Sample records for reverse transcription complex

  1. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    PubMed Central

    Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia

    2008-01-01

    Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151

  2. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  3. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription.

    PubMed

    Lin, J H; Levin, H L

    1997-01-15

    All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.

  4. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter.

    PubMed

    Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro

    2006-04-14

    Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.

  5. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7

    PubMed Central

    Fassati, Ariberto; Görlich, Dirk; Harrison, Ian; Zaytseva, Lyubov; Mingot, José-Manuel

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1), like other lentiviruses, can infect non-dividing cells. This property depends on the active nuclear import of its intracellular reverse transcription complex (RTC). We have studied nuclear import of purified HIV-1 RTCs in primary macrophages and found that importin 7, an import receptor for ribosomal proteins and histone H1, is involved in the process. Nuclear import of RTCs requires, in addition, energy and the com ponents of the Ran system. Depletion of importin 7 from cultured cells by small interfering RNA inhibits HIV-1 infection. These results provide a new insight into the molecular mechanism for HIV-1 nuclear import and reveal potential targets for therapeutic intervention. PMID:12853482

  6. The SAM-responsive SMK box is a reversible riboswitch

    PubMed Central

    Smith, Angela M.; Fuchs, Ryan T.; Grundy, Frank J.; Henkin, Tina M.

    2010-01-01

    The SMK (SAM-III) box is an S-adenosylmethionine (SAM)-responsive riboswitch found in the 5′ untranslated region of metK genes, encoding SAM synthetase, in many members of the Lactobacillales. SAM binding causes a structural rearrangement in the RNA that sequesters the Shine-Dalgarno (SD) sequence by pairing with a complementary anti-SD (ASD) sequence; sequestration of the SD sequence inhibits binding of the 30S ribosomal subunit and prevents translation initiation. We observed a slight increase in the half-life of the metK transcript in vivo when Enterococcus faecalis cells were depleted for SAM, but no significant change in overall transcript abundance, consistent with the model that this riboswitch regulates at the level of translation initiation. The half-life of the SAM-SMK box RNA complex in vitro is shorter than that of the metK transcript in vivo, raising the possibility of reversible binding of SAM. We used a fluorescence assay to directly visualize reversible switching between the SAM-free and SAM-bound conformations. We propose that the SMK box riboswitch can make multiple SAM-dependent regulatory decisions during the lifetime of the transcript in vivo, acting as a reversible switch that allows the cell to respond rapidly to fluctuations in SAM pools by modulating expression of the SAM synthetase gene. PMID:21143313

  7. Structural basis of reverse nucleotide polymerization

    PubMed Central

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Nucleotide polymerization proceeds in the forward (5′-3′) direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3′-5′) would present a “simpler” solution. Interestingly, reverse (3′-5′) nucleotide addition is catalyzed by the tRNA maturation enzyme tRNAHis guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNAHis guanylyltransferase-tRNAHis complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme’s active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5′-3′ polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process. PMID:24324136

  8. A plasmid-based reverse genetics system for influenza A virus.

    PubMed Central

    Pleschka, S; Jaskunas, R; Engelhardt, O G; Zürcher, T; Palese, P; García-Sastre, A

    1996-01-01

    A reverse genetics system for negative-strand RNA viruses was first successfully developed for influenza viruses. This technology involved the transfection of in vitro-reconstituted ribonucleoprotein (RNP) complexes into influenza virus-infected cells. We have now developed a method that allows intracellular reconstitution of RNP complexes from plasmid-based expression vectors. Expression of a viral RNA-like transcript is achieved from a plasmid containing a truncated human polymerase I (polI) promoter and a ribozyme sequence that generates the desired 3' end by autocatalytic cleavage. The polI-driven plasmid is cotransfected into human 293 cells with polII-responsive plasmids that express the viral PB1, PB2, PA, and NP proteins. This exclusively plasmid-driven system results in the efficient transcription and replication of the viral RNA-like reporter and allows the study of cis- and trans-acting signals involved in the transcription and replication of influenza virus RNAs. Using this system, we have also been able to rescue a synthetic neuraminidase gene into a recombinant influenza virus. This method represents a convenient alternative to the previously established RNP transfection system. PMID:8648766

  9. A gene network simulator to assess reverse engineering algorithms.

    PubMed

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  10. The Regulation of Sox9 Gene Expression by the GATA4/FOG2 Transcriptional Complex in Dominant XX Sex Reversal Mouse Models.

    PubMed Central

    Manuylov, Nikolay L.; Fujiwara, Yuko; Adameyko, Igor I.; Poulat, Francis

    2007-01-01

    We have previously established an in vivo requirement for GATA4 and FOG2 transcription factors in sexual differentiation. Fog2 null mouse fetuses or fetuses homozygous for a targeted mutation in Gata4 (Gata4ki), which cripples the GATA4-FOG2 interaction, exhibit a profound and early block in testis differentiation in both sexes. Others have shown that XX mice with the Ods transgenic insertion or the Wt1-Sox9 YAC transgene overexpress the testis differentiation gene, Sox9. Thus, these XX animals undergo dominant sex-reversal by developing into phenotypically normal, but sterile, males. Now we have determined that Fog2 haploinsufficiency prevents (suppresses) this dominant sex-reversal and Fog2+/− Wt1-Sox9 or Ods XX animals develop normally - as fertile females. The suppression of sex-reversal in Fog2 heterozygous females results from approximately 50% downregulation of the expression from the transgene-associated allele of Sox9. The GATA4/FOG2-dependent sex reversal observed in the transgenic XX gonads has to rely on gene targets other than the Y chromosome-linked Sry gene. Importantly, Fog2 null or Gata4ki/ki embryos (either XX or XY) fail to express detectable levels of Sox9 despite carrying the Ods mutation or Wt1-Sox9 transgene. Fog2 haploinsufficiency leads to a decreased amount of SOX9-positive cells in XY gonads. We conclude that FOG2 is a limiting factor in the formation of a functional GATA4/FOG2 transcription complex that is required for Sox9 expression during gonadogenesis. PMID:17540364

  11. Imaging dynamic and selective low-complexity domain interactions that control gene transcription.

    PubMed

    Chong, Shasha; Dugast-Darzacq, Claire; Liu, Zhe; Dong, Peng; Dailey, Gina M; Cattoglio, Claudia; Heckert, Alec; Banala, Sambashiva; Lavis, Luke; Darzacq, Xavier; Tjian, Robert

    2018-06-21

    Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity domains (LCDs), but how they drive transactivation remains unclear. Here, live-cell single-molecule imaging reveals that TF-LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF-LCD hubs stabilize DNA binding, recruit RNA polymerase II (Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for novel drugs targeting gene regulatory interactions implicated in disease. Copyright © 2018, American Association for the Advancement of Science.

  12. The Mediator complex: a central integrator of transcription

    PubMed Central

    Allen, Benjamin L.; Taatjes, Dylan J.

    2016-01-01

    The RNA polymerase II (pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator, a large, conformationally flexible protein complex with variable subunit composition (for example, a four-subunit CDK8 module can reversibly associate). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes important for transcription, including organization of chromatin architecture and regulation of pol II pre-initiation, initiation, re-initiation, pausing, and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions appear to be specific to metazoans, indicative of more diverse regulatory requirements. PMID:25693131

  13. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  14. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress.

    PubMed

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-12-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.

  15. Human Promoters Are Intrinsically Directional

    PubMed Central

    Duttke, Sascha H.C.; Lacadie, Scott A.; Ibrahim, Mahmoud M.; Glass, Christopher K.; Corcoran, David L.; Benner, Christopher; Heinz, Sven; Kadonaga, James T.; Ohler, Uwe

    2015-01-01

    Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional, and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in cells revealed that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that up to half of promoters are unidirectional and that unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process, but rather the consequence of the presence of both forward- and reverse-directed core promoters. PMID:25639469

  16. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.

    PubMed

    Sorin, Masha; Yung, Eric; Wu, Xuhong; Kalpana, Ganjam V

    2006-08-31

    INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and reverse transcription complexes may be important for early events of HIV-1 replication.

  17. Structure of a group II intron in complex with its reverse transcriptase.

    PubMed

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-06-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

  18. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    PubMed

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  19. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2017-12-01

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Elucidation of the transcription network governing mammalian sex determination by exploiting strain-specific susceptibility to sex reversal

    PubMed Central

    Munger, Steven C.; Aylor, David L.; Syed, Haider Ali; Magwene, Paul M.; Threadgill, David W.; Capel, Blanche

    2009-01-01

    Despite the identification of some key genes that regulate sex determination, most cases of disorders of sexual development remain unexplained. Evidence suggests that the sexual fate decision in the developing gonad depends on a complex network of interacting factors that converge on a critical threshold. To elucidate the transcriptional network underlying sex determination, we took the first expression quantitative trait loci (eQTL) approach in a developing organ. We identified reproducible differences in the transcriptome of the embryonic day 11.5 (E11.5) XY gonad between C57BL/6J (B6) and 129S1/SvImJ (129S1), indicating that the reported sensitivity of B6 to sex reversal is consistent with a higher expression of a female-like transcriptome in B6. Gene expression is highly variable in F2 XY gonads from B6 and 129S1 intercrosses, yet strong correlations emerged. We estimated the F2 coexpression network and predicted roles for genes of unknown function based on their connectivity and position within the network. A genetic analysis of the F2 population detected autosomal regions that control the expression of many sex-related genes, including Sry (sex-determining region of the Y chromosome) and Sox9 (Sry-box containing gene 9), the key regulators of male sex determination. Our results reveal the complex transcription architecture underlying sex determination, and provide a mechanism by which individuals may be sensitized for sex reversal. PMID:19884258

  1. Dynamics of Fos-Jun-NFAT1 complexes

    PubMed Central

    Ramirez-Carrozzi, Vladimir R.; Kerppola, Tom K.

    2001-01-01

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes. PMID:11320240

  2. Dynamics of Fos-Jun-NFAT1 complexes.

    PubMed

    Ramirez-Carrozzi, V R; Kerppola, T K

    2001-04-24

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.

  3. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation

    PubMed Central

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology ‘reverse engineering’ approaches. We ‘reverse engineered’ an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression (‘hubs’). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central ‘hub’ of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation. PMID:23180766

  4. Reversible stalling of transcription elongation complexes by high pressure.

    PubMed

    Erijman, L; Clegg, R M

    1998-07-01

    We have investigated the effect of high hydrostatic pressure on the stability of RNA polymerase molecules during transcription. RNA polymerase molecules participating in stalled or active ternary transcribing complexes do not dissociate from the template DNA and nascent RNA at pressures up to 180 MPa. A lower limit for the free energy of stabilization of an elongating ternary complex relative to the quaternary structure of the free RNAP molecules is estimated to be 20 kcal/mol. The rate of elongation decreases at high pressure; transcription completely halts at sufficiently high pressure. The overall rate of elongation has an apparent activation volume (DeltaVdouble dagger) of 55-65 ml . mol-1 (at 35 degrees C). The pressure-stalled transcripts are stable and resume elongation at the prepressure rate upon decompression. The efficiency of termination decreases at the rho-independent terminator tR2 after the transcription reaction has been exposed to high pressure. This suggests that high pressure modifies the ternary complex such that termination is affected in a manner different from that of elongation. The solvent and temperature dependence of the pressure-induced inhibition show evidence for major conformational changes in the core polymerase enzyme during RNA synthesis. It is proposed that the inhibition of the elongation phase of the transcription reaction at elevated pressures is related to a reduction of the partial specific volume of the RNA polymerase molecule; under high pressure, the RNA polymerase molecule does not have the necessary structural flexibility required for the protein to translocate.

  5. Forced Complementation between Subgenomic RNAs: Does Human Immunodeficiency Type 1 Virus Reverse Transcription Occur in Viral Core, Cytoplasm, or Early Endosome?

    PubMed Central

    Han, Weining; Li, Yuejin; Bagaya, Bernard S.; Tian, Meijuan; Chamanian, Mastooreh; Zhu, Chuanwu; Shen, Jie; Gao, Yong

    2016-01-01

    Although the process of reverse transcription is well elucidated, it remains unclear if viral core disruption provides a more cellular or viral milieu for HIV-1 reverse transcription. We have devised a method to require mixing of viral cores or core constituents to produce infectious progeny virus by a bipartite subgenomic RNA (sgRNA) system, in which HIV-1 cplt_R/U5/gag/Δpol and nfl sgRNAs are complementary to each other and when together can complete viral reverse transcription. Only the heterodiploid virus containing both the nfl and cplt_R/U5/gag/Δpol sgRNAs can complete reverse transcription and propagate infectious virus upon de novo infection. Dual exposure of U87.CD4.CXCR4 cells with high titers of the homodimeric nfl and cplt_R/U5/gag/Δpol virus particles did not result in productive virus infection. On the other hand, in early endosomes, the HIV-1 sgRNAs released from viral cores can retain function and complete the reverse transcription and result in productive infection. These findings confirm the assumptions that, in natural infection, HIV-1 cores, and likely other retrovirus cores, remain largely intact and do not mix/fuse in the cytoplasm during the reverse transcription process, and circulating cytoplasmic HIV-1 sgRNA (produced through transfection) could not help the complementary sgRNA in the viral core to complement the reverse transcription process. PMID:27239643

  6. Kinase cogs go forward and reverse in the Wnt signaling machine.

    PubMed

    Dale, Trevor

    2006-01-01

    An important link between Wnt binding at the cell surface and nuclear -catenin-TCF-dependent transcription has been made with the identification of kinases that promote the association of the Wnt receptor and -catenin turnover complexes. Surprisingly, the enzymes implicated had previously been suggested to inhibit rather than promote Wnt signaling.

  7. Cross-subtype Detection of HIV-1 Using Reverse Transcription and Recombinase Polymerase Amplification

    PubMed Central

    Lillis, Lorraine; Lehman, Dara A.; Siverson, Joshua B.; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S.

    2016-01-01

    A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10 to 30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7 %) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV. PMID:26821087

  8. Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains

    PubMed Central

    Jacob, Yves; Real, Eléonore; Tordo, Noël

    2001-01-01

    Lyssaviruses, the causative agents of rabies encephalitis, are distributed in seven genotypes. The phylogenetically distant rabies virus (PV strain, genotype 1) and Mokola virus (genotype 3) were used to develop a strategy to identify functional homologous interactive domains from two proteins (P and N) which participate in the viral ribonucleoprotein (RNP) transcription-replication complex. This strategy combined two-hybrid and green fluorescent protein–reverse two-hybrid assays in Saccharomyces cerevisiae to analyze protein-protein interactions and a reverse genetic assay in mammalian cells to study the transcriptional activity of the reconstituted RNP complex. Lyssavirus P proteins contain two N-binding domains (N-BDs), a strong one encompassing amino acid (aa) 176 to the C terminus and a weak one in the 189 N-terminal aa. The N-terminal portion of P (aa 52 to 189) also contains a homomultimerization site. Here we demonstrate that N-P interactions, although weaker, are maintained between proteins of the different genotypes. A minimal transcriptional module of the P protein was obtained by fusing the first 60 N-terminal aa containing the L protein binding site to the C-terminal strong N-BD. Random mutation of the strong N-BD on P protein identified three highly conserved K residues crucial for N-P interaction. Their mutagenesis in full-length P induced a transcriptionally defective RNP. The analysis of homologous interactive domains presented here and previously reported dissections of the P protein allowed us to propose a model of the functional interaction network of the lyssavirus P protein. This model underscores the central role of P at the interface between L protein and N-RNA template. PMID:11559793

  9. Alcohol reversibly disrupts TNF-α/TACE interactions in the cell membrane

    PubMed Central

    Song, Kejing; Zhao, Xue-Jun; Marrero, Luis; Oliver, Peter; Nelson, Steve; Kolls, Jay K

    2005-01-01

    Background Alcohol abuse has long been known to adversely affect innate and adaptive immune responses and pre-dispose to infections. One cellular mechanism responsible for this effect is alcohol-induced suppression of TNF-α (TNF) by mononuclear phagocytes. We have previously shown that alcohol in part inhibits TNF-α processing by TNF converting enzyme (TACE) in human monocytes. We hypothesized that the chain length of the alcohol is critical for post-transcriptional suppression of TNF secretion. Methods Due to the complex transcriptional and post-transcriptional regulation of TNF in macrophages, to specifically study TNF processing at the cell membrane we performed transient transfections of A549 cells with the TNF cDNA driven by the heterologous CMV promoter. TNF/TACE interactions at the cell surface were assessed using fluorescent resonance energy transfer (FRET) microscopy. Results The single carbon alcohol, methanol suppressed neither TNF secretion nor FRET efficiency between TNF and TACE. However, 2, 3, and 4 carbon alcohols were potent suppressors of TNF processing and FRET efficiency. The effect of ethanol, a 2-carbon alcohol was reversible. Conclusion These data show that inhibition of TNF-α processing by acute ethanol is a direct affect of ethanol on the cell membrane and is reversible upon cessation or metabolism. PMID:16246259

  10. tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.

    PubMed

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-10-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.

  11. Simultaneous detection of four causal agents of tobacco bushy top disease by a multiplex one-step RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Tobacco bushy top disease is a complex disease caused by mixed infection of Tobacco bushy top virus (TBTV), Tobacco vein distorting virus (TVDV), satellite RNA of TBTV (Sat-TBTV) and Tobacco vein distorting virus associate RNA (TVDVaRNA). A one-tube multiplex reverse transcription-PCR (RT-PCR) assay...

  12. Core protein: a pleiotropic keystone in the HBV lifecycle

    PubMed Central

    Zlotnick, Adam; Venkatakrishnan, Balasubramanian; Tan, Zhenning; Lewellyn, Eric; Turner, William; Francis, Samson

    2015-01-01

    Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals -- while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on “From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story.” PMID:26129969

  13. Evidence for the packaging of multiple copies of Tf1 mRNA into particles and the trans priming of reverse transcription.

    PubMed

    Haag, A L; Lin, J H; Levin, H L

    2000-08-01

    Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA.

  14. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy.

    PubMed

    Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong

    2015-05-01

    Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

  15. Reversibly constraining spliceosome-substrate complexes by engineering disulfide crosslinks.

    PubMed

    McCarthy, Patrick; Garside, Erin; Meschede-Krasa, Yonatan; MacMillan, Andrew; Pomeranz Krummel, Daniel

    2017-08-01

    The spliceosome is a highly dynamic mega-Dalton enzyme, formed in part by assembly of U snRNPs onto its pre-mRNA substrate transcripts. Early steps in spliceosome assembly are challenging to study biochemically and structurally due to compositional and conformational dynamics. We detail an approach to covalently and reversibly constrain or trap non-covalent pre-mRNA/protein spliceosome complexes. This approach involves engineering a single disulfide bond between a thiol-bearing cysteine sidechain and a proximal backbone phosphate of the pre-mRNA, site-specifically modified with an N-thioalkyl moiety. When distance and angle between reactants is optimal, the sidechain will react with the single N-thioalkyl to form a crosslink upon oxidation. We provide protocols detailing how this has been applied successfully to trap an 11-subunit RNA-protein assembly, the human U1 snRNP, in complex with a pre-mRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  17. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

    PubMed Central

    Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.

    2014-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783

  18. Regulation of Glycan Structures in Animal Tissues

    PubMed Central

    Nairn, Alison V.; York, William S.; Harris, Kyle; Hall, Erica M.; Pierce, J. Michael; Moremen, Kelley W.

    2008-01-01

    Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes. PMID:18411279

  19. Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification.

    PubMed

    Lillis, Lorraine; Lehman, Dara A; Siverson, Joshua B; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S

    2016-04-01

    A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10-30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7%) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Rapid and reversible epigenome editing by endogenous chromatin regulators.

    PubMed

    Braun, Simon M G; Kirkland, Jacob G; Chory, Emma J; Husmann, Dylan; Calarco, Joseph P; Crabtree, Gerald R

    2017-09-15

    Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.

  1. Evidence for the Packaging of Multiple Copies of Tf1 mRNA into Particles and the trans Priming of Reverse Transcription

    PubMed Central

    Haag, Amanda Leigh; Lin, Jia-Hwei; Levin, Henry L.

    2000-01-01

    Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA. PMID:10888658

  2. HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication.

    PubMed

    Duchon, Alice A; St Gelais, Corine; Titkemeier, Nathan; Hatterschide, Joshua; Wu, Li; Musier-Forsyth, Karin

    2017-11-01

    A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNA Lys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNA Lys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication. IMPORTANCE Human tRNA Lys3 , the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNA Lys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNA Lys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNA Lys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function. Copyright © 2017 American Society for Microbiology.

  3. Hepatitis B virus replication

    PubMed Central

    Beck, Juergen; Nassal, Michael

    2007-01-01

    Hepadnaviruses, including human hepatitis B virus (HBV), replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Despite this kinship to retroviruses, there are fundamental differences beyond the fact that hepadnavirions contain DNA instead of RNA. Most peculiar is the initiation of reverse transcription: it occurs by protein-priming, is strictly committed to using an RNA hairpin on the pgRNA, ε, as template, and depends on cellular chaperones; moreover, proper replication can apparently occur only in the specialized environment of intact nucleocapsids. This complexity has hampered an in-depth mechanistic understanding. The recent successful reconstitution in the test tube of active replication initiation complexes from purified components, for duck HBV (DHBV), now allows for the analysis of the biochemistry of hepadnaviral replication at the molecular level. Here we review the current state of knowledge at all steps of the hepadnaviral genome replication cycle, with emphasis on new insights that turned up by the use of such cell-free systems. At this time, they can, unfortunately, not be complemented by three-dimensional structural information on the involved components. However, at least for the ε RNA element such information is emerging, raising expectations that combining biophysics with biochemistry and genetics will soon provide a powerful integrated approach for solving the many outstanding questions. The ultimate, though most challenging goal, will be to visualize the hepadnaviral reverse transcriptase in the act of synthesizing DNA, which will also have strong implications for drug development. PMID:17206754

  4. An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis.

    PubMed

    Walsh, Logan A; Alvarez, Mariano J; Sabio, Erich Y; Reyngold, Marsha; Makarov, Vladimir; Mukherjee, Suranjit; Lee, Ken-Wing; Desrichard, Alexis; Turcan, Şevin; Dalin, Martin G; Rajasekhar, Vinagolu K; Chen, Shuibing; Vahdat, Linda T; Califano, Andrea; Chan, Timothy A

    2017-08-15

    At the root of most fatal malignancies are aberrantly activated transcriptional networks that drive metastatic dissemination. Although individual metastasis-associated genes have been described, the complex regulatory networks presiding over the initiation and maintenance of metastatic tumors are still poorly understood. There is untapped value in identifying therapeutic targets that broadly govern coordinated transcriptional modules dictating metastatic progression. Here, we reverse engineered and interrogated a breast cancer-specific transcriptional interaction network (interactome) to define transcriptional control structures causally responsible for regulating genetic programs underlying breast cancer metastasis in individual patients. Our analyses confirmed established pro-metastatic transcription factors, and they uncovered TRIM25 as a key regulator of metastasis-related transcriptional programs. Further, in vivo analyses established TRIM25 as a potent regulator of metastatic disease and poor survival outcome. Our findings suggest that identifying and targeting keystone proteins, like TRIM25, can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing an innovative cancer intervention strategy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  6. ETO2-GLIS2 Hijacks Transcriptional Complexes to Drive Cellular Identity and Self-Renewal in Pediatric Acute Megakaryoblastic Leukemia.

    PubMed

    Thirant, Cécile; Ignacimouttou, Cathy; Lopez, Cécile K; Diop, M'Boyba; Le Mouël, Lou; Thiollier, Clarisse; Siret, Aurélie; Dessen, Phillipe; Aid, Zakia; Rivière, Julie; Rameau, Philippe; Lefebvre, Céline; Khaled, Mehdi; Leverger, Guy; Ballerini, Paola; Petit, Arnaud; Raslova, Hana; Carmichael, Catherine L; Kile, Benjamin T; Soler, Eric; Crispino, John D; Wichmann, Christian; Pflumio, Françoise; Schwaller, Jürg; Vainchenker, William; Lobry, Camille; Droin, Nathalie; Bernard, Olivier A; Malinge, Sébastien; Mercher, Thomas

    2017-03-13

    Chimeric transcription factors are a hallmark of human leukemia, but the molecular mechanisms by which they block differentiation and promote aberrant self-renewal remain unclear. Here, we demonstrate that the ETO2-GLIS2 fusion oncoprotein, which is found in aggressive acute megakaryoblastic leukemia, confers megakaryocytic identity via the GLIS2 moiety while both ETO2 and GLIS2 domains are required to drive increased self-renewal properties. ETO2-GLIS2 directly binds DNA to control transcription of associated genes by upregulation of expression and interaction with the ETS-related ERG protein at enhancer elements. Importantly, specific interference with ETO2-GLIS2 oligomerization reverses the transcriptional activation at enhancers and promotes megakaryocytic differentiation, providing a relevant interface to target in this poor-prognosis pediatric leukemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a)

    PubMed Central

    Emerling, Brooke M.; Weinberg, Frank; Liu, Juinn-Lin; Mak, Tak W.; Chandel, Navdeep S.

    2008-01-01

    The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1α. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1α and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1α transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity. PMID:18268343

  8. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    PubMed

    Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-05-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  9. m6A level and isoform characterization sequencing (m6A-LAIC-seq) reveals the census and complexity of the m6A epitranscriptome

    PubMed Central

    Molinie, Benoit; Wang, Jinkai; Lim, Kok-Seong; Hillebrand, Roman; Lu, Zhi-xiang; Van Wittenberghe, Nicholas; Howard, Benjamin D.; Daneshvar, Kaveh; Mullen, Alan C.; Dedon, Peter

    2017-01-01

    N6-Methyladenosine (m6A) is a widespread, reversible chemical modification of RNA molecules, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (‘m6A levels’) or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A-level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of nonstoichiometric m6A levels with cell-type specificity. At the level of isoform characterization, we discovered widespread differences in the use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3′ untranslated regions, while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications. PMID:27376769

  10. Cloning and Biochemical Characterization of TAF-172, a Human Homolog of Yeast Mot1

    PubMed Central

    Chicca, John J.; Auble, David T.; Pugh, B. Franklin

    1998-01-01

    The TATA binding protein (TBP) is a central component of the eukaryotic transcriptional machinery and is the target of positive and negative transcriptional regulators. Here we describe the cloning and biochemical characterization of an abundant human TBP-associated factor (TAF-172) which is homologous to the yeast Mot1 protein and a member of the larger Snf2/Swi2 family of DNA-targeted ATPases. Like Mot1, TAF-172 binds to the conserved core of TBP and uses the energy of ATP hydrolysis to dissociate TBP from DNA (ADI activity). Interestingly, ATP also causes TAF-172 to dissociate from TBP, which has not been previously observed with Mot1. Unlike Mot1, TAF-172 requires both TBP and DNA for maximal (∼100-fold) ATPase activation. TAF-172 inhibits TBP-driven RNA polymerase II and III transcription but does not appear to affect transcription driven by TBP-TAF complexes. As it does with Mot1, TFIIA reverses TAF-172-mediated repression of TBP. Together, these findings suggest that human TAF-172 is the functional homolog of yeast Mot1 and uses the energy of ATP hydrolysis to remove TBP (but apparently not TBP-TAF complexes) from DNA. PMID:9488487

  11. Involvement of the C-terminal extension of the alpha polypeptide and of the PucC protein in LH2 complex biosynthesis in Rubrivivax gelatinosus.

    PubMed

    Steunou, Anne-Soisig; Ouchane, Soufian; Reiss-Husson, Françoise; Astier, Chantal

    2004-05-01

    The facultative phototrophic nonsulfur bacterium Rubrivivax gelatinosus exhibits several differences from other species of purple bacteria in the organization of its photosynthetic genes. In particular, the puc operon contains only the pucB and pucA genes encoding the beta and alpha polypeptides of the light-harvesting 2 (LH2) complex. Downstream of the pucBA operon is the pucC gene in the opposite transcriptional orientation. The transcription of pucBA and pucC has been studied. No pucC transcript was detected either by Northern blotting or by reverse transcription-PCR analysis. The initiation site of pucBA transcription was determined by primer extension, and Northern blot analysis revealed the presence of two transcripts of 0.8 and 0.65 kb. The half-lives of both transcripts are longer in cells grown semiaerobically than in photosynthetically grown cells, and the small transcript is the less stable. It was reported that the alpha polypeptide, encoded by the pucA gene, presents a C-terminal extension which is not essential for LH2 function in vitro. The biological role of this alanine- and proline-rich C-terminal extension in vivo has been investigated. Two mutants with C-terminal deletions of 13 and 18 residues have been constructed. Both present the two pucBA transcripts, while their phenotypes are, respectively, LH2+ and LH2-, suggesting that a minimal length of the C-terminal extension is required for LH2 biogenesis. Another important factor involved in the LH2 biogenesis is the PucC protein. To gain insight into the function of this protein in R. gelatinosus, we constructed and characterized a PucC mutant. The mutant is devoid of LH2 complex under semiaerobiosis but still produces a small amount of these antennae under photosynthetic growth conditions. This conditional phenotype suggests the involvement of another factor in LH2 biogenesis.

