. Wounding resulted in a substantial increase in EtrB mRNA levels in granulation tissue, reaching the same level at the back and paw wounds. There was also a substantial rise in EtrB mRNA levels at the paw wound perimeter, so that there was a reversal of the baseline condition, with paw levels actually surpassing the levels at the back perimeter. Thus, we have found significant changes in mediators both of vasoconstriction and vasodilation affecting the healing wound. These changes affect NUTR and AV sites in different ways. These results demonstrate the complexity of the regulatory processes controlling microvascular blood flow in wound healing.
Functional analysis of the interactions between reovirus particles and various proteases in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargent, M.D.; Long, D.G.; Borsa, J.
1977-01-01
The digestion of purified reovirus particles by various proteases including chymotrypsin, trypsin, pronase, papain, bromelain, proteinase K, and fibrinolysin has been examined as it relates to virion transcriptase activation and alteration of infectivity. In every case uncoating to the level of active transcriptase proceeds via two mechanistically distinct steps. All the proteases tested serve to mediate only the first of the two steps, converting intact virions to intermediate subviral particles (ISVP) in which the transcriptase is retained in a latent state. The second step of the uncoating process is mediated by a K/sup +/ ion-triggered, endogenous mechanism and results inmore » conversion of ISVP to cores, concomitant with transcriptase activation and loss of infectivity. All of the tested enzymes, except trypsin, reversibly block the second step of uncoating. These results indicate the generality, with respect to protease employed, of the two-step process for reovirus uncoating and transcriptase activation demonstrated previously with chymotrypsin.« less
Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S
2014-08-01
The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.
Lv, M; Xu, H
2010-01-01
According to World Health Organization (WHO)/Joint United Nations Programme on human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) (UNAIDS) Report in 2007, 33.2 million people are living with HIV, 2.5 million ones have been newly infected with HIV, and 2.1 million ones died from AIDS, including 330,000 children. Therefore, HIV/AIDS still remains a public health emergency and a leading cause of mortality worldwide. It is believed that reverse transcriptase (RT) is a crucial enzyme in the life cycle of HIV-1, and thereby RT has been the important drug target for antiretroviral (ARV) chemotherapy against AIDS. To our knowledge, dipyridodiazepinone analogs have been considered as one class of potential non-nucleoside reverse transcriptase inhibitors (NNRTIs), especially the structurally and chemically related nevirapine (Viramune(R)), which was the first NNRTI approved by the U. S. Food and Drug Administration (FDA) for the treatment of HIV-1 infection for adults in 1996 and for children in 1998. This review mainly highlights the progress of synthesis and structure-activity relationship (SAR) of dipyridodiazepinone analogs; in the meantime, the mechanism of action is also presented. It will pave the way for the design and development of novel dipyridodiazepinone analogs as NNRTIs in AIDS chemotherapy in the future.
He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang
2016-08-01
Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.
Haendeler, Judith; Dröse, Stefan; Büchner, Nicole; Jakob, Sascha; Altschmied, Joachim; Goy, Christine; Spyridopoulos, Ioakim; Zeiher, Andreas M; Brandt, Ulrich; Dimmeler, Stefanie
2009-06-01
The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function. Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide-induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H(2)O(2)-induced apoptosis. Lung fibroblasts from 6-month-old TERT(-/-) mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo. Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress-induced damage.
Martin-Odoom, Alexander; Adiku, Theophilus; Delgado, Elena; Lartey, Margaret; Ampofo, William K
2017-03-01
Access to antiretroviral therapy in Ghana has been scaled up across the country over the last decade. This study sought to determine the occurrence of transmitted HIV-1 drug resistance in pregnant HIV-1 positive women yet to initiate antiretroviral therapy at selected HIV Care Centres in Ghana. Plasma specimens from twenty-six (26) HIV seropositive pregnant women who were less than 28weeks pregnant with their first pregnancy and ART naïve were collected from selected HIV care centres in three (3) regions in Ghana. Genotypic testing was done for the reverse transcriptase gene and the sequences generated were analyzed for HIV-1 drug resistance mutations using the Stanford University HIV Drug Resistance Database. Resistance mutations associated with the reverse transcriptase gene were detected in 4 (15.4%) of the participants. At least one major drug resistance mutation in the reverse transcriptase gene was found in 3 (11.5%) of the women. The detection of transmitted HIV-1 drug resistance in this drug-naïve group in two regional HIV care sites is an indication of the need for renewed action in monitoring the emergence of transmitted HIV-1 drug resistance in Ghana. None declared.
Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.
2016-01-01
Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from <1 ng of plasma RNA in <5 h. TGIRT-seq of RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030
Burliaeva, E V; Tarkhov, A E; Burliaev, V V; Iurkevich, A M; Shvets, V I
2002-01-01
Searching of new anti-HIV agents is still crucial now. In general, researches are looking for inhibitors of certain HIV's vital enzymes, especially for reverse transcriptase (RT) inhibitors. Modern generation of anti-HIV agents represents non-nucleoside reverse transcriptase inhibitors (NNRTIs). They are much less toxic than nucleoside analogues and more chemically stable, thus being slower metabolized and emitted from the human body. Thus, search of new NNRTIs is actual today. Synthesis and study of new anti-HIV drugs is very expensive. So employment of the activity prediction techniques for such a search is very beneficial. This technique allows predicting the activities for newly proposed structures. It is based on the property model built by investigation of a series of known compounds with measured activity. This paper presents an approach of activity prediction based on "structure-activity" models designed to form a hypothesis about probably activity interval estimate. This hypothesis formed is based on structure descriptor domains, calculated for all energetically allowed conformers for each compound in the studied sef. Tetrahydroimidazobenzodiazipenone (TIBO) derivatives and phenylethyltiazolyltiourea (PETT) derivatives illustrated the predictive power of this method. The results are consistent with experimental data and allow to predict inhibitory activity of compounds, which were not included into the training set.
Haag, A L; Lin, J H; Levin, H L
2000-08-01
Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA.
Wilhelm, M; Fishman, J A; Pontikis, R; Aubertin, A M; Wilhelm, F X
2002-12-01
Transplantation of organs, tissues or cells from pigs to humans could be a potential solution to the shortage of human organs for transplantation. Porcine endogenous retroviruses (PERVs) remain a major safety concern for porcine xenotransplantation. Thus, finding drugs that could be used as virological prophylaxis (or therapy) against PERV replication would be desirable. One of the most effective ways to block retroviral multiplication is to inhibit the enzyme reverse transcriptase (RT) which catalyzes the reverse transcription of viral RNA to proviral double-stranded DNA. We report here the cloning and expression of PERV RT and its susceptibility to several inhibitors. Our data demonstrate PERV susceptibility in vitro to the triphosphorylated nucleoside analog of zidovudine (AZT) and to ddGTP and to a lesser extent to ddTTP but almost no susceptibility to the non-nucleoside RT inhibitors tested.
Structure of a group II intron in complex with its reverse transcriptase.
Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei
2016-06-01
Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.
Schultz, Sharon J; Zhang, Miaohua; Champoux, James J
2010-03-19
The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki, E-mail: y-yasutake@aist.go.jp
The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site,more » confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.« less
Xu, Hong-Tao; Colby-Germinario, Susan P.; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J.
2013-01-01
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV. PMID:24002090
Xu, Hong-Tao; Colby-Germinario, Susan P; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J; Wainberg, Mark A
2013-11-01
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.
Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus
NASA Astrophysics Data System (ADS)
Tang, Xuhua; Zhu, Yiping; Baker, Stacey L.; Bowler, Matthew W.; Chen, Benjamin Jieming; Chen, Chen; Hogg, J. Robert; Goff, Stephen P.; Song, Haiwei
2016-06-01
Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag-Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins.
Sun, Bing; Tao, Lian; Zheng, Yun-Ling
2014-06-01
Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.
Interleukin-4 induces expression of eotaxin in endometriotic stromal cells.
Ouyang, Zhuo; Osuga, Yutaka; Hirota, Yasushi; Hirata, Tetsuya; Yoshino, Osamu; Koga, Kaori; Yano, Tetsu; Taketani, Yuji
2010-06-01
To study the relationship between eotaxin and interleukin-4 (IL-4) in the pathophysiology of endometriosis. Comparative and laboratory study. University teaching hospital reproductive endocrinology and infertility practice. Ectopic endometrial tissues were collected from women with endometriosis. Ectopic endometrial stromal cells (ESCs) were isolated and cultured with IL-4. Ectopic endometriotic tissues were immunostained for eotaxin and IL-4. Gene expression of eotaxin was determined by standard and real-time reverse-transcriptase polymerase chain reaction. Secretion of eotaxin from ESC was measured using specific ELISA. The immunostained sections were examined. Interleukin-4 (IL-4) increased mRNA expression and protein secretion of eotaxin from ESC in a dose-dependent manner. Immunohistochemical analysis showed that eotaxin-positive cells colocalized with IL-4-positive cells and accumulated around the blood vessels in the stroma of endometriotic tissue. IL-4 induces eotaxin in ESCs, which might promote angiogenesis and the subsequent development of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan
2003-08-01
It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.
Aspirin inhibits human telomerase activation in unstable carotid plaques
LI, FANGMING; GUO, YI; JIANG, XIN; ZHONG, JIANXIN; LI, GUANDONG; SUN, SHENGGANG
2013-01-01
The activation of telomerase in unstable plaques is an important factor in atherosclerosis, and may be predictive of the risk of cerebrovascular diseases. Human telomerase reverse transcriptase (hTERT) is a subunit of telomerase that is essential for telomerase activation. The aim of the present study was to investigate whether aspirin inhibits the activation of telomerase and hTERT in unstable carotid plaques. Polymorphonuclear neutrophils (PMNs) derived from carotid plaques were isolated from the washing medium of angioplasty balloons, while circulating PMNs, isolated from arterial blood, served as the controls. A polymerase chain reaction-based telomeric repeat amplification protocol (TRAP) enzyme-linked immunosorbent assay (ELISA) was used to measure the telomerase activity in the cells following treatment with aspirin. The mRNA and protein expression of hTERT were detected by a reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis, respectively. The results revealed that the atherosclerotic plaques were positive for telomerase activity, and that aspirin inhibited the telomerase activity of the PMNs derived from the plaques. In addition, aspirin was demonstrated to inhibit the mRNA and protein expression of hTERT through the suppression of hTERT transcriptional activity; however, it had no inhibitory effect on the telomerase activity of the circulating PMNs. Thus, the activation of telomerase in resident PMNs is critical in the instability of carotid plaques. The upregulation of telomerase and hTERT during the progression of atherosclerosis may indicate a role for telomerase in the vascular remodeling that occurs during atherogenesis. Aspirin was demonstrated to inhibit the activation of telomerase via an hTERT-dependent manner in the PMN cells of unstable carotid plaques, and thus hTERT may be considered as a target in the treatment of cerebrovascular diseases. PMID:23935747
Liu, Lu; Shang, Fei; Morgan, Matthew J; King, Denis W; Lubowski, David Z; Burcher, Elizabeth
2009-04-01
Tachykinins are important neurotransmitters regulating intestinal motility. Slow transit constipation (STC) represents an extreme colonic dysmotility with unknown etiology that predominantly affects women. We examined whether the tachykinin system is involved in the pathogenesis of STC. Isolated sigmoid colon circular muscle from female STC and control patients was studied using functional and quantitative reverse transcriptase-polymerase chain reaction methods. A possible alteration of neurotransmission was investigated by electrical field stimulation (EFS) and ganglionic stimulation by dimethylphenylpiperazinium (DMPP). Substance P (SP)-mediated contractions in circular muscle strips were significantly diminished in STC compared with age-matched control (P < 0.001). In contrast, contractile responses to neurokinin A, the selective tachykinin NK(2) receptor agonist, [Lys(5),MeLeu(9),Nle(10)]NKA(4-10), and acetylcholine were unaltered in STC. The reduced responses to SP in STC were fully restored by indomethacin, partially reversed by tetrodotoxin (TTX), but unaffected by atropine or hexamethonium. The restoration by indomethacin was blocked by the NK(1) receptor antagonist CP99994 [(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine] and TTX. In STC colonic muscle, there was a significant increase of NK(1) receptor mRNA expression, but no difference in NK(2) mRNA level. DMPP generated biphasic responses, relaxation at lower and contraction at higher concentrations. Although the responses to DMPP were similar in STC and control, an altered contractile pattern in response to EFS was observed in STC circular muscle. In conclusion, we postulate that the diminished contractile response to SP in STC is due to an increased release of inhibitory prostaglandins through activation of up-regulated NK(1) receptors. Our results also indicate some malfunction of the enteric nervous system in STC.
RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells.
Chow, Jimmy Y C; Quach, Khai T; Cabrera, Betty L; Cabral, Jennifer A; Beck, Stayce E; Carethers, John M
2007-11-01
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is rarely mutated in pancreatic cancers, but its regulation by transforming growth factor (TGF)-beta might mediate growth suppression and other oncogenic actions. Here, we examined the role of TGFbeta and the effects of oncogenic K-RAS/ERK upon PTEN expression in the absence of SMAD4. We utilized two SMAD4-null pancreatic cell lines, CAPAN-1 (K-RAS mutant) and BxPc-3 (WT-K-RAS), both of which express TGFbeta surface receptors. Cells were treated with TGFbeta1 and separated into cytosolic/nuclear fractions for western blotting with phospho-SMAD2, SMAD 2, 4 phospho-ATP-dependent tyrosine kinases (Akt), Akt and PTEN antibodies. PTEN mRNA levels were assessed by reverse transcriptase-polymerase chain reaction. The MEK1 inhibitor, PD98059, was used to block the downstream action of oncogenic K-RAS/ERK, as was a dominant-negative (DN) K-RAS construct. TGFbeta increased phospho-SMAD2 in both cytosolic and nuclear fractions. PD98059 treatment further increased phospho-SMAD2 in the nucleus of both pancreatic cell lines, and DN-K-RAS further improved SMAD translocation in K-RAS mutant CAPAN cells. TGFbeta treatment significantly suppressed PTEN protein levels concomitant with activation of Akt by 48 h through transcriptional reduction of PTEN mRNA that was evident by 6 h. TGFbeta-induced PTEN suppression was reversed by PD98059 and DN-K-RAS compared with treatments without TGFbeta. TGFbeta-induced PTEN expression was inversely related to cellular proliferation. Thus, oncogenic K-RAS/ERK in pancreatic adenocarcinoma facilitates TGFbeta-induced transcriptional down-regulation of the tumor suppressor PTEN in a SMAD4-independent manner and could constitute a signaling switch mechanism from growth suppression to growth promotion in pancreatic cancers.
Krenek, Peter; Morel, Nicole; Kyselovic, Jan; Wibo, Maurice
2004-04-01
High doses of dihydropyridine calcium channel blockers can activate the sympathetic nervous system and the renin-angiotensin system. Both noradrenaline and angiotensin II stimulate preproendothelin-1 gene expression, yet the effects of high doses of dihydropyridines on preproendothelin-1 expression in vivo remain unknown. To investigate the effects of high doses of dihydropyridines on preproendothelin-1 expression in the ventricles and aorta of normotensive rats. Sprague-Dawley rats were treated with amlodipine 5 or 20 mg/kg per day (Amlo 5 or Amlo 20) in drinking water for 5 days or 5 weeks. Systolic blood pressure and heart rate were measured by tail-cuff plethysmography. Gene expression was examined by reverse transcriptase polymerase chain reaction. Amlo 5 increased heart rate during the first week only and had no effect on blood pressure and ventricular weight and gene expression. Amlo 20 reduced blood pressure transiently and increased heart rate consistently. It did not change relative left ventricular weight (corrected for body weight) after 5 days, but increased it after 5 weeks; it increased relative right ventricular weight at both time points. Aorta weight (mg/mm) was decreased after 5 weeks of treatment with both dosages of amlodipine. Preproendothelin-1 mRNA levels were increased by Amlo 20 in the ventricles and aorta and, concomitantly, renin mRNA was increased in the kidney. Less consistently, interleukin-6 mRNA also increased in ventricles, whereas cardiotrophin-1 mRNA remained unchanged. The sensitivity of isolated aorta to the contractile effect of noradrenaline was decreased by Amlo 5, but not by Amlo 20. In Sprague-Dawley rats, high-dose amlodipine, while promoting neurohormonal activation, induced overexpression of preproendothelin-1 mRNA in the ventricles and aorta. Endothelin-1 overexpression could contribute to the lack of inhibitory effect of high-dose amlodipine on ventricular mass in normotensive rats.
Dastan, Maryam; Najafzadeh, Nowruz; Abedelahi, Ali; Sarvi, Mohammadreza; Niapour, Ali
2016-12-01
Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14days in DMEM/F12 medium. Then, the cells were treated with 100μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival (P<0.05). Apoptosis in DP cells was also meaningfully decreased by HPL treatment (P=0.014). In addition, Kras, Akt, Erk, Shh and β-catenin mRNA levels were changed in response to minoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells (P<0.05), but Kras and Akt mRNA levels were not considerably different in the HPL-treated cells. β-catenin mRNA level was also significantly increased in the bulge region by HPL. We also found that Shh mRNA level was considerably higher in HPL-treated bulge cells than in minoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao
2005-08-01
To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.
Fernandes, Amilton M.; Herlofsen, Sarah R.; Karlsen, Tommy A.; Küchler, Axel M.; Fløisand, Yngvar; Brinchmann, Jan E.
2013-01-01
Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA) may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM) derived mesenchymal stem cells (MSCs) from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin), ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage. PMID:23671648
Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S
2014-06-01
The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.
Muftuoglu, Yagmur; Sohl, Christal D.; Mislak, Andrea C.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Anderson, Karen S.
2014-01-01
The novel antiretroviral 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3′-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3′-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. PMID:24632447
Ito, Yoshinori; Shibata-Watanabe, Yukiko; Ushijima, Yoko; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kojima, Seiji; Kimura, Hiroshi
2008-03-01
Chronic active Epstein-Barr virus infection (CAEBV) is characterized by recurrent infectious mononucleosis-like symptoms and has high mortality and morbidity. To clarify the mechanisms of CAEBV, the gene-expression profiles of peripheral blood obtained from patients with CAEBV were investigated. Twenty genes were differentially expressed in 4 patients with CAEBV. This microarray result was verified using a real-time reverse-transcriptase polymerase chain reaction assay in a larger group of patients with CAEBV. Eventually, 3 genes were found to be significantly upregulated: guanylate binding protein 1, tumor necrosis factor-induced protein 6, and guanylate binding protein 5. These genes may be associated with the inflammatory reaction or with cell proliferation.
The origin and early evolution of nucleic acid polymerases
NASA Technical Reports Server (NTRS)
Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.
1992-01-01
The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.
Giacobbi, Nicholas S; Sluis-Cremer, Nicolas
2017-07-01
Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. Copyright © 2017 American Society for Microbiology.
Elucidation of the TMab-6 Monoclonal Antibody Epitope Against Telomerase Reverse Transcriptase.
Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kato, Yukinari
2018-05-03
Telomerase reverse transcriptase (TERT) and mutations of the TERT promoter are significant in the pathogenesis of 1p/19q-codeleted oligodendrogliomas and isocitrate dehydrogenase gene wild-type glioblastomas, as well as melanomas and squamous cell carcinomas. We previously developed an antihuman TERT monoclonal antibody (mAb), TMab-6, which is applicable in immunohistochemistry for human tissues. However, the binding epitope of TMab-6 against TERT is yet to be elucidated. In this study, enzyme-linked immunosorbent assay and immunohistochemistry were utilized for investigating the epitope of TMab-6. The findings revealed that the critical epitope of TMab-6 is the TERT sequence PSTSRPPRPWD; Thr310 and Ser311 of TERT are especially significant amino acids for TMab-6 recognition.
Mechanical tensile stress effects on the expression of bone sialoprotein in bovine cementoblasts.
Yu, Hongyou; Ren, Yijin; Sandham, Andrew; Ren, Aishu; Huang, Lan; Bai, Ding
2009-03-01
To develop a new cementoblast culture method and to detect bone sialoprotein (BSP) expression in response to high and low mechanical tensile stress in cementoblast in vitro. Cementoblasts were collected from the roots of newborn bovine teeth and were identified with cementum-derived attachment protein (CAP) antibody 3G9. Cell proliferation was evaluated by MTT [3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, and mineralization was confirmed by von Kossa staining. Mechanical tensile stress was applied in vitro to the cementoblast with the use of a uniaxial four-point bending system with 2000 or 4000 microstrains, at a frequency of 0.5 Hz for 3, 6, 12, 24, or 36 hours. BSP mRNA level was quantified by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). A large amount of cementoblast was observed to be expressing CAP. Cementoblasts had a proliferation tendency similar to that of osteoblasts but different from that of periodontal ligament (PDL) cells. Cementoblasts had the ability to become mineralized between osteoblasts and PDL cells. The mechanical tensile stress significantly up-regulated BSP mRNA expression, which reached a peak at 24 hours in both 2000 and 4000 microstrain groups (P < .01) and was tenfold and sixfold higher than that of controls, respectively. BSP expression dropped toward baseline levels at 36 hours in both groups. Mechanical tensile stress up-regulated the expression of BSP. Low mechanical tensile stress induced earlier and more intensive up-regulation of BSP mRNA; this might represent the optimal stimuli for cementoblast activity.
Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma.
Ogata, M; Naito, Z; Tanaka, S; Moriyama, Y; Asano, G
2000-06-01
In the present study we examined the localization and overexpression of heat shock proteins (hsps), mainly hsp90, in pancreatic carcinoma tissue compared with control tissue (including chronic pancreatitis and normal pancreas tissue), with the aid of immunohistochemical staining, in situ hybridization and reverse transcriptase polymerase chain reaction. Hsp90 alpha mRNA was overexpressed more highly in pancreatic carcinoma than in the control tissue. The proliferating-cell-nuclear-antigen labeling index was also high in pancreatic carcinoma tissue compared with the other tissue. These findings suggest that the overexpression of hsp90 alpha mRNA in carcinomas may be correlated with cell proliferation. However, hsp90 beta was constitutively overexpressed almost equally in all groups of pancreatic tissue including pancreatic carcinoma, chronic pancreatitis and normal pancreas tissue. Immunohistochemical staining demonstrated a differentiation in the expression of hsp90 between histological types of pancreatic carcinoma. These findings suggest that hsp90 alpha is involved in carcinogenesis and that hsp90 beta is correlated to structural conformation. Hsp90 alpha and hsp90 beta seem to perform different functions in tissue containing malignant cells. P53, MDM2 and WAF1, that were cell-cycle-related oncogene product were more strongly expressed in the nuclei of the cancer cells of the cancer tissue. Especially, MDM2 was more strongly expressed in mucinous carcinoma and the mucin secreting tissues surrounding pancreatic carcinoma tissue. The expression of MDM2 protein might also be correlated to secretion systems during structural conformation and be correlated to hsp90 beta.
Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem
2012-05-01
Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model. Copyright © 2012 Elsevier Inc. All rights reserved.
Lee, Seo Yeon; Ko, Kwang Suk
2016-01-01
Background Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. Methods To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. Results Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. Conclusions Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis. PMID:27722142
Haag, Amanda Leigh; Lin, Jia-Hwei; Levin, Henry L.
2000-01-01
Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA. PMID:10888658
Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun
2016-11-01
A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.
Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium.
Ma, Ming-Yue; Che, Xun-Ru; Porceddu, Andrea; Niu, Deng-Ke
2015-12-18
Spliceosomal introns are a common feature of eukaryotic genomes. To approach a comprehensive understanding of intron evolution on Earth, studies should look beyond repeatedly studied groups such as animals, plants, and fungi. The slime mold Dictyostelium belongs to a supergroup of eukaryotes not covered in previous studies. We found 441 precise intron losses in Dictyostelium discoideum and 202 precise intron losses in Dictyostelium purpureum. Consistent with these observations, Dictyostelium discoideum was found to have significantly more copies of reverse transcriptase genes than Dictyostelium purpureum. We also found that the lost introns are significantly further from the 5' end of genes than the conserved introns. Adjacent introns were prone to be lost simultaneously in Dictyostelium discoideum. In both Dictyostelium species, the exonic sequences flanking lost introns were found to have a significantly higher GC content than those flanking conserved introns. Together, these observations support a reverse-transcription model of intron loss in which intron losses were caused by gene conversion between genomic DNA and cDNA reverse transcribed from mature mRNA. We also identified two imprecise intron losses in Dictyostelium discoideum that may have resulted from genomic deletions. Ninety-eight putative intron gains were also observed. Consistent with previous studies of other lineages, the source sequences were found in only a small number of cases, with only two instances of intron gain identified in Dictyostelium discoideum. Although they diverged very early from animals and fungi, Dictyostelium species have similar mechanisms of intron loss.