  12. Maximizing RNA yield from archival renal tumors and optimizing gene expression analysis.

    PubMed

    Glenn, Sean T; Head, Karen L; Teh, Bin T; Gross, Kenneth W; Kim, Hyung L

    2010-01-01

    Formalin-fixed, paraffin-embedded tissues are widely available for gene expression analysis using TaqMan PCR. Five methods, including 4 commercial kits, for recovering RNA from paraffin-embedded renal tumor tissue were compared. The MasterPure kit from Epicentre produced the highest RNA yield. However, the difference in RNA yield between the kit from Epicenter and Invitrogen's TRIzol method was not significant. Using the top 3 RNA isolation methods, the manufacturers' protocols were modified to include an overnight Proteinase K digestion. Overnight protein digestion resulted in a significant increase in RNA yield. To optimize the reverse transcription reaction, conventional reverse transcription with random oligonucleotide primers was compared to reverse transcription using primers specific for genes of interest. Reverse transcription using gene-specific primers significantly increased the quantity of cDNA detectable by TaqMan PCR. Therefore, expression profiling of formalin-fixed, paraffin-embedded tissue using TaqMan qPCR can be optimized by using the MasterPure RNA isolation kit modified to include an overnight Proteinase K digestion and gene-specific primers during the reverse transcription.

  13. Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals.

    PubMed

    Lalli, Enzo; Ohe, Kenji; Latorre, Elisa; Bianchi, Marco E; Sassone-Corsi, Paolo

    2003-02-01

    A remarkable array of strategies is used to produce sexual differentiation in different species. Complex gene hierarchies govern sex determination pathways, as exemplified by the classic D. melanogaster paradigm, where an interplay of transcriptional, splicing and translational mechanisms operate. Molecular studies support the hypothesis that genetic sex determination pathways evolved in reverse order, from downstream to upstream genes, in the cascade. The recent identification of a role for the key regulatory factors SRY and WT1(+KTS) in pre-mRNA splicing indicates that important steps in the mammalian sex determination process are likely to operate at the post-transcriptional level.

  14. 5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1▿ †

    PubMed Central

    Dapp, Michael J.; Clouser, Christine L.; Patterson, Steven; Mansky, Louis M.

    2009-01-01

    Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2′-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription. PMID:19726509

  15. Detection of rearrangements and transcriptional up-regulation of ALK in FFPE lung cancer specimens using a novel, sensitive, quantitative reverse transcription polymerase chain reaction assay.

    PubMed

    Gruber, Kim; Horn, Heike; Kalla, Jörg; Fritz, Peter; Rosenwald, Andreas; Kohlhäufl, Martin; Friedel, Godehard; Schwab, Matthias; Ott, German; Kalla, Claudia

    2014-03-01

    The approved dual-color fluorescence in situ hybridization (FISH) test for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements in non-small-cell lung cancer (NSCLC) is complex and represents a low-throughput assay difficult to use in daily diagnostic practice. We devised a sensitive and robust routine diagnostic test for the detection of rearrangements and transcriptional up-regulation of ALK. We developed a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay adapted to RNA isolated from routine formalin-fixed, paraffin-embedded material and applied it to 652 NSCLC specimens. The reliability of this technique to detect ALK dysregulation was shown by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ALK expression indicative of a gene rearrangement in 24 (4.6%) and full-length ALK transcript expression in six (1.1%) of 523 interpretable tumors. Among 182 tumors simultaneously analyzed by FISH and qRT-PCR, the latter accurately typed 97% of 19 rearranged and 158 nonrearranged tumors and identified ALK deregulation in two cases with insufficient FISH. Six tumors expressing full-length ALK transcripts did not show rearrangements of the gene. Immunohistochemistry detected ALK protein overexpression in tumors with gene fusions and transcriptional up-regulation, but did not distinguish between the two. One case with full-length ALK expression carried a heterozygous point mutation (S1220Y) within the kinase domain potentially interfering with kinase activity and/or inhibitor binding. Our qRT-PCR assay reliably identifies and distinguishes ALK rearrangements and full-length transcript expression in formalin-fixed, paraffin-embedded material. It is an easy-to-perform, cost-effective, and high-throughput tool for the diagnosis of ALK activation. The expression of full-length ALK transcripts may be relevant for ALK inhibitor therapy in NSCLC.

  16. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  17. Biogenesis of mitochondria in cauliflower (Brassica oleracea var. botrytis) curds subjected to temperature stress and recovery involves regulation of the complexome, respiratory chain activity, organellar translation and ultrastructure.

    PubMed

    Rurek, Michal; Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2015-01-01

    The biogenesis of the cauliflower curd mitochondrial proteome was investigated under cold, heat and the recovery. For the first time, two dimensional fluorescence difference gel electrophoresis was used to study the plant mitochondrial complexome in heat and heat recovery. Particularly, changes in the complex I and complex III subunits and import proteins, and the partial disintegration of matrix complexes were observed. The presence of unassembled subunits of ATP synthase was accompanied by impairment in mitochondrial translation of its subunit. In cold and heat, the transcription profiles of mitochondrial genes were uncorrelated. The in-gel activities of respiratory complexes were particularly affected after stress recovery. Despite a general stability of respiratory chain complexes in heat, functional studies showed that their activity and the ATP synthesis yield were affected. Contrary to cold stress, heat stress resulted in a reduced efficiency of oxidative phosphorylation likely due to changes in alternative oxidase (AOX) activity. Stress and stress recovery differently modulated the protein level and activity of AOX. Heat stress induced an increase in AOX activity and protein level, and AOX1a and AOX1d transcript level, while heat recovery reversed the AOX protein and activity changes. Conversely, cold stress led to a decrease in AOX activity (and protein level), which was reversed after cold recovery. Thus, cauliflower AOX is only induced by heat stress. In heat, contrary to the AOX activity, the activity of rotenone-insensitive internal NADH dehydrogenase was diminished. The relevance of various steps of plant mitochondrial biogenesis to temperature stress response and recovery is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Attempt to rescue sex-reversal by transgenic expression of the PISRT1 gene in XX PIS-/- goats.

    PubMed

    Boulanger, L; Kocer, A; Daniel, N; Pannetier, M; Chesné, P; Heyman, Y; Renault, L; Mandon-Pépin, B; Chavatte-Palmer, P; Vignon, X; Vilotte, J-L; Cotinot, C; Renard, J-P; Pailhoux, E

    2008-01-01

    The Polled Intersex Syndrome (PIS mutation) in goats leads to an absence of horn and to an early sex-reversal of the XX gonads. This mutation is a deletion of an 11.7-kb DNA fragment showing a tissue-specific regulatory activity. Indeed, in XX PIS(-/-) gonads the deletion of PIS leads to the transcriptional extinction of at least 3 neighboring genes, FOXL2, PFOXic and PISRT1. Among them, only FOXL2 is a 'classical' gene, encoding a highly conserved transcription factor. On the other hand, knock-out of Foxl2 in mice results in an early blocking of follicle formation without sex-reversal. This phenotype discrepancy leads to two hypotheses, either FOXL2 is responsible for XX sex-reversal in goat assuming distinct functions of its protein during ovarian differentiation in different mammals, or other PIS-regulated genes are involved. To assess the second possibility, PISRT1 expression was constitutively restored in XX PIS(-/-) gonads. Six transgenic fetuses were obtained by nuclear transfer and studied at 2 developmental stages, 41 and 46 days post-reconstruction. The gonads of these fetuses appear phenotypically identical to those of cloned non-transgenic controls. Conclusively, this result argues for FOXL2 being responsible for the PIS gonad-associated phenotype. Its invalidation in goat will help to better understand this complex syndrome. Copyright 2008 S. Karger AG, Basel.

  19. Soft skills turned into hard facts: nucleosome remodelling at developmental switches.

    PubMed

    Chioda, M; Becker, P B

    2010-07-01

    Nucleosome remodelling factors are regulators of DNA accessibility in chromatin and lubricators of all major functions of eukaryotic genomes. Their action is transient and reversible, yet can be decisive for irreversible cell-fate decisions during development. In addition to the well-known local actions of nucleosome remodelling factors during transcription initiation, more global and fundamental roles for remodelling complexes in shaping the epigenome during development are emerging.

  20. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    PubMed

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  1. Phosphorylation-regulated Binding of RNA Polymerase II to Fibrous Polymers of Low Complexity Domains

    PubMed Central

    Xiang, Siheng; Wu, Leeju; Theodoropoulos, Pano; Mirzaei, Hamid; Han, Tina; Xie, Shanhai; Corden, Jeffry L.; McKnight, Steven L.

    2014-01-01

    SUMMARY The low complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS) and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state, and released for elongation following phosphorylation of the CTD. PMID:24267890

  2. The Specificity and Flexibility of L1 Reverse Transcription Priming at Imperfect T-Tracts

    PubMed Central

    Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-01-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5′-TTTT/A-3′ sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether—and to which degree—the liberated 3′-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3′ end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3′ overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3′ end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome. PMID:23675310

  3. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    PubMed

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  4. Human Immunodeficiency Virus Type 1 Employs the Cellular Dynein Light Chain 1 Protein for Reverse Transcription through Interaction with Its Integrase Protein

    PubMed Central

    Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi

    2015-01-01

    ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps. PMID:25568209

  5. A model for genesis of transcription systems.

    PubMed

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  6. A conformational switch is responsible for the reversal of the 6S RNA-dependent RNA polymerase inhibition in Escherichia coli.

    PubMed

    Steuten, Benedikt; Wagner, Rolf

    2012-12-01

    6S RNA is a bacterial transcriptional regulator,which accumulates during stationary phase and inhibits transcription from many promoters due to stable association with σ 70 -containing RNA polymerase. This inhibitory RNA polymerase ∼ 6S RNA complex dissociates during nutritional upshift, when cells undergo outgrowth from stationary phase, releasing active RNA polymerase ready for transcription. The release reaction depends on a characteristic property of 6S RNAs, namely to act as template for the de novo synthesis of small RNAs, termed pRNAs.Here, we used limited hydrolysis with structure-specific RNases and in-line probing of isolated 6S RNA and 6SRNA ∼ pRNA complexes to investigate the molecular details leading to the release reaction. Our results indicate that pRNA transcription induces the refolding of the 6S RNA secondary structure by disrupting part of the closing stem(conserved sequence regions CRI and CRIV) and formation of a new hairpin (conserved sequence regions CRIII and CRIV). Comparison of the dimethylsulfate modification pattern of 6S RNA in living cells at stationary growth and during outgrowth confirmed the conformational change observed in vitro. Based on our results, a model describing the individual steps of the release reaction is presented.

  7. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication.

    PubMed

    Hartman, Amy L; Dover, Jason E; Towner, Jonathan S; Nichol, Stuart T

    2006-07-01

    The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-beta production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.

  8. The self primer of the long terminal repeat retrotransposon Tf1 is not removed during reverse transcription.

    PubMed

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L; Levin, Henry L

    2006-08-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5' end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer.

  9. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  10. FOXL2 is a female sex-determining gene in the goat.

    PubMed

    Boulanger, Laurent; Pannetier, Maëlle; Gall, Laurence; Allais-Bonnet, Aurélie; Elzaiat, Maëva; Le Bourhis, Daniel; Daniel, Nathalie; Richard, Christophe; Cotinot, Corinne; Ghyselinck, Norbert B; Pailhoux, Eric

    2014-02-17

    The origin of sex reversal in XX goats homozygous for the polled intersex syndrome (PIS) mutation was unclear because of the complexity of the mutation that affects the transcription of both FOXL2 and several long noncoding RNAs (lncRNAs). Accumulating evidence suggested that FOXL2 could be the sole gene of the PIS locus responsible for XX sex reversal, the lncRNAs being involved in transcriptional regulation of FOXL2. In this study, using zinc-finger nuclease-directed mutagenesis, we generated several fetuses, of which one XX individual bears biallelic mutations of FOXL2. Our analysis demonstrates that FOXL2 loss of function dissociated from loss of lncRNA expression is sufficient to cause an XX female-to-male sex reversal in the goat model and, as in the mouse model, an agenesis of eyelids. Both developmental defects were reproduced in two newborn animals cloned from the XX FOXL2(-/-) fibroblasts. These results therefore identify FOXL2 as a bona fide female sex-determining gene in the goat. They also highlight a stage-dependent role of FOXL2 in the ovary, different between goats and mice, being important for fetal development in the former but for postnatal maintenance in the latter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex.

    PubMed

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-07-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.

  12. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex

    PubMed Central

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-01-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1. PMID:21447560

  13. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    PubMed Central

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  14. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro . The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  15. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  16. Formation of stable and functional HIV-1 nucleoprotein complexes in vitro.

    PubMed

    Tanchou, V; Gabus, C; Rogemond, V; Darlix, J L

    1995-10-06

    HIV genomic RNA resides within the nucleocapsid, in the interior of the virus, which serves to protect the RNA against nuclease degradation and to promote its reverse transcription. To investigate the role of nucleocapsid protein (NCp7) in the stability and replication of genomic RNA within the nucleocapsid, we used NCp7, reverse transcriptase (RT) and RNAs representing the 5' and 3' regions of the genome to reconstitute functional HIV-1 nucleocapsids. The nucleoprotein complexes generated in vitro were found to be stable, which, according to biochemical and genetic data, probably results from the tight binding of NCp7 molecules to the RNA and strong NCp7/NCp7 interactions. The nucleoprotein complexes efficiently protected viral RNA against RNase degradation and, at the same time, promoted viral DNA synthesis by RT. DNA strand transfer from the 5' to the 3' RNA template was very efficient in nucleoprotein complexes formed in the presence of both RNAs, but not when the RNAs were in separate complexes. These results indicate that the in vitro reconstituted HIV-1 nucleoprotein complexes function like virion nucleocapsids and thus provide a way to study at the molecular level this viral substructure and the synthesis of proviral DNA, and to search for new anti-HIV agents.

  17. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression

    PubMed Central

    Luo, Michelle L.; Mullis, Adam S.; Leenay, Ryan T.; Beisel, Chase L.

    2015-01-01

    CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing and transcriptional regulation. Because these RNA-directed immune systems are found in most prokaryotes, an opportunity exists to harness the endogenous systems as convenient tools in these organisms. Here, we report that the Type I-E CRISPR-Cas system in Escherichia coli can be co-opted for programmable transcriptional repression. We found that deletion of the signature cas3 gene converted this immune system into a programmable gene regulator capable of reversible gene silencing of heterologous and endogenous genes. Targeting promoter regions yielded the strongest repression, whereas targeting coding regions showed consistent strand bias. Furthermore, multi-targeting CRISPR arrays could generate complex phenotypes. This strategy offers a simple approach to convert many endogenous Type I systems into transcriptional regulators, thereby expanding the available toolkit for CRISPR-mediated genetic control while creating new opportunities for genome-wide screens and pathway engineering. PMID:25326321

  18. A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞

    PubMed Central

    Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.

    2008-01-01

    Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798

  19. Quantitative Detection of Low-Abundance Transcripts at Single-Cell Level in Human Epidermal Keratinocytes by Digital Droplet Reverse Transcription-Polymerase Chain Reaction.

    PubMed

    Auvré, Frédéric; Coutier, Julien; Martin, Michèle T; Fortunel, Nicolas O

    2018-05-08

    Genetic and epigenetic characterization of the large cellular diversity observed within tissues is essential to understanding the molecular networks that ensure the regulation of homeostasis, repair, and regeneration, but also pathophysiological processes. Skin is composed of multiple cell lineages and is therefore fully concerned by this complexity. Even within one particular lineage, such as epidermal keratinocytes, different immaturity statuses or differentiation stages are represented, which are still incompletely characterized. Accordingly, there is presently great demand for methods and technologies enabling molecular investigation at single-cell level. Also, most current methods used to analyze gene expression at RNA level, such as RT-qPCR, do not directly provide quantitative data, but rather comparative ratios between two conditions. A second important need in skin biology is thus to determine the number of RNA molecules in a given cell sample. Here, we describe a workflow that we have set up to meet these specific needs, by means of transcript quantification in cellular micro-samples using flow cytometry sorting and reverse transcription-digital droplet polymerase chain reaction. As a proof-of-principle, the workflow was tested for the detection of transcription factor transcripts expressed at low levels in keratinocyte precursor cells. A linear correlation was found between quantification values and keratinocyte input numbers in a low quantity range from 40 cells to 1 cell. Interpretable signals were repeatedly obtained from single-cell samples corresponding to estimated expression levels as low as 10-20 transcript copies per keratinocyte or less. The present workflow may have broad applications for the detection and quantification of low-abundance nucleic acid species in single cells, opening up perspectives for the study of cell-to-cell genetic and molecular heterogeneity. Interestingly, the process described here does not require internal references such as house-keeping gene expression, as it is initiated with defined cell numbers, precisely sorted by flow cytometry.

  20. The Self Primer of the Long Terminal Repeat Retrotransposon Tf1 Is Not Removed during Reverse Transcription

    PubMed Central

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L.; Levin, Henry L.

    2006-01-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5′ end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer. PMID:16873283

  1. The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation

    PubMed Central

    Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène

    2008-01-01

    Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038

  2. PCR analysis of the viral complex associated with La France disease of Agaricus bisporus.

    PubMed Central

    Romaine, C P; Schlagnhaufer, B

    1995-01-01

    Reverse transcription PCR analysis was used to investigate the involvement of two RNA-genome viruses, La France isometric virus (LIV) and mushroom bacilliform virus (MBV), in the etiology of La France disease of the cultivated mushroom Agaricus bisporus. Reverse transcription PCR amplification of sequences targeted to the genomes of LIV and MBV, with a sensitivity of detection of < 10 fg of viral RNA, showed diseased mushrooms to be either singly infected by LIV or doubly infected by LIV and MBV. Of 70 geographically diverse diseased mushroom isolates, 100% were infected by LIV, whereas almost 60% of these isolates were coinfected by MBV. Of 58 mushroom isolates determined to be free of infection by LIV, 3 were found to be infected by MBV. This represents the first documented report of the independent replication of these two viruses. Our data support the hypothesis that La France disease is associated with infection by two autonomously replicating viruses in which LIV is the primary causal agent and MBV, although possibly pathogenic and capable of modulating symptoms, is not required for pathogenesis. PMID:7793952

  3. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex.

    PubMed

    Kusov, Yuri; Tan, Jinzhi; Alvarez, Enrique; Enjuanes, Luis; Hilgenfeld, Rolf

    2015-10-01

    The multi-domain non-structural protein 3 of SARS-coronavirus is a component of the viral replication/transcription complex (RTC). Among other domains, it contains three sequentially arranged macrodomains: the X domain and subdomains SUD-N as well as SUD-M within the "SARS-unique domain". The X domain was proposed to be an ADP-ribose-1"-phosphatase or a poly(ADP-ribose)-binding protein, whereas SUD-NM binds oligo(G)-nucleotides capable of forming G-quadruplexes. Here, we describe the application of a reverse genetic approach to assess the importance of these macrodomains for the activity of the SARS-CoV RTC. To this end, Renilla luciferase-encoding SARS-CoV replicons with selectively deleted macrodomains were constructed and their ability to modulate the RTC activity was examined. While the SUD-N and the X domains were found to be dispensable, the SUD-M domain was crucial for viral genome replication/transcription. Moreover, alanine replacement of charged amino-acid residues of the SUD-M domain, which are likely involved in G-quadruplex-binding, caused abrogation of RTC activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  5. Possible roles of HIV-1 nucleocapsid protein in the specificity of proviral DNA synthesis and in its variability.

    PubMed

    Lapadat-Tapolsky, M; Gabus, C; Rau, M; Darlix, J L

    1997-05-02

    Retroviral nucleocapsid (NC) protein is an integral part of the virion nucleocapsid where it coats the dimeric RNA genome. Due to its nucleic acid binding and annealing activities, NC protein directs the annealing of the tRNA primer to the primer binding site and greatly facilitates minus strand DNA elongation and transfer while protecting the nucleic acids against nuclease degradation. To understand the role of NCp7 in viral DNA synthesis, we examined the influence of NCp7 on self-primed versus primer-specific reverse transcription. The results show that HIV-1 NCp7 can extensively inhibit self-primed reverse transcription of viral and cellular RNAs while promoting primer-specific synthesis of proviral DNA. The role of NCp7 vis-a-vis the presence of mutations in the viral DNA during minus strand elongation was examined. NCp7 maximized the annealing between a cDNA(-) primer containing one to five consecutive errors and an RNA representing the 3' end of the genome. The ability of reverse transcriptase (RT) in the presence of NCp7 to subsequently extend the mutated primers depended upon the position of the mismatch within the primer:template complex. When the mutations were at the polymerisation site, primer extension by RT in the presence of NCp7 was very high, about 40% for one mismatch and 3% for five consecutive mismatches. Mutations within the DNA primer or at its 5' end had little effect on the extension of viral DNA by RT. Taken together these results indicate that NCp7 plays major roles in proviral DNA synthesis within the virion core due to its ability to promote prime-specific proviral DNA synthesis while concurrently inhibiting non-specific reverse transcription of viral and cellular RNAs. Moreover, the observation that NCp7 enhances the incorporation of mutations during minus strand DNA elongation favours the notion that NCp7 is a factor contributing to the high mutation rate of HIV-1.

  6. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  7. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch

    PubMed Central

    Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.

    2016-01-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690

  8. PML–RARA-RXR Oligomers Mediate Retinoid and Rexinoid/cAMP Cross-Talk in Acute Promyelocytic Leukemia Cell Differentiation

    PubMed Central

    Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues

    2004-01-01

    PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541

  9. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  10. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  11. External Quality Assessment for the Detection of Measles Virus by Reverse Transcription-PCR Using Armored RNA

    PubMed Central

    Jia, Tingting; Zhang, Lei; Wang, Guojing; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Wang, Lunan; Li, Jinming

    2015-01-01

    In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7%) were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL). In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection of measles virus. PMID:26244795

  12. External Quality Assessment for the Detection of Measles Virus by Reverse Transcription-PCR Using Armored RNA.

    PubMed

    Zhang, Dong; Sun, Yu; Jia, Tingting; Zhang, Lei; Wang, Guojing; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Wang, Lunan; Li, Jinming

    2015-01-01

    In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7%) were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL). In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection of measles virus.

  13. Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification

    PubMed Central

    Wheeler, Sarah S.; Ball, Cameron S.; Langevin, Stanley A.; Fang, Ying; Coffey, Lark L.; Meagher, Robert J.

    2016-01-01

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance. PMID:26807734

  14. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification.

    PubMed

    Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong

    2014-11-01

    Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA

    PubMed Central

    LeBlanc, Jason; Weil, Jason; Beemon, Karen

    2013-01-01

    After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases. PMID:23754689

  16. The Application of a Homologous Recombination Assay Revealed Amino Acid Residues in an LTR-Retrotransposon That Were Critical for Integration

    PubMed Central

    Atwood, Angela; Choi, Jeannie; Levin, Henry L.

    1998-01-01

    Retroviruses and their relatives, the LTR-retrotransposons, possess an integrase protein (IN) that is required for the insertion of reverse transcripts into the genome of host cells. Schizosaccharomyces pombe is the host of Tf1, an LTR-retrotransposon with integration activity that can be studied by using techniques of yeast genetics. In this study, we sought to identify amino acid substitutions in Tf1 that specifically affected the integration step of transposition. In addition to seeking amino acid substitutions in IN, we also explored the possibility that other Tf1 proteins contributed to integration. By comparing the results of genetic assays that monitored both transposition and reverse transcription, we were able to seek point mutations throughout Tf1 that blocked transposition but not the synthesis of reverse transcripts. These mutant versions of Tf1 were candidates of elements that possessed defects in the integration step of transposition. Five mutations in Tf1 that resulted in low levels of integration were found to be located in the IN protein: two substitutions in the N-terminal Zn domain, two in the catalytic core, and one in the C-terminal domain. These results suggested that each of the three IN domains was required for Tf1 transposition. The potential role of these five amino acid residues in the function of IN is discussed. Two of the mutations that reduced integration mapped to the RNase H (RH) domain of Tf1 reverse transcriptase. The Tf1 elements with the RH mutations produced high levels of reverse transcripts, as determined by recombination and DNA blot analysis. These results indicated that the RH of Tf1 possesses a function critical for transposition that is independent of the accumulation of reverse transcripts. PMID:9445033

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabavi, Sadeq; Nazar, Ross N., E-mail: rnnazar@uoguelph.ca

    The maturation of many small nuclear RNAs is dependent on RNase III-like endonuclease mediated cleavage, which generates a loading site for the exosome complex that trims the precursor at its 3' end. Using a temperature sensitive Pac1 nuclease, here we show that the endonuclease cleavage is equally important in terminating the transcription of the U2 snRNA in Schizosaccharomyces pombe. Using a temperature sensitive Dhp1p 5' {yields} 3' exonuclease, we demonstrate that it also is an essential component of the termination pathway. Taken together the results support a 'reversed torpedoes' model for the termination and maturation of the U2 snRNA; themore » Pac1 endonuclease cleavage provides entry sites for the 3' and 5' exonuclease activities, leading to RNA maturation in one direction and transcript termination in the other.« less

  18. Germline epimutation in humans.

    PubMed

    Cropley, Jennifer E; Martin, David I K; Suter, Catherine M

    2008-12-01

    Epigenetic modifications provide all multicellular organisms with a system of gene regulation that allows clonally heritable yet reversible alterations in gene transcription. Errors in this complex system can give rise to abnormal gene silencing, termed 'epimutation'; importantly, this can occur in the absence of any underlying genetic defect. Epimutations are commonly somatic events, and are particularly prevalent in tumors, but we and others have shown that epimutation can also arise in the germline, giving rise to soma-wide transcriptional silencing of a gene. A germline epimutation can mimic the effect of an inactivating mutation, and in doing so, can phenocopy a genetic disease. In this article, we will review the recent findings with germline epimutation at the tumor suppressor gene MLH1, discuss the possible etiology of this phenomenon, and the implications of germline epimutation in humans.

  19. Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein

    PubMed Central

    Belfetmi, Anissa; Zargarian, Loussiné; Tisné, Carine; Sleiman, Dona; Morellet, Nelly; Lescop, Ewen; Maskri, Ouerdia; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2016-01-01

    The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem–loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR–cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59. PMID:26826129

  20. Design and Assessment of a Real Time Reverse Transcription-PCR Method to Genotype Single-Stranded RNA Male-Specific Coliphages (Family Leviviridae).

    EPA Science Inventory

    A real-time, reverse transcription-PCR (RT-qPCR) assay was developed to differentiate the four genogroups of male-specific ssRNA coliphages (FRNA) (family Leviviridae). As FRNA display a trend of source-specificity (human sewage or animal waste) at the genogroup level, this assa...

  1. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    USDA-ARS?s Scientific Manuscript database

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  2. One-step reverse transcription loop mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Apple chlorotic leaf spot virus (ACLSV) was developed. In this method, a set of four primers was designed based on the conserved regions in the coat protein gene of ACLSV, and was synthesized for the ...

  3. Contrasting Transcriptional Programs Control Postharvest Development of Apples (Malus x domestica Borkh.) Submitted to Cold Storage and Ethylene Blockage.

    PubMed

    Storch, Tatiane Timm; Finatto, Taciane; Bruneau, Maryline; Orsel-Baldwin, Mathilde; Renou, Jean-Pierre; Rombaldi, Cesar Valmor; Quecini, Vera; Laurens, François; Girardi, César Luis

    2017-09-06

    Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.

  4. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  5. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  6. Specific detection of rinderpest virus by real-time reverse transcription-PCR in preclincal and clinical samples of experimentally infected cattle

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...

  7. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  8. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    PubMed

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  9. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch.

    PubMed

    Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D

    2016-08-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.

  10. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    PubMed

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  11. Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation.

    PubMed

    Xu, Binjie; Soukup, Randal J; Jones, Christopher J; Fishel, Richard; Wozniak, Daniel J

    2016-10-01

    During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Silicon-induced reversibility of cadmium toxicity in rice

    PubMed Central

    Farooq, Muhammad Ansar; Detterbeck, Amelie; Clemens, Stephan; Dietz, Karl-Josef

    2016-01-01

    Silicon (Si) modulates tolerance to abiotic stresses, but little is known about the reversibility of stress effects by supplementing previously stressed plants with Si. This is surprising since recovery experiments might allow mechanisms of Si-mediated amelioration to be addressed. Rice was exposed to 10 µM CdCl2 for 4 d in hydroponics, followed by 0.6mM Si(OH)4 supplementation for 4 d. Si reversed the effects of Cd, as reflected in plant growth, photosynthesis, elemental composition, and some biochemical parameters. Cd-dependent deregulation of nutrient homeostasis was partially reversed by Si supply. Photosynthetic recovery within 48h following Si supply, coupled with strong stimulation of the ascorbate–glutathione system, indicates efficient activation of defense. The response was further verified by transcript analyses with emphasis on genes encoding members of the stress-associated protein (SAP) family. The transcriptional response to Cd was mostly reversed following Si supply. Reprogramming of the Cd response was obvious for Phytochelatin synthase 1, SAP1 , SAP14, and the transcription factor genes AP2/Erf020, Hsf31, and NAC6 whose transcript levels were strongly activated in roots of Cd-stressed rice, but down-regulated in the presence of Si. These findings, together with changes in biochemical parameters, highlight the significance of Si in growth recovery of Cd-stressed rice and indicate a decisive role for readjusting cell redox homeostasis. PMID:27122572

  13. Measurements of nonlinear Hall-driven reconnection in the reversed field pinch

    NASA Astrophysics Data System (ADS)

    Tharp, Timothy D.