Ding, Feng; Miao, Xi-Li; Li, Yan-Xia; Dai, Jin-Fen; Yu, Hong-Gang
2016-01-01
The mechanism underlying the coexistence of hepatitis B surface antigen and antibodies to HBsAg in chronic hepatitis B patients remains unknown. This research aimed to determine the clinical and virological features of the rare pattern. A total of 32 chronic hepatitis B patients infected by HBV genotype C were included: 15 carrying both HBsAg and anti-HBs (group I) and 17 solely positive for HBsAg (group II). S gene and reverse transcriptase region sequences were amplified, sequenced and compared with the reference sequences. The amino acid variability within major hydrophilic region, especially the "a" determinant region, and within reverse transcriptase for regions overlapping the major hydrophilic region in group I is significantly higher than those in group II. Mutation sI126S/T within the "a" determinant was the most frequent change, and only patients from group I had the sQ129R, sG130N, sF134I, sG145R amino acid changes, which are known to alter immunogenicity. In chronic patients, the concurrent HBsAg/anti-HBs serological profile is associated with an increased aa variability in several key areas of HBV genome. Additional research on these genetic mutants are needed to clarify their biological significance for viral persistence. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Azam, Mohd; Malik, Abida; Rizvi, Meher; Rai, Arvind
2014-04-01
A major cause of failure of antiretroviral therapy (ART) is the presence of drug-resistance-associated mutations in the polymerase gene of HIV-1. The paucity of data regarding potential drug resistance to reverse transcriptase inhibitors (RTIs) prompted us to carry out this study. This information will shed light on the extent of drug resistance already present in HIV strains and will give future directions in patient treatment and in drug design. Drug resistance genotyping of a partial reverse transcriptase gene was done in 103 HIV-1-infected patients, including the ART-naive and ART-experienced population. The drug resistance pattern was analyzed using the Stanford HIV-DR database, the IAS-USA mutation list and the REGA algorithm-v8.0. Subtyping was done using the REGA HIV-1 subtyping tool-v2.01. The majority of our sequences (96 %) were found to be subtype C, and four (3.8 %) were subtype A1. Significant prevalence of DR mutations (28 %) was observed in the RT gene. Major amino acid substitutions were seen at positions 41, 90, 98, 103, 106, 108, 138, 181, 184, 190, 215, and 219, which confer high/intermediate levels of resistance to most RTIs, independently or together. Our results show that there is an urgent need to tailor ART drug regimens to the individual to achieve optimum therapeutic outcome in North India.
Ahmad, Fahim; Patrick, Shruti; Sheikh, Touseef; Sharma, Vikas; Pathak, Pankaj; Malgulwar, Prit Benny; Kumar, Anupam; Joshi, Shanker Datt; Sarkar, Chitra; Sen, Ellora
2017-12-01
Elevated expression of enhancer of zeste homolog 2 (EZH2), a histone H3K27 methyltransferase, was observed in gliomas harboring telomerase reverse transcriptase (TERT) promoter mutations. Given the known involvement of TERT and EZH2 in glioma progression, the correlation between the two and subsequently its involvement in metabolic programming was investigated. Inhibition of human telomerase reverse transcriptase either pharmacologically or through genetic manipulation not only decreased EZH2 expression, but also (i) abrogated FASN levels, (ii) decreased de novo fatty acid accumulation, and (iii) increased ataxia-telangiectasia-mutated (ATM) phosphorylation levels. Conversely, diminished TERT and FASN levels upon siRNA-mediated EZH2 knockdown indicated a positive correlation between TERT and EZH2. Interestingly, ATM kinase inhibitor rescued TERT inhibition-mediated decrease in FASN and EZH2 levels. Importantly, TERT promoter mutant tumors exhibited greater microsatellite instability, heightened FASN levels and lipid accumulation. Coherent with in vitro findings, pharmacological inhibition of TERT by costunolide decreased lipid accumulation and elevated ATM expression in heterotypic xenograft glioma mouse model. By bringing TERT-EZH2 network at the forefront as driver of dysregulated metabolism, our findings highlight the non-canonical but distinct role of TERT in metabolic reprogramming and DNA damage responses in glioblastoma. © 2017 International Society for Neurochemistry.
Machado, Luiz Fernando Almeida; Costa, Iran Barros; Folha, Maria Nazaré; da Luz, Anderson Levy Bessa; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Ishak, Marluisa Oliveira Guimarães
2017-04-12
The present study aimed to describe the genetic diversity of HIV-1, as well as the resistance profile of the viruses identified in HIV-1 infected pregnant women under antiretroviral therapy in the state of Pará, Northern Brazil. Blood samples were collected from 45 HIV-1 infected pregnant to determine the virus subtypes according to the HIV-1 protease (PR) gene and part of the HIV-1 reverse transcriptase (RT) gene by sequencing the nucleotides of these regions. Drug resistance mutations and susceptibility to antiretroviral drugs were analyzed by the Stanford HIV Drug Resistance Database. Out of 45 samples, only 34 could be amplified for PR and 30 for RT. Regarding the PR gene, subtypes B (97.1%) and C (2.9%) were identified; for the RT gene, subtypes B (90.0%), F (6.7%), and C (3.3%) were detected. Resistance to protease inhibitors (PI) was identified in 5.8% of the pregnant, and mutations conferring resistance to nucleoside reverse transcriptase inhibitors were found in 3.3%, while mutations conferring resistance to non-nucleoside reverse transcriptase inhibitors were found in 3.3%. These results showed a low frequency of strains resistant to antiretroviral drugs, the prevalence of subtypes B and F, and the persistent low transmission of subtype C in pregnant of the state of Pará, Brazil.
Comprehensive phylogenetic analysis of bacterial reverse transcriptases.
Toro, Nicolás; Nisa-Martínez, Rafael
2014-01-01
Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.
Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases
Toro, Nicolás; Nisa-Martínez, Rafael
2014-01-01
Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096
Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène
2008-01-01
Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038
Dimitrova, Irina K.; Richer, Jennifer K.; Rudolph, Michael C.; Spoelstra, Nicole S.; Reno, Elaine M.; Medina, Theresa M.; Bradford, Andrew P.
2009-01-01
Objective To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. Design Array analysis of 3 leiomyomata and matched adjacent normal myometrium in a single patient. Setting University of Colorado Hospital. Patient(s) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. Interventions(s) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, western blotting and immunohistochemistry. Main Outcome Measure(s) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. Result(s) Expression of 197 genes was increased and 619 decreased, significantly by at least 2 fold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. Conclusion(s) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma. PMID:18672237
Characterization of tight junction proteins in cultured human urothelial cells.
Rickard, Alice; Dorokhov, Nikolay; Ryerse, Jan; Klumpp, David J; McHowat, Jane
2008-01-01
Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintenance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immunofluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14, and 16 whereas claudins 2, 8, and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2, and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishio, Sachiyo; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503; Ohira, Takahito
Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcriptionmore » compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.« less
Krishnaswamy, Venkat Raghavan; Manikandan, Mayakannan; Munirajan, Arasambattu Kannan; Vijayaraghavan, Doraiswamy; Korrapati, Purna Sai
2014-12-01
Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.
Kazmi, Hasan Raza; Chandra, Abhijit; Nigam, Jaya; Baghel, Kavita; Srivastava, Meenu; Maurya, Shailendra S; Parmar, Devendra
2016-10-01
In the present study, we investigated expression pattern of Cholecystokinin type A receptor (CCKAR) in relation to its commonly studied polymorphism (rs1800857, T/C) in gallstone disease (GSD) patients and controls. A total of 502 subjects (272 GSD and 230 controls) were enrolled, and genotyping was performed by evaluating restriction fragments of PstI digested DNA. For analyzing expression pattern of CCKAR in relation to polymorphism, gallbladder tissue samples from 80 subjects (GSD-55; control-25) were studied. Expression of CCKAR mRNA was evaluated by reverse transcriptase-PCR and confirmed using real-time PCR. Protein expression was evaluated by enzyme-linked immunosorbent assay. We observed significantly (p < 0.0001) lower expression of CCKAR mRNA and protein in GSD tissues as compared with control. Significantly higher frequency of A1/A1 genotype (C/T transition) (p = 0.0005) was observed for GSD as compared with control. Expression of CCKAR protein was found to be significantly lower (p < 0.0001) in A1/A1 genotype as compared with other genotypes for GSD patients. Perhaps, this is the first report providing evidence of alteration in CCKAR expression in relation to its polymorphism elucidating the molecular pathway of the disease. Additional investigations with lager sample size are needed to confirm these findings.
Increased expression and processing of caspase-12 after traumatic brain injury in rats.
Larner, Stephen F; Hayes, Ronald L; McKinsey, Deborah M; Pike, Brian R; Wang, Kevin K W
2004-01-01
Traumatic brain injury (TBI) disrupts tissue homeostasis resulting in pathological apoptotic activation. Recently, caspase-12 was reported to be induced and activated by the unfolded protein response following excess endoplasmic reticulum (ER) stress. This study examined rat caspase-12 expression using the controlled cortical impact TBI model. Immunoblots of fractionalized cell lysates found elevated caspase-12 proform (approximately 60 kDa) and processed form (approximately 12 kDa), with peak induction observed within 24 h post-injury in the cortex (418% and 503%, respectively). Hippocampus caspase-12 proform induction peaked at 24 h post-injury (641%), while processed form induction peaked at 6 h (620%). Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed elevated caspase-12 mRNA levels after TBI. Injury severity (1.0, 1.2 or 1.6 mm compression) was associated with increased caspase-12 mRNA expression, peaking at 5 days in the cortex (657%, 651% and 1259%, respectively) and 6 h in the hippocampus (435%, 451% and 460%, respectively). Immunohistochemical analysis revealed caspase-12 induction in neurons in both the cortex and hippocampus as well as in astrocytes at the contusion site. This is the first report of increased expression of caspase-12 following TBI. Our results suggest that the caspase-12-mediated ER apoptotic pathway may play a role in rat TBI pathology independent of the receptor- or mitochondria-mediated apoptotic pathways.
Psoriasin (S100A7) Expression and Invasive Breast Cancer
Al-Haddad, Sahar; Zhang, Zi; Leygue, Etienne; Snell, Linda; Huang, Aihua; Niu, Yulian; Hiller-Hitchcock, Tamara; Hole, Kate; Murphy, Leigh C.; Watson, Peter H.
1999-01-01
Alteration of psoriasin (S100A7) expression has previously been identified in association with the transition from preinvasive to invasive breast cancer. In this study we have examined persistence of psoriasin mRNA and protein expression in relation to prognostic factors in a cohort of 57 invasive breast tumors, comprising 34 invasive ductal carcinomas and 23 other invasive tumor types (lobular, mucinous, medullary, tubular). We first developed an IgY polyclonal chicken antibody and confirmed specificity for psoriasin by Western blot in transfected cells and tumors. The protein was localized by immunohistochemistry predominantly to epithelial cells, with both nuclear and cytoplasmic staining, as well as occasional stromal cells in psoriatic skin and breast tumors; however, in situ hybridization showed that psoriasin mRNA expression was restricted to epithelial cells. In breast tumors, higher levels of psoriasin measured by reverse transcriptase-polymerase chain reaction and Western blot (93% concordance) were significantly associated with estrogen and progesterone receptor-negative status (P < 0.0001, P = 0.0003), and with nodal metastasis in invasive ductal tumors (P = 0.035), but not with tumor type or grade. Psoriasin expression also correlated with inflammatory infiltrates (all tumors excluding medullary, P = 0.0022). These results suggest that psoriasin may be a marker of aggressive behavior in invasive tumors and are consistent with a function as a chemotactic factor. PMID:10595935
Isolation and characterization of porcine adipose tissue-derived adult stem cells.
Williams, Kellie J; Picou, Alicia A; Kish, Sharon L; Giraldo, Angelica M; Godke, Robert A; Bondioli, Kenneth R
2008-01-01
Stem cell characteristics such as self-renewal, differentiation and expression of CD34 and CD44 stem cell markers have not been identified in porcine adipose tissue-derived adult stem (ADAS) cells. The objective of this study was to develop a protocol for the isolation and culture of porcine adipose tissue-derived cells and to determine stem cell-like characteristics. Primary cultures were established and cell cultures were maintained. Cloning capacity was determined using a ring cloning procedure. Primary cultures and clones were differentiated and stained for multiple differentiated phenotypes. CD34 and CD44 messenger ribonucleic acid (mRNA) was isolated and reverse transcriptase polymerase chain reaction was used to compare expression profiles. An average of 2,700,000 nucleated cells/ml was isolated; 26% were adherent, and cells completed a cell cycle approximately every 3.3 days. Ring cloning identified 19 colonies. Primary cultures and clones were determined to differentiate along osteogenic, adipogenic and chondrogenic tissue lineages. The mRNA expression profiles showed CD34 expression was higher for undifferentiated ADAS cells versus differentiated cell types and the CD34 expression level was lower than that of CD44 among differentiated cells. Improved culture conditions and defined cellular characteristics of these porcine ADAS cells have been identified. Porcine ADAS can self-renew, can differentiate into multiple tissue lineages and they express CD34. Copyright 2008 S. Karger AG, Basel.
Wu, Qiu-Wan; Yang, Qing-Mo; Huang, Yu-Fan; She, Hong-Qiang; Liang, Jing; Yang, Qiao-Lu; Zhang, Zhi-Ming
2014-01-01
Matrix metalloproteinase 9 (MMP-9) is a type-IV collagenase that is highly expressed in breast cancer, but its exact role in tumor progression and metastasis is unclear. MMP-9 mRNA and protein expression was examined by real-time reverse transcriptase PCR and immunohistochemical staining, respectively, in 41 breast cancer specimens with matched peritumoral benign breast epithelial tissue and suspicious metastatic axillary lymph nodes. Lymph vessels were labeled with D2-40 and lymphatic microvessel density (LMVD) was calculated. Correlation of MMP-9 protein expression with clinicopathological parameters and LMVD was also evaluated. MMP-9(+) staining in breast cancer specimens (35/41, 85.4%) was higher than in matched epithelium (21/41, 51.2%; P<0.05) and lymph nodes (13/41, 31.7%; P<0.001). Higher MMP-9 mRNA expression was also detected in tumor specimens compared with matched epithelial tissues and lymph nodes (P<0.05). Elevated MMP-9 expression was correlated with lymph node metastasis and LMVD (P<0.05). MMP-9 was overexpressed in breast cancer specimens compared with peritumoral benign breast epithelium and lymph nodes. Moreover, its expression in the matched epithelium and lymph nodes was positively associated with lymph node metastasis, and its expression in lymph nodes was positively associated with lymphangiogenesis in breast cancer. Thus, MMP-9 is a potential marker for breast cancer progression.
Häkkinen, T; Luoma, J S; Hiltunen, M O; Macphee, C H; Milliner, K J; Patel, L; Rice, S Q; Tew, D G; Karkola, K; Ylä-Herttuala, S
1999-12-01
We studied the expression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an enzyme capable of hydrolyzing platelet-activating factor (PAF), PAF-like phospholipids, and polar-modified phosphatidylcholines, in human and rabbit atherosclerotic lesions. Oxidative modification of low-density lipoprotein, which plays an important role in atherogenesis, generates biologically active PAF-like modified phospholipid derivatives with polar fatty acid chains. PAF is known to have a potent proinflammatory activity and is inactivated by its hydrolysis. On the other hand, lysophosphatidylcholine and oxidized fatty acids released from oxidized low-density lipoprotein as a result of Lp-PLA(2) activity are thought to be involved in the progression of atherosclerosis. Using combined in situ hybridization and immunocytochemistry, we detected Lp-PLA(2) mRNA and protein in macrophages in both human and rabbit atherosclerotic lesions. Reverse transcriptase-polymerase chain reaction analysis indicated an increased expression of Lp-PLA(2) mRNA in human atherosclerotic lesions. In addition, approximately 6-fold higher Lp-PLA(2) activity was detected in atherosclerotic aortas of Watanabe heritable hyperlipidemic rabbits compared with normal aortas from control rabbits. It is concluded that (1) macrophages in both human and rabbit atherosclerotic lesions express Lp-PLA(2), which could cleave any oxidatively modified phosphatidylcholine present in the lesion area, and (2) modulation of Lp-PLA(2) activity could lead to antiatherogenic effects in the vessel wall.
Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Meisheng; Tran, V.T.; Fong, H.K.W.
1991-05-01
The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha}more » protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.« less
ATBF1-a messenger RNA expression is correlated with better prognosis in breast cancer.
Zhang, Zhenhuan; Yamashita, Hiroko; Toyama, Tatsuya; Sugiura, Hiroshi; Ando, Yoshiaki; Mita, Keiko; Hamaguchi, Maho; Kawaguchi, Makoto; Miura, Yutaka; Iwase, Hirotaka
2005-01-01
The AT motif-binding factor 1 (ATBF1) gene was first identified as a suppressor of the alpha-fetoprotein (AFP) gene through its binding to an AT-rich enhancer element of this gene. The gene is located at chromosome 16q22.3-q23.1 where loss of heterozygosity has been observed in various malignant tumors, especially in breast cancer. It was also found that in highly malignant AFP-producing gastric cancer cells the expression of AFP is inhibited by ATBF1-A. This led us to hypothesize that there was a link between levels of ATBF1 expression and the metastatic potential of breast cancer and also, therefore, the prognosis of these patients. In the present study, the level of ATBF1-A mRNA expression was analyzed using quantitative real-time reverse transcriptase-PCR, in 153 female patients with invasive carcinoma of the breast. ATBF1-A protein expression was also determined by immunohistochemistry from available 90 cases of paired tissues. An association was sought between ATBF1-A expression and various clinicopathologic factors. ATBF1-A mRNA was expressed at significantly higher levels in breast cancer patients with no axillary lymph node involvement, with small tumors measuring <2 cm and in estrogen receptor-alpha-positive tumors. By contrast, no relationship was found between ATBF1-A mRNA expression and ATBF1-A protein expression, and also no relationship was found between ATBF1-A protein expression and any of the other clinicopathologic factors. Patients expressing high levels of ATBF1-A mRNA tended to have a better prognosis than those expressing low levels. Univariate and multivariate prognostic analyses showed that ATBF1-A mRNA expression is an independent prognostic factor for disease-free survival. In breast cancer, levels of ATBF1-A mRNA may serve as a predictive indicator of lymph node metastasis. The results of this study also imply that ATBF1-A gene expression may have potential both as a marker of endocrine responsiveness and also as a prognostic indicator for breast cancer progression.
Dziedzic, B; Szemraj, J; Bartkowiak, J; Walczewska, A
2007-05-01
Various high-fat diets are obesogenic but not to the same extent. The aim of the present study was to investigate the effects of saturated fat n-6 and n-3 polyunsaturated fatty acids (PUFAs) on the central neuropeptidergic system in adult rats. Using reverse transcriptase-polymerase chain reaction and in situ hybridisation, we evaluated the net effect of feeding in these fats, comparing the effects of a high- to low-fat diet, and the diversity of the effects of these fats in the same amount within the diet. We also determined plasma lipids, glucose, insulin and leptin concentrations. Six-week feeding with high-saturated fat evoked hyperpahagia and the largest weight gain compared to both high-PUFA diets. Rats fed high-saturated fat were found to have decreased neuropeptide Y (NPY) mRNA expression in the arcuate nucleus (ARC) and the compact zone of the dorsomedial nucleus (DMHc), unchanged pro-opiomelanocortin (POMC), galanin-like peptide (GALP) mRNA expression in the ARC, as well as melanin-concentrating hormone (MCH) and prepro-orexin (preORX) mRNA expression in the lateral hypothalamus, compared to low-saturated fed rats. By contrast, feeding with both high-PUFA diets increased POMC and GALP mRNA expression in the ARC compared to the corresponding low-fat diet and the high-saturated fat diet. Furthermore, feeding with both low-PUFA diets reduced NPY mRNA expression compared to the low-saturated fat diet exclusively in the DMHc. Uniquely, the high n-3 PUFA feeding halved MCH and preORX mRNA expression in the lateral hypothalamus compared to the other high-fat and low n-3 PUFA diets. In rats fed three high-fat diets, plasma insulin and leptin concentrations were significantly increased and the type of fat had no effect on these hormone levels. Rats fed high-saturated fat had both hyperglycaemia and hypertriacylglycerolemia and rats fed high n-3 PUFA only had hyperglycaemia. The present study demonstrates that various forms of dietary fat differentially change the expression of neuropeptide genes involved in energy homeostasis.
Nagel, Inga; Szczepanowski, Monika; Martín-Subero, José I; Harder, Lana; Akasaka, Takashi; Ammerpohl, Ole; Callet-Bauchu, Evelyne; Gascoyne, Randy D; Gesk, Stefan; Horsman, Doug; Klapper, Wolfram; Majid, Aneela; Martinez-Climent, José A; Stilgenbauer, Stephan; Tönnies, Holger; Dyer, Martin J S; Siebert, Reiner
2010-08-26
Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis.
Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis
2016-06-01
Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.
Hepatotoxicity of nucleoside reverse transcriptase inhibitors.
Montessori, Valentina; Harris, Marianne; Montaner, Julio S G
2003-05-01
Hepatotoxicity is an adverse effect of all available classes of antiretrovirals, including nucleoside reverse transcriptase inhibitors (NRTI). A syndrome of hepatic steatosis and lactic acidosis has been recognized as a rare, potentially fatal complication since the advent of NRTI monotherapy in the early 1990s. Today, NRTI remain the backbone of antiretroviral combination regimens, and, with the success of current treatment strategies, exposure to two or more of these agents may occur over a number of years. Hepatic steatosis and lactic acidosis are accordingly being observed more frequently, along with a more recently recognized syndrome of chronic hyperlactatemia. These as well as other adverse effects of NRTI are mediated by inhibition of human DNA polymerase gamma, resulting in mitochondrial dysfunction in the liver and other tissues. Early recognition and intervention are essential to avert serious outcomes.
Lingappa, Jairam; Beck, Ingrid; Frenkel, Lisa M.; Pepper, Gregory; Celum, Connie; Wald, Anna; Fife, Kenneth H.; Were, Edwin; Mugo, Nelly; Sanchez, Jorge; Essex, Myron; Makhema, Joseph; Kiarie, James; Farquhar, Carey; Corey, Lawrence
2011-01-01
Recent in vitro studies suggest that acyclovir may directly inhibit HIV-1 replication and can select for a specific HIV-1 reverse transcriptase mutation (V75I) with concomitant loss of an anti-HIV-1 effect. We tested for HIV-1 genotypic resistance at reverse transcriptase codon 75 in plasma from 168 HIV-1–infected persons from Botswana, Kenya, Peru, and the United States taking daily acyclovir or valacyclovir for between 8 weeks and 24 months. No V75I cases were detected (95% confidence interval, 0%–2.2%). These prospective in vivo studies suggest that standard-dose acyclovir or valacyclovir does not select for HIV-1 resistance. PMID:21148504
Olivero, Ofelia A; Torres, Lorangelly Rivera; Gorjifard, Sayeh; Momot, Dariya; Marrogi, Eryney; Divi, Rao L; Liu, Yongmin; Woodward, Ruth A; Sowers, Marsha J; Poirier, Miriam C
2013-07-15
Erythrocebus patas (patas) monkeys were used to model antiretroviral (ARV) drug in human immunodeficiency virus type 1-infected pregnant women. Pregnant patas dams were given human-equivalent doses of ARVs daily during 50% of gestation. Mesenchymal cells, cultured from bone marrow of patas offspring obtained at birth and at 1 and 3 years of age, were examined for genotoxicity, including centrosomal amplification, micronuclei, and micronuclei containing whole chromosomes. Compared with controls, statistically significant increases (P < .05) in centrosomal amplification, micronuclei, and micronuclei containing whole chromosomes were found in mesenchymal cells from most groups of offspring at the 3 time points. Transplacental nucleoside reverse-transcriptase inhibitor exposures induced fetal genotoxicity that was persistent for 3 years.
Schuster, W; Brennicke, A
1987-01-01
We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433
Antiretroviral therapy for human immunodeficiency virus infection in 1997.
Katzenstein, D A
1997-01-01
It has become clear that the acquired immunodeficiency syndrome follows continuous replication of the human immunodeficiency virus (HIV) and a decrease in immune capability, most obviously a decline in the number of CD4 lymphocytes. An understanding of key elements in the infectious life cycle of HIV has led to the development of potent antiretroviral drugs selectively targeting unique reverse transcriptase and protease enzymes of the virus. Completed clinical trials have shown that antiretroviral therapy for HIV infection, begun early, reduces viral replication and reverses the decline in CD4 lymphocyte numbers. Recent studies of combination therapies have shown that decreases in plasma HIV viremia to low levels and sustained increases in CD4 cell numbers are associated with longer survival. Potent combination regimens including protease inhibitors and non-nucleoside reverse transcriptase inhibitors suppress detectable viral replication and have demonstrated clinical benefits in patients with advanced disease. Progress in antiretroviral therapy and methods to monitor responses to treatment are providing new hope in the treatment of HIV infection. PMID:9217434
... few years. But today, there are many effective medicines to fight the infection, and people with HIV ... healthier lives. There are five major types of medicines: Reverse transcriptase (RT) inhibitors - interfere with a critical ...
Kim, Uk-Kyu; Park, Seong-Jin; Seong, Wook-Jin; Heo, Jun; Hwang, Dae-Seok; Kim, Yong-Deok; Shin, Sang-Hun; Kim, Gyoo-Cheon
2010-09-01
This study compared the levels of transforming growth factor-beta1 (TGF-beta1), osteonectin, and bone morphogenetic protein-4 (BMP-4) expression in regenerated bone in a rabbit mandible that had undergone conventional distraction osteogenesis (DO) with those in regenerated bone from a modified DO technique with compression stimulation. A total of 42 rabbits were used in this reverse transcriptase-polymerase chain reaction study. In the control group, distraction was performed at 1 mm/day for 8 days. In the experimental group, overdistraction was performed for 10 days, followed by a 3-day latency period and 2 days of compression to achieve the same amount of DO. Three rabbits per subgroup were killed at 0, 5, 13, 20, 27, 34, and 41 days after the initial osteotomy. The levels of TGF-beta1, osteonectin, and BMP-4 in the bone regenerates were measured by reverse transcriptase-polymerase chain reaction. A biomechanical microhardness test was also performed in 8 rabbits as a separate experiment. Reverse transcriptase-polymerase chain reaction revealed a greater level of TGF-beta1 in the experimental group immediately after applying the compression force that continued for 2 weeks. The level then decreased to that of the control group at 3 weeks. The greater level of osteonectin in the experimental group after compression than that in the control group continued for 3 weeks. In the experimental group, the level of BMP-4 increased immediately after compression. However, the level in the control group decreased. The microhardness ratio of distracted bone to normal bone on the cortex was statistically different at 0.47 in the control group and 0.80 in the experimental group (P = .049) at 55 days after osteotomy. The effectiveness of the new DO technique with compression stimulation was confirmed by the gene expression study and the biomechanical test findings. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice
2017-11-01
Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.
Wang, Y; Huang, G; Mo, B; Wang, C
2016-06-03
The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation.
Autophagy-related genes in Helicobacter pylori infection.
Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio
2017-06-01
In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.
Characterization of C-type natriuretic peptide receptors in human mesangial cells.
Zhao, J; Ardaillou, N; Lu, C Y; Placier, S; Pham, P; Badre, L; Cambar, J; Ardaillou, R
1994-09-01
Our aim was to examine whether the human glomerulus was a target for C-type natriuretic peptide (CNP) and how A, B and C receptors of natriuretic peptides (ANPR-A, ANPR-B, ANPR-C) were distributed in glomerular mesangial and epithelial cells. CNP stimulated cyclic GMP production in cultured human mesangial and epithelial cells with similar threshold concentrations (1 nM) and maximum effects (basal value x 30 at 1 microM). In contrast, atrial natriuretic peptide (ANP) was only stimulatory in epithelial cells. [125I] CNP bound specifically to mesangial cells with a Kd of 0.47 nM and Bmax of 42 fmol/mg. Equilibrium of binding was obtained after four to five hours at +4 degrees C and nonspecific binding represented 10 to 20% of total binding. HS142-1 (100 micrograms/ml), a specific inhibitor of ANPR-A and ANPR-B, suppressed 90% of CNP-dependent cyclic GMP production whereas it had little effect on [125I]-CNP binding, suggesting that C receptors were largely predominant in mesangial cells. No biological effect of CNP on mesangial cells, including change in basal or angiotensin II-induced contractility and inhibition of basal or serum-dependent proliferation, could be demonstrated. Similar results were obtained with 8-bromo-cyclic GMP and sodium nitroprusside. Intraglomerular localization of ANPR-A, ANPR-B and ANPR-C mRNA was studied using reverse transcriptase-polymerase chain reaction with amplification of their corresponding cDNA by different primers. Amplification products were identified on gel electrophoresis by their predicted sizes and sequencing. ANPR-A, ANPR-B and ANPR-C mRNA were present in epithelial cells whereas only ANPR-B and ANPR-C mRNA were detected in mesangial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Loredo-Pozos, Gloria; Chiquete, Erwin; Oceguera-Villanueva, Antonio; Panduro, Arturo; Siller-López, Fernando; Ramos-Márquez, Martha E
2009-01-01
Low BRCA1 gene expression is associated with increased invasiveness and influences the response of breast carcinoma (BC) to chemotherapeutics. However, expression of BRCA1 and BRCA2 genes has not been completely characterized in premenopausal BC. We analyzed the clinical and immunohistochemical correlates of BRCA1 and BRCA2 expression in young BC women. We studied 62 women (mean age 38.8 years) who developed BC before the age of 45 years. BRCA1 and BRCA2 mRNA expression was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and that of HER-2 and p53 proteins by immunohistochemistry. Body mass index (BMI) > or = 27 (52%) and a declared family history of BC (26%) were the main risk factors. Ductal infiltrative adenocarcinoma was found in 86% of the cases (tumor size >5 cm in 48%). Disease stages I-IV occurred in 2, 40, 55, and 3%, respectively (73% implicating lymph nodes). Women aged < or = 35 years (24%) had more family history of cervical cancer, stage III/IV disease, HER-2 positivity, and lower BRCA1 expression than older women (P < 0.05). BRCA1 and BRCA2 expression correlated in healthy, but not in tumor tissues (TT). Neither BRCA1 nor BRCA2 expression was associated with tumor histology, differentiation, nodal metastasis or p53 and HER-2 expression. After multivariate analysis, only disease stage explained BRCA1 mRNA levels in the lowest quartile. Premenopausal BC has aggressive clinical and molecular characteristics. Low BRCA1 mRNA expression is associated mainly with younger ages and advanced clinical stage of premenopausal BC. BRCA2 expression is not associated with disease severity in young BC women.
Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L
2016-10-01
Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.
Khosravi Rad, K; Falahati, M; Roudbary, M; Farahyar, S; Nami, S
2016-12-01
Candida albicans ( C. albicans ) is an opportunistic fungus that can colonize women's mucosal epithelial cell surfaces, causing vulvovaginitis in specific circumstances. The major genes contributing to drug resistance in C. albicans are the candida drug resistance ( CDR ) and multi drug resistance ( MDR ) genes. The purpose of this study was to evaluate the CDR-2 and MDR-1 gene expression patterns in C. albicans strains isolated from patients with recurrent vulvovaginal candidiasis. In this study, 40 isolates of fluconazole-resistant C. albicans were cultured on Sabouraud dextrose agar. These isolates were collected from women with vulvovaginitis who were referred to a clinic in Tehran, Iran, and transferred to a mycology laboratory. Then, RNA was extracted from the isolates using phenol-chloroform and glass beads, and the complementary DNA (cDNA) was synthetized. To detect the semi-quantitative expression of CDR-2 and MDR-1 genes, the reverse transcriptase-PCR (RT-PCR) technique was performed using specific primers. Our findings indicated that of the 40 C. albicans isolates, 35 (87.5%) strains were positive for mRNA of the CDR-2 gene, 32 (80%) strains expressed mRNA of the MDR-1 gene, and 30 (75%) strains were confirmed to express mRNA of both the CDR-2 and MDR-1 genes simultaneously using the RT-PCR assay. According to the obtained results, the expression rates of CDR-2 and MDR-1 genes were high in fluconazole-resistant C. albicans isolates, which can cause treatments to fail and result in chronic infections. Inhibiting these important genes using novel or natural agents can help with the treatment of chronic and recurrent vaginitis.
Ikenaka, Yoshinori; Nakayama, Shouta M M; Muroya, Taro; Yabe, John; Konnai, Satoru; Darwish, Wageh Sobhy; Muzandu, Kaampwe; Choongo, Kennedy; Mainda, Geoffrey; Teraoka, Hiroki; Umemura, Takashi; Ishizuka, Mayumi
2012-10-01
The Republic of Zambia is rich in mineral resources, such as zinc (Zn) and lead (Pb), and mining is a key industry in Zambia. A previous study of Pb pollution in Kabwe, one of the main mining areas, found that soil was contaminated with high levels of toxic metals over a substantial area. In the present study, the authors focus on toxic metal pollution in cattle, one of the most important domestic animals in Zambia. Blood samples from cattle in Kabwe and a control area (Lusaka) were tested for toxic metal content. They also measured mRNA expression of metal-responsive proteins and cytokines in white blood cells using real-time reverse transcriptase polymerase chain reaction. In the present in vitro study, The authors cultured peripheral blood mononuclear cells (PBMCs) from cattle, exposing them to Pb acetate for 24 h and analyzing mRNA expression of metal-responsive proteins and selected cytokines. Lead concentrations in cattle blood from Kabwe were significantly greater than those from Lusaka, as were the mRNA expressions of metallothionein-2 (MT-2), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, and inducible nitric oxide synthase (iNOS). The present in vitro study demonstrated that Pb exposure led to an increase in the expressions of MT-2, TNF-α, IL-1β, and iNOS, similar to those found in vivo. These results indicate the possibility of immune system modulations in cattle from the Kabwe area. Copyright © 2012 SETAC.
Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar
2017-07-01
Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xie, Ping; Jia, Shengxian; Tye, Ross; Xu, Wei; Zhong, Aimei; Hong, Seok J; Galiano, Robert D; Mustoe, Thomas A
2016-02-01
Localized oxygen deficiency plays a central role in the pathogenesis of chronic wounds; thus, rectifying localized ischemia with oxygen therapy has been postulated to be an integral aspect of the management of chronic wounds. The efficacy of a novel approach for oxygen therapy on chronic wound healing was evaluated. Oxygen was delivered to ischemic wounds by means of the topical application of oxygenated, chemically modified bovine hemoglobin (IKOR 2084) in a validated rabbit ear ischemic wound model. The wound healing was evaluated histologically by measuring epithelial gap and neo-granulation tissue area. In situ expression of endothelial cells (CD31) and proliferative cells (Ki-67) was examined by immunohistochemistry analysis. The mRNA of vascular endothelial growth factor, endothelial nitric oxide synthase, and matrix metalloproteinase-9 was quantified by real-time reverse-transcriptase polymerase chain reaction. The collagen was detected by Sirius red staining. In comparison with topical application of saline, the administration of oxygenated IKOR 2084 increases wound reepithelialization and formation of neo-granulation tissue in a dose-dependent manner, and cellular proliferation (Ki-67). Conversely, the administration of deoxygenated IKOR 2084 aggravated the ischemic wound healing process. Moreover, the topical administration of oxygenated IKOR 2084 induces angiogenesis as evidenced by concomitant increases in CD31 protein and vascular endothelial growth factor and endothelial nitric oxide synthase mRNA expression in treated wounds. Oxygenated IKOR 2084 administration also increased collagen deposition in wounds, with decreases in the expression of matrix metalloproteinase-9 mRNA. This study suggests that the topical application of oxygenated IKOR 2084 ameliorates the reparative progress of ischemic wounds through enhanced angiogenesis, cellular proliferation, and collagen deposition.
Spotin, Adel; Majdi, Monireh Mokhtari Amir; Sankian, Mojtaba; Varasteh, Abdolreza
2012-05-01
Cystic echinococcosis (hydatidosis) is a zoonotic helminthic disease of human and other intermediated hosts wherein infection is caused by the larval stages of tapeworm Echinococcus granulosus. Growth of the larval stage is formed throughout the internal organs, the liver and lung, causing their destruction. Important pathways are unknown about suppression and survival of cysts in human body. In this study, apoptotic bifunctional effects are evaluated in relationship between host and parasite in cystic echinococcosis. Human lymphocytes were treated with hydatid fluid (HF). After 6 h of exposure, caspase-3 activity was measured by fluorometric assay in the HF-treated lymphocytes and control cells. Also, the expression of Bax (as pro-apoptotic protein) and Bcl-2 (an anti-apoptotic protein) mRNA was assessed by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) after 12 h of exposure. For surveying of apoptosis-inducing ligands TNF-related apoptosis-inducing ligand and Fas-L, germinal layer and accompaniment peripheral tissues as healthy control were separated by scalpel from each cyst in sterile condition, then were assess by semiquantitative RT-PCR method in mRNA expression. Both the ratio of Bax/Bcl-2 mRNA expression and caspase-3 activity were higher in the fertile fluid-treated lymphocytes relative to infertile fluid-treated lymphocytes and control group versus the expression level of apoptosis-inducing ligands having a relatively high level in germinal layer of infertile cyst in comparison to fertile cyst and healthy tissue. Apoptosis of germinal layer of fertile cysts is possibly one of the suppression mechanisms in hydatidosis patients, in contrast to lymphocytes apoptosis by modulator of hydatid fluid, one of the hydatid cyst survival mechanisms.
Sacchi, Sandro; D'Ippolito, Giovanni; Sena, Paola; Marsella, Tiziana; Tagliasacchi, Daniela; Maggi, Elena; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio
2016-01-01
Anti Müllerian Hormone (AMH) has a negative and inhibitory role in many functions of human granulosa-lutein cells (hGCs) including notoriously the reduction of the aromatase CYP19A1 expression induced by follicle-stimulating hormone (FSH). No data have been provided on the possible role of AMH in modulating the response to luteinizing hormone (LH) (alone or combined with FSH) as well as its effect on other enzymes involved in steroidogenesis including aromatase P450scc. The aim of this study was to investigate the role of AMH as regulator of the basal and stimulated steroids production by hGCs. Primary culture of hGCs were incubated with hormones AMH, LH, and FSH, alone or in combination. The CYP19A1 and P450scc messenger RNA (mRNA) expression, normalized by housekeeping ribosomal protein S7 (RpS7) gene, was evaluated by reverse transcriptase quantitative PCR (RT-qPCR). Each reaction was repeated in triplicate. Negative controls using corresponding amount of vehicle control for each hormone treatment were performed. AMH did not modulate the basal mRNA expression of both aromatase genes at any of the concentrations tested. Meanwhile, the strong mRNA induction of CYP19A1 and P450scc generated by a 24-h gonadotropin treatment (alone and combined) was suppressed by 20 ng/ml AMH added to culture medium. These findings contribute in clarifying the relationship between hormones regulating the early phase of steroidogenesis confirming that AMH is playing a suppressive role on CYP19A1 expression stimulated by gonadotropin in hGCs. Furthermore, a similar inhibitory effect for AMH was observed on P450scc gene expression when activated by gonadotropin treatment.
Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi
2007-05-01
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.
Meng, Qingshun; Liu, Jie; Wang, Chuanfang
2015-01-01
Purpose The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. Materials and Methods Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. Results Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. Conclusion Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats. PMID:26446639
De Couto Pita, A; Passafaro, D; Ganzinelli, S; Borda, E; Sterin-Borda, L
2009-06-01
The aim of the study was to investigate the role of muscarinic acetylcholine receptor (mAChR) activity in the regulation of endothelial (e), neuronal (n) and inducible (i) nitric oxide synthase (NOS) activity and expression in experimentally induced inflammation of rat dental pulp tissue. Inflammation was induced by application of bacterial lipopolysaccharide (LPS) to the pulp. Extirpated pulp-tissue samples were incubated in saline solution until the various experiments were performed. Saline-treated pulp and healthy pulp tissues were used as controls. NOS activity was measured by the production of [U-(14)C]-citrulline from [U-(14)C]-arginine. Nitrite/nitrate assay was evaluated by the conversion of nitrate to nitrite in the presence of nicotinamide adenine dinucleotide phosphate. i-nos, e-nos and n-nos mRNA levels were measured using reverse-transcriptase polymerase chain reaction by co-amplification of target cDNA with a single set of primers. Application of LPS to the pulp increased NOS activity and nitrate production (P < 0.001), generated by iNOS over-activity and expression. Pilocarpine acting on mAChRs triggered a biphasic action on NOS activity and NO accumulation. At low concentrations, pilocarpine induced a negative effect associated with a decrease in i-nos mRNA level, whilst at high concentration, it produced a positive effect associated with increased e-nos and n-nos mRNA levels. In control pulp tissue, only the positive effect of pilocarpine was observed. Irreversible pulpitis changes mAChR conformation increasing its efficiency of coupling to transducing molecules that in turn induce activate iNOS. The capacity of pilocarpine to prevent NO accumulation and iNOS activity, by acting on mAChR mutation induced by pulpitis, might be useful therapeutically as a local treatment.
In Vitro Cytokine Licensing Induces Persistent Permissive Chromatin at the IDO1 Promoter
Rovira Gonzalez, Yazmin I.; Lynch, Patrick J.; Thompson, Elaine E.; Stultz, Brian G.; Hursh, Deborah A.
2016-01-01
Background Mesenchymal stromal cells (MSCs) are being investigated as therapies for inflammatory diseases due to their immunosuppressive capacity. IFN-γ treatment primes MSC immunosuppression partially through induction of Indoleamine 2,3-dioxygenase (IDO1), which depletes tryptophan necessary to support proliferation of activated T-cells. We investigated the role of histone modifications in the timing and maintenance of induced IDO1 expression in MSCs under clinical manufacturing conditions, such as cryopreservation. Methods We used chromatin immunoprecipitation and quantitative polymerase chain reaction (PCR) to assay levels of transcriptionally permissive acetylated H3K9 and repressive trimethylated H3K9 histone modifications surrounding the transcriptional start site for IDO1, and reverse transcriptase PCR and immunoblotting to detect mRNA and protein. Results MSCs derived from three donors approached maximum IDO1 mRNA levels following 24 hours of in vitro cytokine treatment. Induction of IDO1 expression correlated with increased acetylation of H3K9 concomitant with reduction of trimethylated H3K9 modifications at the promoter. Examination of two additional donors confirmed this result. While induced IDO1 levels declined within two days after cytokine removal and freeze thawing, the activated chromatin state was maintained. Upon re-exposure to cytokines, previously primed MSCs accumulated near-maximum IDO1 mRNA levels within four to eight hours. Discussion Our data indicate that in vitro priming of MSCs causes chromatin remodeling at the IDO1 promoter, that this alteration is maintained during processing commonly used to prepare MSCs for clinical use, and that once primed, MSCs are poised for IDO1 expression even in the absence of cytokines. PMID:27421739
Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1
Frisse, Andrea; Pimenta, Maria João; Lange, Theo
2003-01-01
Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672
Khalifa, Nagy M; Al-Omar, Mohamed A
2014-11-12
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.
Khalifa, Nagy M.; Al-Omar, Mohamed A.
2014-01-01
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity. PMID:25397597
Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.
Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A
2011-01-01
We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. Copyright © 2010 Elsevier B.V. All rights reserved.
Saravanan, Shanmugam; Kausalya, Bagavathi; Gomathi, Selvamurthi; Sivamalar, Sathasivam; Pachamuthu, Balakrishnan; Selvamuthu, Poongulali; Pradeep, Amrose; Sunil, Solomon; Mothi, Sarvode N; Smith, Davey M; Kantor, Rami
2017-06-01
We have analyzed reverse transcriptase (RT) region of HIV-1 pol gene from 97 HIV-infected children who were identified as failing first-line therapy that included first-generation non-nucleoside RT inhibitors (Nevirapine and Efavirenz) for at least 6 months. We found that 54% and 65% of the children had genotypically predicted resistance to second-generation non-nucleoside RT inhibitors drugs Etravirine (ETR) and Rilpivirine, respectively. These cross-resistance mutations may compromise future NNRTI-based regimens, especially in resource-limited settings. To complement these investigations, we also analyzed the sequences in Stanford database, Monogram weighted score, and DUET weighted score algorithms for ETR susceptibility and found almost perfect agreement between the three algorithms in predicting ETR susceptibility from genotypic data.
Monforte, Anna Maria; De Luca, Laura; Buemi, Maria Rosa; Agharbaoui, Fatima E; Pannecouque, Christophe; Ferro, Stefania
2018-02-01
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N 1 -aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N 1 -aryl-2-arylthioacetamido-benzimidazoles and N 1 -aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single- and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C
2000-05-18
To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.
AboElkhair, M; Iwamoto, T; Clark, K F; McKenna, P; Siah, A; Greenwood, S J; Berthe, F C J; Casey, J W; Cepica, A
2012-01-01
Haemic neoplasia (HN) is a leukemia-like disease that affects at least 20 species of marine bivalves including soft shell clam, Mya arenaria. Since the disease was discovered in 1969, the etiology remains unknown. A retroviral etiology has been suggested based on the detection of reverse transcriptase activity and electron microscopic observation of retroviral-like particles using negative staining. To date, however no virus isolate and no retroviral sequence from HN has been obtained. Moreover, transmission of the disease by cell-free filtrate from affected clams has not been reproduced. In the current study, we reinvestigated the association of HN with a putative retrovirus. Sucrose gradient centrifugation followed by assessment of reverse transcriptase activity, electrophoretic analysis of protein and RNA, and electron microscopic examinations of fractions corresponding to retroviral density were employed. Detection of retroviral pol sequences using degenerate RT-PCR approaches was also attempted. Our results showed visible bands at the expected density of retrovirus in HN-positive and HN-negative clam tissues and both with reverse transcriptase activity. Electron microscopy, RNA analysis, protein analysis, and PCR systems targeting the pol gene of retroviruses did not however provide clear evidence supporting presence of a retrovirus. We point out that the retrovirus etiology of HN of Mya arenaria proposed some 25 years ago should be reconsidered in the absence of a virus isolate or virus sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H
2011-01-01
HIV resides within anatomical 'sanctuary sites', where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Suboptimal antiretroviral concentrations in the genital tract may result in compartmentalized viral replication, selection of resistant mutations and possible re-entry of wild-type/resistant virus into the systemic circulation. Therefore, achieving adequate antiretroviral exposure in the genital tract has implications for the prevention of sexual and vertical transmission of HIV. Penetration of antiretrovirals in the genital tract is expressed by accumulation ratios derived from the measurement of drug concentrations in time-matched seminal plasma/cervicovaginal fluid and plasma samples. Penetration varies by gender and may be drug (as opposed to class) specific with high interindividual variability. Concentrations in seminal plasma are highest for nucleoside analogues and lowest for protease inhibitors and efavirenz. Seminal accumulation of newer agents, raltegravir and maraviroc, is moderate (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitors [lamivudine/zidovudine/tenofovir/didanosine > stavudine/abacavir] > raltegravir > indinavir/maraviroc/nevirapine > efavirenz/protease inhibitors [amprenavir/atazanavir/darunavir > lopinavir/ritonavir > saquinavir] > enfuvirtide). In the female genital tract, the nucleoside analogues exhibit high accumulation ratios, whereas protease inhibitors have limited penetration; however, substantial variability exists between individuals and study centres. Second generation non-nucleoside reverse transcriptase inhibitor etravirine, and maraviroc and raltegravir, demonstrate effective accumulation in cervicovaginal secretions (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitor [zidovudine/lamivudine/didanosine > emtricitabine/tenofovir] > indinavir > maraviroc/raltegravir/darunavir/etravirine > nevirapine/abacavir > protease inhibitors [amprenavir/atazanavir/ritonavir] > lopinavir/stavudine/efavirenz > saquinavir).