    Complex organisms are able to develop because of the complex regulatory systems that control their gene expression. The first step in this regulation, transcription initiation, is controlled by transcription factors. Transcription factors are modular proteins composed of two distinct domains, the DNA binding domain and the regulatory domain. These molecules are involved in a plethora of important biological processes including embryogenesis, development, cell health, and cancer. Tissue enriched transcription factors Nkx-2.5 and Gata4 are involved in cardiac development and cardiac health. In this thesis the DNA binding specificity of Nkx-2.5 will be analyzed using a high throughput double stranded DNA platform called Cognate Site Identifier (CSI) arrays (Chapter 2). The full DNA binding specificity of Nkx-2.5 and Nkx-2.5 mutants will be visualized using Sequence Specificity Landscapes (SSLs). In Chapter 3, the definition of binding specificity will be investigated by evaluating a number of different DNA binding folds by CSI and SSLs. CSI and SSLs will also be used to evaluate different pyrrole/imidazole hairpin polyamides in order to better characterize these small molecule DNA binding domains. CSI and SSL data will be applied to the genome in order to explain the biological function an artificial transcription factor. Chapter 4 will discuss the mechanism of nonspecific DNA binding. The historical means of predicting DNA binding will be challenged by utilizing high throughput experiments. The effect of salt concentration on both specific and nonspecific binding will also be investigated. Finally, in Chapter 5, a generation of Protein DNA Dimerizer will be discussed. A PDD that regulates transcription on genomic DNA by binding cooperatively with the heart IF Gata4 will be characterized. These studies provide understanding of, and a means to control, how transcription factors sample the endless sea of DNA in the genome in order to regulate gene expression with such wonderful specificity.

  14. Mathematical Model of a Telomerase Transcriptional Regulatory Network Developed by Cell-Based Screening: Analysis of Inhibitor Effects and Telomerase Expression Mechanisms

    PubMed Central

    Bilsland, Alan E.; Stevenson, Katrina; Liu, Yu; Hoare, Stacey; Cairney, Claire J.; Roffey, Jon; Keith, W. Nicol

    2014-01-01

    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability. PMID:24550717

  15. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA

    PubMed Central

    Naorem, Santa S.; Han, Jin; Wang, Shufang; Lee, William R.; Heng, Xiao; Miller, Jeff F.

    2017-01-01

    Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation. PMID:29109248

  16. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination

    PubMed Central

    Deveson, Ira W.; Holleley, Clare E.; Blackburn, James; Marshall Graves, Jennifer A.; Mattick, John S.; Waters, Paul D.; Georges, Arthur

    2017-01-01

    In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3, in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD. PMID:28630932

  17. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination.

    PubMed

    Deveson, Ira W; Holleley, Clare E; Blackburn, James; Marshall Graves, Jennifer A; Mattick, John S; Waters, Paul D; Georges, Arthur

    2017-06-01

    In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3 , in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD.

  18. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo.

    PubMed

    Spencer, J Vaughn; Arndt, Karen M

    2002-12-01

    The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.

  19. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  20. Consistency of influenza A virus detection test results across respiratory specimen collection methods using real-time reverse transcription-PCR.

    PubMed

    Spencer, Sarah; Gaglani, Manjusha; Naleway, Allison; Reynolds, Sue; Ball, Sarah; Bozeman, Sam; Henkle, Emily; Meece, Jennifer; Vandermause, Mary; Clipper, Lydia; Thompson, Mark

    2013-11-01

    In our prospective cohort study, we compared the performance of nasopharyngeal, oropharyngeal, and nasal swabs for the detection of influenza virus using real-time reverse transcription-PCR assay. Joint consideration of results from oropharyngeal and nasal swabs was as effective as consideration of results from nasopharyngeal swabs alone, as measured by sensitivity and noninferiority analysis.

  1. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    PubMed

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  2. Rapid and Quantitative Detection of Hepatitis A Virus from Green Onion and Strawberry Rinses by Use of Real-Time Reverse Transcription-PCR

    PubMed Central

    Shan, X. C.; Wolffs, P.; Griffiths, M. W.

    2005-01-01

    In this study, an immunomagnetic capture method and a real-time reverse transcription-PCR assay were used to quantify hepatitis A virus (HAV) in green onion and strawberry rinses. This combined protocol detected as low as 0.5 PFU HAV in produce rinses and concentrated HAV levels up to 20-fold. PMID:16151164

  3. Reverse transcription loop-mediated isothermal amplification (RT-LAMP), a light for mammalian transcript analysis in low-input laboratories.

    PubMed

    Pandey, Mamta; Singh, Dheer; Onteru, Suneel K

    2018-06-01

    Transcript analysis is usually performed by costly, time-consuming, and expertise intensive methods, like real time-PCR, microarray, etc. However, they are not much feasible in low-input laboratories. Therefore, we implemented the reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a means of mammalian transcript analysis. Particularly, RT-LAMP was developed for buffalo aromatase cytochrome P450 (CYP19) transcript, to study its expression in 3D-cultured buffalo granulosa cells, which were exposed to lipopolysaccharide (LPS). The CYP19-RT-LAMP assay rapidly identified the LPS-induced downregulation of the CYP19 gene within 30 min at 63°C in a water bath. The assay was visualized via unaided eye by observing the change in turbidity and fluorescence, which were decreased by increasing the LPS exposure time to granulosa cells. Overall, the developed CYP19-RT-LAMP assay provided a hope on the application of RT-LAMP for mammalian transcript analysis in low-input laboratories. © 2017 Wiley Periodicals, Inc.

  4. Repressive LTR Nucleosome Positioning by the BAF Complex Is Required for HIV Latency

    PubMed Central

    Hakre, Shweta; Moshkin, Yuri; Verdin, Eric; Mahmoudi, Tokameh

    2011-01-01

    Persistence of a reservoir of latently infected memory T cells provides a barrier to HIV eradication in treated patients. Several reports have implicated the involvement of SWI/SNF chromatin remodeling complexes in restricting early steps in HIV infection, in coupling the processes of integration and remodeling, and in promoter/LTR transcription activation and repression. However, the mechanism behind the seemingly contradictory involvement of SWI/SNF in the HIV life cycle remains unclear. Here we addressed the role of SWI/SNF in regulation of the latent HIV LTR before and after transcriptional activation. We determined the predicted nucleosome affinity of the LTR sequence and found a striking reverse correlation when compared to the strictly positioned in vivo LTR nucleosomal structure; sequences encompassing the DNase hypersensitive regions displayed the highest nucleosome affinity, while the strictly positioned nucleosomes displayed lower affinity for nucleosome formation. To examine the mechanism behind this reverse correlation, we used a combinatorial approach to determine DNA accessibility, histone occupancy, and the unique recruitment and requirement of BAF and PBAF, two functionally distinct subclasses of SWI/SNF at the LTR of HIV-infected cells before and after activation. We find that establishment and maintenance of HIV latency requires BAF, which removes a preferred nucleosome from DHS1 to position the repressive nucleosome-1 over energetically sub-optimal sequences. Depletion of BAF resulted in de-repression of HIV latency concomitant with a dramatic alteration in the LTR nucleosome profile as determined by high resolution MNase nucleosomal mapping. Upon activation, BAF was lost from the HIV promoter, while PBAF was selectively recruited by acetylated Tat to facilitate LTR transcription. Thus BAF and PBAF, recruited during different stages of the HIV life cycle, display opposing function on the HIV promoter. Our data point to the ATP-dependent BRG1 component of BAF as a putative therapeutic target to deplete the latent reservoir in patients. PMID:22140357

  5. Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency.

    PubMed

    Rafati, Haleh; Parra, Maribel; Hakre, Shweta; Moshkin, Yuri; Verdin, Eric; Mahmoudi, Tokameh

    2011-11-01

    Persistence of a reservoir of latently infected memory T cells provides a barrier to HIV eradication in treated patients. Several reports have implicated the involvement of SWI/SNF chromatin remodeling complexes in restricting early steps in HIV infection, in coupling the processes of integration and remodeling, and in promoter/LTR transcription activation and repression. However, the mechanism behind the seemingly contradictory involvement of SWI/SNF in the HIV life cycle remains unclear. Here we addressed the role of SWI/SNF in regulation of the latent HIV LTR before and after transcriptional activation. We determined the predicted nucleosome affinity of the LTR sequence and found a striking reverse correlation when compared to the strictly positioned in vivo LTR nucleosomal structure; sequences encompassing the DNase hypersensitive regions displayed the highest nucleosome affinity, while the strictly positioned nucleosomes displayed lower affinity for nucleosome formation. To examine the mechanism behind this reverse correlation, we used a combinatorial approach to determine DNA accessibility, histone occupancy, and the unique recruitment and requirement of BAF and PBAF, two functionally distinct subclasses of SWI/SNF at the LTR of HIV-infected cells before and after activation. We find that establishment and maintenance of HIV latency requires BAF, which removes a preferred nucleosome from DHS1 to position the repressive nucleosome-1 over energetically sub-optimal sequences. Depletion of BAF resulted in de-repression of HIV latency concomitant with a dramatic alteration in the LTR nucleosome profile as determined by high resolution MNase nucleosomal mapping. Upon activation, BAF was lost from the HIV promoter, while PBAF was selectively recruited by acetylated Tat to facilitate LTR transcription. Thus BAF and PBAF, recruited during different stages of the HIV life cycle, display opposing function on the HIV promoter. Our data point to the ATP-dependent BRG1 component of BAF as a putative therapeutic target to deplete the latent reservoir in patients.

  6. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome.

    PubMed

    Wu, Jia Qian; Du, Jiang; Rozowsky, Joel; Zhang, Zhengdong; Urban, Alexander E; Euskirchen, Ghia; Weissman, Sherman; Gerstein, Mark; Snyder, Michael

    2008-01-03

    Recent studies of the mammalian transcriptome have revealed a large number of additional transcribed regions and extraordinary complexity in transcript diversity. However, there is still much uncertainty regarding precisely what portion of the genome is transcribed, the exact structures of these novel transcripts, and the levels of the transcripts produced. We have interrogated the transcribed loci in 420 selected ENCyclopedia Of DNA Elements (ENCODE) regions using rapid amplification of cDNA ends (RACE) sequencing. We analyzed annotated known gene regions, but primarily we focused on novel transcriptionally active regions (TARs), which were previously identified by high-density oligonucleotide tiling arrays and on random regions that were not believed to be transcribed. We found RACE sequencing to be very sensitive and were able to detect low levels of transcripts in specific cell types that were not detectable by microarrays. We also observed many instances of sense-antisense transcripts; further analysis suggests that many of the antisense transcripts (but not all) may be artifacts generated from the reverse transcription reaction. Our results show that the majority of the novel TARs analyzed (60%) are connected to other novel TARs or known exons. Of previously unannotated random regions, 17% were shown to produce overlapping transcripts. Furthermore, it is estimated that 9% of the novel transcripts encode proteins. We conclude that RACE sequencing is an efficient, sensitive, and highly accurate method for characterization of the transcriptome of specific cell/tissue types. Using this method, it appears that much of the genome is represented in polyA+ RNA. Moreover, a fraction of the novel RNAs can encode protein and are likely to be functional.

  7. VITELLOGENIN GENE TRANSCRIPTION: A RELATIVE QUANTITATIVE EXPOSURE INDICATOR OF ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    We report the development of a quantifiable exposure indicator for measuring the presence of environmental estrogens in aquatic systems. Synthetic oligonucleotides, designed specifically for the vitellogenin gene (Vg) transcription product, were used in a Reverse Transcription Po...

  8. Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing.

    PubMed

    Zhou, Katherine I; Clark, Wesley C; Pan, David W; Eckwahl, Matthew J; Dai, Qing; Pan, Tao

    2018-05-11

    The abundant RNA modification pseudouridine (Ψ) has been mapped transcriptome-wide by chemically modifying pseudouridines with carbodiimide and detecting the resulting reverse transcription stops in high-throughput sequencing. However, these methods have limited sensitivity and specificity, in part due to the use of reverse transcription stops. We sought to use mutations rather than just stops in sequencing data to identify pseudouridine sites. Here, we identify reverse transcription conditions that allow read-through of carbodiimide-modified pseudouridine (CMC-Ψ), and we show that pseudouridines in carbodiimide-treated human ribosomal RNA have context-dependent mutation and stop rates in high-throughput sequencing libraries prepared under these conditions. Furthermore, accounting for the context-dependence of mutation and stop rates can enhance the detection of pseudouridine sites. Similar approaches could contribute to the sequencing-based detection of many RNA modifications.

  9. Chloroplast Transcription at Different Light Intensities. Glutathione-Mediated Phosphorylation of the Major RNA Polymerase Involved in Redox-Regulated Organellar Gene Expression1

    PubMed Central

    Baena-González, Elena; Baginsky, Sacha; Mulo, Paula; Summer, Holger; Aro, Eva-Mari; Link, Gerhard

    2001-01-01

    Previous studies using purified RNA polymerase from mustard (Sinapis alba) chloroplasts showed control of transcription by an associated protein kinase. This kinase was found to respond to reversible thiol/disulfide formation mediated by glutathione (GSH), although at concentrations exceeding those thought to exist in vivo. In the present study, several lines of evidence are presented to substantiate the functioning of this regulation mechanism, also in vivo: (a) Studies on the polymerase-associated transcription kinase revealed that at appropriate ATP levels, GSH concentrations similar to those in vivo are sufficient to modulate the kinase activity; (b) GSH measurements from isolated mustard chloroplasts showed considerable differences in response to light intensity; (c) this was reflected by run-on transcription rates in isolated chloroplasts that were generally higher if organelles were prepared from seedlings incubated under high-light as compared with growth-light conditions; (d) the notion of a general transcriptional switch was strengthened by in vitro experiments showing that the kinase not only affects the transcription of a photosynthetic gene (psbA) but also that of a non-photosynthetic gene (trnQ); and (e) the polymerase-kinase complex revealed specific differences in the phosphorylation state of polypeptides depending on the light intensity to which the seedlings had been exposed prior to chloroplast isolation. Taken together, these data are consistent with GSH and phosphorylation-dependent regulation of chloroplast transcription in vivo. PMID:11706185

  10. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells

    PubMed Central

    Tompkins, Joshua D.; Hall, Christine; Chen, Vincent Chang-yi; Li, Arthur Xuejun; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.

    2012-01-01

    The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for additional passaging. However, upon reversion to the original feeder-based culture conditions, numerous transcription changes are not reversible. Similarly, although the majority of DNA methylation changes are reversible, highlighting the plasticity of DNA methylation, a few are persistent. Collectively, this indicates these cells harbor a memory of culture history. For culture-induced DNA methylation changes, we also note an intriguing correlation: hypomethylation of regions 500–2440 bp upstream of promoters correlates with decreased expression, opposite to that commonly seen at promoter-proximal regions. Lastly, changes in regulation of G-coupled protein receptor pathways provide a partial explanation for many of the unique transcriptional changes observed during hESC adaptation and reverse adaptation. PMID:22802633

  11. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase

    PubMed Central

    Kopera, Huira C.; Moldovan, John B.; Morrish, Tammy A.; Moran, John V.

    2011-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase. PMID:21940498

  12. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.

    PubMed

    Kopera, Huira C; Moldovan, John B; Morrish, Tammy A; Garcia-Perez, Jose Luis; Moran, John V

    2011-12-20

    Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.

  13. Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein.

    PubMed

    Belfetmi, Anissa; Zargarian, Loussiné; Tisné, Carine; Sleiman, Dona; Morellet, Nelly; Lescop, Ewen; Maskri, Ouerdia; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2016-04-01

    The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem-loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR-cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59. © 2016 Belfetmi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase.

    PubMed

    Irmak, M Kemal; Oztas, Yesim; Oztas, Emin

    2012-06-07

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to "caveolar-mediated endocytosis signaling" pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature.The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases.

  15. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase

    PubMed Central

    2012-01-01

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature. The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases. PMID:22676860

  16. Consistency of Influenza A Virus Detection Test Results across Respiratory Specimen Collection Methods Using Real-Time Reverse Transcription-PCR

    PubMed Central

    Gaglani, Manjusha; Naleway, Allison; Reynolds, Sue; Ball, Sarah; Bozeman, Sam; Henkle, Emily; Meece, Jennifer; Vandermause, Mary; Clipper, Lydia; Thompson, Mark

    2013-01-01

    In our prospective cohort study, we compared the performance of nasopharyngeal, oropharyngeal, and nasal swabs for the detection of influenza virus using real-time reverse transcription-PCR assay. Joint consideration of results from oropharyngeal and nasal swabs was as effective as consideration of results from nasopharyngeal swabs alone, as measured by sensitivity and noninferiority analysis. PMID:24108606

  17. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues.

    PubMed

    Kilpatrick, David R; Yang, Chen-Fu; Ching, Karen; Vincent, Annelet; Iber, Jane; Campagnoli, Ray; Mandelbaum, Mark; De, Lina; Yang, Su-Ju; Nix, Allan; Kew, Olen M

    2009-06-01

    We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.

  18. Development of mRNA-based body fluid identification using reverse transcription loop-mediated isothermal amplification.

    PubMed

    Satoh, Tetsuya; Kouroki, Seiya; Ogawa, Keita; Tanaka, Yorika; Matsumura, Kazutoshi; Iwase, Susumu

    2018-04-25

    Identifying body fluids from forensic samples can provide valuable evidence for criminal investigations. Messenger RNA (mRNA)-based body fluid identification was recently developed, and highly sensitive parallel identification using reverse transcription polymerase chain reaction (RT-PCR) has been described. In this study, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a simple, rapid assay for identifying three common forensic body fluids, namely blood, semen, and saliva, and evaluated its specificity and sensitivity. Hemoglobin beta (HBB), transglutaminase 4 (TGM4), and statherin (STATH) were selected as marker genes for blood, semen, and saliva, respectively. RT-LAMP could be performed in a single step including both reverse transcription and DNA amplification under an isothermal condition within 60 min, and detection could be conveniently performed via visual fluorescence. Marker-specific amplification was performed in each assay, and no cross-reaction was observed among five representative forensically relevant body fluids. The detection limits of the assays were 0.3 nL, 30 nL, and 0.3 μL for blood, semen, and saliva, respectively, and their sensitivities were comparable with those of RT-PCR. Furthermore, RT-LAMP assays were applicable to forensic casework samples. It is considered that RT-LAMP is useful for body fluid identification.

  19. Water deficit-induced changes in transcription factor expression in maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TFs) directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse tran...

  20. Surveillance for Western equine encephalitis St. Louis encephalitis and West Nile viruses using reverse transcription loop-mediated isothermal amplification

    DOE PAGES

    Meagher, Robert J.; Ball, Cameron Scott; Langevin, Stanley A.; ...

    2016-01-25

    In this study, collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized publicmore » health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.« less

  1. Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors

    PubMed Central

    Henriet, Simon; Mercenne, Gaëlle; Bernacchi, Serena; Paillart, Jean-Christophe; Marquet, Roland

    2009-01-01

    Summary: The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55Gag, by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F. PMID:19487726

  2. Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors.

    PubMed

    Henriet, Simon; Mercenne, Gaëlle; Bernacchi, Serena; Paillart, Jean-Christophe; Marquet, Roland

    2009-06-01

    The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.

  3. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    PubMed

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  4. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  5. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  6. Measurement of In Vitro Integration Activity of HIV-1 Preintegration Complexes.

    PubMed

    Balasubramaniam, Muthukumar; Davids, Benem; Addai, Amma B; Pandhare, Jui; Dash, Chandravanu

    2017-02-22

    HIV-1 envelope proteins engage cognate receptors on the target cell surface, which leads to viral-cell membrane fusion followed by the release of the viral capsid (CA) core into the cytoplasm. Subsequently, the viral Reverse Transcriptase (RT), as part of a namesake nucleoprotein complex termed the Reverse Transcription Complex (RTC), converts the viral single-stranded RNA genome into a double-stranded DNA copy (vDNA). This leads to the biogenesis of another nucleoprotein complex, termed the pre-integration complex (PIC), composed of the vDNA and associated virus proteins and host factors. The PIC-associated viral integrase (IN) orchestrates the integration of the vDNA into the host chromosomal DNA in a temporally and spatially regulated two-step process. First, the IN processes the 3' ends of the vDNA in the cytoplasm and, second, after the PIC traffics to the nucleus, it mediates integration of the processed vDNA into the chromosomal DNA. The PICs isolated from target cells acutely infected with HIV-1 are functional in vitro, as they are competent to integrate the associated vDNA into an exogenously added heterologous target DNA. Such PIC-based in vitro integration assays have significantly contributed to delineating the mechanistic details of retroviral integration and to discovering IN inhibitors. In this report, we elaborate upon an updated HIV-1 PIC assay that employs a nested real-time quantitative Polymerase Chain Reaction (qPCR)-based strategy for measuring the in vitro integration activity of isolated native PICs.

  7. Rapid and Sensitive Detection of Norovirus Genomes in Oysters by a Two-Step Isothermal Amplification Assay System Combining Nucleic Acid Sequence-Based Amplification and Reverse Transcription-Loop-Mediated Isothermal Amplification Assays▿

    PubMed Central

    Fukuda, Shinji; Sasaki, Yukie; Seno, Masato

    2008-01-01

    We developed a two-step isothermal amplification assay system, which achieved the detection of norovirus (NoV) genomes in oysters with a sensitivity similar to that of reverse transcription-seminested PCR. The time taken for the amplification of NoV genomes from RNA extracts was shortened to about 3 h. PMID:18456857

  8. Deployment of a Reverse Transcription Loop-Mediated Isothermal Amplification Test for Ebola Virus Surveillance in Remote Areas in Guinea.

    PubMed

    Kurosaki, Yohei; Magassouba, N'Faly; Bah, Hadja Aïssatou; Soropogui, Barré; Doré, Amadou; Kourouma, Fodé; Cherif, Mahamoud Sama; Keita, Sakoba; Yasuda, Jiro

    2016-10-15

    To strengthen the laboratory diagnostic capacity for Ebola virus disease (EVD) in the remote areas of Guinea, we deployed a mobile field laboratory and implemented reverse transcription loop-mediated isothermal amplification (RT-LAMP) for postmortem testing. We tested 896 oral swab specimens and 21 serum samples, using both RT-LAMP and reverse transcription-polymerase chain reaction (RT-PCR). Neither test yielded a positive result, and the results from RT-LAMP and RT-PCR were consistent. More than 95% of the samples were tested within 2 days of sample collection. These results highlight the usefulness of the RT-LAMP assay as an EVD diagnostic testing method in the field or remote areas. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site.

    PubMed

    Dostálková, Alžběta; Kaufman, Filip; Křížová, Ivana; Kultová, Anna; Strohalmová, Karolína; Hadravová, Romana; Ruml, Tomáš; Rumlová, Michaela

    2018-05-15

    In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K 16 NK 18 EK 20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription. IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription. Copyright © 2018 American Society for Microbiology.

  10. Recognition and modification of seX chromosomes.

    PubMed

    Nusinow, Dmitri A; Panning, Barbara

    2005-04-01

    Flies, worms and mammals employ dosage compensation complexes that alter chromatin or chromosome structure to equalize X-linked gene expression between the sexes. Recent work has improved our understanding of how dosage compensation complexes achieve X chromosome-wide association and has provided significant insight into the epigenetic modifications directed by these complexes to modulate gene expression. In flies, the prevailing view that dosage compensation complexes assemble on the X chromosome at approximately 35 chromatin-entry sites and then spread in cis to cover the chromosome has been re-evaluated in light of the evidence that these chromatin-entry sites are not required for localization of the complex. By contrast, identification of discrete recruitment elements indicates that nucleation at and spread from a limited number of sites directs dosage compensation complex localization on the worm X-chromosome. Studies in flies and mammals have extended our understanding of how ribonucleoprotein complexes are used to modify X chromatin, for either activation or repression of transcription. Finally, evidence from mammals suggests that the chromatin modifications that mediate dosage compensation are very dynamic, because they are established, reversed and re-established early in development.

  11. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.

    PubMed

    Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana

    2014-09-01

    It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    PubMed

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  13. Time-controllable Nkcc1 knockdown replicates reversible hearing loss in postnatal mice.

    PubMed

    Watabe, Takahisa; Xu, Ming; Watanabe, Miho; Nabekura, Junichi; Higuchi, Taiga; Hori, Karin; Sato, Mitsuo P; Nin, Fumiaki; Hibino, Hiroshi; Ogawa, Kaoru; Masuda, Masatsugu; Tanaka, Kenji F

    2017-10-19

    Identification of the causal effects of specific proteins on recurrent and partially reversible hearing loss has been difficult because of the lack of an animal model that provides reversible gene knockdown. We have developed the transgenic mouse line Actin-tTS::Nkcc1 tetO/tetO for manipulatable expression of the cochlear K + circulation protein, NKCC1. Nkcc1 transcription was blocked by the binding of a tetracycline-dependent transcriptional silencer to the tetracycline operator sequences inserted upstream of the Nkcc1 translation initiation site. Administration of the tetracycline derivative doxycycline reversibly regulated Nkcc1 knockdown. Progeny from pregnant/lactating mothers fed doxycycline-free chow from embryonic day 0 showed strong suppression of Nkcc1 expression (~90% downregulation) and Nkcc1 null phenotypes at postnatal day 35 (P35). P35 transgenic mice from mothers fed doxycycline-free chow starting at P0 (delivery) showed weaker suppression of Nkcc1 expression (~70% downregulation) and less hearing loss with mild cochlear structural changes. Treatment of these mice at P35 with doxycycline for 2 weeks reactivated Nkcc1 transcription to control levels and improved hearing level at high frequency; i.e., these doxycycline-treated mice exhibited partially reversible hearing loss. Thus, development of the Actin-tTS::Nkcc1 tetO/tetO transgenic mouse line provides a mouse model for the study of variable hearing loss through reversible knockdown of Nkcc1.

  14. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer.

    PubMed

    Mahajan, Kiran; Malla, Pavani; Lawrence, Harshani R; Chen, Zhihua; Kumar-Sinha, Chandan; Malik, Rohit; Shukla, Sudhanshu; Kim, Jongphil; Coppola, Domenico; Lawrence, Nicholas J; Mahajan, Nupam P

    2017-06-12

    The androgen receptor (AR) is critical for the progression of prostate cancer to a castration-resistant (CRPC) state. AR antagonists are ineffective due to their inability to repress the expression of AR or its splice variant, AR-V7. Here, we report that the tyrosine kinase ACK1 (TNK2) phosphorylates histone H4 at tyrosine 88 upstream of the AR transcription start site. The WDR5/MLL2 complex reads the H4-Y88-phosphorylation marks and deposits the transcriptionally activating H3K4-trimethyl marks promoting AR transcription. Reversal of the pY88-H4 epigenetic marks by the ACK1 inhibitor (R)-9bMS-sensitized naive and enzalutamide-resistant prostate cancer cells and reduced AR and AR-V7 levels to mitigate CRPC tumor growth. Thus, a feedforward ACK1/pY88-H4/WDR5/MLL2/AR epigenetic circuit drives CRPC and is necessary for maintenance of the malignant state. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. RNAi Functions in Adaptive Reprogramming of the Genome | Center for Cancer Research

    Cancer.gov

    The regulation of transcribing DNA into RNA, including the production, processing, and degradation of RNA transcripts, affects the expression and the regulation of the genome in ways that are just beginning to be unraveled. A surprising discovery in recent years is that the vast majority of the genome is transcribed to yield an abundance of RNA transcripts. Many transcripts are regulated by the exosome, a multi-protein complex that degrades RNAs, and may also be targeted, under certain conditions, by the RNA interference (RNAi) pathway. These RNA degrading activities can recruit factors to silence certain regions of the genome by condensing the DNA into tightly-packed heterochromatin. For some chromosomal regions, such as centromeres and telomeres, which lie at the center and ends of chromosomes, respectively, silencing must be stably enforced through each cell generation. For other regions, silencing mechanisms must be easily reversible to activate gene expression in response to changing environmental or developmental conditions. Thus, the regulation of gene silencing is key to maintaining the integrity of the genome and proper cellular expression patterns, which, when disrupted can underlie many diseases, including cancer.

  16. RNA degradation and models for post-transcriptional gene-silencing.

    PubMed

    Meins, F

    2000-06-01

    Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are 'aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals.

  17. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    PubMed Central

    Sultanov, Daniel C.; Gerasimova, Nadezhda S.; Kudryashova, Kseniya S.; Maluchenko, Natalya V.; Kotova, Elena Y.; Langelier, Marie-France; Pascal, John M.; Kirpichnikov, Mikhail P.; Feofanov, Alexey V.; Studitsky, Vasily M.

    2017-01-01

    DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose)polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA. PMID:28804761

  18. Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time, reverse transcription polymerase chain reaction (rRT-PCR) and virus isolation

    USDA-ARS?s Scientific Manuscript database

    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 real-time, reverse transcription polymerase chain reaction (rRT-PCR) and 7 virus isolation (VI) assays. To conduct the study, OF was inoculated with H1N1 or H3N2 IAV and serially 10-fold d...