Lerch, R A; Friesen, P D
1992-01-01
TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168
Poppe, Lisa K; Chunda-Liyoka, Catherine; Kwon, Eun H; Gondwe, Clement; West, John T; Kankasa, Chipepo; Ndongmo, Clement B; Wood, Charles
2017-08-24
The objectives of this study were to determine HIV drug resistance (HIVDR) prevalence in Zambian infants upon diagnosis, and to determine how changing prevention of mother-to-child transmission (PMTCT) drug regimens affect drug resistance. Dried blood spot (DBS) samples from infants in the Lusaka District of Zambia, obtained during routine diagnostic screening, were collected during four different years representing three different PMTCT drug treatment regimens. DNA extracted from dried blood spot samples was used to sequence a 1493 bp region of the reverse transcriptase gene. Sequences were analyzed via the Stanford HIVDRdatabase (http://hivdb.standford.edu) to screen for resistance mutations. HIVDR in infants increased from 21.5 in 2007/2009 to 40.2% in 2014. Nonnucleoside reverse transcriptase inhibitor resistance increased steadily over the sampling period, whereas nucleoside reverse transcriptase inhibitor resistance and dual class resistance both increased more than threefold in 2014. Analysis of drug resistance scores in each group revealed increasing strength of resistance over time. In 2014, children with reported PMTCT exposure, defined as infant prophylaxis and/or maternal treatment, showed a higher prevalence and strength of resistance compared to those with no reported exposure. HIVDR is on the rise in Zambia and presents a serious problem for the successful lifelong treatment of HIV-infected children. PMTCT affects both the prevalence and strength of resistance and further research is needed to determine how to mitigate its role leading to resistance.
In Vitro Resistance Profile of the Candidate HIV-1 Microbicide Drug Dapivirine
Schader, Susan M.; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P.
2012-01-01
Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries. PMID:22123692
In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.
Schader, Susan M; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P; Wainberg, Mark A
2012-02-01
Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.
USDA-ARS?s Scientific Manuscript database
Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...
USDA-ARS?s Scientific Manuscript database
Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...
Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers
Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.
1977-01-01
DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713
Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A
2010-03-01
Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.
Houshmand, Behzad; Behnia, Hossein; Khoshzaban, Ahad; Morad, Golnaz; Behrouzi, Gholamreza; Dashti, Seyedeh Ghazaleh; Khojasteh, Arash
2013-01-01
To increase the understanding of the applicability of biomaterials and growth factors in enhancing stem cell-based bone regeneration modalities, this study evaluated the effects of enamel matrix derivative (EMD) and recombinant human transforming growth factor-beta (rhTGF-β) on osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) as well as human periodontal ligament stem cells (hPDLSCs). hBMSCs and hPDLSCs were obtained, and identification of stem cell surface markers was performed according to the criteria of the International Society for Cellular Therapy. Each group of stem cells was separately treated with a serial dilution of EMD (10, 50, and 100 μg/mL) or rhTGF-β (10 ng/mL). Osteoblastic differentiation was examined through in vitro matrix mineralization by alizarin red staining, and mRNA expression of osteopontin and osteonectin was determined by quantitative reverse-transcriptase polymerase chain reaction. hPDLSCs were further assessed for osteocalcin mRNA expression. Stem cells cultured in osteogenic medium were employed as a standard positive control group. In none of the experimental groups were bone-related mRNAs detected subsequent to treatment with EMD for 5, 10, and 15 days. Alizarin red staining on day 21 was negative in EMD-treated BMSC and PDLSC cultures. In rhTGF-β-supplemented BMSC culture, expression of osteonectin mRNA was demonstrated on day 15, which was statistically comparable to the positive control group. Nevertheless, extracellular matrix mineralization was inhibited in both groups of stem cells. Within the limitations of this study, it could be concluded that EMD with a concentration of 10, 50, or 100 μg/mL has no appreciable effect on osteoblastic differentiation of BMSCs and PDLSCs. Application of rhTGF-β increased osteonectin mRNA expression in BMSCs. This finding corroborates the hypothesis that TGF-β might be involved in early osteoblastic maturation.
Gottipati, Srinivas
2008-01-01
Purpose 17 β-estradiol (17β-E2) protects human lens epithelial cells against oxidative stress by preserving mitochondrial function in part via the non-genomic rapid activation of prosurvival signal transduction pathways. The study described herein examined whether 17β-E2 also elicits genomic protection by influencing the expression (and activity) of mitochondrial-associated manganese superoxide dismutase (MnSOD) as a possible parallel mechanism by which 17β-E2 protects against oxidative stress. Methods Virally-transformed human lens epithelial cells (HLE-B3) were pre-incubated with 17β-E2, and mRNA or protein lysates were collected over a time course ranging from 90 min to 24 h. Positive expression of lens epithelial cell MnSOD mRNA was determined by semi-quantitative reverse transcriptase polymerase chain reaction (RT–PCR), and its levels were monitored by real-time PCR up to 24 h after 17β-E2 administration. Western blot analysis was used to examine the pattern of protein expression as influenced by 17β-E2 treatment. MnSOD activity as influenced by 17β-E2 was determined by measuring enzymatic activity. Results A significant rapid increase in the activity of MnSOD was observed with HLE-B3 cells by 90 min post-bolus addition of 17β-E2, which returned to control level by 240 min. Neither an increase in MnSOD mRNA nor in protein expression was detected up through 24 h. Conclusions These data demonstrate that 17β-E2 rapidly and transiently increases the activity of MnSOD but influences neither its mRNA expression nor its protein expression. The results suggest that (estrogen-activated) MnSOD plays an important role against mitochondrial oxidative stress by diminishing reactive oxygen species, thus promoting cell survival. PMID:18490963
Niu, Hui-Ran; Zi, Xiang-Dong; Xiao, Xiao; Xiong, Xian-Rong; Zhong, Jin-Cheng; Li, Jian; Wang, Li; Wang, Yong
2014-08-01
We cloned and sequenced four pivotal cDNAs involved in DNA structural maintenance (H1F0 and TOP1) and the cell cycle (CLTA and CDK1) from yak oocytes. In addition, we studied the consequences of freezing-thawing (F/T) processes on the expression of their mRNA transcripts in yak immature and in vitro matured (MII) oocytes. H1F0, TOP1, CLTA and CDK1 cDNAs were cloned from yak oocytes by reverse transcriptase-polymerase chain reaction (RT-PCR) strategy. The expression of their mRNA transcript analyses were performed upon fresh and frozen-thawed immature germinal vesicle (GV) and MII yak oocytes following normalization of transcripts with GAPDH by real-time PCR. The yak H1F0, TOP1, CLTA and CDK1 cDNA sequences were found to consist of CDK1 585, 2539, 740, and 894 bp, respectively. Their coding regions encoded 195, 768, 244, and 298 amino acids, respectively. The homology with that of cattle was very high (95.2%, 98.8%, 93.6%, and 89.5%, respectively nucleotide sequence level, and 94.3%, 98.2%, 87.7%, and 90.9%, respectively at the deduced amino acid level). The overall mRNA expression levels of these four transcripts were reduced by F/T process, albeit at different levels. TOP1 in GV-oocytes, and H1F0 and CDK1 in MII-oocytes of the yak were significantly down-regulated (P<0.05). This is the first isolation and characterization of H1F0, TOP1, CLTA, and CDK1 cDNAs from yak oocytes. The lower fertility and developmental ability of yak oocytes following fertilization after cryopreservation may be explained by the alterations to their gene expression profiles. Copyright © 2014 Elsevier Inc. All rights reserved.
Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.
Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun
2017-09-01
Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Crawford, S; Goff, S P
1985-01-01
Deletion mutations in the 5' part of the pol gene of Moloney murine leukemia virus were generated by restriction enzyme site-directed mutagenesis of cloned proviral DNA. DNA sequence analysis indicated that one such deletion was localized entirely within the 5' part of the pol gene, did not affect the region encoding reverse transcriptase, and preserved the translational reading frame downstream of the mutation. The major viral precursor polyproteins (Pr65gag, Pr200gag-pol, and gPr80env) were synthesized at wild-type levels in cell lines carrying the mutant genome. These cell lines assembled and released wild-type levels of virion particles into the medium. Cleavage of both Pr65gag and Pr200gag-pol precursors to the mature proteins was completely blocked in the mutant virions. Surprisingly, these virions contained high levels of active reverse transcriptase; examination of the endogenous reverse transcription products synthesized by the mutant virions revealed normal amounts of minus-strand strong-stop DNA, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not significantly impaired. Processing of gPr80env to gP70env and P15E was not affected by the mutation, but cleavage of P15E to P12E was not observed. The mutant particles were poorly infectious; analysis indicated that infection was blocked at an early stage. The data are consistent with the idea that the 5' part of the pol gene encodes a protease directly responsible for processing Pr65gag, and possibly Pr200gag-pol, to the structural virion proteins. It appears that cleavage of the gag gene product is not required for budding and release of virions and that complete processing of the pol gene product to the mature form of reverse transcriptase is not required for its functional activation. Images PMID:3882995
In vitro stimulation with a strongly pulsed electromagnetic field on rat basophilic leukemia cells
NASA Astrophysics Data System (ADS)
Choi, J. W.; Shin, S. C.; Kim, S.; Chung, E. R.; Bang, J. H.; Cho, G. I.; Choi, S. D.; Park, Y. S.; Jang, T. S.; Yoo, Y. M.; Lee, S. S.; Hwang, D. G.
2010-05-01
In this study, the effects of pulsed electromagnetic field stimulation with a strong magnetic field on rat basophilic leukemia (RBL-2H3) cells were investigated to confirm the efficacy of the magnetic stimulator for biomedical applications. The maximum intensity of the magnetic field generated from the stimulation coil was 0.203 T, and the transition time was 126 μs. The oscillation time and frequency of the pulsed field were almost 0.1 ms and 8 kHz, respectively. The cell count as well as the mRNA expression and DNA sequence of the cytokine genes, such as the tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4), of the stimulated RBL-2H3 cells were analyzed with a hemocytometer and via reverse transcriptase polymerase chain reaction to determine the physiological response under a strong pulse field. After 12 h stimulation, cell death was observed at an increasing scale with the increase in the stimulation time. On the other hand, the cells that were stimulated for 10 min almost doubled as the interval time between the stimulations was extended.
Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction.
Patel, Palak G; Selvarajah, Shamini; Boursalie, Suzanne; How, Nathan E; Ejdelman, Joshua; Guerard, Karl-Philippe; Bartlett, John M; Lapointe, Jacques; Park, Paul C; Okello, John B A; Berman, David M
2016-08-21
Formalin-fixed paraffin embedded tissue (FFPET) represents a valuable, well-annotated substrate for molecular investigations. The utility of FFPET in molecular analysis is complicated both by heterogeneous tissue composition and low yields when extracting nucleic acids. A literature search revealed a paucity of protocols addressing these issues, and none that showed a validated method for simultaneous extraction of RNA and DNA from regions of interest in FFPET. This method addresses both issues. Tissue specificity was achieved by mapping cancer areas of interest on microscope slides and transferring annotations onto FFPET blocks. Tissue cores were harvested from areas of interest using 0.6 mm microarray punches. Nucleic acid extraction was performed using a commercial FFPET extraction system, with modifications to homogenization, deparaffinization, and Proteinase K digestion steps to improve tissue digestion and increase nucleic acid yields. The modified protocol yields sufficient quantity and quality of nucleic acids for use in a number of downstream analyses, including a multi-analyte gene expression platform, as well as reverse transcriptase coupled real time PCR analysis of mRNA expression, and methylation-specific PCR (MSP) analysis of DNA methylation.
Kalkanci, Ayse; Bilgihan, Kamil; Ozdemir, Huseyin Baran; Yar Saglam, Atiye Seda; Karakurt, Funda; Erdogan, Merve
2018-04-01
The aim of our study was to investigate matrix metalloproteinases, MMP-9 and MMP-13 levels, in the rabbit model of Fusarium and Candida keratitis treated by corneal cross-linking (PACK-CXL). Rabbit corneas were inoculated with fungal inoculum for keratitis. Each group divided into four subgroups, including un-treated group, PACK-CXL group, voriconazole group and PACK-CXL plus voriconazole group. PACK-CXL was applied with 0.25% riboflavin in accelerated Dresden protocol, and 0.1% voriconazole drops were administered. All corneal buttons excised at tenth day after ophthalmological examination. Fungal cell counts and Scheiber scores were determined in all groups. Corneal tissue MMP mRNA levels were evaluated quantitative reverse transcriptase PCR. The difference in MMP-9 and MMP-13 levels at all groups was not statistically significant (p > 0.05). PACK-CXL with 0.25% riboflavin either alone or combined with antifungal drops was unable to provide decline in inflammatory findings in both macroscopic and microscopic levels similar to medical antifungal treatment.
The cDNA-derived amino acid sequence of hemoglobin II from Lucina pectinata.
Torres-Mercado, Elineth; Renta, Jessicca Y; Rodríguez, Yolanda; López-Garriga, Juan; Cadilla, Carmen L
2003-11-01
Hemoglobin II from the clam Lucina pectinata is an oxygen-reactive protein with a unique structural organization in the heme pocket involving residues Gln65 (E7), Tyr30 (B10), Phe44 (CD1), and Phe69 (E11). We employed the reverse transcriptase-polymerase chain reaction (RT-PCR) and methods to synthesize various cDNA(HbII). An initial 300-bp cDNA clone was amplified from total RNA by RT-PCR using degenerate oligonucleotides. Gene-specific primers derived from the HbII-partial cDNA sequence were used to obtain the 5' and 3' ends of the cDNA by RACE. The length of the HbII cDNA, estimated from overlapping clones, was approximately 2114 bases. Northern blot analysis revealed that the mRNA size of HbII agrees with the estimated size using cDNA data. The coding region of the full-length HbII cDNA codes for 151 amino acids. The calculated molecular weight of HbII, including the heme group and acetylated N-terminal residue, is 17,654.07 Da.
Lam, Rosanna Y Y; Lin, Zhi-Xiu; Sviderskaya, Elena V; Cheng, Christopher H K
2014-08-21
Searching for depigmenting agents from natural sources has become a new direction in the cosmetic industry as natural products are generally perceived as relatively safer. In our previous study, selected Chinese medicines traditionally used to treat hyperpigmentation were tested for anti-hyperpigmentary effects using a melan-a cell culture model. Among the tested chemical compounds, 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were found to possess hypopigmentary effects. Western blot analysis, reverse transcriptase polymerase chain reaction (RT-PCR), cyclic adenosine monophosphate (cAMP) assay, protein kinase A (PKA) activity assay, tyrosinase inhibition assay and lipid peroxidation inhibition assay were performed to reveal the underlying cellular and molecular mechanisms of the hypopigmentary effects. 4-Ethylresorcinol and 4-ethylphenol attenuated mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation. 1-Tetradecanol was able to attenuate protein expression of tyrosinase. The hypopigmentary actions of 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were associated with regulating downstream proteins along the PKA pathway. 4-Ethylresorcinol was more effective in inhibiting melanin synthesis when compared to 4-ethylphenol and 1-tetradecanol.
Bacterial Group II Introns: Identification and Mobility Assay.
Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel
2016-01-01
Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.
Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon.
Murali, Krishnan Saravana; Sivasubramanian, Srinivasan; Vincent, Savariar; Murugan, Shanmugaraj Bala; Giridaran, Bupesh; Dinesh, Sundaram; Gunasekaran, Palani; Krishnasamy, Kaveri; Sathishkumar, Ramalingam
2015-05-01
To obtain luteolin and apigenin rich fraction from the ethanolic extract of Cynodon dactylon (L.) (C. dactylon) Pers and evaluate the fraction's cytotoxicity and anti-Chikungunya potential using Vero cells. The ethanolic extract of C. dactylon was subjected to silica gel column chromatography to obtain anti-chikungunya virus (CHIKV) fraction. Reverse phase-HPLC and GC-MS studies were carried out to identify the major phytochemicals in the fraction using phytochemical standards. Cytotoxicity and the potential of the fraction against CHIKV were evaluated in vitro using Vero cells. Reduction in viral replication was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) after treating the viral infected Vero cells with the fraction. Reverse Phase-HPLC and GC-MS studies confirmed the presence of flavonoids, luteolin and apigenin as major phytochemicals in the anti-CHIKV ethanolic fraction of C. dactylon. The fraction was found to exhibit potent viral inhibitory activity (about 98%) at the concentration of 50 µg/mL as observed by reduction in cytopathic effect, and the cytotoxic concentration of the fraction was found to be 250 µg/mL. RT-PCR analyses indicated that the reduction in viral mRNA synthesis in fraction treated infected cells was much higher than the viral infected control cells. Luteolin and apigenin rich ethanolic fraction from C. dactylon can be utilized as a potential therapeutic agent against CHIKV infection as the fraction does not show cytotoxicity while inhibiting the virus. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Seth, Puneet; Yeowell, Heather N
2010-04-01
Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease the levels of fibrosis-associated LH2(long) mRNA in primary scleroderma cells may suggest a novel approach to strategies directed against scleroderma.
Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark
2009-01-01
Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161
miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1.
Sun, Xianglun; Li, Youkong; Yu, Jie; Pei, Hong; Luo, Pengcheng; Zhang, Jie
2015-05-01
Recent reports strongly suggest the profound role of miRNAs in cancer therapeutic response and progression, including invasion and metastasis. The sensitivity to therapy and invasion is the major obstacle for successful treatment in prostate cancer. We aimed to investigate the regulative effect of miR-128/zinc-finger E-box-binding homeobox 1 axis on prostate cancer cell chemosensitivity and invasion. The miR-128 expression pattern of prostate cancer cell lines and tissues was detected by real-time reverse transcriptase-polymerase chain reaction, while the mRNA and protein expression levels of zinc-finger E-box-binding homeobox 1 were measured by real-time reverse transcriptase-polymerase chain reaction and western blot assay, respectively. Dual-luciferase reporter gene assay was used to find the direct target of miR-128. Furthermore, prostate cancer cells were treated with miR-128 mimic or zinc-finger E-box-binding homeobox 1-siRNA, and then the cells' chemosensitivity and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and transwell assay, respectively. We found miR-128 expression obviously decreased in prostate cancer tissues compared with paired normal tissues. Restored miR-128 expression sensitized prostate cancer cells to cisplatin and inhibited the invasion. Furthermore, there was an inverse expression pattern between miR-128 and zinc-finger E-box-binding homeobox 1 in prostate cancer cells and tissues, and zinc-finger E-box-binding homeobox 1 was identified as a direct target of miR-128 in prostate cancer. Knockdown of zinc-finger E-box-binding homeobox 1 expression efficiently sensitized prostate cancer cells to cisplatin and inhibited the invasion. However, ectopic zinc-finger E-box-binding homeobox 1 expression impaired the effects of miR-128 on chemosensitivity and invasion in prostate cancer cells. miR-128 functions as a potential cancer suppressor in prostate cancer progression and rational therapeutic strategies for prostate cancer would be developed based on miR-128/zinc-finger E-box-binding homeobox 1 axis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mizutani, Takeshi; Fowler, Benjamin J.; Kim, Younghee; Yasuma, Reo; Krueger, Laura A.; Gelfand, Bradley D.; Ambati, Jayakrishna
2015-01-01
Purpose To evaluate the efficacy of nucleoside reverse transcriptase inhibitors (NRTIs) in the laser-induced mouse model of choroidal neovascularization (CNV). Methods We evaluated the NRTIs lamivudine (3TC), zidovudine (AZT), and abacavir (ABC) and the P2X7 antagonist A438079. Choroidal neovascularization was induced by laser injury in C57BL/6J wild-type, Nlrp3−/−, and P2rx7−/− mice, and CNV volume was measured after 7 days by confocal microscopy. Drugs were administered by intravitreous injection immediately after the laser injury. Vascular endothelial growth factor-A in RPE-choroid lysates was measured 3 days after laser injury by ELISA. HEK293 cells expressing human and mouse P2X7 were exposed to the selective P2X7 receptor agonist 2′, 3′-(benzoyl-4-benzoyl)-ATP (Bz-ATP) with or without 3TC, and VEGF-A levels in media were measured by ELISA. Results Intravitreous injection of 3TC, AZT, and ABC significantly suppressed laser-induced CNV in C57BL/6J wild-type and Nlrp3−/− mice (P < 0.05) but not in P2rx7−/− mice. Intravitreous injection of A438079 also suppressed the laser-induced CNV (P < 0.05). The NRTIs 3TC, AZT, and ABC blocked VEGF-A levels in the RPE/choroid after laser injury in wild-type (P < 0.05) but not P2rx7−/− mice. Moreover, there was no additive effect of 3TC on CNV inhibition when coadministered with a neutralizing VEGF-A antibody. Stimulation of human and mouse P2X7-expressing HEK293 cells with Bz-ATP increased VEGF secretion (P < 0.001), which was abrogated by 3TC (P < 0.001). Stimulation of primary human RPE cells with Bz-ATP increased VEGFA and IL6 mRNA levels, which were abrogated by 3TC. Conclusions Multiple clinically relevant NRTIs suppressed laser-induced CNV and downregulated VEGF-A, via P2X7. PMID:26529046
Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.
Lewis, William
2003-01-01
Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)
Towards novel therapeutics for HIV through fragment-based screening and drug design.
Tiefendbrunn, Theresa; Stout, C David
2014-01-01
Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.
Fragment Screening and HIV Therapeutics
Bauman, Joseph D.; Patel, Disha; Arnold, Eddy
2013-01-01
Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022
He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y
2009-06-01
Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo.
An Intravaginal Ring That Releases the NNRTI MIV-150 Reduces SHIV Transmission in Macaques
Rodriguez, Aixa; Kizima, Larisa; Menon, Radhika; Goldman, Daniel; Kenney, Jessica; Aravantinou, Meropi; Seidor, Samantha; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, José A.; Robbiani, Melissa; Zydowsky, Thomas M.
2015-01-01
Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150–containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs. PMID:22956201
An intravaginal ring that releases the NNRTI MIV-150 reduces SHIV transmission in macaques.
Singer, Rachel; Mawson, Paul; Derby, Nina; Rodriguez, Aixa; Kizima, Larisa; Menon, Radhika; Goldman, Daniel; Kenney, Jessica; Aravantinou, Meropi; Seidor, Samantha; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, José A; Robbiani, Melissa; Zydowsky, Thomas M
2012-09-05
Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150-containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.
Practical diagnostic testing for human immunodeficiency virus.
Jackson, J B; Balfour, H H
1988-01-01
Since the discovery of human immunodeficiency virus (HIV) as the causative agent of acquired immunodeficiency syndrome in 1983, there has been a proliferation of diagnostic tests. These assays can be used to detect the presence of HIV antibody, HIV antigen, HIV ribonucleic and deoxyribonucleic acids, and HIV reverse transcriptase. Enzyme-linked immunosorbent assays, Western blot, radioimmunoprecipitation assays, indirect immunofluorescence assays, reverse transcriptase assays, and several molecular hybridization techniques are currently available. Enzyme-linked immunosorbent, Western blot, and indirect immunofluorescence assays for HIV antibody are very sensitive, specific, and adaptable to most laboratories. An enzyme-linked immunosorbent assay for HIV antigen is also readily adaptable to most laboratories and will be commercially available soon. While the other assays are more tedious, they are valuable confirmatory tests and are suitable for reference laboratories. The biohazards of performing HIV testing can be minimized with proper biosafety measures. Images PMID:3060241
Telomerase Mechanism of Telomere Synthesis
Wu, R. Alex; Upton, Heather E.; Vogan, Jacob M.; Collins, Kathleen
2017-01-01
Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines. PMID:28141967
Park, Young-Jin; Kim, Eun-Kyoung; Moon, Sook; Hong, Doo-Pyo; Bae, Jung Yoon; Kim, Jin
2014-11-01
The present study aimed to investigate whether the down-regulation of human telomerase reverse transcriptase (hTERT) may induce an anti-invasive effect in oral squamous cell cancer cell lines. A genetically-engineered squamous carcinoma cell line overexpressing hTERT in immortalized oral keratinocytes transfected by human papilloma virus (HPV)-16 E6/E7 (IHOK) was used. In vivo tumorigenicity was examined using an orthotopic xenograft model of nude mice. For evaluating anti-invasive activity by knockdown of hTERT expression, transwell invasion assay and real-time polymerase chain reaction (PCR) for matrix metalloproteinases (MMP) were employed. The down-regulation of hTERT expression reduced the invasive activity and MMP expression. This result was re-confirmed in the HSC3 oral squamous carcinoma cell line. Targeting hTERT may lead to novel therapeutic approaches. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Technical Reports Server (NTRS)
Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.
1994-01-01
We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.
Crawford, Keith W; Njeru, Dorothy; Maswai, Jonah; Omondi, Milton; Apollo, Duncan; Kimetto, Jane; Gitonga, Lawrence; Munyao, James; Langat, Raphael; Aoko, Appolonia; Tarus, Jemutai; Khamadi, Samoel; Hamm, Tiffany E
2014-01-28
Resistance to efavirenz and nevirapine has not been associated with mutations at position 138 of reverse transcriptase. In an evaluation of virologic suppression rates in PEPFAR (President's Emergency Plan For AIDS Relief) clinics in Kenya among patients on first-line therapy (RV288), 63% (617/975) of randomly selected patients on antiretroviral therapy were suppressed (HIV RNA<400 copies/ml). Among those with non-nucleoside reverse transcriptase inhibitor resistance (n = 101), 14 (13.8%) had substitutions at 138 (A, G, K or Q), mutations selected only by etravirine and rilpivirine in subtype B viruses. All 14 patients received efavirenz or nevirapine, not etravirine or rilpivirine, and were predominantly subtype A1. This may be the first report of efavirenz and nevirapine selecting these mutations in these subtypes.
HIV type 1 diversity in the Seychelles.
Razafindratsimandresy, Richter; Hollanda, Justina; Soares, Jean-Louis; Rousset, Dominique; Chetty, Agnes P; Reynes, Jean-Marc
2007-06-01
Subtype determination and drug resistance-associated mutations (DRM) detection were performed on 40 HIV-1 Western blot-positive sera detected, obtained from consecutive patients resident in the Seychelles and consulting the Communicable Disease Control Unit, HIV reference center, in Victoria Hospital (Mahe) from October 2005 to June 2006. Amplification and sequencing of at least two of the partial reverse transcriptase, protease, and partial envelope genes were successful for all strains. All three genes sequences were obtained for 39 strains. A high degree of subtype or circulating recombinant forms (CRF) was observed for these 39 strains: A-A1 (17 cases), C (10 cases), B (8 cases), CRF02_AG (2 cases), D (1 case) and CRF01_AE (1 case). According to the ANRS 2006 DRM list and algorithm, none of the 40 isolates was found to be resistant to any protease or reverse transcriptase inhibitors.
Tang, Jing; Vernekar, Sanjeev Kumar V; Chen, Yue-Lei; Miller, Lena; Huber, Andrew D; Myshakina, Nataliya; Sarafianos, Stefan G; Parniak, Michael A; Wang, Zhengqiang
2017-06-16
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors. Our data indicate that while some of these subtypes inhibited both the RNase H and polymerase (pol) functions of RT, potent and selective RNase H inhibition was achieved with subtypes 8-9 as exemplified with compounds 8c and 9c. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Transposable elements in sexual and ancient asexual taxa
Arkhipova, Irina; Meselson, Matthew
2000-01-01
Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049
Spurlock, Charles F.; Tossberg, John T.; Fuchs, Howard A.; Olsen, Nancy J.; Aune, Thomas M.
2011-01-01
Objective To assess defects in expression of critical cell cycle checkpoint genes and proteins in subjects with rheumatoid arthritis relative to presence or absence of methotrexate medication and assess the role of Jun N-terminal kinase in methotrexate induction of these genes. Methods Flow cytometry analysis was used to quantify changes in intracellular proteins, measure reactive oxygen species (ROS), and determine apoptosis in different lymphoid populations. Quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) was employed to determine changes in cell cycle checkpoint target genes. Results RA subjects express lower baseline levels of MAPK9, TP53, CDKN1A, CDKN1B, CHEK2, and RANGAP1 messenger RNA (mRNA) and total JNK protein. MAPK9, TP53, CDKN1A, and CDKN1B mRNA expression, but not CHEK2, and RANGAP1, is higher in patients on low-dose MTX therapy. Further, JNK levels inversely correlate with CRP levels in RA patients. In tissue culture, MTX induces expression of both p53 and p21 by JNK2 and JNK1-dependent mechanisms, respectively, while CHEK2 and RANGAP1 are not induced by MTX. MTX also induces ROS production, JNK activation, and sensitivity to apoptosis in activated T cells. Supplementation with tetrahydrobiopterin blocks these MTX-mediated effects. Conclusions Our findings support the notion that MTX restores some, but not all of the proteins contributing to cell cycle checkpoint deficiencies in RA T cells by a JNK dependent pathway. PMID:22183962
Cytokine expression in peripheral blood mononuclear cells of dogs with mitral valve disease.
Mavropoulou, A; Guazzetti, S; Borghetti, P; De Angelis, E; Quintavalla, C
2016-05-01
Inflammation plays an important role in the pathogenesis of congestive heart failure (CHF). In humans with CHF, increased production and high plasma concentrations of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1, IL-8 and transforming growth factor-β (TGF-β) have been associated with disease progression and a negative prognosis. The aim of this study was to investigate whether differences in cytokine blood mRNA expression exist between clinically healthy dogs and dogs with myxomatous mitral valve disease (MMVD); to determine if the expression was related to the severity of MMVD, and to detect any correlations with echocardiographic parameters of cardiac remodelling. Twenty-three dogs with MMVD of varying severity and six clinically healthy dogs were included in the study. Whole blood samples were obtained for measurement of mRNA expression of IL-1α, IL-1β, IL-6, IL-8, TGF-β1, TNF-α by reverse transcriptase-PCR (RT-PCR). There were statistically significant differences between clinically healthy dogs and dogs with MMVD for IL-8 and TGF-β1 gene expression. IL-8 expression increased with increasing MMVD severity and TGF-β1 expression was higher in asymptomatic dogs with echocardiographic signs of cardiac remodelling (American College Veterinary Internal Medicine class B2) than in all other groups. These results could suggest the involvement of these cytokines at different stages of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
KAMLUA, SURASEE; PATRAKITKOMJORN, SIRIPORN; JEARANAIKOON, PATCHAREE; MENHENIOTT, TREVELYAN R.; GIRAUD, ANDREW S.; LIMPAIBOON, TEMDUANG
2012-01-01
Trefoil factor 2 (TFF2) is a member of trefoil factor family found to be overexpressed in many cancers including cholangiocarcinoma (CCA). The majority of studies have focused on wild-type TFF2 (wtTFF2) expression, but information regarding alternative splicing variants of TFF2 mRNA has not been reported. In this study, we aimed to identify and quantify a novel TFF2 splice variant in cholangiocarcinoma (CCA). Seventy-eight tumors and 15 normal adjacent tissues were quantified for the expression of the TFF2 splice variant relative to wild-type (wt) TFF2 mRNA using quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). The ratio of TFF2 splice variant against wtTFF2 was analyzed for associations with clinical parameters. We found a novel TFF2 splice variant, exon 2 skipping (ΔEX2TFF2), resulting in a stop codon (TAG) at exon 1. The ΔEX2TFF2/wtTFF2 ratio in tumors was significantly higher than in normal tissue (P<0.01). Interestingly, high ΔEX2TFF2/wtTFF2 ratio was significantly associated with good prognosis compared with low ratio (P=0.017). In contrast, the presence of wtTFF2 protein was associated with poor survival of CCA patients (P=0.034). This is the first report of a trefoil factor splice variant and its potential application as a prognostic biomarker in CCA. PMID:22159958
Okamura, Yo; Inada, Mari; Elshopakey, Gehad Elsaid; Itami, Toshiaki
2018-05-16
Reactive oxygen species (ROS) play key roles in many physiological processes. In particular, the sterilization mechanism of bacteria using ROS in macrophages is a very important function for biological defense. Xanthine dehydrogenase (XDH) and aldehyde oxidase (AOX), members of the molybdo-flavoenzyme subfamily, are known to generate ROS. Although these enzymes occur in many vertebrates, some insects, and plants, little research has been conducted on XDHs and AOXs in crustaceans. Here, we cloned the entire cDNA sequences of XDH (MjXDH: 4328 bp) and AOX (MjAOX: 4425 bp) from Marsupenaeus japonicus (kuruma shrimp) using reverse transcriptase-polymerase chain reaction (RT-PCR) and random amplification of cDNA ends (RACE). Quantitative real-time RT-PCR transcriptional analysis revealed that MjXDH mRNA is highly expressed in heart and stomach tissues, whereas MjAOX mRNA is highly expressed in the lymphoid organ and intestinal tissues. Furthermore, expression of MjAOX was determined to be up-regulated in the lymphoid organ in response to Vibrio penaeicida at 48 and 72 h after injection; in contrast, hydrogen peroxide (H 2 O 2 ) concentrations increased significantly at 6, 12, 48, and 72 h after injection with white spot syndrome virus (WSSV) and at 72 h after injection with V. penaeicida. To the best of our knowledge, this study is the first to have identified and cloned XDH and AOX from a crustacean species.
Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L
2009-06-01
Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.
Belzeaux, R; Bergon, A; Jeanjean, V; Loriod, B; Formisano-Tréziny, C; Verrier, L; Loundou, A; Baumstarck-Barrau, K; Boyer, L; Gall, V; Gabert, J; Nguyen, C; Azorin, J-M; Naudin, J; Ibrahim, E C
2012-01-01
To date, it remains impossible to guarantee that short-term treatment given to a patient suffering from a major depressive episode (MDE) will improve long-term efficacy. Objective biological measurements and biomarkers that could help in predicting the clinical evolution of MDE are still warranted. To better understand the reason nearly half of MDE patients respond poorly to current antidepressive treatments, we examined the gene expression profile of peripheral blood samples collected from 16 severe MDE patients and 13 matched controls. Using a naturalistic and longitudinal design, we ascertained mRNA and microRNA (miRNA) expression at baseline, 2 and 8 weeks later. On a genome-wide scale, we detected transcripts with roles in various biological processes as significantly dysregulated between MDE patients and controls, notably those involved in nucleotide binding and chromatin assembly. We also established putative interactions between dysregulated mRNAs and miRNAs that may contribute to MDE physiopathology. We selected a set of mRNA candidates for quantitative reverse transcriptase PCR (RT-qPCR) to validate that the transcriptional signatures observed in responders is different from nonresponders. Furthermore, we identified a combination of four mRNAs (PPT1, TNF, IL1B and HIST1H1E) that could be predictive of treatment response. Altogether, these results highlight the importance of studies investigating the tight relationship between peripheral transcriptional changes and the dynamic clinical progression of MDE patients to provide biomarkers of MDE evolution and prognosis. PMID:23149449
Feliciani, C; Toto, P; Mohammad Pour, S; Coscione, G; Amerio, P; Amerio, P
1999-01-01
Bullous Pemphigoid is an autoimmune bullous disorder characterized by production of IgG against an hemidesmosomal antigen (230 kDa, 180 kDa) responsible for blistering of the skin. In the past several mediators have been implicated in the pathogenesis of the disease such as proteases and collagenases secreted by local inflammatory cells. In order to investigate the role of cytokines in BP, the cytokine pattern was evaluated by an immunohistochemical analysis and by reverse transcriptase polymerase chain reaction procedure in 13 BP patients. Cytokines examined were interleukin (IL)-2, IL-4, IL-5, interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. The T cell inflammatory infiltrate was also characterized by monoclonal antibodies showing CD3+, CD4+ T cells with a perivascular and scattered distribution in lesional skin. IL-4 and IL-5 were detected in a similar distribution to the inflammatory infiltrate. IL-4 and IL-5 mRNA levels were also revealed by RT-PCR. Proinflammatory cytokines such as TNF-alpha, IL-6 and Th1-like cytokines (IL-2 and INF-gamma) were not detected neither as proteins nor as mRNA. Since IL-4 and IL-5 are important in eosinophil chemoattraction, maturation and functional activity, the presence of IL-4 and IL-5 in BP suggest that these cytokines could be important in the pathogenesis of the disease.
Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.
Johnston, Adam P W; Baker, Jeff; De Lisio, Michael; Parise, Gianni
2011-06-01
A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT(1)) and type 2 (AT(2)). Renin transcripts were never detected, however, mRNA for the 'renin-like' enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT(1) appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT(1) and AT(2). Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.
Karvonen, Henna M; Lehtonen, Siri T; Sormunen, Raija T; Harju, Terttu H; Lappi-Blanco, Elisa; Bloigu, Risto S; Kaarteenaho, Riitta L
2012-09-01
The characteristic features of myofibroblasts in various lung disorders are poorly understood. We have evaluated the ultrastructure and invasive capacities of myofibroblasts cultured from small volumes of diagnostic bronchoalveolar lavage (BAL) fluid samples from patients with different types of lung diseases. Cells were cultured from samples of BAL fluid collected from 51 patients that had undergone bronchoscopy and BAL for diagnostic purposes. The cells were visualized by transmission electron microscopy and immunoelectron microscopy to achieve ultrastructural localization of alpha-smooth muscle actin (α-SMA) and fibronectin. The levels of α-SMA protein and mRNA and fibronectin mRNA were measured by western blot and quantitative real-time reverse transcriptase polymerase chain reaction. The invasive capacities of the cells were evaluated. The cultured cells were either fibroblasts or myofibroblasts. The structure of the fibronexus, and the amounts of intracellular actin, extracellular fibronectin and cell junctions of myofibroblasts varied in different diseases. In electron and immunoelectron microscopy, cells cultured from interstitial lung diseases (ILDs) expressed more actin filaments and α-SMA than normal lung. The invasive capacity of the cells obtained from patients with idiopathic pulmonary fibrosis was higher than that from patients with other type of ILDs. Cells expressing more actin filaments had a higher invasion capacity. It is concluded that electron and immunoelectron microscopic studies of myofibroblasts can reveal differential features in various diseases. An analysis of myofibroblasts cultured from diagnostic BAL fluid samples may represent a new kind of tool for diagnostics and research into lung diseases.
Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda
2016-01-01
Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.
Seniya, Chandrabhan; Yadav, Ajay; Uchadia, Kuldeep; Kumar, Sanjay; Sagar, Nitin; Shrivastava, Priyanka; Shrivastava, Shilpi; Wadhwa, Gulshan
2012-01-01
The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.
Antiretroviral therapy in children: recent advances.
Lodha, Rakesh; Manglani, Mamta
2012-12-01
Availability and successful use of various antiretroviral drugs has transformed HIV/AIDS from an incurable to a treatable chronic condition. The antiretroviral therapy can successfully suppress viral replication and preserve the immune system for many years. The implementation of antiretroviral therapy program in resource limited settings using the 'public health approach' of the World Health Organization has had a dramatic impact on the lives of millions of HIV infected individuals. Antiretroviral therapy (ART) in children has many challenges: use of appropriate formulations, regular need for modification of doses as the child grows, adherence issues, etc. To reduce the high morbidity and mortality in HIV infected children, it is currently recommended that all HIV infected children less than 24 mo should receive ART; in older children the indications are based on clinical and/or immunological criteria. Highly active antiretroviral therapy regimens include at least 3 antiretroviral drugs. The first line therapy recommended for children is a combination of two nucleoside reverse transcriptase inhibitors and a non-nucleoside reverse transcriptase inhibitor. Infants who have had exposure to nevirapine should receive a combination of two nucleoside reverse transcriptase inhibitors and a protease inhibitor; the protease inhibitor of choice is ritonavir boosted lopinavir. The success of therapy is dependent on >95 % adherence. The second line regimen, used when the first line therapy fails, is based on a protease inhibitor. The ongoing research focuses on simplification of regimen, discovery of more potent drugs, availability of more pediatric formulations, treatment of drug resistant strains etc. The optimal indications for initiation of therapy in children, are also being studied.
Erben, Philipp; Gosenca, Darko; Müller, Martin C.; Reinhard, Jelena; Score, Joannah; del Valle, Francesco; Walz, Christoph; Mix, Jürgen; Metzgeroth, Georgia; Ernst, Thomas; Haferlach, Claudia; Cross, Nicholas C.P.; Hochhaus, Andreas; Reiter, Andreas
2010-01-01
Background Rapid identification of diverse fusion genes with involvement of PDGFRA or PDGFRB in eosinophilia-associated myeloproliferative neoplasms is essential for adequate clinical management but is complicated by the multitude and heterogeneity of partner genes and breakpoints. Design and Methods We established a generic quantitative reverse transcriptase polymerase chain reaction to detect overexpression of the 3′-regions of PDGFRA or PDGFRB as a possible indicator of an underlying fusion. Results At diagnosis, all patients with known fusion genes involving PDGFRA (n=5; 51 patients) or PDGFRB (n=5; 7 patients) showed significantly increased normalized expression levels compared to 191 patients with fusion gene-negative eosinophilia or healthy individuals (PDGFRA/ABL: 0.73 versus 0.0066 versus 0.0064, P<0.0001; PDGFRB/ABL: 196 versus 3.8 versus 5.85, P<0.0001). The sensitivity and specificity of the activation screening test were, respectively, 100% and 88.4% for PDGFRA and 100% and 94% for PDGFRB. Furthermore, significant overexpression of PDGFRB was found in a patient with an eosinophilia-associated myeloproliferative neoplasm with uninformative cytogenetics and an excellent response to imatinib. Subsequently, a new SART3-PDGFRB fusion gene was identified by 5′-rapid amplification of cDNA ends polymerase chain reaction (5′-RACE-PCR). Conclusions Quantitative reverse transcriptase polymerase chain reaction analysis is a simple and useful adjunct to standard diagnostic assays to detect clinically significant overexpression of PDGFRA and PDGFRB in eosinophilia-associated myeloproliferative neoplasms or related disorders. PMID:20107158
Jia, Peng; Purcell, Maureen; Pan, Guang; Wang, Jinjin; Kan, Shifu; Liu, Yin; Zheng, Xiaocong; SHi, Xiujie; He, Junqiang; Yu, Li; Hua, Qunyi; Lu, Tikang; Lan, Wensheng; Winton, James; Jin, Ningyi; Liu, Hong
2017-01-01
Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/μl while the LOD for the RT-qPCR was 0.2 PFU/μl. Good agreement (69.4–100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.
Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S; Moncla, Bernard; Sarafianos, Stefan G; Parniak, Michael A; Rohan, Lisa C
2015-09-01
EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.
TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS
Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...
A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes.
Spadafora, Corrado
2008-01-01
This review summarizes emerging evidence that LINE-1 (Long Interspersed Nuclear Elements) -encoded reverse transcriptase (RT) regulates fundamental biological processes. Earlier studies showed that sperm cells can be used as vectors of both exogenous DNA and RNA molecules in sperm-mediated gene transfer assays. During these studies, a sperm endogenous RT activity was identified, which can reverse-transcribe exogenous RNA directly, or DNA molecules through sequential transcription and reverse transcription. Resulting cDNA copies generated in sperm cells can be delivered to embryos at fertilization, further propagated in tissues as low-copy extrachromosomal structures and transmitted to the progeny in a non-mendelian fashion. Being transcriptionally competent, they can induce phenotypic variations in positive tissues. An RT activity is also present in preimplantation embryos, and its inhibition causes developmental arrest in early preimplantation stages, paralleled by an extensive reprogramming of gene expression. In analogy with this, drug-mediated inhibition of RT activity, or RNA interference-mediated silencing of human LINE-1, reduce cell proliferation and induce differentiation in a variety of cancer cell lines. Furthermore, RT inhibition in vivo antagonizes the growth of human tumors in animal models. As a whole, these data implicate a RT-dependent machinery in the genesis of new genetic information in spermatozoa and in normal and pathological developmental processes.
Brundage, Susan I; Zautke, N A; Holcomb, J B; Spain, D A; Lam, J C; Mastrangelo, M A; Macaitis, J M; Tweardy, D J
2004-11-01
Serum elevations of interleukin-6 (IL-6) correlate with multiple organ dysfunction syndrome and mortality in critically injured trauma patients. Data from rodent models of controlled hemorrhage suggest that recombinant IL-6 (rIL-6) infusion protects tissue at risk for ischemia-reperfusion injury. Exogenous rIL-6 administered during shock appears to abrogate inflammation, providing a protective rather than a deleterious influence. In an examination of this paradox, the current study aimed to determine whether rIL-6 decreases inflammation in a clinically relevant large animal model of uncontrolled hemorrhagic shock, (UHS), and to investigate the mechanism of protection. Swine were randomized to four groups (8 animals in each): (1) sacrifice, (2) sham (splenectomy followed by hemodilution and cooling to 33 degrees C), (3) rIL-6 infusion (sham plus UHS using grade 5 liver injury with packing and resuscitation plus blinded infusion of rIL-6 [10 mcg/kg]), and (4) placebo (UHS plus blinded vehicle). After 4 hours, blood was sampled, estimated blood loss determined, animals sacrificed, and lung harvested for RNA isolation. Quantitative reverse transcriptase-polymerase chain reaction was used to assess granulocyte colony-stimulating factor (G-CSF), IL-6, and tumor necrosis factor-alpha (TNFalpha) messenger ribonucleic acid (mRNA) levels. Serum levels of IL-6 and TNFalpha were measured by enzyme-linked immunoassay (ELISA). As compared with placebo, IL-6 infusion in UHS did not increase estimated blood loss or white blood cell counts, nor decrease hematocrit or platelet levels. As compared with the sham condition, lung G-CSF mRNA production in UHS plus placebo increased eightfold (*p < 0.05). In contrast, rIL-6 infusion plus UHS blunted G-CSF mRNA levels, which were not significantly higher than sham levels (p = 0.1). Infusion of rIL-6 did not significantly affect endogenous production of either lung IL-6 or mRNA. As determined by ELISA, rIL-6 infusion did not increase final serum levels of IL-6 or TNFalpha over those of sham and placebo conditions. Exogenous rIL-6 blunts lung mRNA levels of the proinflammatory cytokine G-CSF. The administration of rIL-6 does not increase the local expression of IL-6 nor TNFalpha mRNA in the lung. Additionally, rIL-6 infusion does not appear to cause systemic toxicity.
Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics
Kim, Yung Sam; Hochstrasser, Robin M.
2010-01-01
Following a survey of 2D IR principles this Feature Article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils. PMID:19351162
Cryptosporidium spp. and Toxoplasma gondii are important coccidian parasites that have caused waterborne and foodborne disease outbreaks worldwide. Techniques like subtractive hybridization, microarrays, and quantitative reverse transcriptase real-time polymerase chain reaction (...
Epigenetic Characterization of Ovarian Cancer
2008-12-01
Gusberg, A. H., Whitaker, R. S., Gray , J. W., Fujii, S., Berchuck, A. and S. K. Murphy. YY1/E2F3 modulates antimicrotubule drug response in epithelial... GTG GGT TTT TGG TGT TGG GTA TT-3’; and a shared reverse primer that does not anneal to CpGs, 5’-AAC CCC ACT CCC ACC CTA CTC C-3’. PCR was performed...Superscript II RNase H- reverse transcriptase (Invitrogen). Forward primer: 5’-GCG ACA TCG GTG ACT TCA T-3’ and reverse primer 5’-ATA CAT GTC CGC CAG CTT
Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice
2005-04-01
Several studies suggest that therapeutic drug monitoring of protease inhibitors and nonnucleoside reverse transcriptase inhibitors may contribute to the clinical outcome of HIV-infected patients. Because of the growing number of antiretroviral drugs and of drug combinations than can be administered to these patients, an accurate high-performance liquid chromatographic (HPLC) method allowing the simultaneous determination of these drugs may be useful. To date, the authors present the first simultaneous HPLC determination of the new protease inhibitor atazanavir with all the others currently in use (M8 nelfinavir metabolite included) and the 2 widely used nonnucleoside reverse transcriptase inhibitors efavirenz and nevirapine. This simple HPLC method allows the analysis all these drugs at a single ultraviolet wavelength following a 1-step liquid-liquid extraction procedure. A 500-muL plasma sample was spiked with internal standard and subjected to liquid-liquid extraction using by diethyl ether at pH 10. HPLC was performed using a Symmetry Shield RP18 and gradient elution. All the drugs of interest and internal standard were detected with ultraviolet detection at 210 nm. Calibration curves were linear in the range 50-10,000 ng/mL. The observed concentrations of the quality controls at plasma concentrations ranging from 50 to 5000 ng/mL for these drugs showed that the overall accuracy varied from 92% to 104% and 92% to 106% for intraday and day-to-day analysis, respectively. No metabolites of the assayed compounds or other drugs commonly coadministered to HIV-positive patients were found to coelute with the drugs of interest or with the internal standard. This assay was developed for the purpose of therapeutic monitoring (TDM) in HIV-infected patients.
Problem-Solving Test: Catalytic Activities of a Human Nuclear Enzyme
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
Terms to be familiar with before you start to solve the test: ion exchange chromatography, polynucleotides, oligonucleotides, radioactive labeling, template, primer, DNA polymerase, reverse transcriptase, helicase, nucleoside triphosphates, nucleoside diphosphates, nucleoside monophosphates, nucleosides, 5'-end and 3'-end, bacteriophage,…
Literature Reference for Influenza H5N1 (Emerging Infectious Diseases. 2005. 11(8): 1303–1305)
Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, aerosol, liquid and water samples. This is a two-step, real-time reverse transcriptase-PCR multiplex assay.