  19. Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis.

    PubMed

    Kim, Samuel C; Clark, Iain C; Shahi, Payam; Abate, Adam R

    2018-01-16

    Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.

  20. Dissection of affinity captured LINE-1 macromolecular complexes

    PubMed Central

    Mita, Paolo; Jiang, Hua; Adney, Emily M; Wudzinska, Aleksandra; Badri, Sana; Ischenko, Dmitry; Eng, George; Burns, Kathleen H; Fenyö, David; Chait, Brian T; Alexeev, Dmitry; Rout, Michael P; Boeke, Jef D

    2018-01-01

    Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for the L1 lifecycle. Using differential affinity purifications, quantitative mass spectrometry, and next generation RNA sequencing, we have characterized the proteins and nucleic acids associated with distinctive, enzymatically active L1 macromolecular complexes. Among them, we describe a cytoplasmic intermediate that we hypothesize to be the canonical ORF1p/ORF2p/L1-RNA-containing RNP, and we describe a nuclear population containing ORF2p, but lacking ORF1p, which likely contains host factors participating in target-primed reverse transcription. PMID:29309035

  1. Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription protected from Rho-dependent termination.

    PubMed

    Krylov, Alexander A; Airich, Larisa G; Kiseleva, Evgeniya M; Minaeva, Natalia I; Biryukova, Irina V; Mashko, Sergey V

    2010-01-01

    PykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination. pykF silencing was detected by the following features: (a) impaired growth of the strain when pykA was also disrupted and when using ribose as a non-phosphotransferase system-transporting carbon source; (b) a pattern of reduced synthesis of the full-sized pykF mRNA, mediated by reverse transcription PCR, and (c) a significant decrease in PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in the strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. Most likely, the target gene was silenced by transcriptional interference due to collisions between converging RNA polymerases, although, strictly, the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes. Copyright 2010 S. Karger AG, Basel.

  2. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress.

    PubMed

    Lata, Charu; Sahu, Pranav Pankaj; Prasad, Manoj

    2010-03-19

    Dehydration stress is one of the most important abiotic stresses that adversely influence crop growth and productivity. With the aim to understand the molecular mechanisms underlying dehydration stress tolerance in foxtail millet (Setaria italica L.), a drought tolerant crop, we examined its transcriptome changes at two time points (early and late) of dehydration stress. Two suppression subtractive hybridization (SSH) forward libraries were constructed from 21-day old seedlings of tolerant cv. Prasad at 0.5 and 6h PEG-induced dehydration stress. A total of 327 unique ESTs were identified from both libraries and were classified into 11 different categories according to their putative functions. The plant response against dehydration stress was complex, representing major transcripts involved in metabolism, stress, signaling, transcription regulation, translation and proteolysis. By Reverse Northern (RN) technique we identified the differential expression pattern of 327 transcripts, 86 (about 26%) of which showed > or = 1.7-fold induction. Further the obtained results were validated by quantitative real-time PCR (qRT-PCR) to have a comparative expression profiling of randomly chosen 9 up-regulated transcripts (> or =2.5 fold induction) between cv. Prasad (tolerant) and cv. Lepakshi (sensitive) upon dehydration stress. These transcripts showed a differential expression pattern in both cultivars at different time points of stress treatment as analyzed by qRT-PCR. The possible relationship of the identified transcripts with dehydration tolerance mechanism is discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Vialou, Vincent; Heller, Elizabeth A; Yieh, Lynn; LaBonté, Benoit; Peña, Catherine J; Shen, Li; Wittenberg, Gayle M; Nestler, Eric J

    2017-02-15

    Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription

    PubMed Central

    Beerens, Nancy; Kjems, Jørgen

    2010-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer involves a jump from the 5′ to the 3′ terminal repeat (R) region positioned at each end of the viral genome. The process depends on base pairing between the cDNA synthesized from the 5′ R region and the 3′ R RNA. The tertiary conformation of the viral RNA genome may facilitate strand transfer by juxtaposing the 5′ R and 3′ R sequences that are 9 kb apart in the linear sequence. In this study, RNA sequences involved in an interaction between the 5′ and 3′ ends of the HIV-1 genome were mapped by mutational analysis. This interaction appears to be mediated mainly by a sequence in the extreme 3′ end of the viral genome and in the gag open reading frame. Mutation of 3′ R sequences was found to inhibit the 5′–3′ interaction, which could be restored by a complementary mutation in the 5′ gag region. Furthermore, we find that circularization of the HIV-1 genome does not affect the initiation of reverse transcription, but stimulates the first strand transfer during reverse transcription in vitro, underscoring the functional importance of the interaction. PMID:20430859

  5. A modified reverse one-hybrid screen identifies transcriptional activation in Phyochrome-Interacting Factor 3

    USDA-ARS?s Scientific Manuscript database

    Transcriptional activation domains (TAD) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput...

  6. Genetic dissection of behavioral flexibility: reversal learning in mice.

    PubMed

    Laughlin, Rick E; Grant, Tara L; Williams, Robert W; Jentsch, J David

    2011-06-01

    Behavioral inflexibility is a feature of schizophrenia, attention-deficit/hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2-5 mice/strain, n = 176) for which we have matched data on sequence, gene expression in key central nervous system regions, and neuroreceptor levels. Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (∼.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak likelihood ratio statistic at 86.2 megabase (p < .05 genome-wide). Variance in messenger RNA levels of select transcripts expressed in neocortex, hippocampus, and striatum correlated with the reversal learning phenotype, including Syn3, Nt5dc3, and Hcfc2. This work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Exploring DNA-binding Proteins with In Vivo Chemical Cross-linking and Mass Spectrometry

    PubMed Central

    Qiu, Haibo; Wang, Yinsheng

    2009-01-01

    DNA-binding proteins are very important constituents of proteomes of all species and play crucial roles in transcription, DNA replication, recombination, repair and other activities associated with DNA. Although a number of DNA-binding proteins have been identified, many proteins involved in gene regulation and DNA repair are likely still unknown because of their dynamic and/or weak interactions with DNA. In this report, we described an approach for the comprehensive identification of DNA-binding proteins with in vivo formaldehyde cross-linking and LC-MS/MS. DNA-binding proteins could be purified via the isolation of DNA-protein complexes and released from the complexes by reversing the cross-linking. By using this method, we were able to identify more than one hundred DNA-binding proteins, such as proteins involved in transcription, gene regulation, DNA replication and repair, and a large number of proteins which are potentially associated with DNA and DNA-binding proteins. This method should be generally applicable to the investigation of other nucleic acid-binding proteins, and hold great potential in the comprehensive study of gene regulation, DNA damage response and repair, as well as many other critical biological processes at proteomic level. PMID:19714816

  8. Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA.

    PubMed

    Fujino, Tomoko; Yasumoto, Ken-ichi; Yamazaki, Naomi; Hasome, Ai; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2011-11-04

    A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.).

    PubMed

    Gahlaut, Vijay; Jaiswal, Vandana; Kumar, Anuj; Gupta, Pushpendra Kumar

    2016-11-01

    TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.

  10. The MNS glycophorin variant GP.Mur affects differential erythroid expression of Rh/RhAG transcripts.

    PubMed

    Hsu, K; Kuo, M-S; Yao, C-C; Cheng, H-C; Lin, H-J; Chan, Y-S; Lin, M

    2017-10-01

    The band 3 macrocomplex (also known as the ankyrin-associated complex) on the red cell membrane comprises two interacting subcomplexes: a band 3/glycophorin A subcomplex, and a Rh/RhAG subcomplex. Glycophorin B (GPB) is a component of the Rh/RhAG subcomplex that is also structurally associated with glycophorin A (GPA). Expression of glycophorin B-A-B hybrid GP.Mur enhances band 3 expression and is associated with lower levels of Rh-associated glycoprotein (RhAG) and Rh polypeptides. The goal of this study was to determine whether GP.Mur influenced erythroid Rh/RhAG expression at the transcript level. GP.Mur was serologically determined in healthy participants from Taitung County, Taiwan. RNA was extracted from the reticulocyte-enriched fraction of peripheral blood, followed by reverse transcription and quantitative PCR for RhAG, RhD and RhCcEe. Quantification by real-time PCR revealed significantly fewer RhAG and RhCcEe transcripts in the reticulocytes from subjects with homozygous GYP*Mur. Independent from GYP.Mur, both RhAG and RhD transcript levels were threefold or higher than that of RhCcEe. Also, in GYP.Mur and the control samples alike, direct quantitative associations were observed between the transcript levels of RhAG and RhD, but not between that of RhAG and RhCcEe. Erythroid RhD and RhCcEe were differentially expressed at the transcript levels, which could be related to their different degrees of interaction or sensitivity to RhAG. Further, the reduction or absence of glycophorin B in GYP.Mur erythroid cells affected transcript expressions of RhAG and RhCcEe. Thus, GPB and GP.Mur differentially influenced Rh/RhAG expressions prior to protein translation. © 2017 International Society of Blood Transfusion.

  11. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  12. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain.

    PubMed

    Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi

    2013-02-01

    Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.

  13. Transcriptional activation of short interspersed elements by DNA-damaging agents.

    PubMed

    Rudin, C M; Thompson, C B

    2001-01-01

    Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.

  14. Resetting the transcription factor network reverses terminal chronic hepatic failure

    PubMed Central

    Nishikawa, Taichiro; Bell, Aaron; Brooks, Jenna M.; Setoyama, Kentaro; Melis, Marta; Han, Bing; Fukumitsu, Ken; Handa, Kan; Tian, Jianmin; Kaestner, Klaus H.; Vodovotz, Yoram; Locker, Joseph; Soto-Gutierrez, Alejandro; Fox, Ira J.

    2015-01-01

    The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement. PMID:25774505

  15. Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers

    PubMed Central

    Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.

    1977-01-01

    DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713

  16. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells

    PubMed Central

    Liu, Yan-rong; Liu, Hui-juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-shuang; Wang, Jing; Sun, Bo; Dai, Ting-ting; Yang, Cheng; Sun, Tao; Zhou, Hong-gang

    2015-01-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients. PMID:26512779

  17. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    PubMed

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  18. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    PubMed

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  19. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression.

    PubMed

    Amaya, Ronny; Cancel, Limary M; Tarbell, John M

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease.

  20. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression

    PubMed Central

    Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease. PMID:27846267

  1. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation

    PubMed Central

    Abdel-Mohsen, Mohamed; Chavez, Leonard; Tandon, Ravi; Chew, Glen M.; Deng, Xutao; Danesh, Ali; Keating, Sheila; Lanteri, Marion; Samuels, Michael L.; Hoh, Rebecca; Sacha, Jonah B.; Norris, Philip J.; Niki, Toshiro; Shikuma, Cecilia M.; Hirashima, Mitsuomi; Deeks, Steven G.; Ndhlovu, Lishomwa C.; Pillai, Satish K.

    2016-01-01

    Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies. PMID:27253379

  2. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation.

    PubMed

    Petridis, Antonios; Döll, Stefanie; Nichelmann, Lars; Bilger, Wolfgang; Mock, Hans-Peter

    2016-08-01

    Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis.

    PubMed

    Dolan, Whitney L; Dilkes, Brian P; Stout, Jake M; Bonawitz, Nicholas D; Chapple, Clint

    2017-12-01

    The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana , disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 ( ref4-3 ) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex. © 2017 American Society of Plant Biologists. All rights reserved.

  4. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus.

    PubMed

    Chi, Wei; Gao, Yu; Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.

  5. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer.

    PubMed

    Sand, Michael; Skrygan, Marina; Georgas, Dimitrios; Arenz, Christoph; Gambichler, Thilo; Sand, Daniel; Altmeyer, Peter; Bechara, Falk G

    2012-11-01

    The microprocessor complex mediates intranuclear biogenesis of precursor microRNAs from the primary microRNA transcript. Extranuclear, mature microRNAs are incorporated into the RNA-induced silencing complex (RISC) before interaction with complementary target mRNA leads to transcriptional repression or cleavage. In this study, we investigated the expression profiles of the microprocessor complex subunit DiGeorge syndrome critical region gene 8 (DGCR8) and the RISC components argonaute-1 (AGO1), argonaute-2 (AGO2), as well as double-stranded RNA-binding proteins PACT, TARBP1, and TARBP2 in epithelial skin cancer and its premalignant stage. Patients with premalignant actinic keratoses (AK, n = 6), basal cell carcinomas (BCC, n = 15), and squamous cell carcinomas (SCC, n = 7) were included in the study. Punch biopsies were harvested from the center of the tumors (lesional), from healthy skin sites (intraindividual controls), and from healthy skin sites in a healthy control group (n = 16; interindividual control). The DGCR8, AGO1, AGO2, PACT, TARBP1, and TARBP2 mRNA expression levels were detected by quantitative real-time reverse transcriptase polymerase chain reaction. The DGCR8, AGO1, AGO2, PACT, and TARBP1 expression levels were significantly higher in the AK, BCC, and SCC groups than the healthy controls (P < 0.05). There was no significant difference in the TARBP2 expression levels between groups (P > 0.05). This study indicates that major components of the miRNA pathway, such as the microprocessor complex and RISC, are dysregulated in epithelial skin cancer. Copyright © 2011 Wiley Periodicals, Inc.

  6. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes.

    PubMed

    Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu

    2010-06-01

    Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.

  7. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, He, E-mail: herenrh@yahoo.com.cn; Zhao, Tiansuo; Wang, Xiuchao

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breastmore » cancer.« less

  8. [Drug resistance reversal of HL-60/ADR cells by simultaneous suppression of XIAP and MRP].

    PubMed

    Wang, Xiao-Fang; Wang, Chun; Qin, You-Wen; Yan, Shi-Ke; Gao, Yan-Rong

    2006-12-01

    This study was purposed to explore the mechanisms of drug resistance of HL-60/ADR cells and to compare the reversal drug-resistance effects of antisense oligonucleotides (AS ODN) of XIAP (X-linked inhibitor of apoptosis protein) and AS ODNs of MRP (multidrug resistance-associated protein) by use alone or in combination. Reverse transcription-PCR and Western blot were applied to detect the expression of XIAP, BCL-2, MRP and MDR1 in mRNA and protein levels of HL-60 cells and HL-60/ADR cells, respectively. Fully phosphorothioated AS ODN of XIAP and MRP was delivered into HL-60/ADR cells with Lipofectamine 2000 in the form of liposome-ODN complexes alone or in combination. CCK-8 cell viability assay was used to determine the effect of AS ODN of XIAP and MRP used alone or in combination on the chemotherapy sensitivity of HL-60/ADR cells to daunorubicin (DNR). Reverse transcription-PCR and Western blot were applied to examine the changes of XIAP, MRP in mRNA and protein levels respectively. The results showed that MRP and XIAP were both significantly higher in HL-60/ADR cells than those in HL-60 cells. AS ODN of XIAP and MRP down-regulated the expression of XIAP and MRP in HL-60/ADR cells and increased the sensitivity of HL-60/ADR cells to DNR, respectively. AS ODN of XIAP + MRP did not enhance the inhibition expression of XIAP in HL-60/ADR cells but increased the sensitivity of HL-60/ADR cells to DNR significantly as compared with AS ODN of XIAP (P < 0.05). AS ODN of XIAP + MRP did not increase the concentration of DNR nor enhanced the inhibition expression of MRP in HL-60/ADR cells but increased the sensitivity of HL-60/ADR cells to DNR significantly (P < 0.05), as compared with AS ODN of MRP. It is concluded that both XIAP and MRP may be involved in the drug resistance mechanisms of HL-60/ADR cells. Drug-resistance of HL-60/ADR cells can be reversed significantly when antisense oligonucleotides of XIAP and MRP were used in combination.

  9. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time

    PubMed Central

    Celesnik, Helena; Ali, Gul S.; Robison, Faith M.; Reddy, Anireddy S. N.

    2013-01-01

    Summary Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2. PMID:23616927

  10. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II.

    PubMed

    Parua, Pabitra K; Booth, Gregory T; Sansó, Miriam; Benjamin, Bradley; Tanny, Jason C; Lis, John T; Fisher, Robert P

    2018-06-13

    The end of the RNA polymerase II (Pol II) transcription cycle is strictly regulated to prevent interference between neighbouring genes and to safeguard transcriptome integrity 1 . The accumulation of Pol II downstream of the cleavage and polyadenylation signal can facilitate the recruitment of factors involved in mRNA 3'-end formation and termination 2 , but how this sequence is initiated remains unclear. In a chemical-genetic screen, human protein phosphatase 1 (PP1) isoforms were identified as substrates of positive transcription elongation factor b (P-TEFb), also known as the cyclin-dependent kinase 9 (Cdk9)-cyclin T1 (CycT1) complex 3 . Here we show that Cdk9 and PP1 govern phosphorylation of the conserved elongation factor Spt5 in the fission yeast Schizosaccharomyces pombe. Cdk9 phosphorylates both Spt5 and a negative regulatory site on the PP1 isoform Dis2 4 . Sites targeted by Cdk9 in the Spt5 carboxy-terminal domain can be dephosphorylated by Dis2 in vitro, and dis2 mutations retard Spt5 dephosphorylation after inhibition of Cdk9 in vivo. Chromatin immunoprecipitation and sequencing analysis indicates that Spt5 is dephosphorylated as transcription complexes traverse the cleavage and polyadenylation signal, concomitant with the accumulation of Pol II phosphorylated at residue Ser2 of the carboxy-terminal domain consensus heptad repeat 5 . A conditionally lethal Dis2-inactivating mutation attenuates the drop in Spt5 phosphorylation on chromatin, promotes transcription beyond the normal termination zone (as detected by precision run-on transcription and sequencing 6 ) and is genetically suppressed by the ablation of Cdk9 target sites in Spt5. These results suggest that the transition of Pol II from elongation to termination coincides with a Dis2-dependent reversal of Cdk9 signalling-a switch that is analogous to a Cdk1-PP1 circuit that controls mitotic progression 4 .

  11. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects. PMID:23894529

  12. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  13. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    PubMed

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  14. Brain suppression of AP-1 by inhaled diesel exhaust and reversal by cerium oxide nanoparticles.

    PubMed

    Lung, Shyang; Cassee, Flemming R; Gosens, Ilse; Campbell, Arezoo

    2014-08-01

    One of the uses of cerium oxide nanoparticles (nanoceria, CeO2) is as a diesel fuel additive to improve fuel efficiency. Gene/environment interactions are important determinants in the etiology of age-related disorders. Thus, it is possible that individuals on high-fat diet and genetic predisposition to vascular disease may be more vulnerable to the adverse health effects of particle exposure. The aim of this pilot study was to test the hypothesis that inhalation of diesel exhaust (DE) or diesel exhaust-containing cerium oxide nanoparticles (DCeE) induces stress in the brain of a susceptible animal model. Atherosclerotic prone, apolipoprotein E knockout (ApoE(-/-)) mice fed a high-fat diet, were exposed by inhalation to purified air (control), DE or DCeE. The stress-responsive transcription factor, activator protein-1 (AP-1), was significantly decreased in the cortical and subcortical fraction of the brain after DE exposure. The addition of nanoceria to the diesel fuel reversed this effect. The activation of another stress-related transcription factor (NF-κB) was not inhibited. AP-1 is composed of complexes of the Jun and/or Fos family of proteins. Exposure to DCeE caused c-Jun activation and this may be a mechanism by which addition of nanoceria to the fuel reversed the effect of DE exposure on AP-1 activation. This pilot study demonstrates that exposure to DE does impact the brain and addition of nanoceria may be protective. However, more extensive studies are necessary to determine how DE induced reduction of AP-1 activity and compensation by nanoceria impacts normal function of the brain.

  15. Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate-early distal enhancer for viral gene expression and replication.

    PubMed

    Meier, Jeffery L; Keller, Michael J; McCoy, James J

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer's orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at -300 or -345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.

  16. Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome

    PubMed Central

    Bolinger, Cheryl; Boris-Lawrie, Kathleen

    2009-01-01

    Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors. PMID:19166625

  17. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  18. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data

    PubMed Central

    Liu, Zhi-Ping

    2015-01-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented. PMID:25937810

  19. Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis

    PubMed Central

    Masvidal, Laia; Igreja, Susana; Ramos, Maria D; Alvarez, Antoni; de Gracia, Javier; Ramalho, Anabela; Amaral, Margarida D; Larriba, Sara; Casals, Teresa

    2014-01-01

    The major purpose of the present study was to quantify correctly spliced CFTR transcripts in human nasal epithelial cells from cystic fibrosis (CF) patients carrying the splicing mutations c.580-1G>T (712-1G>T) and c.2657+5G>A (2789+5G>A) and to assess the applicability of this model in CFTR therapeutic approaches. We performed the relative quantification of CFTR mRNA by reverse transcription quantitative PCR (RT-qPCR) of these splicing mutations in four groups (wild type, CF-F508del controls, CF patients and CF carriers) of individuals. In addition, in vitro assays using minigene constructs were performed to evaluate the effect of a new CF complex allele c.[2657+5G>A; 2562T>G]. Ex vivo qPCR data show that the primary consequence of both mutations at the RNA level is the skipping of their neighboring exon (6 and 16, respectively). The CFTR minigenes results mimicked the ex vivo data, as exon 16 skipping is the main aberrant transcript, and the correctly spliced transcript level was observed in a similar proportion when the c.2657+5G>A mutation is present. In summary, we provide evidence that ex vivo quantitative transcripts analysis using RT/qPCR is a robust technology that could be useful for measuring the efficacy of therapeutic approaches that attempt to achieve an increase in CFTR gene expression. PMID:24129438

  20. Novel mechanism of transcriptional regulation of cell matrix protein through CREB

    PubMed Central

    Habib, Samy L; Mohan, Sumathy; Liang, Sitai; Li, Baojie; Yadav, Mukesh

    2015-01-01

    The transcription mechanism(s) of renal cell matrix accumulation in diabetes does not explored. Phosphorylation of the transcription factor cAMP-responsive element binding protein (CREB) significantly increased in cells treated with high glucose (HG) compared to cell grown in normal glucose (NG). Cells pretreated with rapamycin before exposure to HG showed significant decrease phosphorylation of CREB, increase in AMPK activity and decrease protein/mRNA and promoter activity of fibronectin. In addition, cells transfected with siRNA against CREB showed significant increase in AMPK activity, decrease in protein/mRNA and promoter activity of fibronectin. Cells treated with HG showed nuclear localization of p-CREB while pretreated cells with rapamycin reversed HG effect. Moreover, gel shift analysis shows increase binding of CREB to fibronectin promoter in cells treated with HG while cells pretreated with rapamycin reversed the effect of HG. Furthermore, db/db mice treated with rapamycin showed significant increase in AMPK activity, decrease in expression of p-CREB and protein/mRNA of fibronectin. Strong staining of fibronectin and p-CREB was detected in kidney cortex of db/db mice while treated mice with rapamycin reversed hyperglycemia effect. In summary, our data provide a novel mechanism of transcriptional regulation of fibronectin through CREB that may be used as therapeutic approach to prevent diabetes complications. PMID:26115221

  1. MINIGENOMES, TRANSCRIPTION AND REPLICATION COMPETENT VIRUS-LIKE PARTICLES AND BEYOND: REVERSE GENETICS SYSTEMS FOR FILOVIRUSES AND OTHER NEGATIVE STRANDED HEMORRHAGIC FEVER VIRUSES

    PubMed Central

    Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria

    2012-01-01

    Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921

  2. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  3. A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes.

    PubMed

    Spadafora, Corrado

    2008-01-01

    This review summarizes emerging evidence that LINE-1 (Long Interspersed Nuclear Elements) -encoded reverse transcriptase (RT) regulates fundamental biological processes. Earlier studies showed that sperm cells can be used as vectors of both exogenous DNA and RNA molecules in sperm-mediated gene transfer assays. During these studies, a sperm endogenous RT activity was identified, which can reverse-transcribe exogenous RNA directly, or DNA molecules through sequential transcription and reverse transcription. Resulting cDNA copies generated in sperm cells can be delivered to embryos at fertilization, further propagated in tissues as low-copy extrachromosomal structures and transmitted to the progeny in a non-mendelian fashion. Being transcriptionally competent, they can induce phenotypic variations in positive tissues. An RT activity is also present in preimplantation embryos, and its inhibition causes developmental arrest in early preimplantation stages, paralleled by an extensive reprogramming of gene expression. In analogy with this, drug-mediated inhibition of RT activity, or RNA interference-mediated silencing of human LINE-1, reduce cell proliferation and induce differentiation in a variety of cancer cell lines. Furthermore, RT inhibition in vivo antagonizes the growth of human tumors in animal models. As a whole, these data implicate a RT-dependent machinery in the genesis of new genetic information in spermatozoa and in normal and pathological developmental processes.

  4. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    PubMed

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.

    PubMed

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T; Cheng, Louise Y

    2015-01-15

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. © 2015 Froldi et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Conservation and Divergence of Mediator Structure and Function: Insights from Plants.

    PubMed

    Dolan, Whitney L; Chapple, Clint

    2017-01-01

    The Mediator complex is a large, multisubunit, transcription co-regulator that is conserved across eukaryotes. Studies of the Arabidopsis Mediator complex and its subunits have shown that it functions in nearly every aspect of plant development and fitness. In addition to revealing mechanisms of regulation of plant-specific pathways, studies of plant Mediator complexes have the potential to shed light on the conservation and divergence of Mediator structure and function across Kingdoms and plant lineages. The majority of insights into plant Mediator function have come from Arabidopsis because it is the only plant from which Mediator has been purified and from which an array of Mediator mutants have been isolated by forward and reverse genetics. So far, these studies indicate that, despite low sequence similarity between many orthologous subunits, the overall structure and function of Mediator is well conserved between Kingdoms. Several studies have also expanded our knowledge of Mediator to other plant species, opening avenues of investigation into the role of Mediator in plant adaptation and fitness.

  7. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    PubMed

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  8. APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription.

    PubMed

    Chen, Yanmeng; Hu, Jie; Cai, Xuefei; Huang, Yao; Zhou, Xing; Tu, Zeng; Hu, Jieli; Tavis, John E; Tang, Ni; Huang, Ailong; Hu, Yuan

    2018-01-01

    Hepatitis B virus is a partially double-stranded DNA virus that replicates by reverse transcription, which occurs within viral core particles in the cytoplasm. The cytidine deaminase APOBEC3B is a cellular restriction factor for HBV. Recently, it was reported that APOBEC3B can edit HBV cccDNA in the nucleus, causing its degradation. However, whether and how it can edit HBV core-associated DNAs during reverse transcription is unclear. Our studies to address this question revealed the following: First, silencing endogenous APOBEC3B in an HBV infection system lead to upregulation of HBV replication. Second, APOBEC3B can inhibit replication of HBV isolates from genotypes (gt) A, B, C, and D as determined by employing transfection of plasmids expressing isolates from four different HBV genotypes. For HBV inhibition, APOBEC3B-mediated inhibition of replication primarily depends on the C-terminal active site of APOBEC3B. In addition, employing the HBV RNaseH-deficient D702A mutant and a polymerase-deficient YMHA mutant, we demonstrated that APOBEC3B can edit both the HBV minus- and plus-strand DNAs, but not the pregenomic RNA in core particles. Furthermore, we found by co-immunoprecipitation assays that APOBEC3B can interact with HBV core protein in an RNA-dependent manner. Our results provide evidence that APOBEC3B can interact with HBV core protein and edit HBV DNAs during reverse transcription. These data suggest that APOBEC3B exerts multifaceted antiviral effects against HBV. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. HIV-1-associated PKA acts as a cofactor for genome reverse transcription

    PubMed Central

    2013-01-01

    Background Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. Results NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. Conclusions Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events. PMID:24344931

  10. Microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse-transcription polymerase chain reaction for the rapid detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens.

    PubMed

    Jia, Ruan; Chengjun, Sun; Heng, Chen; Chen, Zhou; Yuanqian, Li; Yongxin, Li

    2015-07-01

    Enterovirus 71 and Coxsackievirus A16 are the main pathogens causing hand-foot-mouth disease. In this paper, microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse transcript-polymerase chain reaction has been developed for the detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. The specific reverse transcription-polymerase chain reaction amplicons labeled with SYBR Orange were separated by microchip capillary electrophoresis and detected by laser induced fluorescence detector within 7 min. The intraday and interday relative standard deviation of migration time for DNA Marker was in the range of 1.36-2.94 and 2.78-3.96%, respectively. The detection limits were as low as 2.06 × 10(3) copies/mL for Enterovirus 71 and 5 × 10(3) copies/mL for Coxsackievirus A16. No cross-reactivity was observed with rotavirus, astrovirus, norovirus, and adenovirus, which showed good specificity of the method. This assay was validated using 100 throat swab specimens that were detected by real-time reverse-transcript polymerase chain reaction in parallel and the two methods produced the same results. This study provided a rapid, sensitive and specific method for the detection of Enterovirus 71 and Coxsackievirus A16, which make a contribution to significant time and cost saving for the identification and treatment of patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    PubMed

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  12. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer.

    PubMed

    Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin

    2013-01-01

    The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.