Mathews, D H; Banerjee, A R; Luan, D D; Eickbush, T H; Turner, D H
1997-01-01
RNA transcripts corresponding to the 250-nt 3' untranslated region of the R2 non-LTR retrotransposable element are recognized by the R2 reverse transcriptase and are sufficient to serve as templates in the target DNA-primed reverse transcription (TPRT) reaction. The R2 protein encoded by the Bombyx mori R2 can recognize this region from both the B. mori and Drosophila melanogaster R2 elements even though these regions show little nucleotide sequence identity. A model for the RNA secondary structure of the 3' untranslated region of the D. melanogaster R2 retrotransposon was developed by sequence comparison of 10 species aided by free energy minimization. Chemical modification experiments are consistent with this prediction. A secondary structure model for the 3' untranslated region of R2 RNA from the R2 element from B. mori was obtained by a combination of chemical modification data and free energy minimization. These two secondary structure models, found independently, share several common sites. This study shows the utility of combining free energy minimization, sequence comparison, and chemical modification to model an RNA secondary structure. PMID:8990394
Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.
2015-01-01
Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967
Nouchi, A; Nguyen, T; Valantin, M A; Simon, A; Sayon, S; Agher, R; Calvez, V; Katlama, C; Marcelin, A G; Soulie, C
2018-05-29
To investigate the dynamics of HIV-1 variants archived in cells harbouring drug resistance-associated mutations (DRAMs) to lamivudine/emtricitabine, etravirine and rilpivirine in patients under effective ART free from selective pressure on these DRAMs, in order to assess the possibility of recycling molecules with resistance history. We studied 25 patients with at least one DRAM to lamivudine/emtricitabine, etravirine and/or rilpivirine identified on an RNA sequence in their history and with virological control for at least 5 years under a regimen excluding all drugs from the resistant class. Longitudinal ultra-deep sequencing (UDS) and Sanger sequencing of the reverse transcriptase region were performed on cell-associated HIV-1 DNA samples taken over the 5 years of follow-up. Viral variants harbouring the analysed DRAMs were no longer detected by UDS over the 5 years in 72% of patients, with viruses susceptible to the molecules of interest found after 5 years in 80% of patients with UDS and in 88% of patients with Sanger. Residual viraemia with <50 copies/mL was detected in 52% of patients. The median HIV DNA level remained stable (2.4 at baseline versus 2.1 log10 copies/106 cells 5 years later). These results show a clear trend towards clearance of archived DRAMs to reverse transcriptase inhibitors in cell-associated HIV-1 DNA after a long period of virological control, free from therapeutic selective pressure on these DRAMs, reflecting probable residual replication in some reservoirs of the fittest viruses and leading to persistent evolution of the archived HIV-1 DNA resistance profile.
Trivedi, Vinod; Von Lindern, Jana; Montes-Walters, Miguel; Rojo, Daniel R; Shell, Elisabeth J; Parkin, Neil; O'Brien, William A; Ferguson, Monique R
2008-10-01
The role specific reverse transcriptase (RT) drug resistance mutations play in influencing phenotypic susceptibility to RT inhibitors in virus strains with complex resistance interaction patterns was assessed using recombinant viruses that consisted of RT-PCR-amplified pol fragments derived from plasma HIV-1 RNA from two treatment-experienced patients. Specific modifications of key RT amino acids were performed by site-directed mutagenesis. A panel of viruses with defined genotypic resistance mutations was assessed for phenotypic drug resistance. Introduction of M184V into several different clones expressing various RT resistance mutations uniformly decreased susceptibility to abacavir, lamivudine, and didanosine, and increased susceptibility to zidovudine, stavudine, and tenofovir; replication capacity was decreased. The L74V mutation had similar but slightly different effects, contributing to decreased susceptibility to abacavir, lamivudine, and didanosine and increased susceptibility to zidovudine and tenofovir, but in contrast to M184V, L74V contributed to decreased susceptibility to stavudine. In virus strains with the nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations K101E and G190S, the L74V mutation increased replication capacity, consistent with published observations, but replication capacity was decreased in strains without NNRTI resistance mutations. K101E and G190S together tend to decrease susceptibility to all nucleoside RT inhibitors, but the K103N mutation had little effect on nucleoside RT inhibitor susceptibility. Mutational interactions can have a substantial impact on drug resistance phenotype and replication capacity, and this has been exploited in clinical practice with the development of fixed-dose combination pills. However, we are the first to report these mutational interactions using molecularly cloned recombinant strains derived from viruses that occur naturally in HIV-infected individuals.
Avi, Radko; Huik, Kristi; Pauskar, Merit; Ustina, Valentina; Karki, Tõnis; Kallas, Eveli; Jõgeda, Ene-Ly; Krispin, Tõnu; Lutsar, Irja
2014-03-01
The presence of transmitted drug resistance (TDR) in treatment-naive HIV-1-positive subjects is of concern, especially in the countries of the former Soviet Union in which the number of subjects exposed to antiretrovirals (ARV) has exponentially increased during the past decade. We assessed the rate of TDR among newly diagnosed subjects in Estonia in 2010 and compared it to that in 2008. The study included 325 subjects (87% of all subjects tested HIV positive from January 1 to December 31, 2010). Of the 244 sequenced viral genomic RNA in the reverse transcriptase (RT) region 214 were CRF06_cpx, nine were subtype A1, three (one each) were subtype B and subtype C, CRF02_AG, and CRF03_AB; 15 viruses remained unclassified as putative recombinant forms between CRF06_cpx and subtype A1. HIV-1 TDR mutations in 2010 and 2008 (n=145) occurred at similar frequency in 4.5% (95% CI 2.45; 7.98) and 5.5% (95% CI 1.8; 9.24) of the patients, respectively. In 2010, 2.5% (6/244) of the sequences harbored nonnucleoside reverse transcriptase inhibitor (NNRTI) (K103N and K101E), 1.6% (4/244) nucleoside reverse transcriptase inhibitor (NRTI) (M41L, M184I, and K219E), and 0.4% (1/244) protease inhibitor (PI) (V82A) mutations. Our findings indicate that in spite of the increased consumption of ARVs the rate of TDR in Estonia has remained unchanged over the past 3 years. Similar stabilizing or even decreasing trends have been described in Western Europe and North America albeit at higher levels and in different socioeconomic backgrounds.
Trivedi, Vinod; Von Lindern, Jana; Montes-Walters, Miguel; Rojo, Daniel R.; Shell, Elisabeth J.; Parkin, Neil; O'Brien, William A.
2008-01-01
Abstract The role specific reverse transcriptase (RT) drug resistance mutations play in influencing phenotypic susceptibility to RT inhibitors in virus strains with complex resistance interaction patterns was assessed using recombinant viruses that consisted of RT-PCR-amplified pol fragments derived from plasma HIV-1 RNA from two treatment-experienced patients. Specific modifications of key RT amino acids were performed by site-directed mutagenesis. A panel of viruses with defined genotypic resistance mutations was assessed for phenotypic drug resistance. Introduction of M184V into several different clones expressing various RT resistance mutations uniformly decreased susceptibility to abacavir, lamivudine, and didanosine, and increased susceptibility to zidovudine, stavudine, and tenofovir; replication capacity was decreased. The L74V mutation had similar but slightly different effects, contributing to decreased susceptibility to abacavir, lamivudine, and didanosine and increased susceptibility to zidovudine and tenofovir, but in contrast to M184V, L74V contributed to decreased susceptibility to stavudine. In virus strains with the nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations K101E and G190S, the L74V mutation increased replication capacity, consistent with published observations, but replication capacity was decreased in strains without NNRTI resistance mutations. K101E and G190S together tend to decrease susceptibility to all nucleoside RT inhibitors, but the K103N mutation had little effect on nucleoside RT inhibitor susceptibility. Mutational interactions can have a substantial impact on drug resistance phenotype and replication capacity, and this has been exploited in clinical practice with the development of fixed-dose combination pills. However, we are the first to report these mutational interactions using molecularly cloned recombinant strains derived from viruses that occur naturally in HIV-infected individuals. PMID:18844463
Paquet, Agnes C; Solberg, Owen D; Napolitano, Laura A; Volpe, Joseph M; Walworth, Charles; Whitcomb, Jeannette M; Petropoulos, Christos J; Haddad, Mojgan
2014-01-01
Drug resistance testing and co-receptor tropism determination are key components of the management of antiretroviral therapy for HIV-1-infected individuals. The purpose of this study was to examine trends of HIV-1 resistance and viral evolution in the past decade by surveying a large commercial patient testing database. Temporal trends of drug resistance, viral fitness and co-receptor usage among samples submitted for routine phenotypic and genotypic resistance testing to protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), as well as for tropism determination were investigated. Within 62,397 resistant viruses reported from 2003 to 2012, we observed a decreasing trend in the prevalence of three-class resistance (from 25% to 9%) driven by decreased resistance to PIs (43% to 21%) and NRTIs (79% to 57%), while observing a slight increase in NNRTI resistance (68% to 75%). The prevalence of CXCR4-mediated entry among tropism testing samples (n=52,945) declined over time from 47% in 2007 to 40% in 2012. A higher proportion of CXCR4-tropic viruses was observed within samples with three-class resistance (50%) compared with the group with no resistance (36%). Decreased prevalence of three-class resistance and increased prevalence of one-class resistance was observed within samples reported between 2003 and 2012. The fraction of CXCR4-tropic viruses has decreased over time; however, CXCR4 usage was more prevalent among multi-class-resistant samples, which may be due to the more advanced disease stage of treatment-experienced patients. These trends have important implications for clinical practice and future drug discovery and development.
Burke, W D; Calalang, C C; Eickbush, T H
1987-01-01
Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905
Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres.
Arkhipova, Irina R; Yushenova, Irina A; Rodriguez, Fernando
2017-09-01
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3'-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3'-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis
MATSUKI, Tomohiro; TSUCHIDA, Shinji; TERAUCHI, Ryu; ODA, Ryo; FUJIWARA, Hiroyoshi; MAZDA, Osam; KUBO, Toshikazu
2016-01-01
Objectives This study aims to identify the distribution and expression level of connexin 43 (Cx43) in synovial tissue in patients with rheumatoid arthritis (RA). Patients and methods The expression of Cx43 in synovial tissue from eight patients with RA (2 males, 6 females; mean age 59.5±2.7 years; range 52 to 71 years), five patients with osteoarthritis (2 males, 3 females; mean age 68.4±2.7 years; range 61 to 81 years), and one normal female subject (mean age 61 year) was analyzed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry of tissue sections. Induction of Cx43 following stimulation of human RA synovial fibroblasts with tumor necrosis factor-alpha (TNF-a) cultures was examined by quantitative reverse transcriptase polymerase chain reaction. The effect of small interfering ribonucleic acid targeting Cx43 (siCx43) on the expression of TNF-a and interleukin-6 was examined using quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assays. Results Connexin 43 was highly expressed in RA synovial tissue, which also expressed TNF-a, but was expressed lower in osteoarthritis and normal synovial tissue. Expression of Cx43 was markedly up-regulated in RA synovial fibroblasts after stimulation with TNF-a. The over-expression of pro- inflammatory cytokines was suppressed by transfection of siCx43. Conclusion This study shows that Cx43 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNF-a. The expression of the pro-inflammatory cytokines was inhibited by transfection of siCx43. Cx43 may be a novel marker of inflammation in RA synovial tissue. PMID:29900991
Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie
2004-04-02
Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.
Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.
Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc
2017-02-17
There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Misbah, Mohammad; Roy, Gaurav; Shahid, Mudassar; Nag, Nalin; Kumar, Suresh; Husain, Mohammad
2016-05-01
Drug resistance mutations in the Pol gene of human immunodeficiency virus 1 (HIV-1) are one of the critical factors associated with antiretroviral therapy (ART) failure in HIV-1 patients. The issue of resistance to reverse transcriptase inhibitors (RTIs) in HIV infection has not been adequately addressed in the Indian subcontinent. We compared HIV-1 reverse transcriptase (RT) gene sequences to identify mutations present in HIV-1 patients who were ART non-responders, ART responders and drug naive. Genotypic drug resistance testing was performed by sequencing a 655-bp region of the RT gene from 102 HIV-1 patients, consisting of 30 ART-non-responding, 35 ART-responding and 37 drug-naive patients. The Stanford HIV Resistance Database (HIVDBv 6.2), IAS-USA mutation list, ANRS_09/2012 algorithm, and Rega v8.02 algorithm were used to interpret the pattern of drug resistance. The majority of the sequences (96 %) belonged to subtype C, and a few of them (3.9 %) to subtype A1. The frequency of drug resistance mutations observed in ART-non-responding, ART-responding and drug-naive patients was 40.1 %, 10.7 % and 20.58 %, respectively. It was observed that in non-responders, multiple mutations were present in the same patient, while in responders, a single mutation was found. Some of the drug-naive patients had more than one mutation. Thymidine analogue mutations (TAMs), however, were found in non-responders and naive patients but not in responders. Although drug resistance mutations were widely distributed among ART non-responders, the presence of resistance mutations in the viruses of drug-naive patients poses a big concern in the absence of a genotyping resistance test.
RNA–protein binding interface in the telomerase ribonucleoprotein
Bley, Christopher J.; Qi, Xiaodong; Rand, Dustin P.; Borges, Chad R.; Nelson, Randall W.; Chen, Julian J.-L.
2011-01-01
Telomerase is a specialized reverse transcriptase containing an intrinsic telomerase RNA (TR) which provides the template for telomeric DNA synthesis. Distinct from conventional reverse transcriptases, telomerase has evolved a unique TR-binding domain (TRBD) in the catalytic telomerase reverse transcriptase (TERT) protein, integral for ribonucleoprotein assembly. Two structural elements in the vertebrate TR, the pseudoknot and CR4/5, bind TERT independently and are essential for telomerase enzymatic activity. However, the details of the TR–TERT interaction have remained elusive. In this study, we employed a photoaffinity cross-linking approach to map the CR4/5-TRBD RNA–protein binding interface by identifying RNA and protein residues in close proximity. Photoreactive 5-iodouridines were incorporated into the medaka CR4/5 RNA fragment and UV cross-linked to the medaka TRBD protein fragment. The cross-linking RNA residues were identified by alkaline partial hydrolysis and cross-linked protein residues were identified by mass spectrometry. Three CR4/5 RNA residues (U182, U187, and U205) were found cross-linking to TRBD amino acids Tyr503, Phe355, and Trp477, respectively. This CR4/5 binding pocket is distinct and separate from the previously proposed T pocket in the Tetrahymena TRBD. Based on homologous structural models, our cross-linking data position the essential loop L6.1 adjacent to the TERT C-terminal extension domain. We thus propose that stem-loop 6.1 facilitates proper TERT folding by interacting with both TRBD and C-terminal extension. Revealing the telomerase CR4/5-TRBD binding interface with single-residue resolution provides important insights into telomerase ribonucleoprotein architecture and the function of the essential CR4/5 domain. PMID:22123986
Drug Susceptibility and Resistance Mutations After First-Line Failure in Resource Limited Settings
Wallis, Carole L.; Aga, Evgenia; Ribaudo, Heather; Saravanan, Shanmugam; Norton, Michael; Stevens, Wendy; Kumarasamy, Nagalingeswaran; Bartlett, John; Katzenstein, David
2014-01-01
Background. The development of drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) has been associated with baseline human immunodeficiency virus (HIV)-1 RNA level (VL), CD4 cell counts (CD4), subtype, and treatment failure duration. This study describes drug resistance and levels of susceptibility after first-line virologic failure in individuals from Thailand, South Africa, India, Malawi, Tanzania. Methods. CD4 and VL were captured at AIDs Clinical Trial Group (ACTG) A5230 study entry, a study of lopinavir/ritonavir (LPV/r) monotherapy after first-line virologic failure on an NNRTI regimen. HIV drug-resistance mutation associations with subtype, site, study entry VL, and CD4 were evaluated using Fisher exact and Kruskall–Wallis tests. Results. Of the 207 individuals who were screened for A5230, sequence data were available for 148 individuals. Subtypes observed: subtype C (n = 97, 66%) AE (n = 27, 18%), A1 (n = 12, 8%), and D (n = 10, 7%). Of the 148 individuals, 93% (n = 138) and 96% (n = 142) had at least 1 reverse transcriptase (RT) mutation associated with NRTI and NNRTI resistance, respectively. The number of NRTI mutations was significantly associated with a higher study screening VL and lower study screening CD4 (P < .001). Differences in drug-resistance patterns in both NRTI and NNRTI were observed by site. Conclusions. The degree of NNRTI and NRTI resistance after first-line virologic failure was associated with higher VL at study entry. Thirty-two percent of individuals remained fully susceptible to etravirine and rilpivirine, protease inhibitor resistance was rare. Some level of susceptibility to NRTI remained; however, VL monitoring and earlier virologic failure detection may result in lower NRTI resistance. PMID:24795328
Li, Zhufang; Terry, Brian; Olds, William; Protack, Tricia; Deminie, Carol; Minassian, Beatrice; Nowicka-Sans, Beata; Sun, Yongnian; Dicker, Ira; Hwang, Carey; Lataillade, Max; Hanna, George J; Krystal, Mark
2013-11-01
BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.
Eshleman, Susan H.; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C.; Serwadda, David; Reynolds, Steven J.; Kiwanuka, Noah; Quinn, Thomas C.; Gray, Ronald; Wawer, Maria
2009-01-01
Objective To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Methods Samples obtained at the time of HIV seroconversion (1998–2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Results Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hyper-susceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Conclusion Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection. PMID:19276794
Eshleman, Susan H; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C; Serwadda, David; Reynolds, Steven J; Kiwanuka, Noah; Quinn, Thomas C; Gray, Ronald; Wawer, Maria
2009-04-27
To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Samples obtained at the time of HIV seroconversion (1998-2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hypersusceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection.
Muddashetty, Ravi S.; Nalavadi, Vijayalaxmi C.; Gross, Christina; Yao, Xiaodi; Xing, Lei; Laur, Oskar; Warren, Stephen T.; Bassell, Gary J.
2011-01-01
Summary The molecular mechanism how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by mGluR signaling. Inhibition of miR-125a increased PSD-95 levels in dendrites and altered dendritic spine morphology. Bidirectional control of PSD-95 expression depends on miR-125a and FMRP phosphorylation status. miR-125a levels at synapses and its association with AGO2 is reduced in Fmr1 KO. FMRP phosphorylation promotes the formation of an AGO2-miR-125a inhibitory complex on PSD-95 mRNA, whereas mGluR signaling of translation requires FMRP dephosphorylation and release of AGO2 from the mRNA. These findings reveal a novel mechanism whereby FMRP phosphorylation provides a reversible switch for AGO2 and microRNA to selectively regulate mRNA translation at synapses in response to receptor activation. PMID:21658607
Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko
2002-12-01
Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes or cartilage extracts. Both CILP and ANK mRNA expression and ePPi elaboration were stimulated by TGFbeta1 and inhibited by IGF-1 in chondrocytes from all sources. CILP and ANK mRNA expression correlates with chondrocyte ePPi accumulation around CPPD and OA chondrocytes, and all respond similarly to growth factor stimulation. These findings suggest that up-regulated CILP and ANK expression contributes to higher ePPi accumulation from CPPD crystal-forming cartilage.
DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.
Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi
2017-01-01
Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.
Fang, Evandro Fei; Ng, Tzi Bun
2015-04-01
Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.
Figueiredo, Luisa M.; Rocha, Eduardo P. C.; Mancio-Silva, Liliana; Prevost, Christine; Hernandez-Verdun, Danièle; Scherf, Artur
2005-01-01
Telomerase replicates chromosome ends, a function necessary for maintaining genome integrity. We have identified the gene that encodes the catalytic reverse transcriptase (RT) component of this enzyme in the malaria parasite Plasmodium falciparum (PfTERT) as well as the orthologous genes from two rodent and one simian malaria species. PfTERT is predicted to encode a basic protein that contains the major sequence motifs previously identified in known telomerase RTs (TERTs). At ∼2500 amino acids, PfTERT is three times larger than other characterized TERTs. We observed remarkable sequence diversity between TERT proteins of different Plasmodial species, with conserved domains alternating with hypervariable regions. Immunofluorescence analysis revealed that PfTERT is expressed in asexual blood stage parasites that have begun DNA synthesis. Surprisingly, rather than at telomere clusters, PfTERT typically localizes into a discrete nuclear compartment. We further demonstrate that this compartment is associated with the nucleolus, hereby defined for the first time in P.falciparum. PMID:15722485
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2009-11-01
Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.
Rodriguez Orengo, J F; Santana, J; Febo, I; Diaz, C; Rodriguez, J L; Garcia, R; Font, E; Rosario, O
2000-03-01
Nucleoside reverse transcriptase inhibitors (NRTIs) plasma concentrations do not correlate with clinical efficacy or toxicity. These agents need to be phosphorylated to become active against HIV-infection. Thus, the characterization of the NRTIs intracellular metabolite pharmacological parameters will provide a better understanding that could lead to the development of more rational dose regimens in the HIV-infected population. Furthermore, intracellular measurements of NRTIs may provide a better marker with respect to clinical efficacy and toxicity than plasma concentrations. Thus, in this article we review the latest information regarding the intracellular pharmacological parameters of zidovudine (ZDV) and lamivudine (3TC) active metabolites in HIV-infected patients including the results from our recent clinical studies. We will start the discussion with ZDV and 3TC clinical efficacy, followed by systemic pharmacokinetics studies. We will then discuss the in vitro and in vivo intracellular studies with particular emphasis in the method development to measure these metabolites and we will conclude with the most current data from our clinical trials.
Vainio, Kirsti; Myrmel, Mette
2006-01-01
During the period from January 2000 to August 2005 a total of 204 outbreaks of norovirus gastroenteritis were diagnosed at the Norwegian Institute of Public Health. A clear increase in the norovirus activity was seen in healthcare institutions during the winter seasons. Polymerase sequence analysis of norovirus strains from 122 outbreaks showed that 112 were caused by GII strains (91.8%). Two norovirus variants seen during the study period—GIIb and GII.4—were predominant between January 2000 and September 2002, whereas GII.4 was predominant from September 2002 onward. The highest norovirus activity was seen during the 2002-2003 and 2004-2005 seasons with the emergence of new GII.4 variants. This study describes the molecular epidemiology of norovirus strains circulating in Norway during the five previous seasons and compares four norovirus real-time reverse transcriptase PCR assays. A suitable assay for routine diagnostics is suggested. PMID:17021099
Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D
1995-11-10
The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.
TOPICAL TENOFOVIR, A MICROBICIDE EFFECTIVE AGAINST HIV, INHIBITS HERPES SIMPLEX VIRUS-2 REPLICATION
Andrei, Graciela; Lisco, Andrea; Vanpouille, Christophe; Introini, Andrea; Balestra, Emanuela; van den Oord, Joost; Cihlar, Tomas; Perno, Carlo-Federico; Snoeck, Robert; Margolis, Leonid; Balzarini, Jan
2011-01-01
SUMMARY The HIV reverse transcriptase inhibitor tenofovir, was recently formulated into a vaginal gel for use as a microbicide. In human trials, a 1% tenofovir gel inhibited HIV sexual transmission by 39% and surprisingly herpes simplex virus-2 (HSV-2) transmission by 51%. We demonstrate that the concentration achieved intravaginally with a 1% tenofovir topical gel has direct anti-herpetic activity. Tenofovir inhibits the replication of HSV clinical isolates in human embryonic fibroblasts, keratinocytes, and organotypic epithelial 3D-rafts, decreases HSV replication in human lymphoid and cervical tissues ex vivo, and delays HSV-induced lesions and death of topically treated HSV-infected mice. The active tenofovir metabolite inhibits HSV DNA-polymerase and HIV reverse transcriptase. Tenofovir must be topically administered to achieve concentrations, which are higher than systemic levels after oral treatment, that exert these dual antiviral effects. These findings indicate that a single topical treatment, like tenofovir, can inhibit the transmission of HIV and its co-pathogens. PMID:22018238
Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki
2016-01-01
Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339
Expression and characterization of a novel reverse transcriptase of the LTR retrotransposon Tf1.
Kirshenboim, Noa; Hayouka, Zvi; Friedler, Assaf; Hizi, Amnon
2007-09-30
The LTR retrotransposon of Schizosacharomyces pombe, Tf1, has several distinctive properties that can be related to the unique properties of its reverse transcriptase (RT). Consequently, we expressed, purified and studied the recombinant Tf1 RT. This monomeric protein possesses all activities typical to RTs: DNA and RNA-dependent DNA polymerase as well as an inherent ribonuclease H. The DNA polymerase activity shows preference to Mn(+)(2) or Mg(+)(2), depending on the substrate used, whereas the ribonuclease H strongly prefers Mn(+)(2). The most outstanding feature of Tf1 RT is its capacity to add non-templated nucleotides to the 3'-ends of the nascent DNA. This is mainly apparent in the presence of Mn(+)(2), as is the noticeable low fidelity of DNA synthesis. In all, Tf1 RT has a marked infidelity in synthesizing DNA at template ends, a phenomenon that can explain, as discussed herein, some of the features of Tf1 replication in the host cells.