  13. Advances in Developing HIV-1 Viral Load Assays for Resource-Limited Settings

    PubMed Central

    Wang, ShuQi; Xu, Feng; Demirci, Utkan

    2010-01-01

    Commercial HIV-1 RNA viral load assays have been routinely used in developed countries to monitor antiretroviral treatment (ART). However, these assays require expensive equipment and reagents, well-trained operators, and established laboratory infrastructure. These requirements restrict their use in resource-limited settings where people are most afflicted with the HIV-1 epidemic. Inexpensive alternatives such as the Ultrasensitive p24 assay, the Reverse Transcriptase (RT) assay and in-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been developed. However, they are still time-consuming, technologically complex and inappropriate for decentralized laboratories as point-of-care (POC) tests. Recent advances in microfluidics and nanotechnology offer new strategies to develop low-cost, rapid, robust and simple HIV-1 viral load monitoring systems. We review state-of-the-art technologies used for HIV-1 viral load monitoring in both developed and developing settings. Emerging approaches based on microfluidics and nanotechnology, which have potential to be integrated into POC HIV-1 viral load assays, are also discussed. PMID:20600784

  14. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    PubMed Central

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  15. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes

    PubMed Central

    Burdick, Ryan C.; Chen, Jianbo; Sastri, Jaya; Hu, Wei-Shau

    2017-01-01

    The dynamics and regulation of HIV-1 nuclear import and its intranuclear movements after import have not been studied. To elucidate these essential HIV-1 post-entry events, we labeled viral complexes with two fluorescently tagged virion-incorporated proteins (APOBEC3F or integrase), and analyzed the HIV-1 dynamics of nuclear envelope (NE) docking, nuclear import, and intranuclear movements in living cells. We observed that HIV-1 complexes exhibit unusually long NE residence times (1.5±1.6 hrs) compared to most cellular cargos, which are imported into the nuclei within milliseconds. Furthermore, nuclear import requires HIV-1 capsid (CA) and nuclear pore protein Nup358, and results in significant loss of CA, indicating that one of the viral core uncoating steps occurs during nuclear import. Our results showed that the CA-Cyclophilin A interaction regulates the dynamics of nuclear import by delaying the time of NE docking as well as transport through the nuclear pore, but blocking reverse transcription has no effect on the kinetics of nuclear import. We also visualized the translocation of viral complexes docked at the NE into the nucleus and analyzed their nuclear movements and determined that viral complexes exhibited a brief fast phase (<9 min), followed by a long slow phase lasting several hours. A comparison of the movement of viral complexes to those of proviral transcription sites supports the hypothesis that HIV-1 complexes quickly tether to chromatin at or near their sites of integration in both wild-type cells and cells in which LEDGF/p75 was deleted using CRISPR/cas9, indicating that the tethering interactions do not require LEDGF/p75. These studies provide novel insights into the dynamics of viral complex-NE association, regulation of nuclear import, viral core uncoating, and intranuclear movements that precede integration site selection. PMID:28827840

  16. A conserved role for the ESCRT membrane budding complex in LINE retrotransposition

    PubMed Central

    Dong, Chun; Han, Jeffrey S.

    2017-01-01

    Long interspersed nuclear element-1s (LINE-1s, or L1s) are an active family of retrotransposable elements that continue to mutate mammalian genomes. Despite the large contribution of L1 to mammalian genome evolution, we do not know where active L1 particles (particles in the process of retrotransposition) are located in the cell, or how they move towards the nucleus, the site of L1 reverse transcription. Using a yeast model of LINE retrotransposition, we identified ESCRT (endosomal sorting complex required for transport) as a critical complex for LINE retrotransposition, and verified that this interaction is conserved for human L1. ESCRT interacts with L1 via a late domain motif, and this interaction facilitates L1 replication. Loss of the L1/ESCRT interaction does not impair RNP formation or enzymatic activity, but leads to loss of retrotransposition and reduced L1 endonuclease activity in the nucleus. This study highlights the importance of the ESCRT complex in the L1 life cycle and suggests an unusual mode for L1 RNP trafficking. PMID:28586350

  17. The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities

    PubMed Central

    Hung, Siu Chun; Gottesman, Max E.

    1997-01-01

    Bacteriophage HK022 Nun protein blocks transcription elongation by Escherichia coli RNA polymerase in vitro without dissociating the transcription complex. Nun is active on complexes located at any template site tested. Ultimately, only the 3′-OH terminal nucleotide of the nascent transcript in an arrested complex can turn over; it is removed by pyrophosphate and restored with NTPs. This suggests that Nun inhibits the translocation of RNA polymerase without abolishing its catalytic activities. Unlike spontaneously arrested complexes, Nun-arrested complexes cannot be reactivated by transcription factor GreB. The various complexes show distinct patterns of nucleotide incorporation and pyrophosphorolysis before or after treatment with Nun, suggesting that the configuration of RNAP, transcript, and template DNA is different in each complex. PMID:9334329

  18. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower.

    PubMed

    Silva, Catarina S; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2015-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.

  19. Plant Mediator complex and its critical functions in transcription regulation.

    PubMed

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. The Reverse Transcriptase of the Tf1 Retrotransposon Has a Specific Novel Activity for Generating the RNA Self-Primer That Is Functional in cDNA Synthesis▿

    PubMed Central

    Hizi, Amnon

    2008-01-01

    The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5′ end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3′ end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs. PMID:18753200

  1. The reverse transcriptase of the Tf1 retrotransposon has a specific novel activity for generating the RNA self-primer that is functional in cDNA synthesis.

    PubMed

    Hizi, Amnon

    2008-11-01

    The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5' end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3' end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs.

  2. Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo.

    PubMed

    Nalley, Kip; Johnston, Stephen Albert; Kodadek, Thomas

    2006-08-31

    Transactivator-promoter complexes are essential intermediates in the activation of eukaryotic gene expression. Recent studies of these complexes have shown that some are quite dynamic in living cells owing to rapid and reversible disruption of activator-promoter complexes by molecular chaperones, or a slower, ubiquitin-proteasome-pathway-mediated turnover of DNA-bound activator. These mechanisms may act to ensure continued responsiveness of activators to signalling cascades by limiting the lifetime of the active protein-DNA complex. Furthermore, the potency of some activators is compromised by proteasome inhibition, leading to the suggestion that periodic clearance of activators from a promoter is essential for high-level expression. Here we describe a variant of the chromatin immunoprecipitation assay that has allowed direct observation of the kinetic stability of native Gal4-promoter complexes in yeast. Under non-inducing conditions, the complex is dynamic, but on induction the Gal4-promoter complexes 'lock in' and exhibit long half-lives. Inhibition of proteasome-mediated proteolysis had little or no effect on Gal4-mediated gene expression. These studies, combined with earlier data, show that the lifetimes of different transactivator-promoter complexes in vivo can vary widely and that proteasome-mediated turnover is not a general requirement for transactivator function.

  3. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  4. Therapeutic potential of Mediator complex subunits in metabolic diseases.

    PubMed

    Ranjan, Amol; Ansari, Suraiya A

    2018-01-01

    The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  6. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.

    PubMed

    Matamoros, Tania; Barrioluengo, Verónica; Abia, David; Menéndez-Arias, Luis

    2013-12-23

    At high temperatures, RNA denaturation can improve the efficiency and specificity of reverse transcription. Refined structures and molecular models of HIV-1 reverse transcriptases (RTs) from phylogenetically distant clades (i.e., group M subtype B and group O) revealed a major interaction between the template-primer and the Arg³⁵⁸-Gly³⁵⁹-Ala³⁶⁰ triad in the large subunit of HIV-1M/B RT. However, fewer contacts were predicted for the equivalent Lys³⁵⁸-Ala³⁵⁹-Ser³⁶⁰ triad of HIV-1O RT and the nucleic acid. An engineered HIV-1O K358R/A359G/S360A RT showed increased cDNA synthesis efficiency above 68 °C, as determined by qualitative and quantitative reverse transcription polymerase chain reactions. In comparison with wild-type HIV-1O RT, the mutant enzyme showed higher thermal stability but retained wild-type RNase H activity. Mutations that increased the accuracy of HIV-1M/B RTs were tested in combination with the K358R/A359G/S360A triple mutation. Some of them (e.g., F61A, K65R, K65R/V75I, and V148I) had a negative effect on reverse transcription efficiency above 65 °C. RTs with improved DNA binding affinities also showed higher cDNA synthesis efficiencies at elevated temperatures. Two of the most thermostable RTs (i.e., mutants T69SSG/K358R/A359G/S360A and K358R/A359G/S360A/E478Q) showed moderately increased fidelity in forward mutation assays. Our results demonstrate that the triad of Arg³⁵⁸, Gly³⁵⁹, and Ala³⁶⁰ in the major groove binding track of HIV-1 RT is a major target for RT stabilization, and most relevant for improving reverse transcription efficiency at high temperatures.

  7. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.

    PubMed

    Sauvé, Simon; Tremblay, Luc; Lavigne, Pierre

    2004-09-17

    Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.

  8. The histone shuffle: histone chaperones in an energetic dance

    PubMed Central

    Das, Chandrima; Tyler, Jessica K.; Churchill, Mair E.A.

    2014-01-01

    Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription. PMID:20444609

  9. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  10. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17.

    PubMed

    Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong

    2014-12-30

    Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes.

  11. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome.

    PubMed

    Mitani, Yoshitsugu; Rao, Pulivarthi H; Futreal, P Andrew; Roberts, Dianna B; Stephens, Philip J; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S; Lippman, Scott M; Caulin, Carlos; El-Naggar, Adel K

    2011-11-15

    To investigate the molecular genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Multimolecular and genetic techniques complemented with massive pair-ended sequencing and single-nucleotide polymorphism array analyses were used on tumor specimens from 30 new and 52 previously analyzed fusion transcript-negative ACCs by reverse transcriptase PCR (RT-PCR). MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients' survival. The FISH analysis showed 34 of 82 (41.5%) fusion-positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% whereas fusion transcript forming incidence was 38.2%. Significant statistical association between the 5' MYB transcript expression and patient survival was found. We conclude that: (i) t(6;9) results in complex genetic and molecular alterations in ACC, (ii) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, (iii) noncanonical MYB-NFIB gene fusions occur in a subset of tumors, (iv) high MYB expression correlates with worse patient survival.

  12. Requirement of Multiple cis-Acting Elements in the Human Cytomegalovirus Major Immediate-Early Distal Enhancer for Viral Gene Expression and Replication

    PubMed Central

    Meier, Jeffery L.; Keller, Michael J.; McCoy, James J.

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication. PMID:11739696

  13. An ocular drug delivery system containing zinc diethyldithiocarbamate and HPbetaCD inclusion complex--corneal permeability, anti-cataract effects and mechanism studies.

    PubMed

    Wang, Siling; Li, Dexin; Ito, Yoshimasa; Liu, Xia; Zhang, Jinghai; Wu, Chunfu

    2004-10-01

    Our purpose was to study the formulation and anti-cataract effects of aqueous eye drops containing a high concentration of zinc diethyldithiocarbamate (Zn-DDC). A possible mechanism of the anti-cataract effect of Zn-DDC was also studied. Zn-DDC and hydroxypropyl-beta-cyclodextrin (HPbetaCD) inclusion complex (Zn-DDC/HPbetaCD) was studied using the saturation solution method and characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (IR). Suitable formulations for Zn-DDC eye drops were established by means of in-vitro trans-corneal penetration experiments. The anti-cataract effect of the selected formulation was demonstrated by the delay in lens opacity development in hereditary shumuya cataract rats (SCRs). Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to study the effect of diethyldithiocarbamate (DDC), a metabolite of Zn-DDC, on the transcription inducible nitric oxide synthase (iNOS) mRNA in human lens epithelial cells (HLEC). In the presence of 22% (w/v) HPbetaCD, the solubility of Zn-DDC in water (0.2 mM) was increased almost 850 fold (to 17 mM), by the formation of Zn-DDC/HPbetaCD. The stoichiometry of Zn-DDC inclusion was 1:1. The Zn-DDC/HPbetaCD stability constant, Ks (1:1) was estimated to be 3453 M(-1). The ophthalmic preparation containing 0.1% HPMC and 0.1% poloxamer 188 (P188) exhibited better permeability than the others in-vitro, and significantly delayed cataract formation in SCRs compared with non-treated SCRs. DDC inhibits the transcription of iNOS mRNA in HLEC. We concluded that this drug delivery system increases both the drug solubility in aqueous eye drops and the permeability of drug through the rabbit cornea, by the formation of a drug-cyclodextrin inclusion complex and the addition of polymers and penetration enhancers. The preparation effectively prevented the development of cataracts in SCRs. DDC, the metabolite of Zn-DDC, may be one of the factors in the prevention of cataract formation because it inhibits the transcription of iNOS mRNA.

  14. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection

    PubMed Central

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P.; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model. PMID:26465878

  15. Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

    PubMed Central

    Koloušková, Pavla; Stone, James D.

    2017-01-01

    Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not. PMID:28817728

  16. Screening for Natural Chemoprevention Agents that Modify Human Keap1

    PubMed Central

    Hu, Chenqi; Nikolic, Dejan; Eggler, Aimee L.; Mesecar, Andrew D.; van Breemen, Richard B.

    2012-01-01

    Upregulation of cytoprotective enzymes by therapeutic agents to prevent damage by reactive oxygen species and xenobiotic electrophiles is a strategy for cancer chemoprevention. The Kelch-like ECH-associated protein 1 (Keap1) and its binding partner, transcription factor NF-E2-related factor-2 (Nrf2), are chemoprevention targets because of their role in regulating the antioxidant response element (ARE) in response to oxidative stress and exposure to electrophiles. Modification of the sensor protein Keap1 by electrophiles such as the isothiocyanate sulforaphane can direct Nrf2 accumulation in the nucleus and subsequent ARE activation. Since our previous matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS)-based screening method to discover natural products that modify Keap1 does not detect covalent modification of Keap1 by some highly reversible agents such as sulforaphane, a more sensitive screening assay was developed. In this new assay, electrophiles that have reversibly modified Keap1 can be released, trapped and detected as β-mercaptoethanol adducts by mass spectrometry. Isoliquiritigenin and sulforaphane, known ARE activators that target Keap1, were used to validate the assay. To determine the ability of the assay to identify electrophiles in complex matrixes that modify Keap1, sulforaphane was spiked into a cocoa extract, and LC-MS/MS using high resolution mass spectrometry with accurate mass measurement was used to identify β-mercaptoethanol adducts of sulforaphane that had been released from Keap1. This screening assay permits identification of potential chemoprevention agents in complex natural product mixtures that reversibly modify Keap1 but cannot be detected using MALDI-TOF MS. PMID:22074792

  17. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site.

    PubMed

    Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H

    2006-11-21

    Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.

  18. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis1[w

    PubMed Central

    Czechowski, Tomasz; Stitt, Mark; Altmann, Thomas; Udvardi, Michael K.; Scheible, Wolf-Rüdiger

    2005-01-01

    Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies provided the means to identify a new generation of reference genes with very stable expression levels in the model plant species Arabidopsis (Arabidopsis thaliana). Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions. Most of these were expressed at much lower levels than traditional reference genes, making them very suitable for normalization of gene expression over a wide range of transcript levels. Specific and efficient primers were developed for 22 genes and tested on a diverse set of 20 cDNA samples. Quantitative reverse transcription-PCR confirmed superior expression stability and lower absolute expression levels for many of these genes, including genes encoding a protein phosphatase 2A subunit, a coatomer subunit, and an ubiquitin-conjugating enzyme. The developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels in Arabidopsis in the future. PMID:16166256

  19. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α

    PubMed Central

    Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.

    2008-01-01

    TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195

  20. A Long Terminal Repeat-Containing Retrotransposon of Schizosaccharomyces pombe Expresses a Gag-Like Protein That Assembles into Virus-Like Particles Which Mediate Reverse Transcription

    PubMed Central

    Teysset, Laure; Dang, Van-Dinh; Kim, Min Kyung; Levin, Henry L.

    2003-01-01

    The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses. PMID:12692246

  1. Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination

    PubMed Central

    Gillick, Kieran; Pollpeter, Darja; Phalora, Prabhjeet; Kim, Eun-Young; Wolinsky, Steven M.

    2013-01-01

    The Vif protein of human immunodeficiency virus type 1 (HIV-1) promotes viral replication by downregulation of the cell-encoded, antiviral APOBEC3 proteins. These proteins exert their suppressive effects through the inhibition of viral reverse transcription as well as the induction of cytidine deamination within nascent viral cDNA. Importantly, these two effects have not been characterized in detail in human CD4+ T cells, leading to controversies over their possible contributions to viral inhibition in the natural cell targets of HIV-1 replication. Here we use wild-type and Vif-deficient viruses derived from the CD4+ T cells of multiple donors to examine the consequences of APOBEC3 protein function at natural levels of expression. We demonstrate that APOBEC3 proteins impart a profound deficiency to reverse transcription from the initial stages of cDNA synthesis, as well as excessive cytidine deamination (hypermutation) of the DNAs that are synthesized. Experiments using viruses from transfected cells and a novel method for mapping the 3′ termini of cDNAs indicate that the inhibition of reverse transcription is not limited to a few specific sites, arguing that APOBEC3 proteins impede enzymatic processivity. Detailed analyses of mutation spectra in viral cDNA strongly imply that one particular APOBEC3 protein, APOBEC3G, provides the bulk of the antiviral phenotype in CD4+ T cells, with the effects of APOBEC3F and APOBEC3D being less significant. Taken together, we conclude that the dual mechanisms of action of APOBEC3 proteins combine to deliver more effective restriction of HIV-1 than either function would by itself. PMID:23152537

  2. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus.

    PubMed

    Shrihari, Rohinishree Yadahalli; Singh, Negi Pradeep

    2012-02-01

    Staphylococcus aureus survives well in different stress conditions. The ability of this organism to adapt to various stresses is the result of a complex regulatory response, which is attributed to regulation of multiple genes. The aims of the present study were (1) to develop a multiplex PCR for the detection of genes which are involved in stress adaptation (asp23, dnaK, and groEL); alternative sigma factor (sigB) and virulence determination (entB and spa) and (2) to study the expression of these genes during stress conditions for S. aureus culture collection strains (FRI 722 and ATCC 6538) and S. aureus food isolates at mRNA level using multiplex reverse transcription polymerase chain reaction (RT-PCR). During heat shock treatment groEL, dnaK, asp23, sodA, entB, spa, and sigB genes were up regulated up to 2.58, 2.07, 2.76, 2.55, 3.55, 2.71, and 2.62- folds, respectively, whereas in acid shock treatment, sodA and groEL were up regulated; dnaK was downregulated; and entB and sigB genes were not expressed in food isolates. Multiplex PCR assay standardized in this study offers an inexpensive alternative to uniplex PCR for detection of various virulence and stress response genes. This study is relevant to rapid and accurate detection of potential pathogenic S. aureus in foods. © 2012 Institute of Food Technologists®

  3. The application of a duplex reverse transcription real-time PCR for the surveillance of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    PubMed

    Chang, Chia-Yi; Deng, Ming-Chung; Wang, Fun-In; Tsai, Hsiang-Jung; Yang, Chia-Huei; Chang, Chieh; Huang, Yu-Liang

    2014-06-01

    The porcine respiratory disease complex (PRDC) is the most common disease in commercial pork production worldwide. Porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), the most important agents of PRDC, usually co-infect in the same pigs. In order to survey the prevalence of PCV2 and PRRSV in pigs of various ages, a duplex reverse transcription real-time PCR (DRT-rPCR) was developed and applied in the present study. The DRT-rPCR did not cross-react with 10 swine viruses other than PCV2 and PRRSV, with detection limits of 1 TCID50/ml for PCV2 and 6.3 TCID50/ml for PRRSV. Surveillance using DRT-rPCR together with serology revealed that in the five farms studied, pigs were most susceptible to PRRSV at 6-14 weeks of age, whereas susceptibility to PCV2 varied by the management system but was mostly at 10-14 weeks of age. Cross analysis of viral loads versus antibody titers revealed that PCV2 load was affected negatively by anti-PCV2 ORF2 antibody, which constituted the most important non-infectious factor affecting the development of PMWS. These results indicated that DRT-rPCR was developed and applied successfully to the surveillance of PCV2 and PRRSV in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quenching of Unincorporated Amplification Signal Reporters in Reverse-Transcription Loop-Mediated Isothermal Amplification Enabling Bright, Single-Step, Closed-Tube, and Multiplexed Detection of RNA Viruses.

    PubMed

    Ball, Cameron S; Light, Yooli K; Koh, Chung-Yan; Wheeler, Sarah S; Coffey, Lark L; Meagher, Robert J

    2016-04-05

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of the reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read "quasar"), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). Furthermore, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.

  5. Polycomb group protein complexes exchange rapidly in living Drosophila.

    PubMed

    Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J

    2005-09-01

    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.

  6. Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes

    PubMed Central

    Duchi, Diego; Gryte, Kristofer; Robb, Nicole C; Morichaud, Zakia; Sheppard, Carol; Wigneshweraraj, Sivaramesh

    2018-01-01

    Abstract Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia coli transcription open complexes. Our results revealed the existence of two stable states within RNAP–DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation. PMID:29177430

  7. Activation of farnesoid X receptor induces RECK expression in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiaomin; Wu, Weibin; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found thatmore » FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.« less

  8. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon

    2015-08-01

    The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis. PMID:22086422

  10. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.

  11. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus.

    PubMed

    Almasi, Mohammad Amin; Almasi, Galavizh

    2017-02-01

    Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.

  12. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction.

    PubMed

    Corman, V M; Eckerle, I; Bleicker, T; Zaki, A; Landt, O; Eschbach-Bludau, M; van Boheemen, S; Gopal, R; Ballhause, M; Bestebroer, T M; Muth, D; Müller, M A; Drexler, J F; Zambon, M; Osterhaus, A D; Fouchier, R M; Drosten, C

    2012-09-27

    We present two real-time reverse-transcription polymerase chain reaction assays for a novel human coronavirus (CoV), targeting regions upstream of the E gene (upE) or within open reading frame (ORF)1b, respectively. Sensitivity for upE is 3.4 copies per reaction (95% confidence interval (CI): 2.5–6.9 copies) or 291 copies/mL of sample. No cross-reactivity was observed with coronaviruses OC43, NL63, 229E, SARS-CoV, nor with 92 clinical specimens containing common human respiratory viruses. We recommend using upE for screening and ORF1b for confirmation.

  13. Chromogenic detection of yam mosaic virus by closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP).

    PubMed

    Nkere, Chukwuemeka K; Oyekanmi, Joshua O; Silva, Gonçalo; Bömer, Moritz; Atiri, Gabriel I; Onyeka, Joseph; Maroya, Norbert G; Seal, Susan E; Kumar, P Lava

    2018-04-01

    A closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP) assay was developed for the detection of yam mosaic virus (YMV, genus Potyvirus) infecting yam (Dioscorea spp.). The assay uses a set of six oligonucleotide primers targeting the YMV coat protein region, and the amplification products in YMV-positive samples are visualized by chromogenic detection with SYBR Green I dye. The CT-RT-LAMP assay detected YMV in leaf and tuber tissues of infected plants. The assay is 100 times more sensitive in detecting YMV than standard RT-PCR, while maintaining the same specificity.

  14. Reverse Transcription of a Self-Primed Retrotransposon Requires an RNA Structure Similar to the U5-IR Stem-Loop of Retroviruses

    PubMed Central

    Lin, Jia-Hwei; Levin, Henry L.

    1998-01-01

    An inverted repeat (IR) within the U5 region of the Rous sarcoma virus (RSV) mRNA forms a structure composed of a 7-bp stem and a 5-nucleotide (nt) loop. This U5-IR structure has been shown to be required for the initiation of reverse transcription. The mRNA of Tf1, long terminal repeat-containing retrotransposon from fission yeast (Schizosaccharomyces pombe) contains nucleotides with the potential to form a U5-IR stem-loop that is strikingly similar to that of RSV. The putative U5-IR stem-loop of Tf1 consists of a 7-bp stem and a 25-nt loop. Results from mutagenesis studies indicate that the U5-IR stem-loop in the mRNA of Tf1 does form and that it is required for Tf1 transposition. Although the loop is required for transposition, we were surprised that the specific sequence of the nucleotides within the loop was unimportant for function. Additional investigation indicates that the loss of transposition activity due to a reduction in the loop size to 6 nt could be rescued by increasing the GC content of the stem. This result indicates that the large loop in the Tf1 mRNA relative to that of the RSV allows the formation of the relatively weak U5-IR stem. The levels of Tf1 proteins expressed and the amounts of Tf1 RNA packaged into the virus-like particles were not affected by mutations in the U5-IR structure. However, all of the mutations in the U5-IR structure that caused defects in transposition produced low amounts of reverse transcripts. A unique feature in the initiation of Tf1 reverse transcription is that, instead of a tRNA, the first 11 nt of the Tf1 mRNA serve as the minus-strand primer. Analysis of the 5′ end of Tf1 mRNA revealed that the mutations in the U5-IR stem-loop that resulted in defects in reverse transcription caused a reduction in the cleavage activity required to generate the Tf1 primer. Our results indicate that the U5-IR stems of Tf1 and RSV are conserved in size, position, and function. PMID:9774699

  15. DDX41 Recognizes RNA/DNA Retroviral Reverse Transcripts and Is Critical for In Vivo Control of Murine Leukemia Virus Infection.

    PubMed

    Stavrou, Spyridon; Aguilera, Alexya N; Blouch, Kristin; Ross, Susan R

    2018-06-05

    Host recognition of viral nucleic acids generated during infection leads to the activation of innate immune responses essential for early control of virus. Retrovirus reverse transcription creates numerous potential ligands for cytosolic host sensors that recognize foreign nucleic acids, including single-stranded RNA (ssRNA), RNA/DNA hybrids, and double-stranded DNA (dsDNA). We and others recently showed that the sensors cyclic GMP-AMP synthase (cGAS), DEAD-box helicase 41 (DDX41), and members of the Aim2-like receptor (ALR) family participate in the recognition of retroviral reverse transcripts. However, why multiple sensors might be required and their relative importance in in vivo control of retroviral infection are not known. Here, we show that DDX41 primarily senses the DNA/RNA hybrid generated at the first step of reverse transcription, while cGAS recognizes dsDNA generated at the next step. We also show that both DDX41 and cGAS are needed for the antiretroviral innate immune response to murine leukemia virus (MLV) and HIV in primary mouse macrophages and dendritic cells (DCs). Using mice with cell type-specific knockout of the Ddx41 gene, we show that DDX41 sensing in DCs but not macrophages was critical for controlling in vivo MLV infection. This suggests that DCs are essential in vivo targets for infection, as well as for initiating the antiviral response. Our work demonstrates that the innate immune response to retrovirus infection depends on multiple host nucleic acid sensors that recognize different reverse transcription intermediates. IMPORTANCE Viruses are detected by many different host sensors of nucleic acid, which in turn trigger innate immune responses, such as type I interferon (IFN) production, required to control infection. We show here that at least two sensors are needed to initiate a highly effective innate immune response to retroviruses-DDX41, which preferentially senses the RNA/DNA hybrid generated at the first step of retrovirus replication, and cGAS, which recognizes double-stranded DNA generated at the second step. Importantly, we demonstrate using mice lacking DDX41 or cGAS that both sensors are needed for the full antiviral response needed to control in vivo MLV infection. These findings underscore the need for multiple host factors to counteract retroviral infection. Copyright © 2018 Stavrou et al.

  16. Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.

    PubMed

    Pflugfelder, S C; Liu, Z; Monroy, D; Li, D Q; Carvajal, M E; Price-Schiavi, S A; Idris, N; Solomon, A; Perez, A; Carraway, K L

    2000-05-01

    To evaluate human ocular surface epithelium and tear fluid for the presence of sialomucin complex (MUC4), a high-molecular-weight heterodimeric glycoprotein composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis assays were used to identify sialomucin complex RNA in ocular surface epithelia. Immunoprecipitation and immunoblot analysis were used to identify immunoreactive species in human tears and in the corneal and conjunctival epithelia using antibodies specific for carbohydrate and peptide epitopes on the sialomucin complex subunits. Immunofluorescence staining was used to detect sialomucin complex in frozen sections and impression cytology specimens of human cornea and conjunctival epithelia. ASGP-1- and ASGP-2-specific sequences were amplified from RNA extracted from both conjunctival and corneal epithelial biopsies by RT-PCR. Sialomucin complex transcripts were also detected in these tissues by Northern blot analysis, with a greater level of RNA detected in the peripheral than the central corneal epithelium. Sialomucin complex was immunoprecipitated from tear fluid samples and both corneal and conjunctival epithelia and detected by immunoblot analysis with specific anti-ASGP-1 and anti-ASGP-2 antibodies. The ASGP-1 peptide antibody HA-1 stained the full thickness of the corneal and conjunctival epithelia. In contrast, antibody 15H10, which reacts against a carbohydrate epitope on ASGP-1, stained only the superficial epithelial layers of these tissues. No staining was observed in the conjunctival goblet cells. Sialomucin complex was originally identified in rat mammary adenocarcinoma cells and has recently been shown to be produced by the ocular surface epithelia of rats. Furthermore, it has been identified as the rat homologue of human MUC4 mucin. The present studies show that it is expressed in the stratified epithelium covering the surface of the human eye and is present in human tear fluid. Expression of a carbohydrate-dependent epitope on the mucin subunit (ASGP-1) of sialomucin complex occurs in a differentiation-dependent fashion. Sialomucin complex joins MUC1 as another membrane mucin produced by the human ocular surface epithelia but is also found in the tear fluid, presumably in a soluble form, as found on the rat ocular surface.

  17. Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex

    PubMed Central

    Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.

    2014-01-01

    Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530

  18. Real-time observation of the initiation of RNA polymerase II transcription.

    PubMed

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  19. Conversion from CUL4-based COP1–SPA E3 apparatus to UVR8–COP1–SPA complexes underlies a distinct biochemical function of COP1 under UV-B

    PubMed Central

    Huang, Xi; Ouyang, Xinhao; Yang, Panyu; Lau, On Sun; Chen, Liangbi; Wei, Ning; Deng, Xing Wang

    2013-01-01

    The evolutionarily conserved CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) is a RING and WD40 protein that functions as a substrate receptor of CULLIN4–DAMAGED DNA BINDING PROTEIN 1 (CUL4–DDB1)–based E3 ubiquitin ligases in both plants and animals. In Arabidopsis, COP1 is a central repressor of photomorphogenesis in the form of COP1–SUPPRESSOR OF PHYA (SPA) complex(es). CUL4–DDB1–COP1–SPA suppresses the photomorphogenic program by targeting the transcription factor ELONGATED HYPOCOTYL 5 for degradation. Intriguingly, under photomorphogenic UV-B light, COP1 reverses its repressive role and promotes photomorphogenesis. However, the mechanism by which COP1 is functionally switched is still obscure. Here, we demonstrate that UV-B triggers the physical and functional disassociation of the COP1–SPA core complex(es) from CUL4–DDB1 and the formation of a unique complex(es) containing the UV-B receptor UV RESISTANCE LOCUS 8 (UVR8). The establishment of this UV-B–dependent COP1 complex(es) is associated with its positive modulation of ELONGATED HYPOCOTYL 5 stability and activity, which sheds light on the mechanism of COP1’s promotive action in UV-B–induced photomorphogenesis. PMID:24067658

  20. The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by Tat.

    PubMed Central

    Lu, X; Welsh, T M; Peterlin, B M

    1993-01-01

    The human immunodeficiency virus type 1 long terminal repeat sets up two different transcription complexes, which have been called processive and nonprocessive complexes. By mutating and substituting cis-acting sequences, we mapped elements of the human immunodeficiency virus long terminal repeat that are responsible for creating each transcription complex. Whereas processive complexes are efficiently assembled by upstream promoter elements in the absence of the TATA box, nonprocessive complexes absolutely require the TATA box. Moreover, the TATA box alone can set up these nonprocessive complexes, and nonprocessive but not processive complexes are trans activated by Tat. Finally, a strong DNA-binding site between the TATA box and trans-activation-responsive region interferes with either the assembly or movement of these nonprocessive complexes and diminishes the effects of Tat. Thus, Tat affects a critical step in the formation of elongation-competent transcription complexes. Images PMID:8445708

  1. Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-08-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator.

  2. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300.

    PubMed

    Mori, N; Morishita, M; Tsukazaki, T; Giam, C Z; Kumatori, A; Tanaka, Y; Yamamoto, N

    2001-04-01

    Human T-cell leukemia virus type I (HTLV-I) Tax is a potent transcriptional regulator that can activate or repress specific cellular genes and that has been proposed to contribute to leukemogenesis in adult T-cell leukemia. Previously, HTLV-I- infected T-cell clones were found to be resistant to growth inhibition by transforming growth factor (TGF)-beta. Here it is shown that Tax can perturb Smad-dependent TGF-beta signaling even though no direct interaction of Tax and Smad proteins could be detected. Importantly, a mutant Tax of CREB-binding protein (CBP)/p300 binding site, could not repress the Smad transactivation function, suggesting that the CBP/p300 binding domain of Tax is essential for the suppression of Smad function. Because both Tax and Smad are known to interact with CBP/p300 for the potentiation of their transcriptional activities, the effect of CBP/p300 on suppression of Smad-mediated transactivation by Tax was examined. Overexpression of CBP/p300 reversed Tax-mediated inhibition of Smad transactivation. Furthermore, Smad could repress Tax transcriptional activation, indicating reciprocal repression between Tax and Smad. These results suggest that Tax interferes with the recruitment of CBP/p300 into transcription initiation complexes on TGF-beta-responsive elements through its binding to CBP/p300. The novel function of Tax as a repressor of TGF-beta signaling may contribute to HTLV-I leukemogenesis. (Blood. 2001;97:2137-2144)

  3. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression

    PubMed Central

    Rashidian, Juliet; Le Scolan, Erwan; Ji, Xiaodan; Zhu, Qingwei; Mulvihill, Melinda M.; Nomura, Daniel; Luo, Kunxin

    2015-01-01

    Ski, the transforming protein of the avian Sloan-Kettering retrovirus, inhibits transforming growth factor–β (TGF-β)/Smad signaling and displays both pro-oncogenic and anti-oncogenic activities in human cancer. Inhibition of TGF-β signaling is likely responsible for the pro-oncogenic activity of Ski. We investigated the mechanism(s) underlying the tumor suppressor activity of Ski and found that Ski suppressed the activity of the Hippo signaling effectors TAZ and YAP to inhibit breast cancer progression. TAZ and YAP are transcriptional coactivators that can contribute to cancer by promoting proliferation, tumorigenesis, and cancer stem cell expansion. Hippo signaling activates the the Lats family of kinases, which phosphorylate TAZ and YAP, resulting in cytoplasmic retention and degradation and inhibition of their transcriptional activity. We showed that Ski interacted with multiple components of the Hippo pathway to facilitate activation of Lats2, resulting in increased phosphorylation and subsequent degradation of TAZ. Ski also promoted the degradation of a constitutively active TAZ mutant that is not phosphorylated by Lats, suggesting the existence of a Lats2-independent degradation pathway. Finally, we showed that Ski repressed the transcriptional activity of TAZ by binding to the TAZ partner TEAD and recruiting the transcriptional co-repressor NCoR1 to the TEAD-TAZ complex. Ski effectively reversed transformation and epithelial-to-mesenchyme transition in cultured breast cancer cells and metastasis in TAZ-expressing xenografted tumors. Thus, Ski inhibited the function of TAZ through multiple mechanisms in human cancer cells. PMID:25670202

  4. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq

    PubMed Central

    Wei, Hui; Fu, Yan; Magnusson, Lauren; Baker, John O.; Maness, Pin-Ching; Xu, Qi; Yang, Shihui; Bowersox, Andrew; Bogorad, Igor; Wang, Wei; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi-You

    2014-01-01

    The anaerobic, thermophilic bacterium, Clostridium thermocellum, secretes multi-protein enzyme complexes, termed cellulosomes, which synergistically interact with the microbial cell surface and efficiently disassemble plant cell wall biomass. C. thermocellum has also been considered a potential consolidated bioprocessing (CBP) organism due to its ability to produce the biofuel products, hydrogen, and ethanol. We found that C. thermocellum fermentation of pretreated yellow poplar (PYP) produced 30 and 39% of ethanol and hydrogen product concentrations, respectively, compared to fermentation of cellobiose. RNA-seq was used to analyze the transcriptional profiles of these cells. The PYP-grown cells taken for analysis at the late stationary phase showed 1211 genes up-regulated and 314 down-regulated by more than two-fold compared to the cellobiose-grown cells. These affected genes cover a broad spectrum of specific functional categories. The transcriptional analysis was further validated by sub-proteomics data taken from the literature; as well as by quantitative reverse transcription-PCR (qRT-PCR) analyses of selected genes. Specifically, 47 cellulosomal protein-encoding genes, genes for 4 pairs of SigI-RsgI for polysaccharide sensing, 7 cellodextrin ABC transporter genes, and a set of NAD(P)H hydogenase and alcohol dehydrogenase genes were up-regulated for cells growing on PYP compared to cellobiose. These genes could be potential candidates for future studies aimed at gaining insight into the regulatory mechanism of this organism as well as for improvement of C. thermocellum in its role as a CBP organism. PMID:24782837

  5. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes

    PubMed Central

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-01-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12–ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex. PMID:25046113

  6. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    PubMed Central

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from <1 ng of plasma RNA in <5 h. TGIRT-seq of RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  7. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance

    PubMed Central

    Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J.W.; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J.; Janssen-Megens, Eva M.; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G.; Martens, Joost H.A.; Logie, Colin; Stunnenberg, Hendrik G.

    2018-01-01

    Summary Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. PMID:27863248

  8. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation.

    PubMed

    Rondón, Ana G; Jimeno, Sonia; García-Rubio, María; Aguilera, Andrés

    2003-10-03

    THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.

  9. Enterovirus A71 DNA-Launched Infectious Clone as a Robust Reverse Genetic Tool

    PubMed Central

    Tan, Chee Wah; Tee, Han Kang; Lee, Michelle Hui Pheng; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3’ ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71. PMID:27617744

  10. TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor κB p65: Single Nucleotide Polymorphism and Estrogen Dependence.

    PubMed

    Ho, Ming-Fen; Lummertz da Rocha, Edroaldo; Zhang, Cheng; Ingle, James N; Goss, Paul E; Shepherd, Lois E; Kubo, Michiaki; Wang, Liewei; Li, Hu; Weinshilboum, Richard M

    2018-06-01

    T-cell leukemia 1A ( TCL1A ) single-nucleotide polymorphisms (SNPs) have been associated with aromatase inhibitor-induced musculoskeletal adverse events. We previously demonstrated that TCL1A is inducible by estradiol (E 2 ) and plays a critical role in the regulation of cytokines, chemokines, and Toll-like receptors in a TCL1A SNP genotype and estrogen-dependent fashion. Furthermore, TCLIA SNP-dependent expression phenotypes can be "reversed" by exposure to selective estrogen receptor modulators such as 4-hydroxytamoxifen (4OH-TAM). The present study was designed to comprehensively characterize the role of TCL1A in transcriptional regulation across the genome by performing RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) assays with lymphoblastoid cell lines. RNA-seq identified 357 genes that were regulated in a TCL1A SNP- and E 2 -dependent fashion with expression patterns that were 4OH-TAM reversible. ChIP-seq for the same cells identified 57 TCL1A binding sites that could be regulated by E 2 in a SNP-dependent fashion. Even more striking, nuclear factor- κ B (NF- κ B) p65 bound to those same DNA regions. In summary, TCL1A is a novel transcription factor with expression that is regulated in a SNP- and E 2 -dependent fashion-a pattern of expression that can be reversed by 4OH-TAM. Integrated RNA-seq and ChIP-seq results suggest that TCL1A also acts as a transcriptional coregulator with NF- κ B p65, an important immune system transcription factor. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration

    PubMed Central

    O’Meara, Caitlin C.; Wamstad, Joseph A.; Gladstone, Rachel; Fomovsky, Gregory M.; Butty, Vincent L.; Shrikumar, Avanti; Gannon, Joseph; Boyer, Laurie A.; Lee, Richard T.

    2014-01-01

    Rationale Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. PMID:25477501

  12. Nuclear export of human hepatitis B virus core protein and pregenomic RNA depends on the cellular NXF1-p15 machinery.

    PubMed

    Yang, Ching-Chun; Huang, Er-Yi; Li, Hung-Cheng; Su, Pei-Yi; Shih, Chiaho

    2014-01-01

    Hepatitis B virus (HBV) core protein (HBc) can shuttle between nucleus and cytoplasm. Cytoplasm-predominant HBc is clinically associated with severe liver inflammation. Previously, we found that HBc arginine-rich domain (ARD) can associate with a host factor NXF1 (TAP) by coimmunoprecipitation. It is well known that NXF1-p15 heterodimer can serve as a major export receptor of nuclear mRNA as a ribonucleoprotein complex (RNP). In the NXF1-p15 pathway, TREX (transcription/export) complex plays an important role in coupling nuclear pre-mRNA processing with mRNA export in mammalian cells. Here, we tested the hypothesis whether HBc and HBV specific RNA can be exported via the TREX and NXF1-p15 mediated pathway. We demonstrated here that HBc can physically and specifically associate with TREX components, and the NXF1-p15 export receptor by coimmunoprecipitation. Accumulation of HBc protein in the nucleus can be induced by the interference with TREX and NXF1-p15 mediated RNA export machinery. HBV transcripts encodes a non-spliced 3.5 kb pregenomic RNA (pgRNA) which can serve as a template for reverse transcription. Cytoplasmic HBV pgRNA appeared to be reduced by siRNA treatment specific for the NXF1-p15 complex by quantitative RT-qPCR and Northern blot analyses. This result suggests that the pgRNA was also exported via the NXF1-p15 machinery. We entertain the hypothesis that HBc protein can be exported as an RNP cargo via the mRNA export pathway by hijacking the TREX and NXF1-p15 complex. In our current and previous studies, HBc is not required for pgRNA accumulation in the cytoplasm. Furthermore, HBc ARD can mediate nuclear export of a chimeric protein containing HBc ARD in a pgRNA-independent manner. Taken together, it suggests that while both pgRNA and HBc protein exports are dependent on NXF1-p15, they are using the same export machinery in a manner independent of each other.

  13. A Predictive Approach to Network Reverse-Engineering

    NASA Astrophysics Data System (ADS)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  14. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    PubMed

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  15. Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.

    PubMed

    Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D

    2016-10-01

    Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Nucleocapsid Protein Annealing of a Primer-Template Enhances (+)-Strand DNA Synthesis and Fidelity by HIV-1 Reverse Transcriptase†

    PubMed Central

    Kim, Jiae; Roberts, Anne; Yuan, Hua; Xiong, Yong; Anderson, Karen S.

    2012-01-01

    Human immunodeficiency virus type-1 (HIV-1) requires reverse transcriptase (RT) and HIV-1 nucleocapsid protein (NCp7) for proper viral replication. HIV-1 NCp7 has been shown to enhance various steps in reverse transcription including tRNA initiation and strand transfer which may be mediated through interactions with RT as well as RNA and DNA oligonucleotides. With the use of DNA oligonucleotides, we have examined the interaction of NCp7 with RT and the kinetics of reverse transcription during (+)-strand synthesis with an NCp7-facilitated annealed primer-template. Using a pre-steady state kinetics approach, the NCp7-annealed primer-template has a substantial increase (3-7 fold) in the rate of incorporation (kpol) by RT as compared to heat annealed primer-template with single nucleotide incorporation. There was also a 2-fold increase in the binding affinity constant (Kd) of the nucleotide. These differences in kpol and Kd were not through direct interactions between HIV-1 RT and NCp7. When examining extension by RT, the data suggests that the NCp7-annealed primer-template facilitates the formation of a longer product more quickly compared to the heat annealed primer-template. This enhancement in rate is mediated through interactions with NCp7’s zinc fingers and N-terminal domain and nucleic acids. The NCp7-annealed primer-template also enhances the fidelity of RT (3-fold) by slowing the rate of incorporation of an incorrect nucleotide. Taken together, this study elucidates a new role of NCp7 by facilitating DNA-directed DNA synthesis during reverse transcription by HIV-1 RT that may translate into enhanced viral fitness and offers an avenue to exploit for targeted therapeutic intervention against HIV. PMID:22210155

  17. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5′ to 3′ Translocase in Transcription Termination of Vaccinia Early Genes*

    PubMed Central

    Hindman, Ryan; Gollnick, Paul

    2016-01-01

    Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5′ to 3′ translocase on single-stranded DNA. PMID:27189950

  18. Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection.

    PubMed

    de la Fuente, Cynthia; Pinkham, Chelsea; Dabbagh, Deemah; Beitzel, Brett; Garrison, Aura; Palacios, Gustavo; Hodge, Kimberley Alex; Petricoin, Emanuel F; Schmaljohn, Connie; Campbell, Catherine E; Narayanan, Aarthi; Kehn-Hall, Kylene

    2018-01-01

    Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-β superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.

  19. Epigenetics and the Developmental Origins of Health and ...

    EPA Pesticide Factsheets

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  20. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor.

    PubMed

    Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B

    2014-10-01

    The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower

    PubMed Central

    Silva, Catarina S.; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2016-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower. PMID:26779227

  2. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    PubMed

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  3. Selection of reference genes for transcriptional analysis of edible tubers of potato (Solanum tuberosum L.).

    PubMed

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; Van Dijk, Jeroen P; Kok, Esther; Frazzon, Jeverson

    2015-01-01

    Potato (Solanum tuberosum) yield has increased dramatically over the last 50 years and this has been achieved by a combination of improved agronomy and biotechnology efforts. Gene studies are taking place to improve new qualities and develop new cultivars. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a bench-marking analytical tool for gene expression analysis, but its accuracy is highly dependent on a reliable normalization strategy of an invariant reference genes. For this reason, the goal of this work was to select and validate reference genes for transcriptional analysis of edible tubers of potato. To do so, RT-qPCR primers were designed for ten genes with relatively stable expression in potato tubers as observed in RNA-Seq experiments. Primers were designed across exon boundaries to avoid genomic DNA contamination. Differences were observed in the ranking of candidate genes identified by geNorm, NormFinder and BestKeeper algorithms. The ranks determined by geNorm and NormFinder were very similar and for all samples the most stable candidates were C2, exocyst complex component sec3 (SEC3) and ATCUL3/ATCUL3A/CUL3/CUL3A (CUL3A). According to BestKeeper, the importin alpha and ubiquitin-associated/ts-n genes were the most stable. Three genes were selected as reference genes for potato edible tubers in RT-qPCR studies. The first one, called C2, was selected in common by NormFinder and geNorm, the second one is SEC3, selected by NormFinder, and the third one is CUL3A, selected by geNorm. Appropriate reference genes identified in this work will help to improve the accuracy of gene expression quantification analyses by taking into account differences that may be observed in RNA quality or reverse transcription efficiency across the samples.

  4. Sequence and Transcriptional Analyses of the Fish Retroviruses Walleye Epidermal Hyperplasia Virus Types 1 and 2: Evidence for a Gene Duplication

    PubMed Central

    LaPierre, Lorie A.; Holzschu, Donald L.; Bowser, Paul R.; Casey, James W.

    1999-01-01

    Walleye epidermal hyperplasia virus types 1 and 2 (WEHV1 and WEHV2, respectively) are associated with a hyperproliferative skin lesion on walleyes that appears and regresses seasonally. We have determined the complete nucleotide sequences and transcriptional profiles of these viruses. WEHV1 and WEHV2 are large, complex retroviruses of 12,999 and 13,125 kb in length, respectively, that are closely related to one another and to walleye dermal sarcoma virus (WDSV). These walleye retroviruses contain three open reading frames, orfA, orfB, and orfC, in addition to gag, pol, and env. orfA and orfB are adjacent to one another and located downstream of env. The OrfA proteins were previously identified as cyclin D homologs that may contribute to the induction of cell proliferation leading to epidermal hyperplasia and dermal sarcoma. The sequence analysis of WEHV1 and WEHV2 revealed that the OrfB proteins are distantly related to the OrfA proteins, suggesting that orfB arose by gene duplication. Presuming that the precursor of orfA and orfB was derived from a cellular cyclin, these genes are the first accessory genes of complex retroviruses that can be traced to a cellular origin. WEHV1, WEHV2, and WDSV are the only retroviruses that have an open reading frame, orfC, of considerable size (ca. 130 amino acids) in the leader region preceding gag. While we were unable to predict a function for the OrfC proteins, they are more conserved than OrfA and OrfB, suggesting that they may be biologically important to the viruses. The transcriptional profiles of WEHV1 and WEHV2 were also similar to that of WDSV; Northern blot analyses detected only low levels of the orfA transcripts in developing lesions, whereas abundant levels of genomic, env, orfA, and orfB transcripts were detected in regressing lesions. The splice donors and acceptors of individual transcripts were identified by reverse transcriptase PCR. The similarities of WEHV1, WEHV2, and WDSV suggest that these viruses use similar strategies of viral replication and induce cell proliferation by a similar mechanism. PMID:10516048

  5. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    PubMed Central

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  6. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    PubMed

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  7. Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae.

    PubMed

    Smith, Jenna E; Baker, Kristian E

    2017-01-01

    RNA binding proteins play critical roles in shaping the complex life cycle of cellular transcripts. For most RNAs, the association with a distinct complement of proteins serves to orchestrate its unique pattern of maturation, localization, translation, and stability. A key aspect to understanding how transcripts are differentially regulated lies, therefore, in the ability to identify the particular repertoire of protein binding partners associated with an individual transcript. We describe here an optimized experimental procedure for purifying a single mRNA population from yeast cells for the characterization of transcript-specific mRNA-protein complexes (mRNPs) as they exist in vivo. Chemical cross-linking is used to trap native mRNPs and facilitate the co-purification of protein complexes associated with an individual transcript population that is captured under stringent conditions from cell lysates through hybridization to complementary DNA oligonucleotides. The resulting mRNP is highly enriched and largely devoid of non-target transcripts, and can be used for a number of downstream analyses including protein identification by mass spectrometry.

  8. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation. PMID:26480348

  9. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15.

    PubMed

    Inoue, Satoshi; Hao, Zhenyue; Elia, Andrew J; Cescon, David; Zhou, Lily; Silvester, Jennifer; Snow, Bryan; Harris, Isaac S; Sasaki, Masato; Li, Wanda Y; Itsumi, Momoe; Yamamoto, Kazuo; Ueda, Takeshi; Dominguez-Brauer, Carmen; Gorrini, Chiara; Chio, Iok In Christine; Haight, Jillian; You-Ten, Annick; McCracken, Susan; Wakeham, Andrew; Ghazarian, Danny; Penn, Linda J Z; Melino, Gerry; Mak, Tak W

    2013-05-15

    Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.

  10. Transcription regulation by the Mediator complex.

    PubMed

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  11. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare1[OPEN

    PubMed Central

    Winter, Klaus

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3–CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  12. Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Flow Direction Reversal

    PubMed Central

    Heuslein, Joshua L.; Meisner, Joshua K.; Li, Xuanyue; Song, Ji; Vincentelli, Helena; Leiphart, Ryan J.; Ames, Elizabeth G.; Price, Richard J.

    2015-01-01

    Objective Collateral arteriogenesis, the growth of existing arterial vessels to a larger diameter, is a fundamental adaptive response that is often critical for the perfusion and survival of tissues downstream of chronic arterial occlusion(s). Shear stress regulates arteriogenesis; however, the arteriogenic significance of flow direction reversal, occurring in numerous collateral artery segments after femoral artery ligation (FAL), is unknown. Our objective was to determine if flow direction reversal in collateral artery segments differentially regulates endothelial cell signaling and arteriogenesis. Approach and Results Collateral segments experiencing flow reversal after FAL in C57BL/6 mice exhibit increased pericollateral macrophage recruitment, amplified arteriogenesis (30% diameter and 2.8-fold conductance increases), and remarkably permanent (12 weeks post-FAL) remodeling. Genome-wide transcriptional analyses on HUVECs exposed to flow reversal conditions mimicking those occurring in-vivo yielded 10-fold more significantly regulated transcripts, as well as enhanced activation of upstream regulators (NFκB, VEGF, FGF2, TGFβ) and arteriogenic canonical pathways (PKA, PDE, MAPK). Augmented expression of key pro-arteriogenic molecules (KLF2, ICAM-1, eNOS) was also verified by qRT-PCR, leading us to test whether ICAM-1 and/or eNOS regulate amplified arteriogenesis in flow-reversed collateral segments in-vivo. Interestingly, enhanced pericollateral macrophage recruitment and amplified arteriogenesis was attenuated in flow-reversed collateral segments after FAL in ICAM-1−/− mice; however, eNOS−/− mice showed no such differences. Conclusions Flow reversal leads to a broad amplification of pro-arteriogenic endothelial signaling and a sustained ICAM-1-dependent augmentation of arteriogenesis. Further investigation of the endothelial mechanotransduction pathways activated by flow reversal may lead to more effective and durable therapeutic options for arterial occlusive diseases. PMID:26338297

  13. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less

  14. Nonesterified Fatty Acid-Induced Endoplasmic Reticulum Stress in Cattle Cumulus Oocyte Complexes Alters Cell Metabolism and Developmental Competence.

    PubMed

    Sutton-McDowall, Melanie L; Wu, Linda L Y; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; MacMillan, Keith L; Thompson, Jeremy G; Robker, Rebecca L

    2016-01-01

    Reduced oocyte quality has been associated with poor fertility of high-performance dairy cows during peak lactation, due to negative energy balance. We examined the role of nonesterified fatty acids (NEFAs), known to accumulate within follicular fluid during under- and overnutrition scenarios, in causing endoplasmic reticulum (ER) stress of in vitro maturated cattle cumulus-oocyte complexes (COCs). NEFA concentrations were: palmitic acid (150 μM), oleic acid (200 μM), and steric acid (75 μM). Abattoir-derived COCs were randomly matured for 24 h in the presence of NEFAs and/or an ER stress inhibitor, salubrinal. Total and hatched blastocyst yields were negatively impacted by NEFA treatment compared with controls, but this was reversed by salubrinal. ER stress markers, activating transcription factor 4 (Atf4) and heat shock protein 5 (Hspa5), but not Atf6, were significantly up-regulated by NEFA treatment within whole COCs but reversed by coincubation with salubrinal. Likewise, glucose uptake and lactate production, measured in spent medium samples, showed a similar pattern, suggesting that cumulus cell metabolism is sensitive to NEFAs via an ER stress-mediated process. In contrast, while mitochondrial DNA copy number was recovered in NEFA-treated oocytes, oocyte autofluorescence of the respiratory chain cofactor, FAD, was lower following NEFA treatment of COCs, and this was not reversed by salubrinal, suggesting the negative impact was via reduced mitochondrial function. These results reveal the significance of NEFA-induced ER stress on bovine COC developmental competence, revealing a potential therapeutic target for improving oocyte quality during peak lactation. © 2016 by the Society for the Study of Reproduction, Inc.

  15. Molecular detection of a novel paramyxovirus in fruit bats from Indonesia

    PubMed Central

    2012-01-01

    Background Fruit bats are known to harbor zoonotic paramyxoviruses including Nipah, Hendra, and Menangle viruses. The aim of this study was to detect the presence of paramyxovirus RNA in fruit bats from Indonesia. Methods RNA samples were obtained from the spleens of 110 fruit bats collected from four locations in Indonesia. All samples were screened by semi-nested broad spectrum reverse transcription PCR targeting the paramyxovirus polymerase (L) genes. Results Semi-nested reverse transcription PCR detected five previously unidentified paramyxoviruses from six fruit bats. Phylogenetic analysis showed that these virus sequences were related to henipavirus or rubulavirus. Conclusions This study indicates the presence of novel paramyxoviruses among fruit bat populations in Indonesia. PMID:23082748

  16. Evaluation and selection of internal reference genes from two- and six-row U.S. malting barley varieties throughout micromalting for use in RT-qPCR

    USDA-ARS?s Scientific Manuscript database

    Reverse Transcription quantitative Polymerase Chain Reaction (qRT-PCR) is a popular method for measuring transcript abundance. The most commonly used method of interpretation is relative quantification and thus necessitates the use of normalization controls (i.e. reference genes) to standardize tran...

  17. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex.

    PubMed

    Bae, Brian; Chen, James; Davis, Elizabeth; Leon, Katherine; Darst, Seth A; Campbell, Elizabeth A

    2015-09-08

    A key point to regulate gene expression is at transcription initiation, and activators play a major role. CarD, an essential activator in Mycobacterium tuberculosis, is found in many bacteria, including Thermus species, but absent in Escherichia coli. To delineate the molecular mechanism of CarD, we determined crystal structures of Thermus transcription initiation complexes containing CarD. The structures show CarD interacts with the unique DNA topology presented by the upstream double-stranded/single-stranded DNA junction of the transcription bubble. We confirm that our structures correspond to functional activation complexes, and extend our understanding of the role of a conserved CarD Trp residue that serves as a minor groove wedge, preventing collapse of the transcription bubble to stabilize the transcription initiation complex. Unlike E. coli RNAP, many bacterial RNAPs form unstable promoter complexes, explaining the need for CarD.

  18. [Effect of Leonurus Heterophyllus Sweet on tissue factor transcription and expression in human umbilical vein endothelial cells in vitro].

    PubMed

    Zheng, Lian; Fang, Chi-hua

    2007-06-01

    To investigate the effect of Leonurus Heterophyllus Sweet, (LHS) on tissue factor (TF) transcription and expression induced by thrombin in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with different concentrations of LHS and the TF mRNA expression was detected by reverse transcript-polymerase chain reaction (RT-PCR). LHS treatment of HUVECs at different concentrations and for different times resulted in significant differences in TF expression (Plt;0.01). The transcription of TF in LHS-treated cells was significantly different from that of the blank control group (Plt;0.01). LHS can decrease the expression of TF and intervene with TF transcription in HUVECs in vitro.