The future of pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection.
Özdener, Ayşe Elif; Park, Tae Eun; Kalabalik, Julie; Gupta, Rachna
2017-05-01
People at high risk for HIV acquisition should be offered pre-exposure prophylaxis (PrEP). Tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) is currently the only medication recommended for pre-exposure prophylaxis (PrEP) by the Centers for Disease Control and Prevention (CDC) in people at high risk for HIV acquisition. This article will review medications currently under investigation and the future landscape of PrEP therapy. Areas covered: This article will review clinical trials that have investigated nontraditional regimens of TDF/FTC, antiretroviral agents from different drug classes such as integrase strand transfer inhibitors (INSTI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) as potential PrEP therapies. Expert commentary: Currently, there are several investigational drugs in the pipeline for PrEP against HIV infection. Increased utilization of PrEP therapy depends on provider identification of people at high risk for HIV transmission. Advances in PrEP development will expand options and access for people and reduce the risk of HIV acquisition.
Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase
NASA Astrophysics Data System (ADS)
Kuroda, Daniel G.; Bauman, Joseph D.; Challa, J. Reddy; Patel, Disha; Troxler, Thomas; Das, Kalyan; Arnold, Eddy; Hochstrasser, Robin M.
2013-03-01
The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.
Pausing kinetics dominates strand-displacement polymerization by reverse transcriptase
Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei; Marx, Ailie
2017-01-01
Abstract Reverse transcriptase (RT) catalyzes the conversion of the viral RNA into an integration-competent double-stranded DNA, with a variety of enzymatic activities that include the ability to displace a non-template strand concomitantly with polymerization. Here, using high-resolution optical tweezers to follow the activity of the murine leukemia Virus RT, we show that strand-displacement polymerization is frequently interrupted. Abundant pauses are modulated by the strength of the DNA duplex ∼8 bp ahead, indicating the existence of uncharacterized RT/DNA interactions, and correspond to backtracking of the enzyme, whose recovery is also modulated by the duplex strength. Dissociation and reinitiation events, which induce long periods of inactivity and are likely the rate-limiting step in the synthesis of the genome in vivo, are modulated by the template structure and the viral nucleocapsid protein. Our results emphasize the potential regulatory role of conserved structural motifs, and may provide useful information for the development of potent and specific inhibitors. PMID:28973474
Reverse transcriptase inhibitors as microbicides.
Lewi, Paul; Heeres, Jan; Ariën, Kevin; Venkatraj, Muthusamy; Joossens, Jurgen; Van der Veken, Pieter; Augustyns, Koen; Vanham, Guido
2012-01-01
The CAPRISA 004 study in South Africa has accelerated the development of vaginal and rectal microbicides containing antiretrovirals that target specific enzymes in the reproduction cycle of HIV, especially reverse transcriptase inhibitors (RTI). In this review we discuss the potential relevance of HIV-1 RTIs as microbicides, focusing in the nucleotide RTI tenofovir and six classes of nonnucleoside RTIs (including dapivirine, UC781, urea and thiourea PETTs, DABOs and a pyrimidinedione). Although tenofovir and dapivirine appear to be most advanced in clinical trials as potential microbicides, several issues remain unresolved, e.g., the importance of nonhuman primates as a "gatekeeper" for clinical trials, the emergence and spread of drug-resistant mutants, the combination of microbicides that target different phases of viral reproduction and the accessibility to microbicides in low-income countries. Thus, here we discuss the latest research on RTI as microbicides in the light of the continuing spread of the HIV pandemic from the point of view of medicinal chemistry, virological, and pharmaceutical studies.
Corbett, J W; Ko, S S; Rodgers, J D; Jeffrey, S; Bacheler, L T; Klabe, R M; Diamond, S; Lai, C M; Rabel, S R; Saye, J A; Adams, S P; Trainor, G L; Anderson, P S; Erickson-Viitanen, S K
1999-12-01
A research program targeted toward the identification of expanded-spectrum nonnucleoside reverse transcriptase inhibitors which possess increased potency toward K103N-containing mutant human immunodeficiency virus (HIV) and which maintain pharmacokinetics consistent with once-a-day dosing has resulted in the identification of the 4-cyclopropylalkynyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 961 and DPC 963 and the 4-cyclopropylalkenyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 082 and DPC 083 for clinical development. DPC 961, DPC 963, DPC 082, and DPC 083 all exhibit low-nanomolar potency toward wild-type virus, K103N and L100I single-mutation variants, and many multiply amino acid-substituted HIV type 1 mutants. This high degree of potency is combined with a high degree of oral bioavailability, as demonstrated in rhesus monkeys and chimpanzees, and with plasma serum protein binding that can result in significant free levels of drug.
Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca
2018-02-04
During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.
The ORF1 Protein Encoded by LINE-1: Structure and Function During L1 Retrotransposition
Martin, Sandra L.
2006-01-01
LINE-1, or L1 is an autonomous non-LTR retrotransposon in mammals. Retrotransposition requires the function of the two, L1-encoded polypeptides, ORF1p and ORF2p. Early recognition of regions of homology between the predicted amino acid sequence of ORF2 and known endonuclease and reverse transcriptase enzymes led to testable hypotheses regarding the function of ORF2p in retrotransposition. As predicted, ORF2p has been demonstrated to have both endonuclease and reverse transcriptase activities. In contrast, no homologs of known function have contributed to our understanding of the function of ORF1p during retrotransposition. Nevertheless, significant advances have been made such that we now know that ORF1p is a high affinity RNA binding protein that forms a ribonucleoprotein particle together with L1 RNA. Furthermore, ORF1p is a nucleic acid chaperone and this nucleic acid chaperone activity is required for L1 retrotransposition. PMID:16877816
Impact of Noncoding Satellite Repeats on Pancreatic Cancer Metastasis
2014-09-01
nucleoside reverse transcriptase inhibitor ddC as a small molecule inhibitor of HSATII reverse transcription. Initial data indicates there are anti...proliferative effects of ddC in cancer cell lines. We will evaluate ddC and anti-sense locked nucleic acids as methods for inhibiting this process and...of these hybrids, we tested the effect of the nucleoside analog RT inhibitor (NRTI) 2’,3’-dideoxycytidine ( ddC ) in COLO205 cells (Fig. 2e). Notably
Beiske, K; Burchill, S A; Cheung, I Y; Hiyama, E; Seeger, R C; Cohn, S L; Pearson, A D J; Matthay, K K
2009-01-01
Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups. PMID:19401690
In vitro anti-viral effect of β-santalol against influenza viral replication.
Paulpandi, Manickam; Kannan, Soundarapandian; Thangam, Ramar; Kaveri, Krishnasamy; Gunasekaran, Palani; Rejeeth, Chandrababu
2012-02-15
The anti-influenza A/HK (H3N2) virus activity of β-santalol was evaluated in MDCK cells and investigated the effect of β-santalol on synthesis of viral mRNAs. β-Santalol was investigated for its antiviral activity against influenza A/HK (H3N2) virus using a cytopathic effect (CPE) reduction method. β-Santalol exhibited anti-influenza A/HK (H3N2) virus activity of 86% with no cytotoxicity at the concentration of 100 μg/ml reducing the formation of a visible CPE. Oseltamivir also showed moderate antiviral activity of about 83% against influenza A/HK (H3N2) virus at the concentration of 100 μg/ml. Furthermore, the mechanism of anti-influenza virus action in the inhibition of viral mRNA synthesis was analyzed by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), and the data indicated an inhibitory effect in late viral RNA synthesis compared with oseltamivir in the presence of 100 μg/ml of β-santalol. β-Santalol should be further studied for therapeutic and prophylactic potential especially for influenza epidemics and pandemics. Copyright © 2011 Elsevier GmbH. All rights reserved.
Honda, H; Miyagawa, K; Endo, M; Takaku, F; Yazaki, Y; Hirai, H
1993-06-01
We diagnosed a patient with chronic myelogenous leukemia (CML) in chronic phase (CP) on the basis of clinical findings, Ph1 chromosome detected by cytogenetic analysis, and bcr-abl fusion mRNA detected by reverse transcriptase-dependent polymerase chain reaction (RT-PCR). One month after diagnosis, the patient developed extramedullary blast crisis in the lymph nodes, and then medullary blast crisis in the bone marrow, in which different surface markers were shown. Combination chemotherapy with BH-AC, VP16, and mitoxantrone was administered; this resulted in rapid disappearance of the lymphadenopathy, restoration of normal hematopoiesis, and no Ph1 chromosome being detected by cytogenetic analysis. RT-PCR performed to detect the residual Ph1 clone revealed that although the Ph1 clone was preferentially suppressed, it was still residual. The intensive chemotherapy regimen preferentially suppressed the Ph1-positive clone and led to both clinical and cytogenetic remission in this patient with BC of CML; we suggest that RT-PCR is a sensitive and useful method for detecting minimal residual disease during the clinical course of this disease.
Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei
2006-04-01
Estrogen receptor (ER)-beta is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-beta-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 microM ICI. Semiquantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12alpha chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-beta antisense oligonucleotide reduced cellular ER-beta mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFkappaB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-beta and the NFkappaB signaling pathway, denoting a novel mechanism of ER-beta-mediated ICI action. Therefore, combined therapies targeting ER-beta and NFkappaB signaling may be synergistic as treatment for PCa.
Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei
2006-01-01
Abstract Estrogen receptor (ER)-β is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-β-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 µM ICI. Semi-quantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12α chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-β antisense oligonucleotide reduced cellular ER-β mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFκB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-α and the NFκB signaling pathway, denoting a novel mechanism of ER-β-mediated ICI action. Therefore, combined therapies targeting ER-β and NFκB signaling may be synergistic as treatment for PCa. PMID:16756716
Feng, Jian; Liu, Jian-Ping; Miao, Li; He, Guo-Xiang; Li, De; Wang, Hai-Dong; Jing, Tao
2014-10-01
Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI.
Haunshi, Santosh; Cheng, Hans H
2014-03-01
The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.
Hou, Liang-Qin; Liu, Song; Xiong, Ke-Ren
2013-07-01
To explore the mechanism of electroacupuncture (EA) in the treatment of post-traumatic stress disorder (PTSD). Thirty male Sprague-Dawley rats were randomly divided into a normal group, a model group and an electroacupuncture group. The single prolonged stress (SPS) method was used to set up the PTSD models in latter two groups. After SPS Stimulation, EA group was treated with 2Hz electroacupuncture at Baihui (GV 20) and Zusanli (ST 36) for 30 min, once a day for a week. Reverse transcriptase polymerase chain reaction (RT-PCR) and immuno-histochemistry were used to detect the mRNA and protein expression of nNOS in the hippocampus of rats in the each group. (1) The nNOS mRNA expression in hippocampus in model group was higher than that in normal group (P < 0.05). But the expression in EA group was lower significantly than that in model group (P < 0.05). (2) The nNOS protein expression in hippocampus CA1 and CA3 in model group was higher than that in normal group (P < 0.05). But after electroacupuncture treatment, its expression in EA group was lower significantly than that in model group (P < 0.05). The nNOS protein expression in hippocampal CA2 had no difference among all three groups. The elevated nNOS expression in hippocampus may be involved in the pathological process of PTSD. Electroacupuncture play a down-regulation effects in the hippocampal nNOS expression, which may be one mechanism of electroacupuncture for treatment of PTSD.
Manarang, Joseph C; Otteson, Deborah C; McDermott, Alison M
2017-11-01
Antimicrobial peptides (AMPs) have been implicated in the pathogenesis of several cancers, although there is also evidence suggesting potential for novel, AMP-based antitumor therapies. Discerning potential roles of AMPs in tumor pathogenesis may provide valuable insight into the mechanisms of novel AMP-based antitumor therapy. mRNA expression of the AMPs α defensin (HNP-1); cathelicidin (LL-37); and β defensins (hBD-1, hBD-2, hBD-3, hBD-4) in human uveal and cutaneous melanoma cell lines, primary human uveal melanocytes, and primary human uveal melanoma cells was determined by reverse transcriptase polymerase chain reaction. An in vitro scratch assay and custom Matlab analysis were used to determine the AMP effects on melanoma cell migration. Last, the effect of specific AMPs on vasculogenic mimicry was determined by three-dimensional (3D) culture and light and fluorescence microscopy. Low-to-moderate AMP transcript levels were detected, and these varied across the cells tested. Overall, LL-37 expression was increased while hBD-4 was decreased in most melanoma cell lines, compared to primary cultured uveal melanocytes. There was no observable influence of HNP-1 and LL-37 on tumor cell migration. Additionally, aggressive cutaneous melanoma cells grown in 3D cultures exhibited vasculogenic mimicry, although AMP exposure did not alter this process. Collectively, our data show that although AMP mRNA expression is variable between uveal and cutaneous melanoma cells, these peptides have little influence on major characteristics that contribute to tumor aggressiveness and progression.
Noni leaf and black tea enhance bone regeneration in estrogen-deficient rats.
Shalan, Nor Aijratul Asikin Mohd; Mustapha, Noordin M; Mohamed, Suhaila
2017-01-01
Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats. Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh). The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density. The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.
Ham, Won Sik; Lee, Joo Hyoung; Yu, Ho Song; Choi, Young Deuk
2008-10-01
An analysis of differentially expressed genes (DEGs) between bladder transitional cell carcinoma (TCC) and the surrounding urothelium to help identify what lies behind the mechanism of multifocal tumor development has not yet been performed. We sought to find a new DEG related to the development of bladder TCC. Thirty-nine bladder TCC tissues paired with normal-appearing urothelium tissues obtained from the same patient were used as subjects. Initially, we compared the messenger RNA (mRNA) profiles between normal-appearing urothelium and TCC tissue of 1 patient by using annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR) and selective amplification of family members (SAFM) PCR to identify potential DEGs. To validate the results of the ACP data, reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on those of all 39 patients. Among the several DEGs discovered in the ACP data, 1 DEG was chosen as the candidate for the RT-PCR, that is present or markedly upregulated in normal-appearing urothelial tissue compared with TCC tissue. Gene sequence searching revealed that this DEG is chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Downregulation of COUP-TFI mRNA expression in TCC tissue compared to normal-appearing urothelium tissue of the same patient, irrespective of tumor stage and grade, was confirmed by RT-PCR in 39 patients. Our results suggest that the loss of COUP-TFI may play a role in the transition from normal epithelium to TCC. Further characterization of the COUP-TFI gene is expected to give us informations about bladder TCC tumorigenesis.
Mutations in FLVCR1 Cause Posterior Column Ataxia and Retinitis Pigmentosa
Rajadhyaksha, Anjali M.; Elemento, Olivier; Puffenberger, Erik G.; Schierberl, Kathryn C.; Xiang, Jenny Z.; Putorti, Maria L.; Berciano, José; Poulin, Chantal; Brais, Bernard; Michaelides, Michel; Weleber, Richard G.; Higgins, Joseph J.
2010-01-01
The study of inherited retinal diseases has advanced our knowledge of the cellular and molecular mechanisms involved in sensory neural signaling. Dysfunction of two specific sensory modalities, vision and proprioception, characterizes the phenotype of the rare, autosomal-recessive disorder posterior column ataxia and retinitis pigmentosa (PCARP). Using targeted DNA capture and high-throughput sequencing, we analyzed the entire 4.2 Mb candidate sequence on chromosome 1q32 to find the gene mutated in PCARP in a single family. Employing comprehensive bioinformatic analysis and filtering, we identified a single-nucleotide coding variant in the feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), a gene encoding a heme-transporter protein. Sanger sequencing confirmed the FLVCR1 mutation in this family and identified different homozygous missense mutations located within the protein's transmembrane channel segment in two other unrelated families with PCARP. To determine whether the selective pathologic features of PCARP correlated with FLVCR1 expression, we examined wild-type mouse Flvcr1 mRNA levels in the posterior column of the spinal cord and the retina via quantitative real-time reverse-transcriptase PCR. The Flvcr1 mRNA levels were most abundant in the retina, followed by the posterior column of the spinal cord and other brain regions. These results suggest that aberrant FLVCR1 causes a selective degeneration of a subpopulation of neurons in the retina and the posterior columns of the spinal cord via dysregulation of heme or iron homeostasis. This finding broadens the molecular basis of sensory neural signaling to include common mechanisms that involve proprioception and vision. PMID:21070897
Lim, Yun-Sung; Lee, Jin-Choon; Lee, Yoon Se; Wang, Soo-Geun
2012-01-01
Objectives Mesenchymal stem cells (MSCs) play an important role in the development and growth of tumor cells. However, the effect of human MSCs on the growth of human tumors is not well understood. The purpose of this study is to confirm the growth effect of palatine tonsil-derived MSCs (TD-MSCs) on head and neck squamous cell carcinoma (HNSCC) cell lines and to elucidate the mechanism of their action. Methods TD-MSCs were isolated from patient with chronic tonsillitis and tonsillar hypertrophy. Two human HNSCC cell lines (PNUH-12 and SNU-899) were studied and cocultured with isolated palatine tonsil-derived MSC. The growth inhibitory effect of MSCs on HNSCC cell lines was tested through methylthiazolyldiphenyl-tetrazolium (MTT) assay. The apoptosis induction effect of MSCs on cell lines was assessed with flow cytometry and reverse transcriptase (RT)-PCR. Results Palatine tonsil-derived MSCs exhibited a growth inhibitory effect on both cell lines. Cell cycle analysis showed an accumulation of tumor cells predominantly in G0/G1 phase with an increase in concentration of TD-MSCs, which was confirmed by increased mRNA expression of cell cycle negative regulator p21. Apoptosis of tumor cells increased significantly as concentration of cocultured TD-MSCs increased. Additionally, mRNA expression of caspase 3 was upregulated with increased concentration of TD-MSCs. Conclusion TD-MSCs have a potential growth inhibitory effect on HNSCC cell lines in vitro by inducing apoptotic cell death and G1 phase arrest of cell lines. PMID:22737289
Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.
Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore
2007-02-01
Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.
Ainola, M M; Mandelin, J A; Liljeström, M P; Li, T F; Hukkanen, M V J; Konttinen, Y T
2005-01-01
Synovial inflammation in rheumatoid arthritis (RA) leads to pannus tissue invasion and destruction of cartilage/bone matrix by proteinases. Our intention was to analyze some of the key matrix metalloproteinases (MMPs) in pannus tissue overlying evolving cartilage erosions in RA. Frozen tissue samples of pannus and synovium from advanced RA and synovium from osteoarthritic patients were used for immunohistochemical, western blotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis of MMP-1, -3, -13 and -14. Synovial fibroblast cultures, stimulated with tumour necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), were analyzed with enzyme-linked immunosorbent assays (ELISA) and quantitative RT-PCR. MMP-3 was highly expressed in pannus tissue compared with significantly lower expression levels of MMP-1, -13 and -14. In fibroblast cultures IL-1beta was a potent stimulus for MMP-3, whereas TNF-alpha was more potent for MMP-1. This is the first study to demonstrate quantitatively in real time that MMP-3 mRNA expression is clearly higher in advanced RA pannus tissue compared to parallel RA or osteoarthritic synovium. MMP-3 mRNA levels were also clearly overexpressed in RA pannus compared to MMP-1, -13 and -14. Advanced RA has previously been found to overexpress IL-1beta. The high expression of MMP-3 in pannus and IL-1beta, mediated stimulation of MMP-3 suggest that MMP-3 plays a significant role in the progression of erosions through the proteoglycan-rich cartilage matrix.
Fawzy, Mohamed S; Mohamed, Randa H; Elfayoumi, Abdel-Rahman R
2015-03-01
The aim of this study was to determine whether detection of prostate stem cell antigen (PSCA) expression in BPH might be associated with the subsequent presence of Prostate cancer (PCa) and also to determine whether detection of PSCA expression has potential for prognosis in PCa. This study was comprised of 112 PCa patients, 111 BPH patients and 120 control subjects. We employed reverse-transcriptase polymerase chain reaction (RT-PCR) to detect PSCA mRNA-bearing cells in peripheral blood. PSCA mRNA was detected in the peripheral blood of 71.4% PCa patients and in 13.5% of patients with BPH by RT-PCR. PSCA was positive in 80% of high-grade diseases compared with 20% of low-grade diseases (P = 0.01). Whereas only 38.8% of prostate-confined diseases were PSCA positive, 61.2% of extraprostatic diseases were PSCA positive (P < 0.001). Patients with a lymphovascular invasion of tumor emboli tended to be PSCA positive (P = 0.02). BPH patients with RT-PCR PSCA positive were significantly more likely to develop prostate cancer (OR = 16, 95% CI = 8.1-31.6, P < 0.001). In conclusion, RT-PCR PSCA positivity is significantly associated with the Gleason score, LV tumor emboli and whether or not the tumor was organ confined. In this study, RT-PCR PSCA detection may be a promising tumor marker of diagnostic and metastasis detection for patients with prostate cancer. Also, it may be an important test for predicting BPH patients who are at high risk of subsequent cancer development.
Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.
Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T
1999-01-01
We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.
van Lent, P L E M; Grevers, L; Blom, A B; Sloetjes, A; Mort, J S; Vogl, T; Nacken, W; van den Berg, W B; Roth, J
2008-12-01
To study the active involvement of Myeloid-related proteins S100A8 and S100A9 in joint inflammation and cartilage destruction during antigen-induced arthritis (AIA). Joint inflammation and cartilage destruction was measured with 99mTc uptake and histology. The role of S100A8/A9 was investigated by inducing AIA in S100A9-/- mice that also lack S100A8 at protein level, or after intra-articular injection of rS100A8 in mouse knee joints. Cartilage destruction was measured using immunolocalisation of the neoepitope VDIPEN or NITEGE. mRNA levels of matrix metalloproteinases (MMPs) and cytokines were measured using reverse transcriptase (RT)-PCR. Immunisation of S100A9-/- mice with the antigen mBSA induced normal cellular and humoral responses, not different from wild type (WT) controls. However, joint swelling measured at day 3 and 7 after AIA induction was significantly lower (36 and 70%, respectively). Histologically, at day 7 AIA, cellular mass was much lower (63-80%) and proteoglycan depletion from cartilage layers was significantly reduced (between 50-95%). Cartilage destruction mediated by MMPs was absent in S100A9-/- mice but clearly present in controls. MMP3, 9 and 13 mRNA levels were significantly lowered in arthritic synovia of S100A9-/-. In vitro stimulation of macrophages by the heterodimer S100A8/A9 or S100A8 elevated mRNA levels of MMP3, 9 and in particular MMP13. Intra-articular injection of S100A8 caused prominent joint inflammation and depletion of proteoglycans at day 1. Significant upregulation of mRNA levels of S100A8/A9, cytokines (interleukin 1 (IL1)), MMPs (MMP3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4) was found in the synovium and correlated with strong upregulation of NITEGE neoepitopes within the cartilage layers. S100A8/A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis.
Xue, Rong-quan; Gu, Jun-chao; Yu, Wei; Wang, Yu; Zhang, Zhong-tao; Ma, Xue-mei
2012-02-01
It is important to identify the multiple sites of leptin activity in obese women with breast cancer. In this study, we examined the effect of exogenous human leptin on heat shock protein 70 (HSP70) expression in MCF-7 human breast cancer cells and in a breast carcinoma xenograft model of nude mice. We cultured MCF-7 human breast cancer cells and established nude mice bearing xenografts of these cells, and randomly divided them into experimental and control groups. The experimental group was treated with human leptin, while the control group was treated with the same volume of normal saline. A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay was developed to quantify the mRNA expression of HSP70 in the MCF-7 human breast cancer cells and in tumor tissues. Western blotting analysis was applied to quantify the protein expression of HSP70 in the MCF-7 cells. Immunohistochemical staining was done to assess the positive rate of HSP70 expression in the tumor tissues. Leptin activated HSP70 in a dose-dependent manner in vitro: leptin upregulated significantly the expression of HSP70 at mRNA and protein levels in MCF-7 human breast cancer cells (P < 0.001). There was no significant difference in expression of HSP70 mRNA in the implanted tumors between the leptin-treated group and the control group (P > 0.05). Immunohistochemical staining revealed no significant difference in tumor HSP70 expression between the leptin-treated group and the control group (P > 0.05). A nude mouse xenograft model can be safely and efficiently treated with human leptin by subcutaneous injections around the tumor. HSP70 may be target of leptin in breast cancer. Leptin can significantly upregulate the expression of HSP70 in a dose-dependent manner in vitro.