  19. Quenching of unincorporated amplification signal reporters in reverse-transcription loop-mediated isothermal amplification enabling bright, single-step, closed-tube, and multiplexed detection of RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less

  20. STING-Dependent Interferon-λ1 Induction in HT29 Cells, a Human Colorectal Cancer Cell Line, After Gamma-Radiation.

    PubMed

    Chen, Jianzhou; Markelc, Bostjan; Kaeppler, Jakob; Ogundipe, Vivian M L; Cao, Yunhong; McKenna, W Gillies; Muschel, Ruth J

    2018-05-01

    To investigate the induction of type III interferons (IFNs) in human cancer cells by gamma-rays. Type III IFN expression in human cancer cell lines after gamma-ray irradiation in vitro was assessed by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Signaling pathways mediating type III IFN induction were examined by a variety of means, including immunoblotting, flow cytometry, confocal imaging, and reverse transcription-quantitative polymerase chain reaction. Key mediators in these pathways were further explored and validated using gene CRISPR knockout or short hairpin RNA knockdown. Exposure to gamma-rays directly induced type III IFNs (mainly IFNL1) in human cancer cell lines in dose- and time-dependent fashions. The induction of IFNL1 was primarily mediated by the cytosolic DNA sensors-STING-TBK1-IRF1 signaling axis, with a lesser contribution from the nuclear factor kappa b signaling in HT29 cells. In addition, type III IFN signaling through its receptors serves as a positive feedback loop, further enhancing IFN expression via up-regulation of the kinases in the STING-TBK1 signaling axis. Our results suggest that IFNL1 can be up-regulated in human cancer cell lines after gamma-ray treatment. In HT29 cells this induction occurs via the STING pathway, adding another layer of complexity to the understanding of radiation-induced antitumor immunity, and may provide novel insights into IFN-based cancer treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

    PubMed

    Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav

    2013-07-18

    Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.

  2. Quenching of unincorporated amplification signal reporters in reverse-transcription loop-mediated isothermal amplification enabling bright, single-step, closed-tube, and multiplexed detection of RNA viruses

    DOE PAGES

    Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan; ...

    2016-03-16

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less

  3. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor

    PubMed Central

    Anandhakumar, Jayamani; Moustafa, Yara W.; Chowdhary, Surabhi; Kainth, Amoldeep S.

    2016-01-01

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the “anchor away” (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. PMID:27185874

  4. Nucleic Acid Chaperone Activity of the ORF1 Protein from the Mouse LINE-1 Retrotransposon

    PubMed Central

    Martin, Sandra L.; Bushman, Frederic D.

    2001-01-01

    Non-LTR retrotransposons such as L1 elements are major components of the mammalian genome, but their mechanism of replication is incompletely understood. Like retroviruses and LTR-containing retrotransposons, non-LTR retrotransposons replicate by reverse transcription of an RNA intermediate. The details of cDNA priming and integration, however, differ between these two classes. In retroviruses, the nucleocapsid (NC) protein has been shown to assist reverse transcription by acting as a “nucleic acid chaperone,” promoting the formation of the most stable duplexes between nucleic acid molecules. A protein-coding region with an NC-like sequence is present in most non-LTR retrotransposons, but no such sequence is evident in mammalian L1 elements or other members of its class. Here we investigated the ORF1 protein from mouse L1 and found that it does in fact display nucleic acid chaperone activities in vitro. L1 ORF1p (i) promoted annealing of complementary DNA strands, (ii) facilitated strand exchange to form the most stable hybrids in competitive displacement assays, and (iii) facilitated melting of an imperfect duplex but stabilized perfect duplexes. These findings suggest a role for L1 ORF1p in mediating nucleic acid strand transfer steps during L1 reverse transcription. PMID:11134335

  5. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  6. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A Novel Mammalian Complex Containing Sin3B Mitigates Histone Acetylation and RNA Polymerase II Progression within Transcribed Loci▿

    PubMed Central

    Jelinic, Petar; Pellegrino, Jessica; David, Gregory

    2011-01-01

    Transcription requires the progression of RNA polymerase II (RNAP II) through a permissive chromatin structure. Recent studies of Saccharomyces cerevisiae have demonstrated that the yeast Sin3 protein contributes to the restoration of the repressed chromatin structure at actively transcribed loci. Yet, the mechanisms underlying the restoration of the repressive chromatin structure at transcribed loci and its significance in gene expression have not been investigated in mammals. We report here the identification of a mammalian complex containing the corepressor Sin3B, the histone deacetylase HDAC1, Mrg15, and the PHD finger-containing Pf1 and show that this complex plays important roles in regulation of transcription. We demonstrate that this complex localizes at discrete loci approximately 1 kb downstream of the transcription start site of transcribed genes, and this localization requires both Pf1's and Mrg15's interaction with chromatin. Inactivation of this mammalian complex promotes increased RNAP II progression within transcribed regions and subsequent increased transcription. Our results define a novel mammalian complex that contributes to the regulation of transcription and point to divergent uses of the Sin3 protein homologues throughout evolution in the modulation of transcription. PMID:21041482

  8. Functional Architecture of T7 RNA Polymerase Transcription Complexes

    PubMed Central

    Nayak, Dhananjaya; Guo, Qing; Sousa, Rui

    2007-01-01

    Summary T7 RNA polymerase is the best-characterized member of a widespread family of single-subunit RNA polymerases. Crystal structures of T7 RNA polymerase initiation and elongation complexes have provided a wealth of detailed information on RNA polymerase interactions with the promoter and transcription bubble, but the absence of DNA downstream of the melted region of the template in the initiation complex structure, and the absence of DNA upstream of the transcription bubble in the elongation complex structure means that our picture of the functional architecture of T7 RNA polymerase transcription complexes remains incomplete. Here we use the site-specifically tethered chemical nucleases and functional characterization of directed T7 RNAP mutants to both reveal the architecture of the duplex DNA that flanks the transcription bubble in the T7 RNAP initiation and elongation complexes, and to define the function of the interactions made by these duplex elements. We find that downstream duplex interactions made with a cluster of lysines (K711/K713/K714) are present during both elongation and initiation where they contribute to stabilizing a bend in the downstream DNA that is important for promoter opening. The upstream DNA in the elongation complex is also found to be sharply bent at the upstream edge of the transcription bubble, thereby allowing formation of upstream duplex:polymerase interactions that contribute to elongation complex stability. PMID:17580086

  9. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonin, Camila P., E-mail: mila_bonin@yahoo.com.br; Baccarin, Raquel Y.A., E-mail: baccarin@usp.br; Nostell, Katarina, E-mail: katarina.nostell@slu.se

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explainingmore » these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.« less

  10. Fail-safe transcription termination: Because one is never enough.

    PubMed

    Lemay, Jean-François; Bachand, François

    2015-01-01

    Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3' end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3' end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or "fail-safe" mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3'5' exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII.

  11. Crosslinking transcription factors to their recognition sequences with PtII complexes

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1992-01-01

    We have prepared phosphorothioate-containing cyclic oligodeoxynucleotides that fold into 'dumbbells' containing CRE and TRE sequences, the binding sequences for the CREB and JUN proteins, respectively. Six phosphorothioate residues were introduced into each of the recognition sequences. K2PtCl4 crosslinks CRE to CREB and TRE to JUN. The extent of crosslinking is about eight times greater than that observed with standard oligodeoxynucleotides and amounts to 30-50% of the efficiency of non-covalent association as estimated by gel-shift assays. Crosslinking is reversed by incubation with NaCN. The crosslinking reaction is specific--a dumbbell oligonucleotide with six phosphorothioate groups introduced into the Sp1 recognition sequence could not be crosslinked efficiently to CREB or JUN proteins with K2PtCl4. The binding of TRE to CREB is not strong enough for effective detection by gel-shift assays, but the TRE-CREB complex is crosslinked efficiently by K2PtCl4 and can then readily be detected.

  12. A network of epigenetic regulators guides developmental haematopoiesis in vivo.

    PubMed

    Huang, Hsuan-Ting; Kathrein, Katie L; Barton, Abby; Gitlin, Zachary; Huang, Yue-Hua; Ward, Thomas P; Hofmann, Oliver; Dibiase, Anthony; Song, Anhua; Tyekucheva, Svitlana; Hide, Winston; Zhou, Yi; Zon, Leonard I

    2013-12-01

    The initiation of cellular programs is orchestrated by key transcription factors and chromatin regulators that activate or inhibit target gene expression. To generate a compendium of chromatin factors that establish the epigenetic code during developmental haematopoiesis, a large-scale reverse genetic screen was conducted targeting orthologues of 425 human chromatin factors in zebrafish. A set of chromatin regulators was identified that target different stages of primitive and definitive blood formation, including factors not previously implicated in haematopoiesis. We identified 15 factors that regulate development of primitive erythroid progenitors and 29 factors that regulate development of definitive haematopoietic stem and progenitor cells. These chromatin factors are associated with SWI/SNF and ISWI chromatin remodelling, SET1 methyltransferase, CBP-p300-HBO1-NuA4 acetyltransferase, HDAC-NuRD deacetylase, and Polycomb repressive complexes. Our work provides a comprehensive view of how specific chromatin factors and their associated complexes play a major role in the establishment of haematopoietic cells in vivo.

  13. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification.

    PubMed

    Guan, Weihua; Chen, Liben; Rane, Tushar D; Wang, Tza-Huei

    2015-09-03

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  14. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    PubMed Central

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  15. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  16. The Argonaute protein TbAGO1 contributes to large and mini-chromosome segregation and is required for control of RIME retroposons and RHS pseudogene-associated transcripts.

    PubMed

    Durand-Dubief, Mickaël; Absalon, Sabrina; Menzer, Linda; Ngwabyt, Sandra; Ersfeld, Klaus; Bastin, Philippe

    2007-12-01

    The protist Trypanosoma brucei possesses a single Argonaute gene called TbAGO1 that is necessary for RNAi silencing. We previously showed that in strain 427, TbAGO1 knock-out leads to a slow growth phenotype and to chromosome segregation defects. Here we report that the slow growth phenotype is linked to defects in segregation of both large and mini-chromosome populations, with large chromosomes being the most affected. These phenotypes are completely reversed upon inducible re-expression of TbAGO1 fused to GFP, demonstrating their link with TbAGO1. Trypanosomes that do not express TbAGO1 show a general increase in the abundance of transcripts derived from the short retroposon RIME (Ribosomal Interspersed Mobile Element). Supplementary large RIME transcripts emerge in the absence of RNAi, a phenomenon coupled to the disappearance of short transcripts. These fluctuations are reversed by inducible expression of GFP::TbAGO1. Furthermore, we use a combination of Northern blots, RT-PCR and sequencing to reveal that RNAi controls expression of transcripts derived from RHS (Retrotransposon Hot Spot) pseudogenes (RHS genes with retro-element(s) integrated within their coding sequence). Absence of RNAi also leads to an increase of steady-state transcripts from regular RHS genes (those without retro-element), indicating a role for pseudogene in control of gene expression. However, analysis of retroposon abundance and arrangement in the genome of multiple clonal cell lines of TbAGO1-/- failed to reveal movement of mobile elements despite the increased amounts of retroposon transcripts.

  17. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics

    PubMed Central

    Antoni, Michael H.; Lutgendorf, Susan K.; Blomberg, Bonnie; Carver, Charles S.; Lechner, Suzanne; Diaz, Alain; Stagl, Jamie; Arevalo, Jesusa M.G.; Cole, Steven W.

    2011-01-01

    Background Chronic threat and anxiety are associated with pro-inflammatory transcriptional profiles in circulating leukocytes, but the causal direction of that relationship has not been established. This study tested whether a Cognitive-Behavioral Stress Management (CBSM) intervention targeting negative affect and cognition might counteract anxiety-related transcriptional alterations in people confronting a major medical threat. Methods 199 women undergoing primary treatment of Stage 0–III breast cancer were randomized to a 10-week CBSM protocol or an active control condition. 79 provided peripheral blood leukocyte samples for genome-wide transcriptional profiling and bioinformatic analyses at baseline, 6-, and 12-month follow-ups. Results Baseline negative affect was associated with > 50% differential expression of 201 leukocyte transcripts, including up-regulated expression of pro-inflammatory and metastasis-related genes. CBSM altered leukocyte expression of 91 genes by > 50% at follow-up (Group × Time interaction), including down-regulation of pro-inflammatory and metastasis-related genes and up-regulation of Type I interferon response genes. Promoter-based bioinformatic analyses implicated decreased activity of NF-κB/Rel and GATA family transcription factors and increased activity of Interferon Response Factors and the Glucocorticoid Receptor (GR) as potential mediators of CBSM-induced transcriptional alterations. Conclusions In early stage breast cancer patients, a 10-week CBSM intervention can reverse anxiety-related up-regulation of pro-inflammatory gene expression in circulating leukocytes. These findings clarify the molecular signaling pathways by which behavioral interventions can influence physical health and alter peripheral inflammatory processes that may reciprocally affect brain affective and cognitive processes. PMID:22088795

  18. SON and its alternatively spliced isoforms control MLL complex-mediated H3K4me3 and transcription of leukemia-associated genes

    PubMed Central

    Kim, Jung-Hyun; Baddoo, Melody C.; Park, Eun Young; Stone, Joshua K.; Park, Hyeonsoo; Butler, Thomas W.; Huang, Gang; Yan, Xiaomei; Pauli-Behn, Florencia; Myers, Richard M.; Tan, Ming; Flemington, Erik K.; Lim, Ssang-Taek; Erin Ahn, Eun-Young

    2016-01-01

    SUMMARY Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy, but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia. PMID:26990989

  19. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  20. Global Profiling and Molecular Characterization of Alternative Splicing Events Misregulated in Lung Cancer ▿ †

    PubMed Central

    Misquitta-Ali, Christine M.; Cheng, Edith; O'Hanlon, Dave; Liu, Ni; McGlade, C. Jane; Tsao, Ming Sound; Blencowe, Benjamin J.

    2011-01-01

    Alternative splicing (AS) is a widespread mechanism underlying the generation of proteomic and regulatory complexity. However, which of the myriad of human AS events play important roles in disease is largely unknown. To identify frequently occurring AS events in lung cancer, we used AS microarray profiling and reverse transcription-PCR (RT-PCR) assays to survey patient-matched normal and adenocarcinoma tumor tissues from the lungs of 29 individuals diagnosed with non-small cell lung cancer (NSCLC). Of 5,183 profiled alternative exons, four displayed tumor-associated changes in the majority of the patients. These events affected transcripts from the VEGFA, MACF1, APP, and NUMB genes. Similar AS changes were detected in NUMB and APP transcripts in primary breast and colon tumors. Tumor-associated increases in NUMB exon 9 inclusion correlated with reduced levels of NUMB protein expression and activation of the Notch signaling pathway, an event that has been linked to tumorigenesis. Moreover, short hairpin RNA (shRNA) knockdown of NUMB followed by isoform-specific rescue revealed that expression of the exon 9-skipped (nontumor) isoform represses Notch target gene activation whereas expression of the exon 9-included (tumor) isoform lacks this activity and is capable of promoting cell proliferation. The results thus reveal widespread AS changes in NSCLC that impact cell signaling in a manner that likely contributes to tumorigenesis. PMID:21041478

  1. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer.

    PubMed

    Misquitta-Ali, Christine M; Cheng, Edith; O'Hanlon, Dave; Liu, Ni; McGlade, C Jane; Tsao, Ming Sound; Blencowe, Benjamin J

    2011-01-01

    Alternative splicing (AS) is a widespread mechanism underlying the generation of proteomic and regulatory complexity. However, which of the myriad of human AS events play important roles in disease is largely unknown. To identify frequently occurring AS events in lung cancer, we used AS microarray profiling and reverse transcription-PCR (RT-PCR) assays to survey patient-matched normal and adenocarcinoma tumor tissues from the lungs of 29 individuals diagnosed with non-small cell lung cancer (NSCLC). Of 5,183 profiled alternative exons, four displayed tumor-associated changes in the majority of the patients. These events affected transcripts from the VEGFA, MACF1, APP, and NUMB genes. Similar AS changes were detected in NUMB and APP transcripts in primary breast and colon tumors. Tumor-associated increases in NUMB exon 9 inclusion correlated with reduced levels of NUMB protein expression and activation of the Notch signaling pathway, an event that has been linked to tumorigenesis. Moreover, short hairpin RNA (shRNA) knockdown of NUMB followed by isoform-specific rescue revealed that expression of the exon 9-skipped (nontumor) isoform represses Notch target gene activation whereas expression of the exon 9-included (tumor) isoform lacks this activity and is capable of promoting cell proliferation. The results thus reveal widespread AS changes in NSCLC that impact cell signaling in a manner that likely contributes to tumorigenesis.

  2. Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana.

    PubMed

    Mishra, Sonal; Shukla, Aparna; Upadhyay, Swati; Sanchita; Sharma, Pooja; Singh, Seema; Phukan, Ujjal J; Meena, Abha; Khan, Feroz; Tripathi, Vineeta; Shukla, Rakesh Kumar; Shrama, Ashok

    2014-04-01

    Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72% or more of the total predicted 2,052 genes had a gap distance of less than 400 bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,052 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition. © 2013 Institute of Botany, Chinese Academy of Sciences.

  3. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  4. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  5. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway.

    PubMed

    Rajput, Pallavi; Pandey, Vijaya; Kumar, Vijay

    2016-08-01

    The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. PEPCase Transcript Levels in Mesembryanthemum crystallinum Decline Rapidly upon Relief from Salt Stress 1

    PubMed Central

    Vernon, Daniel M.; Ostrem, James A.; Schmitt, Juergen M.; Bohnert, Hans J.

    1988-01-01

    Mesembryanthemum crystallinum plants respond to water stress by changing their pathway of carbon assimilation from C3 to Crassulacean acid metabolism (CAM). Stressed plants are characterized by elevated levels of phosphoenolpyruvate carboxylase (PEPCase) mRNA, protein, and enzyme activity. We wanted to determine whether CAM is a reversible response to environmental conditions or a developmentally programmed adaptation that is irreversibly expressed once induced. Plants were osmotically stressed by irrigation with 500 millimolar NaCl for 12 days to elicit CAM. Salt was then thoroughly flushed from the soil and PEPCase protein and transcript levels were monitored. PEPCase mRNA levels dropped by 77% within 2.5 hours after salt removal. PEPCase activity and polypeptide levels declined more slowly, with a half-life of 2 to 3 days. These results show that PEPCase expression in M. crystallinum is a reversible response to stress that is regulated at the level of transcription or stability of the PEPCase mRNA. Images Fig. 2 Fig. 3 PMID:16666021

  7. Effect of thermal stress on HSP90 expression of Bali cattle in Barru district, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Aritonang, S. B.; Yuniati, R.; Abinawanto, Imron, M.; Bowolaksono, A.

    2017-07-01

    Heat shock protein 90-kDa is induced stress protein that expressed in response to stress and play crucial roles in environmental stress tolerance and adaptation. This study aimed to determine effect of environmental heat stress on the HSP90 expression of Bali cattle. Heat stress was measured by temperature humidity index in the morning and evening across 5-days on August 2016. The blood samples of Bali cattle were taken from venous jungularis. HSP90 was derived from RNA isolation of whole blood then was followed reverse transcription two steps. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to analyze the transcript variants of HSP90, followed by comparative ΔΔCt to determine HSP90 expression. The results of temperature and humidity index (THI) measurement indicated THI on afternoon was higher than in the morning. The difference in environmental conditions in the morning and afternoon effected changes on rectal temperature but neither did on Hsp90 expression.

  8. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae.

    PubMed

    Uthe, Henriette; Vanselow, Jens T; Schlosser, Andreas

    2017-02-27

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15 N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.

  9. Evolution of the transcription complex during sporulation of Bacillus subtilis.

    PubMed

    Brevet, J

    1976-01-01

    Ribonucleic acid polymerase activity in partially purified extract of cells of Bacillus subtilis harvested at different times (t-1, to, t1, and t2) was studied by zone centrifugation. During the course of sporulation, vegetative sigma-factor activity decreased and the transcription complex lost some of its affinity for active sigma factor. The complex underwent a two-stage change in sedimentation value, from 14.5S in vegetative growth phase to a 13S species very early in sporulation to a 16S species at later times. Two SpoO mutants have been studied by zone centrifugation. One strain, a rifampin-resistant (RfmR) mutant, failed to show any modification of the transcription complex, whereas the other, a Rfms strain, underwent a partial evolution of the transcription complex after to.

  10. Efficacy of non-nucleoside reverse transcriptase inhibitor-based highly active antiretroviral therapy in Thai HIV-infected children aged two years or less.

    PubMed

    Puthanakit, Thanyawee; Aurpibul, Linda; Sirisanthana, Thira; Sirisanthana, Virat

    2009-03-01

    Twenty-six Thai HIV-infected children, aged 2 years or less were prospectively enrolled to receive non-nucleoside reverse transcription inhibitor-based highly active antiretroviral therapy (HAART). Twenty-two children (85%) had World Health Organization clinical stage 3 or 4. The median baseline CD4 cell percentage and plasma HIV RNA were 17% and 5.9 log 10 copies/mL, respectively. The median age at HAART initiation was 9.8 months (range, 1.5-24.0). One child died. The mean CD4 cell percentages at 24, 48, and 96 weeks of treatment were 26%, 31%, and 37%, respectively. The proportions of children with virologic suppression (<400 copies/mL) at week 24 and 48 were 14/26 (54%) and 19/26 (73%), respectively. Non-nucleoside reverse transcription inhibitor-based HAART is safe and effective in HIV-infected young children in a resource-limited setting.

  11. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors.

    PubMed

    Bridge, Julia A

    2017-01-01

    The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.

  12. Reciprocal transcriptional regulation of metabolic and signaling pathways correlates with disease severity in heart failure.

    PubMed

    Barth, Andreas S; Kumordzie, Ami; Frangakis, Constantine; Margulies, Kenneth B; Cappola, Thomas P; Tomaselli, Gordon F

    2011-10-01

    Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. Using a meta-analysis of 28 experimental (mouse, rat, dog) and human HF microarray studies, we demonstrate that gene expression changes are characterized by a coordinated and reciprocal regulation of major metabolic and signaling pathways. In response to a wide variety of stressors in animal models of HF, including ischemia, pressure overload, tachypacing, chronic isoproterenol infusion, Chagas disease, and transgenic mouse models, major metabolic pathways are invariably downregulated, whereas cell signaling pathways are upregulated. In contrast to this uniform transcriptional pattern that recapitulates a fetal gene expression program in experimental animal models of HF, human HF microarray studies displayed a greater heterogeneity, with some studies even showing upregulation of metabolic and downregulation of signaling pathways in end-stage human hearts. These discrepant results between animal and human studies are due to a number of factors, prominently cardiac disease and variable exposure to cold cardioplegic solution in nonfailing human samples, which can downregulate transcripts involved in oxidative phosphorylation (OXPHOS), thus mimicking gene expression patterns observed in failing samples. Additionally, β-blockers and ACE inhibitor use in end-stage human HF was associated with higher levels of myocardial OXPHOS transcripts, thus partially reversing the fetal gene expression pattern. In human failing samples, downregulation of metabolism was associated with hemodynamic markers of disease severity. Irrespective of the etiology, gene expression in failing myocardium is characterized by downregulation of metabolic transcripts and concomitant upregulation of cell signaling pathways. Gene expression changes along this metabolic-signaling axis in mammalian myocardium are a consistent feature in the heterogeneous transcriptional response observed in phenotypically similar models of HF.

  13. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava.

    PubMed

    Wei, Yunxie; Liu, Guoyin; Bai, Yujing; Xia, Feiyu; He, Chaozu; Shi, Haitao; Foyer, Christine

    2017-10-13

    Similar to the situation in animals, melatonin biosynthesis is regulated by four sequential enzymatic steps in plants. Although the melatonin synthesis genes have been identified in various plants, the upstream transcription factors of them remain unknown. In this study on cassava (Manihot esculenta), we found that MeWRKY79 and heat-shock transcription factor 20 (MeHsf20) targeted the W-box and the heat-stress elements (HSEs) in the promoter of N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively. The interaction between MeWRKY79, MeHsf20, and the MeASMT2 promoter was evidenced by the activation of promoter activity and chromatin immunoprecipitation (ChIP) in cassava protoplasts, and by an in vitro electrophoretic mobility shift assay (EMSA). The transcripts of MeWRKY79, MeHsf20, and MeASMT2 were all regulated by a 22-amino acid flagellin peptide (flg22) and by Xanthomonas axonopodis pv manihotis (Xam). In common with the phenotype of MeASMT2, transient expression of MeWRKY79 and MeHsf20 in Nicotiana benthamiana leaves conferred improved disease resistance. Through virus-induced gene silencing (VIGS) in cassava, we found that MeWRKY79- and MeHsf20-silenced plants showed lower transcripts of MeASMT2 and less accumulation of melatonin, which resulted in disease sensitivity that could be reversed by exogenous melatonin. Taken together, these results indicate that MeASMT2 is a target of MeWRKY79 and MeHsf20 in plant disease resistance. This study identifies novel upstream transcription factors of melatonin synthesis genes in cassava, thus extending our knowledge of the complex modulation of melatonin synthesis in plant defense. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The multitalented Mediator complex.

    PubMed

    Carlsten, Jonas O P; Zhu, Xuefeng; Gustafsson, Claes M

    2013-11-01

    The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.

    PubMed

    Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel

    2006-04-28

    Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.

  16. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction--positive

    USDA-ARS?s Scientific Manuscript database

    Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...

  17. Strand-specific real-time RT-PCR quantitation of Maize fine streak virus genomic and positive-sense RNAs using high temperature reverse transcription

    USDA-ARS?s Scientific Manuscript database

    Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...

  18. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.

    PubMed

    Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E

    2007-12-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.

  19. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp.

    PubMed

    Duchi, Diego; Mazumder, Abhishek; Malinen, Anssi M; Ebright, Richard H; Kapanidis, Achillefs N

    2018-06-06

    RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.

  20. Structural insights into the rhabdovirus transcription/replication complex.

    PubMed

    Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc

    2011-12-01

    The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.

    PubMed

    Fryer, J P; Oetting, W S; Brott, M J; King, R A

    2001-11-01

    We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.

  2. High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay.

    PubMed

    Yucha, Robert W; Hobbs, Kristen S; Hanhauser, Emily; Hogan, Louise E; Nieves, Wildaliz; Ozen, Mehmet O; Inci, Fatih; York, Vanessa; Gibson, Erica A; Thanh, Cassandra; Shafiee, Hadi; El Assal, Rami; Kiselinova, Maja; Robles, Yvonne P; Bae, Helen; Leadabrand, Kaitlyn S; Wang, ShuQi; Deeks, Steven G; Kuritzkes, Daniel R; Demirci, Utkan; Henrich, Timothy J

    2017-06-01

    Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs) increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent) infection. We therefore developed a microfluidic single-cell-in-droplet (scd)PCR assay to directly measure the number of CD4 + T cells that produce unspliced (us)RNA and multiply spliced (ms)RNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin) or T cell receptor (TCR) stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4+ T-cells in a single experiment. The scdPCR method was then applied to CD4 + T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous-increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Fail-safe transcription termination: Because one is never enough

    PubMed Central

    Lemay, Jean-François; Bachand, François

    2015-01-01

    Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3′ end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3′ end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or “fail-safe” mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3′5′ exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII. PMID:26273910

  4. fbpABC gene cluster in Neisseria meningitidis is transcribed as an operon.

    PubMed

    Khun, H H; Deved, V; Wong, H; Lee, B C

    2000-12-01

    The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR.

  5. fbpABC Gene Cluster in Neisseria meningitidis Is Transcribed as an Operon

    PubMed Central

    Khun, Heng H.; Deved, Vinay; Wong, Howard; Lee, B. Craig

    2000-01-01

    The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR. PMID:11083849

  6. Noncoding RNAs of the Ultrabithorax Domain of the Drosophila Bithorax Complex

    PubMed Central

    Pease, Benjamin; Borges, Ana C.; Bender, Welcome

    2013-01-01

    RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function. PMID:24077301

  7. The FRIGIDA Complex Activates Transcription of FLC, a Strong Flowering Repressor in Arabidopsis, by Recruiting Chromatin Modification Factors[C][W

    PubMed Central

    Choi, Kyuha; Kim, Juhyun; Hwang, Hyun-Ju; Kim, Sanghee; Park, Chulmin; Kim, Sang Yeol; Lee, Ilha

    2011-01-01

    The flowering of Arabidopsis thaliana winter annuals is delayed until the subsequent spring by the strong floral repressor FLOWERING LOCUS C (FLC). FRIGIDA (FRI) activates the transcription of FLC, but the molecular mechanism remains elusive. The fri mutation causes early flowering with reduced FLC expression similar to frl1, fes1, suf4, and flx, which are mutants of FLC-specific regulators. Here, we report that FRI acts as a scaffold protein interacting with FRL1, FES1, SUF4, and FLX to form a transcription activator complex (FRI-C). Each component of FRI-C has a specialized function. SUF4 binds to a cis-element of the FLC promoter, FLX and FES1 have transcriptional activation potential, and FRL1 and FES1 stabilize the complex. FRI-C recruits a general transcription factor, a TAF14 homolog, and chromatin modification factors, the SWR1 complex and SET2 homolog. Complex formation was confirmed by the immunoprecipitation of FRI-associated proteins followed by mass spectrometric analysis. Our results provide insight into how a specific transcription activator recruits chromatin modifiers to regulate a key flowering gene. PMID:21282526

  8. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4.