Wei, L; Liu, M; Xiong, H; Peng, B
2017-11-06
To investigate the effects of the pro-inflammatory and Th17-polarizing mediator IL-17 on HDPFs-mediated IL-23 production and the molecular mechanism involved. Interleukin (IL)-17R expression was determined by semi-quantitative reverse transcriptase-polymerase chain reaction and Western blot in cultured human dental pulp fibroblasts (HDPFs). Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay were used to determine IL-23 mRNA and protein levels in IL-17-stimulated HDPFs, respectively. The nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signalling pathways that mediate the IL-17-stimulated production of IL-23 was investigated using Western blot and specific signalling inhibitor analyses. Statistical analyses were performed using Kruskal-Wallis tests followed by the Mann-Whitney U-test. Statistical significance was considered when the P value < 0.05. Primary HDPFs steadily expressed IL-17R mRNA and surface-bound protein. IL-17 stimulated the expression of IL-23 mRNA and protein in cultured human dental pulp fibroblasts, which was attenuated by IL-17 or IL-17R neutralizing antibodies. In accordance with the enhanced expression of IL-23, IL-17 stimulation resulted in rapid activation of p38 MAPK, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK) and NF-κB in HDPFs. Inhibitors of p38 MAPK, ERK 1/2 or NF-κB significantly suppressed, whereas blocking JNK substantially augmented IL-23 production from IL-17-stimulated HDPFs. HDPFs expressed IL-17R and responded to IL-17 to produce IL-23 via the activation of the NF-κB and MAPK signalling pathways. The findings provide insights into the cellular mechanisms of the participation of IL-17 in the activation of HDPFs in inflamed pulp tissue. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Cai, Xiaohong; Qian, Chengrui; Wu, Wenman; Lei, Hang; Ding, Qiulan; Zou, Wei; Xiang, Dong; Wang, Xuefeng
2017-09-01
The amino acid substitutions caused by ABO gene mutations are usually predicted to impact glycosyltransferase's function or its biosynthesis. Here we report an ABO exonic missense mutation that affects B-antigen expression by decreasing the mRNA level of the ABO gene rather than the amino acid change. Serologic studies including plasma total GTB transfer capacity were performed. The exon sequences of the ABO gene were analyzed by Sanger sequencing. B 310 cDNA with c.28G>A (p.G10R) mutation was expressed in HeLa cells and total GTB transfer capacity in cell supernatant was measured. Flow cytometry was performed on these HeLa cells after transfection, and agglutination of Hela-B weak cells was also examined. The mRNA of the ABO gene was analyzed by direct sequencing and real-time reverse transcriptase-polymerase chain reaction. A minigene construct was prepared to evaluate the potential of splicing. While plasma total GTB transfer capacity was undetectable in this B 3 -like individual, the relative percentage of antigen-expressing cells and mean fluorescence index of the B weak red blood cells (RBCs) were 19 and 14% of normal B RBCs, respectively. There was no significant difference of total GTB transfer capacity in cell supernatant and B-antigen expression on cell surfaces between HeLa cells transfected with B 310 cDNA and B cDNA. The mRNA expression level of B 310 in peripheral whole blood was significantly reduced. The amount of splicing is significantly lower in c.28G>A construct compared to that in wild-type construct after transfection in K562 cells. ABO c.28G>A mutation may cause B 3 -like subgroup by affecting RNA splicing of the ABO gene. © 2017 AABB.
Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai
2018-02-17
The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.
Effect of β-glucan on MUC4 and MUC5B expression in human airway epithelial cells.
Kim, Yong-Dae; Bae, Chang Hoon; Song, Si-Youn; Choi, Yoon Seok
2015-08-01
β-Glucan is found in the cell walls of fungi, bacteria, and some plant tissues, and is detected by the innate immune system. Furthermore, this recognition is known to worsen respiratory symptoms in patients with allergic and inflammatory airway diseases. However, the means by which β-glucan affects the secretion of major mucins by human airway epithelial cells has not been elucidated. Therefore, in this study, the effect and signaling pathway of β-glucan on mucins MUC4 and MUC5B were investigated in human airway epithelial cells. In NCI-H292 cells and human normal nasal epithelial cells, the effect and signaling pathway of β-glucan on MUC4 and MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA (siRNA). β-Glucan increased MUC4 and MUC5B expression and activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). SB203580 (a p38 MAPK inhibitor) and pyrrolidine dithiocarbamate (PDTC; a NF-κB inhibitor) inhibited β-glucan-induced MUC4 and MUC5B expression. In addition, siRNA knockdown of p38 MAPK blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of NF-κB. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by β-glucan, and siRNA knockdown of TLR4 blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of p38 MAPK and NF-κB. These results demonstrate that in human airway epithelial cells β-glucan induces MUC4 and MUC5B expression via the TLR4-p38 MAPK-NF-κB signaling pathway. © 2015 ARS-AAOA, LLC.
Saber, Mohamed A; MM AbdelHafiz, Samah; Khorshed, Fatma E; Aboushousha, Tarek S; Hamdy, Hussam EM; Seleem, Mohamed I; Soliman, Amira H
2017-01-01
Background: Increasing evidence indicates that in hepatocellular carcinomas (HCCs) abnormal gene expression, for example of glypican-3 (GPC-3) and insulin-like growth factor-II (IGF-II), are associated with the occurrence and progression of HCC. The objective of this study was to evaluate the differential expression of GPC-3 and IGF-II mRNAs in HCC tissues with a background of chronic hepatitis C virus (HCV) genotype 4 cirrhosis, in relation to Ki-67 and alpha-feto protein (AFP) tissue markers. Methods: One hundred and five patients with HCCs who had undergone hepatectomy, were included, after obtaining informed consent. Total RNA was extracted from malignant and corresponding peri-malignant liver tissues, and GPC-3 and IGF-II mRNAs in addition to beta-actin mRNA as an internal control, were evaluated in all samples by reverse transcriptase-polymerase chain reactions (RT-PCR). Routine histopathological diagnosis as well as immunohistochemical (IHC) staining using monoclonal antibodies for Ki-67 and AFP were also performed. Result: Expression of GPC-3 mRNA was positive in all HCC malignant tissue, with overexpression in 86/105 (81.9%); in respect to the grade of the tumor (1-3 grades), while in peri-malignant tissue it was over expressed only in 20/105 (19%). The IGF-II mRNA was over expressed in only 10/105 (9.5%) malignant and peri-malignant samples. AFP was expressed in 33.3% of malignant samples but absent in peri-malignant tissues. Ki-67 expression was significantly increased in malignant compared to peri-malignant tissue. Conclusion: GPC-3 and IGF II mRNAs may be good molecular markers for HCC, especially with a background of cirrhosis due to chronic HCV infection. Significant correlations were noted with the pattern of AFP and Ki-67 expression. Creative Commons Attribution License
Carollo, Maria; Hogaboam, Cory M; Kunkel, Stephen L; Delaney, Stephen; Christie, Mark I; Perretti, Mauro
2001-01-01
Chemokine expression and function was monitored in an experimental model of granulomatous tissue formation after injection of croton oil in complete Freund's adjuvant (CO/CFA) into mouse dorsal air-pouches up to 28 days. In the first week, mast cell degranulation and leukocyte influx (mononuclear cell, MNC, and polymorphonuclear cell, PMN) were associated with CXCR2, KC and macrophage inflammatory protein (MIP)-2 mRNA expression, as determined by TaqMan® reverse transcriptase-polymerase chain reaction. KC (∼400 pg mg protein−1, n=12) and MIP-2 (∼800 pg mg protein−1, n=12) proteins peaked at day 7, together with myeloperoxidase (MPO) activity. Highest MIP-1α (>1 ng mg protein−1, n=12) levels were measured at day 3. After day 7, a gradual increase in CCR2 and CCR5 mRNA, monocyte chemoattractant protein (MCP)-1 mRNA and protein expression was measured. MCP-1 protein peaked at day 21 (∼150 pg mg protein−1, n=12) and was predominantly expressed by mast cells. A gradual increase in N-acetyl-β-D-glucosaminidase (NAG) activity (maximal at 28 days) was also measured. An antiserum against MIP-1α did not modify the inflammatory response measured at day 7 (except for a 50% reduction in MIP-1α levels), but provoked a significant increase in MPO, NAG and MCP-1 levels as measured at day 21 (n=6, P<0.05). An antiserum to MCP-1 reduced NAG activity at day 21 but increased MPO activity values (n=8, P<0.05). In conclusion, we have shown that CO/CFA initiates a complex inflammatory reaction in which initial expression of MIP-1α serves a protective role whereas delayed expression of MCP-1 seems to have a genuine pro-inflammatory role. PMID:11704636
Zhao, Guangwei; Hou, Jianye; Xu, Gaoxiao; Xiang, Aoqi; Kang, Yanmei; Yan, Yunhuan; Zhang, Xiaobin; Yang, Gongshe; Xiao, Shuqi; Sun, Shiduo
2017-04-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs have recently been demonstrated to play vital roles in virus-host interactions. Our previous research on small RNA deep sequencing showed that the expression level of miR-10a increased during the viral life cycle. The present study sought to determine the function of miR-10a and its molecular mechanism during PRRSV infection. In the current study, the result of PRRSV infection inducing miR-10a expression was validated by quantitative reverse transcriptase PCR. Overexpression of miR-10a-5p using its mimics markedly reduced the expression level of intracellular PRRSV ORF7 mRNA and N protein. Simultaneously, overexpression of miR-10a-5p also significantly decreased the expression level of extracellular viral RNA and virus titres in the supernatants. These results demonstrated that miR-10a-5p could suppress the replication of PRRSV. A direct interaction between miR-10a-5p and signal recognition particle 14 (SRP14) was confirmed using bioinformatic prediction and experimental verification. miR-10a-5p could directly target the 3'UTR of pig SRP14 mRNA in a sequence-specific manner and decrease SRP14 expression through translational repression but not mRNA degradation. Further, knockdown of SRP14 by small interfering RNA also inhibits the replication of PRRSV. Collectively, these results suggested that miR-10a-5p inhibits PRRSV replication through suppression of SRP14 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection.
Wu, Xiangwei; Tan, Jing; Cai, Mingyi; Liu, Xiande
2014-06-15
In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (P<0.05) and then decreased at 8h and 14 h, respectively, however they increased again afterwards, reaching the highest levels at 50h. Under high salinity (32 ‰) stress, the mRNA levels of PuHSC70 in the mantle and gonad were increased significantly only at 24h and 48 h (P<0.05), and at the rest of the study period they were slightly elevated. Compared with the pretreatment level, the levels of expression in the digestive gland and gill were unchanged or reduced throughout the study period. The levels of PuHSC70 mRNA in the adductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the heart, the mRNA expression recovered to the pretreatment level at 50h; while in the adductor muscle and hemocytes, the expression level remained higher than that of the control. The cloning and expression analyses of PuHSC70 provide theoretical basis to further study the mechanism of physiological response to thermal and high salinity stresses. Copyright © 2014 Elsevier B.V. All rights reserved.
Suicide Inhibitors of Reverse Transcriptase in the Therapy of AIDS and Other Retroviruses
1990-07-01
I and 10 nanonolar) and compared to the E . Coli recombinant HIV-RT (Kindly donated by Dr. Steven Hughes Fort Detrick M.D.) and the wild type HIV-RT...Both the wild type and E . Coli HIV-RT’s were resistant to PFA showing essentially no inhibition at the lOnM level. Previous studies have shown that...10 nanomolar PFA. j, Sentivitv of Recombinant HIV-Reverse Transcriotase to Foscarnet. RECOMBINANT HIV RT ( E . COLI) + FOSCARNET 350001R 300000 PFA .001
First report of Cocksfoot mottle virus infecting wheat (Triticum aestivum) in Ohio
USDA-ARS?s Scientific Manuscript database
Cocksfoot mottle virus (CfMV) was discovered in Ohio wheat during a 2016 field survey utilizing RNA-Seq to identify virus-like sequences. Virus sequences were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Sanger sequencing, and CfMV was transmitted to orchardgrass and pas...
The ability of infectious oocyst forms of Toxoplasma gondii and Cryptosporidium spp. to resist disinfection treatments and cause disease may have significant public health implications. Currently, little is known about oocyst-specific factors involved during host cell invasion p...
Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2008-01-01
Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…
Isolation and characterization of an AGAMOUS homolog from Fraxinus pennsylvanica
Ningxia Du; Paula M. Pijut
2010-01-01
An AGAMOUS homolog (FpAG) was isolated from green ash (Fraxinus pennsylvanica) using a reverse transcriptase polymerase chain reaction method. Southern blot analysis indicated that FpAG was present as a single-copy sequence in the genome of green ash. RNA accumulated in the reproductive tissues (female...
Toxoplasma gondii is an obligate intracellular, apicomplexan parasite that infects humans. It is ubiquitous in nature and seroprevalence in the United States and in Europe ranges from 25->70%. Although typically associated with causing foodborne outbreaks, recent studies in Canad...
Macchi, Beatrice; Balestrieri, Emanuela; Frezza, Caterina; Grelli, Sandro; Valletta, Elena; Marçais, Ambroise; Marino-Merlo, Francesca; Turpin, Jocelyn; Bangham, Charles R; Hermine, Olivier; Mastino, Antonio; Bazarbachi, Ali
2017-05-09
The therapeutic efficacy of the AZT and IFN combination in ATL presumably reflects the inhibition of RT-related functions.HTLV-1-RT activity from short-term cultured PBMCs may represent a predictive correlate of clinical response to AZT/IFN in ATL patients.
Arc mRNA induction in striatal efferent neurons associated with response learning.
Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A
2007-07-01
The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.
Identification and characterization of jute LTR retrotransposons:
Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit
2011-01-01
Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842
Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm Christopher; Smith, Davey M
2007-01-01
Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Cross-sectional analysis. Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI.
Impact of gastro-esophageal reflux on mucin mRNA expression in the esophageal mucosa.
van Roon, Aafke H C; Mayne, George C; Wijnhoven, Bas P L; Watson, David I; Leong, Mary P; Neijman, Gabriëlle E; Michael, Michael Z; McKay, Andrew R; Astill, David; Hussey, Damian J
2008-08-01
Changes in the expression of mucin genes in the esophageal mucosa associated with uncomplicated gastro-esophageal reflux disease have not been evaluated even though such changes could be associated with reflux-induced mucosal damage. We therefore sought to identify reflux-induced changes in mucin gene expression using a cell line and biopsies from the esophageal mucosa in patients with and without reflux. MUC-1, MUC-3, MUC-4, and MUC-5AC gene expressions were investigated in the HET-1A cell line following exposure to acid (pH 4) and/or bile (120 muM of a bile salt milieu), and in esophageal mucosal biopsies from controls, subjects with non-erosive gastro-esophageal reflux, and subjects with reflux associated with ulcerative esophagitis (erosive). The mucosal biopsies were also evaluated for IL-6 mRNA expression (inflammatory marker) and CK-14 mRNA expression (mucosal basal cell layer marker). Gene expression was determined using real-time reverse transcriptase-polymerase chain reaction analysis. In the cell line studies, there were differences in mRNA levels for all of the evaluated mucins following treatment with either acid or the acid and bile combination. In the studies which evaluated tissue specimens, IL-6 and CK-14 mRNA levels increased according to degree of reflux pathology. The expression of MUC-1 and MUC-4 in mucosa from patients with erosive reflux was lower than in subjects without reflux and in patients with non-erosive reflux, whereas the expression of MUC-3 and MUC-5AC was increased (although these differences did not reach significance at p < 0.05). When mRNA expression data for tissue samples from all groups were combined, significant correlations were identified between IL-6 vs. CK-14 and IL-6 vs. MUC-3, MUC-3 vs. CK-14 and MUC-3 vs. MUC-5AC, and for MUC-1 vs. MUC-5AC. The correlation between IL-6 and CK-14 was also significant within the control and non-erosive reflux groups. The correlation between IL-6 and MUC-3 was significant within the control and erosive reflux groups, and the correlation between MUC-1 and MUC-5AC was significant within the erosive reflux group. The results of this study suggest that the profile of mucin expression in the esophageal mucosa is influenced by the pH and composition of the gastro-esophageal reflux. Further work should explore the response of these genes to acid and bile reflux, and their role in the etiology of mucosal damage in gastro-esophageal reflux.
Adebiyi, Oluwafeyisetan O.; Adebiyi, Olubunmi A.; Owira, Peter M. O.
2015-01-01
Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) and 3 mL/kg of distilled water (group VII). Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy. PMID:26690471
Döring, Jessica
2017-01-01
Abstract Branchpoint nucleotides of intron lariats induce pausing of DNA synthesis by reverse transcriptases (RTs), but it is not known yet how they direct RT RNase H activity on branched RNA (bRNA). Here, we report the effects of the two arms of bRNA on branchpoint-directed RNA cleavage and mutation produced by Moloney murine leukemia virus (M-MLV) RT during DNA polymerization. We constructed a long-chained bRNA template by splinted-ligation. The bRNA oligonucleotide is chimeric and contains DNA to identify RNA cleavage products by probe hybridization. Unique sequences surrounding the branchpoint facilitate monitoring of bRNA purification by terminal-restriction fragment length polymorphism analysis. We evaluate the M-MLV RT-generated cleavage and mutational patterns. We find that cleavage of bRNA and misprocessing of the branched nucleotide proceed arm-specifically. Bypass of the branchpoint from the 2΄-arm causes single-mismatch errors, whereas bypass from the 3΄-arm leads to deletion mutations. The non-template arm is cleaved when reverse transcription is primed from the 3΄-arm but not from the 2΄-arm. This suggests that RTs flip ∼180° at branchpoints and RNases H cleave the non-template arm depending on its accessibility. Our observed interplay between M-MLV RT and bRNA would be compatible with a bRNA-mediated control of retroviral and related retrotransposon replication. PMID:28160599
Kim, Ki Chan; Rhee, Jeehae; Park, Jong-Eun; Lee, Dong-Keun; Choi, Chang Soon; Kim, Ji-Woon; Lee, Han-Woong; Song, Mi-Ryoung; Yoo, Hee Jeong; Chung, ChiHye; Shin, Chan Young
2016-12-01
In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.
Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.
2010-01-01
In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung
2008-01-05
Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate {sup 32}P-ribonucleotides, but not HBV coremore » particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems.« less
Emergence of a replicating species from an in vitro RNA evolution reaction
NASA Technical Reports Server (NTRS)
Breaker, R. R.; Joyce, G. F.
1994-01-01
The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.
Khairunisa, Siti Qamariyah; Kotaki, Tomohiro; Witaningrum, Adiana Mutamsari; Yunifiar M, Muhammad Qushai; Sukartiningrum, Septhia Dwi; Nasronudin; Kameoka, Masanori
2015-02-01
Although HIV-1 drug resistance is a major obstacle in Indonesia, information on drug resistance is limited. In this study, the viral subtype and appearance of drug resistance mutations in the HIV-1 protease (PR) and reverse transcriptase (RT) genes were determined among drug-treated, HIV-1-infected patients in Surabaya. HIV-1 patients who received antiretroviral therapy (ART) more than 2 years were randomly recruited regardless of the viral load or ART failure. Fifty-eight HIV-1 PR genes and 53 RT genes were sequenced. CRF01_AE viruses were identified as the predominant strain. Major drug resistance mutations were not detected in the PR genes. In contrast, 37.7% (20/53) of the participants had one or more major drug resistance mutations in the RT genes, predominantly M184V (28.3%), K103N (11.3%), and thymidine analogue mutations (TAMs) (20.8%). The high prevalence of drug resistance mutations in RT genes indicated the necessity of monitoring the effectiveness of ART in Indonesia.
Vaz, Sara Nunes; Giovanetti, Marta; Rego, Filipe Ferreira de Almeida; Oliveira, Tulio de; Danaviah, Siva; Gonçalves, Maria Luiza Freire; Alcantara, Luiz Carlos Junior; Brites, Carlos
2015-10-01
Approximately 35 million people worldwide are infected with human immunodeficiency virus (HIV) around 3.2 million of whom are children under 15 years. Mother-to-child-transmission (MTCT) of HIV-1 accounts for 90% of all infections in children. Despite great advances in the prevention of MTCT in Brazil, children are still becoming infected. Samples from 19 HIV-1-infected families were collected. DNA was extracted and fragments from gag, pol, and env were amplified and sequenced directly. Phylogenetic reconstruction was performed. Drug resistance analyses were performed in pol and env sequences. We found 82.1% of subtype B and 17.9% of BF recombinants. A prevalence of 43.9% drug resistance-associated mutations in pol sequences was identified. Of the drug-naive children 33.3% presented at least one mutation related to protease inhibitor/nucleoside reverse transcriptase inhibitor/nonnucleoside reverse transcriptase inhibitor (PI/NRTI/NNRTI) resistance. The prevalence of transmitted drug resistance mutations was 4.9%. On env we found a low prevalence of HR1 (4.9%) and HR2 (14.6%) mutations.
Nilsson, G; Wang, M; Wejde, J; Kanter, L; Karlén, J; Tani, E; Kreicbergs, A; Larsson, O
1998-01-01
To evaluate the utilization of fine needle aspiration (FNA) biopsy to obtain material for reverse-transcriptase polymerase chain reaction (RT-PCR) in the detection of the t(X;18)(p11.2;q11.2) translocation in synovial sarcomas. We applied RT-PCR to detection of synovial sarcoma fusion gene transcripts on fine needle aspirates. Five clinical samples were first analyzed: one was a tumor previously diagnosed as malignant hemangiopericytoma, one was a poorly defined tumor, and three were suspected synovial sarcomas. FNA material was transferred directly to the RT-PCR reaction tube without RNA extraction. The t(X;18) translocation could be detected on the limited amount of material that FNA provides. In each of the cases studied the representivity of the tumor samples was confirmed microscopically. Our protocol permits analysis directly on representative samples without extraction of RNA. The results imply that RT-PCR offers reliable detection of sarcoma fusion gene transcripts on fine needle aspirates. The procedure, apart from being applicable to outpatients, is rapid and sensitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dongwen; Chung, Suhman; Miller, Maria
2012-06-19
The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less
Smith, R A; Remington, K M; Lloyd, R M; Schinazi, R F; North, T W
1997-01-01
Variants of feline immunodeficiency virus (FIV) that possess a unique methionine-to-threonine mutation within the YMDD motif of reverse transcriptase (RT) were selected by culturing virus in the presence of inhibitory concentrations of (-)-beta-L-2',3'-dideoxy-5-fluoro-3'-thiacytidine [(-)-FTC]. The mutants were resistant to (-)-FTC and (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (3TC) and additionally exhibited low-level resistance to 2',3'-dideoxycytidine (ddC). DNA sequence analysis of the RT-encoding region of the pol gene amplified from resistant viruses consistently identified a Met-to-Thr mutation in the YMDD motif. Purified RT from the mutants was also resistant to the 5'-triphosphate forms of 3TC, (-)-FTC, and ddC. Site-directed mutants of FIV were engineered which contain either the novel Met-to-Thr mutation or the Met-to-Val mutation seen in oxathiolane nucleoside-resistant HIV-1. Both site-directed mutants displayed resistance to 3TC, thus confirming the role of these mutations in the resistance of FIV to beta-L-3'-thianucleosides. PMID:9032372
Hoff, Eleanor F.; Levin, Henry L.; Boeke, Jef D.
1998-01-01
The Tf2 retrotransposon, found in the fission yeast Schizosaccharomyces pombe, is nearly identical to its sister element, Tf1, in its reverse transcriptase-RNase H and integrase domains but is very divergent in the gag domain, the protease, the 5′ untranslated region, and the U3 domain of the long terminal repeats. It has now been demonstrated that a neo-marked copy of Tf2 overexpressed from a heterologous promoter can mobilize into the S. pombe genome and produce true transposition events. However, the Tf2-neo mobilization frequency is 10- to 20-fold lower than that of Tf1-neo, and 70% of the Tf2-neo events are homologous recombination events generated independently of a functional Tf2 integrase. Thus, the Tf2 element is primarily dependent on homologous recombination with preexisting copies of Tf2 for its propagation. Finally, production of Tf2-neo proteins and cDNA was also analyzed; surprisingly, Tf2 was found to produce its reverse transcriptase as a single species in which it is fused to protease, unlike all other retroviruses and retrotransposons. PMID:9774697