    PubMed Central

    Wu, S Y; Kershnar, E; Chiang, C M

    1998-01-01

    TFIID is a multiprotein complex comprised of the TATA-binding protein (TBP) and an array of TBP-associated factors (TAFIIs). Whereas TBP is sufficient for basal transcription in conjunction with other general transcription factors and RNA polymerase II, TAFIIs are additionally required for activator-dependent transcription in mammalian cell-free transcription systems. However, recent in vivo studies carried out in yeast suggest that TAFIIs are not globally required for activator function. The discrepancy between in vivo yeast studies and in vitro mammalian cell-free systems remains to be resolved. In this study, we describe a mammalian cell-free transcription system reconstituted with only recombinant proteins and epitope-tagged multiprotein complexes. Transcriptional activation can be recapitulated in this highly purified in vitro transcription system in the absence of TAFIIs. This TBP-mediated activation is not induced by human mediator, another transcriptional coactivator complex potentially implicated in activator response. In contrast, general transcription factors TFIIH and TFIIA play a significant role in TBP-mediated activation, which can be detected in vitro with Gal4 fusion proteins containing various transcriptional activation domains. Our data, therefore, suggest that TFIIH and TFIIA can mediate activator function in the absence of TAFIIs. PMID:9687514

  9. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells

    PubMed Central

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-01-01

    Objective: It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti-Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). Materials and Methods: The activity of IgY anti-M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). Results: IgY anti-M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti-M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis. Conclusions: We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti-M. tuberculosis, stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. SUMMARY Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti-Mycobacterium tuberculosis complexIgY anti-M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti-M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosisThe increasing IL-2 and IFN-γ productions in PBMC were related to stimulation on mRNA transcription which can induce proliferation of PBMC. Abbreviations Used: IgY anti-M. tuberculosis: Immunoglobulin Y anti-Mycobacterium tuberculosis; IL-2: Interleukin-2; IFN-γ: Interferon-γ; PBMCs: Peripheral blood mononuclear cells. PMID:29333035

  10. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells.

    PubMed

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-12-01

    It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti- Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). The activity of IgY anti- M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). IgY anti- M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti- M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti- M. tuberculosis . We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti- M. tuberculosis , stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti- Mycobacterium tuberculosis complexIgY anti- M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti- M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis The increasing IL-2 and IFN-γ productions in PBMC were related to stimulation on mRNA transcription which can induce proliferation of PBMC. Abbreviations Used: IgY anti- M . tuberculosis: Immunoglobulin Y anti- Mycobacterium tuberculosis ; IL-2: Interleukin-2; IFN-γ: Interferon-γ; PBMCs: Peripheral blood mononuclear cells.

  11. Transcriptional Elongation Control of Hepatitis B Virus Covalently Closed Circular DNA Transcription by Super Elongation Complex and BRD4.

    PubMed

    Francisco, Joel Celio; Dai, Qian; Luo, Zhuojuan; Wang, Yan; Chong, Roxanne Hui-Heng; Tan, Yee Joo; Xie, Wei; Lee, Guan-Huei; Lin, Chengqi

    2017-10-01

    Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. HBV reactivation during or after chemotherapy is a potentially fatal complication for cancer patients with chronic HBV infection. Transcription of HBV is a critical intermediate step of the HBV life cycle. However, factors controlling HBV transcription remain largely unknown. Here, we found that different P-TEFb complexes are involved in the transcription of the HBV viral genome. Both BRD4 and the super elongation complex (SEC) bind to the HBV genome. The treatment of bromodomain inhibitor JQ1 stimulates HBV transcription and increases the occupancy of BRD4 on the HBV genome, suggesting the bromodomain-independent recruitment of BRD4 to the HBV genome. JQ1 also leads to the increased binding of SEC to the HBV genome, and SEC is required for JQ1-induced HBV transcription. These findings reveal a novel mechanism by which the HBV genome hijacks the host P-TEFb-containing complexes to promote its own transcription. Our findings also point out an important clinical implication, that is, the potential risk of HBV reactivation during therapy with a BRD4 inhibitor, such as JQ1 or its analogues, which are a potential treatment for acute myeloid leukemia. Copyright © 2017 American Society for Microbiology.

  12. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    PubMed Central

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  13. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.

    PubMed

    Choudhury, D; Saini, S

    2018-02-01

    Bacteria frequently encounter multiple sugars in their natural surroundings. While the dynamics of utilization of glucose-containing sugar mixtures have been well investigated, there are few reports addressing regulation of utilization of glucose-free mixtures particularly pentoses. These sugars comprise a considerable fraction in hemicellulose which can be converted by suitable biocatalysts to biofuels and other value-added products. Hence, understanding of transcriptional cross-regulation among different pentose sugar utilization systems is essential for successful development of industrial strains. In this work, we study mixed-sugar utilization with respect to three secondary carbon sources - arabinose, xylose and rhamnose at single-cell resolution in Escherichia coli. Our results reveal that hierarchical utilization among these systems is not strict but rather can be eliminated or reversed by altering the relative ratios of the preferred and nonpreferred sugars. Since transcriptional cross-regulation among pentose sugar systems operates through competitive binding of noncognate sugar-regulator complex, altering sugar concentrations is thought to eliminate nonspecific binding by affecting concentration of the regulator - sugar complexes. Plant biomass comprises of hexose and pentose sugar mixtures. These sugars are processed by micro-organisms to form products like biofuels, polymers etc. One of the major challenges with mixed-sugar processing by micro-organisms is hierarchical utilization of sugars due to cross-regulation among sugar systems. In this work, we discuss cross-regulation among three secondary carbon sources - arabinose, xylose and rhamnose. Our results show that cross-regulation between pentose sugars is complex with multiple layers of regulation. These aspects need to be addressed for effective design of processes to extract energy from biomass. © 2017 The Society for Applied Microbiology.

  14. Transient state kinetics of transcription elongation by T7 RNA polymerase.

    PubMed

    Anand, Vasanti Subramanian; Patel, Smita S

    2006-11-24

    The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.

  15. MinK-dependent internalization of the IKs potassium channel.

    PubMed

    Xu, Xianghua; Kanda, Vikram A; Choi, Eun; Panaghie, Gianina; Roepke, Torsten K; Gaeta, Stephen A; Christini, David J; Lerner, Daniel J; Abbott, Geoffrey W

    2009-06-01

    KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.

  16. Impact of Pyrrolidine Dithiocarbamate and Interleukin-6 on Mammalian Target of Rapamycin Complex 1 Regulation and Global Protein TranslationS⃞

    PubMed Central

    Song, Shaoming; Abdelmohsen, Kotb; Zhang, Yongqing; Becker, Kevin G.; Gorospe, Myriam

    2011-01-01

    Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4. PMID:21917559

  17. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  18. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    PubMed

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    PubMed Central

    Stewart, Frank J.; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward F.

    2014-01-01

    ABSTRACT A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N2 and N2O production by denitrification was achieved at 205 and 297 nM O2, respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O2. This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O2 inhibition kinetics but strongly stimulated N2O production by denitrification. These results identify new O2 thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses. PMID:25352619

  20. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  1. Reversible catalytic dehydrogenation of alcohols for energy storage

    PubMed Central

    Bonitatibus, Peter J.; Chakraborty, Sumit; Doherty, Mark D.; Siclovan, Oltea; Jones, William D.; Soloveichik, Grigorii L.

    2015-01-01

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. This reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels. PMID:25588879

  2. Reversible catalytic dehydrogenation of alcohols for energy storage

    DOE PAGES

    Bonitatibus, Jr., Peter J.; Chakraborty, Sumit; Doherty, Mark D.; ...

    2015-01-14

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this paper, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. Finally, this reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels.

  3. DEFINING THE PLAYERS IN HIGHER-ORDER NETWORKS: PREDICTIVE MODELING FOR REVERSE ENGINEERING FUNCTIONAL INFLUENCE NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Costa, Michelle N.; Stevens, S.L.

    A difficult problem that is currently growing rapidly due to the sharp increase in the amount of high-throughput data available for many systems is that of determining useful and informative causative influence networks. These networks can be used to predict behavior given observation of a small number of components, predict behavior at a future time point, or identify components that are critical to the functioning of the system under particular conditions. In these endeavors incorporating observations of systems from a wide variety of viewpoints can be particularly beneficial, but has often been undertaken with the objective of inferring networks thatmore » are generally applicable. The focus of the current work is to integrate both general observations and measurements taken for a particular pathology, that of ischemic stroke, to provide improved ability to produce useful predictions of systems behavior. A number of hybrid approaches have recently been proposed for network generation in which the Gene Ontology is used to filter or enrich network links inferred from gene expression data through reverse engineering methods. These approaches have been shown to improve the biological plausibility of the inferred relationships determined, but still treat knowledge-based and machine-learning inferences as incommensurable inputs. In this paper, we explore how further improvements may be achieved through a full integration of network inference insights achieved through application of the Gene Ontology and reverse engineering methods with specific reference to the construction of dynamic models of transcriptional regulatory networks. We show that integrating two approaches to network construction, one based on reverse-engineering from conditional transcriptional data, one based on reverse-engineering from in situ hybridization data, and another based on functional associations derived from Gene Ontology, using probabilities can improve results of clustering as evaluated by a predictive model of transcriptional expression levels.« less

  4. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription

    PubMed Central

    Fletcher, Adam J; Christensen, Devin E; Nelson, Chad; Tan, Choon Ping; Schaller, Torsten; Lehner, Paul J; Sundquist, Wesley I; Towers, Greg J

    2015-01-01

    TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved. PMID:26101372

  6. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains.

    PubMed

    Mehle, Nataša; Dobnik, David; Ravnikar, Maja; Pompe Novak, Maruša

    2018-05-03

    RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.

  7. One-Step Reverse Transcription-Polymerase Chain Reaction for Ebola and Marburg Viruses.

    PubMed

    Park, Sun-Whan; Lee, Ye-Ji; Lee, Won-Ja; Jee, Youngmee; Choi, WooYoung

    2016-06-01

    Ebola and Marburg viruses (EBOVs and MARVs, respectively) are causative agents of severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. In 2014, there was a major Ebola outbreak in various countries in West Africa, including Guinea, Liberia, Republic of Sierra Leone, and Nigeria. EBOV and MARV are clinically difficult to diagnose and distinguish from other African epidemic diseases. Therefore, in this study, we aimed to develop a method for rapid identification of the virus to prevent the spread of infection. We established a conventional one-step reverse transcription-polymerase chain reaction (RT-PCR) assay for these pathogens based on the Superscript Reverse Transcriptase-Platinum Taq polymerase enzyme mixture. All assays were thoroughly optimized using in vitro-transcribed RNA. We designed seven primer sets of nucleocapsid protein (NP) genes based on sequences from seven filoviruses, including five EBOVs and two MARVs. To evaluate the sensitivity of the RT-PCR assay for each filovirus, 10-fold serial dilutions of synthetic viral RNA transcripts of EBOV or MARV NP genes were used to assess detection limits of viral RNA copies. The potential for these primers to cross react with other filoviruses was also examined. The results showed that the primers were specific for individual genotype detection in the examined filoviruses. The assay established in this study may facilitate rapid, reliable laboratory diagnosis in suspected cases of Ebola and Marburg hemorrhagic fevers.

  8. A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus

    PubMed Central

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A.; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4–10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection. PMID:23977101

  9. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus.

    PubMed

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A; Hufert, Frank T; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection.

  10. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae

    PubMed Central

    Uthe, Henriette; Vanselow, Jens T.; Schlosser, Andreas

    2017-01-01

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis. PMID:28240253

  11. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes.

    PubMed

    Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-11-01

    We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a approximately 21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes.

  12. [Human stem cells from apical papilla can regenerate dentin-pulp complex].

    PubMed

    Xiong, Huacui; Chen, Ke; Huang, Yibin; Liu, Caiqi

    2013-10-01

    To regenerate dentin-pulp complex by tissue engineering with human stem cells from apical papilla cells (SCAP) as the seed cells. SCAP was separated from from normal human impacted third molars with immature roots by outgrowth culture. The cells were then cultured in the differentiation medium for 3 weeks or in normal medium for 60 days, and analyzed for mineralization potential by Alizarin red staining. The osteo/odontogenic markers including alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OC) and dentin sialoprotein (DSP) were investigated by immunofluorescence staining and reverse transcription-polymerase chain reaction. The co-cultured mixture of SCAP and HA/TCP, or HA/TCP alone was implanted subcutaneously on the back of nude mice for 8 weeks, and the implants were collected and examined by HE and immunohistochemical staining. Round alizarin red-positive nodules formed in the isolated cells after cell culture in the differentiation medium for 3 weeks or in normal medium for 60 days with positive staining for osteo/odontogenic markers. SCAP with HA/TCP could regenerate pulp-dentin complex-like tissue in nude mice. The cells near the dentin-like tissue were positive for DSP. No mineral tissue was found in mice receiving HA/TCP implantation. SCAP may serve as a promising seed cell for dentin-pulp complex tissue engineering.

  13. Multivalency regulates activity in an intrinsically disordered transcription factor

    PubMed Central

    Clark, Sarah; Myers, Janette B; King, Ashleigh; Fiala, Radovan; Novacek, Jiri; Pearce, Grant; Heierhorst, Jörg; Reichow, Steve L

    2018-01-01

    The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation. PMID:29714690

  14. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  15. Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo.

    PubMed

    Petrenko, Natalia; Jin, Yi; Wong, Koon Ho; Struhl, Kevin

    2017-07-12

    The Mediator complex has been described as a general transcription factor, but it is unclear if it is essential for Pol II transcription and/or is a required component of the preinitiation complex (PIC) in vivo. Here, we show that depletion of individual subunits, even those essential for cell growth, causes a general but only modest decrease in transcription. In contrast, simultaneous depletion of all Mediator modules causes a drastic decrease in transcription. Depletion of head or middle subunits, but not tail subunits, causes a downstream shift in the Pol II occupancy profile, suggesting that Mediator at the core promoter inhibits promoter escape. Interestingly, a functional PIC and Pol II transcription can occur when Mediator is not detected at core promoters. These results provide strong evidence that Mediator is essential for Pol II transcription and stimulates PIC formation, but it is not a required component of the PIC in vivo.

  16. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

    PubMed

    Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu

    2016-07-19

    The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.

  17. Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol.

    PubMed

    Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph

    2016-01-01

    Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.

  18. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements

    PubMed Central

    Mielcarek, Michal; Zielonka, Daniel; Carnemolla, Alisia; Marcinkowski, Jerzy T.; Guidez, Fabien

    2015-01-01

    For the past decade protein acetylation has been shown to be a crucial post-transcriptional modification involved in the regulation of protein functions. Histone acetyltransferases (HATs) mediate acetylation of histones which results in the nucleosomal relaxation associated with gene expression. The reverse reaction, histone deacetylation, is mediated by histone deacetylases (HDACs) leading to chromatin condensation followed by transcriptional repression. HDACs are divided into distinct classes: I, IIa, IIb, III, and IV, on the basis of size and sequence homology, as well as formation of distinct repressor complexes. Implications of HDACs in many diseases, such as cancer, heart failure, and neurodegeneration, have identified these molecules as unique and attractive therapeutic targets. The emergence of HDAC4 among the members of class IIa family as a major player in synaptic plasticity raises important questions about its functions in the brain. The characterization of HDAC4 specific substrates and molecular partners in the brain will not only provide a better understanding of HDAC4 biological functions but also might help to develop new therapeutic strategies to target numerous malignancies. In this review we highlight and summarize recent achievements in understanding the biological role of HDAC4 in neurodegenerative processes. PMID:25759639

  19. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance.

    PubMed

    Sun, Hongbo; Jia, Zhen; Cao, Dong; Jiang, Bingjun; Wu, Cunxiang; Hou, Wensheng; Liu, Yike; Fei, Zhihong; Zhao, Dazhong; Han, Tianfu

    2011-01-01

    Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. A photoperiod-responsive FT homologue GmFT (renamed as GmFT2a hereafter) was cloned from the photoperiod-sensitive cultivar Zigongdongdou. GmFT2a gene expression under different photoperiods was analyzed by real-time quantitative PCR. In situ hybridization showed direct evidence for its expression during flowering-related processes. GmFT2a was shown to promote flowering using transgenic studies in Arabidopsis and soybean. The effects of photoperiod and temperature on GmFT2a expression were also analyzed in two cultivars with different photoperiod-sensitivities. GmFT2a expression is regulated by photoperiod. Analyses of GmFT2a transcripts revealed a strong correlation between GmFT2a expression and flowering maintenance. GmFT2a transcripts were observed continuously within the vascular tissue up to the shoot apex during flowering. By contrast, transcripts decreased to undetectable levels during flowering reversion. In grafting experiments, the early-flowering, photoperiod-insensitive stock Heihe27 promotes the appearance of GmFT2a transcripts in the shoot apex of scion Zigongdongdou under noninductive LD conditions. The photothermal effects of GmFT2a expression diversity in cultivars with different photoperiod-sensitivities and a hypothesis is proposed. GmFT2a expression is associated with flowering induction and maintenance. Therefore, GmFT2a is a potential target gene for soybean breeding, with the aim of increasing geographic adaptation of this crop.

  20. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132.

    PubMed

    Fiedler, M A; Wernke-Dollries, K; Stark, J M

    1998-08-01

    The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.

  1. Cyclin A and the retinoblastoma gene product complex with a common transcription factor.

    PubMed

    Bandara, L R; Adamczewski, J P; Hunt, T; La Thangue, N B

    1991-07-18

    The retinoblastoma gene (Rb) product is a negative regulator of cellular proliferation, an effect that could be mediated in part at the transcriptional level through its ability to complex with the sequence-specific transcription factor DRTF1. This interaction is modulated by adenovirus E1a, which sequesters the Rb protein and several other cellular proteins, including cyclin A, a molecule that undergoes cyclical accumulation and destruction during each cell cycle and which is required for cell cycle progression. Cyclin A, which also complexes with DRTF1, facilitates the efficient assembly of the Rb protein into the complex. This suggests a role for cyclin A in regulating transcription and defines a transcription factor through which molecules that regulate the cell cycle in a negative fashion, such as Rb, and in a positive fashion, such as cyclin A, interact. Mutant loss-of-function Rb alleles, which occur in a variety of tumour cells, also fail to complex with E1a and large T antigen. Here we report on a naturally occurring loss-of-function Rb allele encoding a protein that fails to complex with DRTF1. This might explain how mutation in the Rb gene prevents negative growth control.

  2. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  3. Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel

    PubMed Central

    Hietala, S. K.; Crossley, B. M.

    2006-01-01

    In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950

  4. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity

    PubMed Central

    Dasgupta, Arko; Chen, Chen-Hui; Lee, ChangHwan; Gladfelter, Amy S.; Dunlap, Jay C.; Loros, Jennifer J.

    2015-01-01

    Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability of the adduct state (light state), that is, altering the photocycle length. We have examined the biological significance of VVD photocycle length to photoadaptation and report that a double substitution mutant (vvdI74VI85V), previously shown to have a very fast light to dark state reversion in vitro, shows significantly reduced interaction with the White Collar Complex (WCC) resulting in a substantial photoadaptation defect. This reduced interaction impacts photoreceptor transcription factor WHITE COLLAR-1 (WC-1) protein stability when N. crassa is exposed to light: The fast-reverting mutant VVD is unable to form a dynamic VVD-WCC pool of the size required for photoadaptation as assayed both by attenuation of gene expression and the ability to respond to increasing light intensity. Additionally, transcription of the clock gene frequency (frq) is sensitive to changing light intensity in a wild-type strain but not in the fast photo-reversion mutant indicating that the establishment of this dynamic VVD-WCC pool is essential in general photobiology and circadian biology. Thus, VVD photocycle length appears sculpted to establish a VVD-WCC reservoir of sufficient size to sustain photoadaptation while maintaining sensitivity to changing light intensity. The great diversity in photocycle kinetics among photoreceptors may be viewed as reflecting adaptive responses to specific and salient tasks required by organisms to respond to different photic environments. PMID:25978382

  5. Simultaneous detection of four garlic viruses by multiplex reverse transcription PCR and their distribution in Indian garlic accessions.

    PubMed

    Majumder, S; Baranwal, V K

    2014-06-01

    Indian garlic is infected with Onion yellow dwarf virus (OYDV), Shallot latent virus (SLV), Garlic common latent virus (GarCLV) and allexiviruses. Identity and distribution of garlic viruses in various garlic accessions from different geographical regions of India were investigated. OYDV and allexiviruses were observed in all the garlic accessions, while SLV and GarCLV were observed only in a few accessions. A multiplex reverse transcription (RT)-PCR method was developed for the simultaneous detection and identification of OYDV, SLV, GarCLV and Allexivirus infecting garlic accessions in India. This multiplex protocol standardized in this study will be useful in indexing of garlic viruses and production of virus free seed material. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Detection of Coconut cadang-cadang viroid (CCCVd) in oil palm by reverse transcription loop-mediated isothermal amplification (RT-LAMP).

    PubMed

    Thanarajoo, Sathis Sri; Kong, Lih Ling; Kadir, Jugah; Lau, Wei Hongi; Vadamalai, Ganesan

    2014-06-01

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling

    PubMed Central

    Honda, Kenya; Yanai, Hideyuki; Mizutani, Tatsuaki; Negishi, Hideo; Shimada, Naoya; Suzuki, Nobutaka; Ohba, Yusuke; Takaoka, Akinori; Yeh, Wen-Chen; Taniguchi, Tadatsugu

    2004-01-01

    Toll-like receptor (TLR) activation is central to immunity, wherein the activation of the TLR9 subfamily members TLR9 and TLR7 results in the robust induction of type I IFNs (IFN-α/β) by means of the MyD88 adaptor protein. However, it remains unknown how the TLR signal “input” can be processed through MyD88 to “output” the induction of the IFN genes. Here, we demonstrate that the transcription factor IRF-7 interacts with MyD88 to form a complex in the cytoplasm. We provide evidence that this complex also involves IRAK4 and TRAF6 and provides the foundation for the TLR9-dependent activation of the IFN genes. The complex defined in this study represents an example of how the coupling of the signaling adaptor and effector kinase molecules together with the transcription factor regulate the processing of an extracellular signal to evoke its versatile downstream transcriptional events in a cell. Thus, we propose that this molecular complex may function as a cytoplasmic transductional-transcriptional processor. PMID:15492225

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Robert J.; Ball, Cameron Scott; Langevin, Stanley A.

    In this study, collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized publicmore » health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.« less

  9. Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch

    PubMed Central

    Haase, Elaine M.; Feng, Xianghui; Pan, Jiachuan; Miecznikowski, Jeffrey C.

    2015-01-01

    Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA− mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance. PMID:26025889

  10. The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water.

    PubMed

    Lee, Kyu-Shik; Chun, So-Young; Lee, Min-Gu; Kim, Soyoung; Jang, Tae-Jung; Nam, Kyung-Soo

    2018-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by environmental and chemical allergens. Despite the complexity of its pathogenesis, many investigations have shown that substances having anti-inflammatory activities alleviated the pathology of AD. Here, we evaluated the effects of mineral-balanced deep sea water (DSW) on AD-like skin damage in both in vitro and in vivo. The results showed that mineral-balanced DSW regressed inflammatory chemokines, such as macrophage-derived chemokine (MDC), thymus- and activation-regulated chemokine (TARC) and regulated on activation, normal T-cell expressed and secreted (RANTES), and cytokines, interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA expression in HaCaT immortal human keratinocyte treated with tumor necrosis factor (TNF)-α/ interferon (IFN)-γ mixture. Furthermore, increased cyclooxygenase (COX)-2 protein expressions were also reversed, filaggrin gene expression was enhanced and decreased involucrin transcriptions was recovered by mineral-balanced DSW in TNF-α/IFN-γ mixture-treated HaCaT human keratinocyte. Moreover, we revealed that the inhibitory effects of mineral-balanced DSW were mediated with the suppression of signal transducer and activator of transcription (STAT) 1 phosphorylation. In animal experiments, we showed that hardness 2000 of mineral-balanced DSW decreased the serum levels of IgE, IL-4, and histamine, and alleviated the severity score and numbers of scratching in dinitrochlorobezene (DNCB)-treated Nc/Nga mice. Furthermore, increased epidermal thickness and mast cell infiltration by DNCB treatment were reversed by the application of hardness 2000 mineral-balanced DSW. Taken together, the present investigation indicates that mineral-balanced DSW is a potent substance with anti-atopic dermatitis activity. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Lab-on-a-chip nucleic-acid analysis towards point-of-care applications

    NASA Astrophysics Data System (ADS)

    Kopparthy, Varun Lingaiah

    Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due to several factors such as footprint, complexity, portability, and power consumption. This dissertation presents the development of technologies and methods for a labon-a-chip nucleic acid analysis towards point-of-care applications. An oscillatory-flow PCR methodology in a thermal gradient is developed which provides real-time analysis of nucleic-acid samples. Oscillating flow PCR was performed in the microfluidic device under thermal gradient in 40 minutes. Reverse transcription PCR (RT-PCR) was achieved in the system without an additional heating element for incubation to perform reverse transcription step. A novel method is developed for the simultaneous pattering and bonding of all-glass microfluidic devices in a microwave oven. Glass microfluidic devices were fabricated in less than 4 minutes. Towards an integrated system for the detection of amplified products, a thermal sensing method is studied for the optimization of the sensor output. Calorimetric sensing method is characterized to identify design considerations and optimal parameters such as placement of the sensor, steady state response, and flow velocity for improved performance. An understanding of these developed technologies and methods will facilitate the development of lab-on-a-chip systems for point-of-care analysis.

  12. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.

    PubMed

    Li, Shan; Dong, Xia; Su, Zhengchang

    2013-07-30

    Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.

  13. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    PubMed Central

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads. PMID:23899370

  14. Competition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding to nuclear receptors. Implications for the recruitment of TRAP and p160 coactivator complexes.

    PubMed

    Treuter, E; Johansson, L; Thomsen, J S; Wärnmark, A; Leers, J; Pelto-Huikko, M; Sjöberg, M; Wright, A P; Spyrou, G; Gustafsson, J A

    1999-03-05

    Transcriptional activation by nuclear receptors (NRs) involves the concerted action of coactivators, chromatin components, and the basal transcription machinery. Crucial NR coactivators, which target primarily the conserved ligand-regulated activation (AF-2) domain, include p160 family members, such as TIF2, as well as p160-associated coactivators, such as CBP/p300. Because these coactivators possess intrinsic histone acetyltransferase activity, they are believed to function mainly by regulating chromatin-dependent transcriptional activation. Recent evidence suggests the existence of an additional NR coactivator complex, referred to as the thyroid hormone receptor-associated protein (TRAP) complex, which may function more directly as a bridging complex to the basal transcription machinery. TRAP220, the 220-kDa NR-binding subunit of the complex, has been identified in independent studies using both biochemical and genetic approaches. In light of the functional differences identified between p160 and TRAP coactivator complexes in NR activation, we have attempted to compare interaction and functional characteristics of TIF 2 and TRAP220. Our findings imply that competition between the NR-binding subunits of distinct coactivator complexes may act as a putative regulatory step in establishing either a sequential activation cascade or the formation of independent coactivator complexes.

  15. An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.

    PubMed

    Li, Hao; Wang, Xu; Rukina, Daria; Huang, Qingyao; Lin, Tao; Sorrentino, Vincenzo; Zhang, Hongbo; Bou Sleiman, Maroun; Arends, Danny; McDaid, Aaron; Luan, Peiling; Ziari, Naveed; Velázquez-Villegas, Laura A; Gariani, Karim; Kutalik, Zoltan; Schoonjans, Kristina; Radcliffe, Richard A; Prins, Pjotr; Morgenthaler, Stephan; Williams, Robert W; Auwerx, Johan

    2018-01-24

    Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

    PubMed Central

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S.; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I.; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T.; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R.; Wright, Samuel D.; Espevik, Terje; Schultze, Joachim L.; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-01-01

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility, in preventing and reversing atherosclerosis. Here we show that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load, and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques, and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the anti-atherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Since CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis. PMID:27053774

  17. Effect of Vitronectin Bound to Insulin-Like Growth Factor-I and Insulin-Like Growth Factor Binding Protein-3 on Porcine Enamel Organ-Derived Epithelial Cells

    PubMed Central

    Shinohara, Yoshinori; Tsuchiya, Shuhei; Hatae, Kazuo; Honda, Masaki J.

    2012-01-01

    The aim of this paper was to determine whether the interaction between IGF, IGFBP, and VN modulates the functions of porcine EOE cells. Enamel organs from 6-month-old porcine third molars were dissociated into single epithelial cells and subcultured on culture dishes pretreated with VN, IGF-I, and IGFBP-3 (IGF-IGFBP-VN complex). The subcultured EOE cells retained their capacity for ameloblast-related gene expression, as shown by semiquantitative reverse transcription-polymerase chain reaction. Amelogenin expression was detected in the subcultured EOE cells by immunostaining. The subcultured EOE cells were then seeded onto collagen sponge scaffolds in combination with fresh dental mesenchymal cells and transplanted into athymic rats. After 4 weeks, enamel-dentin-like complex structures were present in the implanted constructs. These results show that EOE cells cultured on IGF-IGFBP-VN complex differentiated into ameloblasts-like cells that were able to secrete amelogenin proteins and form enamel-like tissues in vivo. Functional assays demonstrated that the IGF/IGFBP/VN complex significantly enhanced porcine EOE cell proliferation and tissue forming capacity for enamel. This is the first study to demonstrate a functional role of the IGF-IGFBP-VN complex in EOE cells. This application of the subculturing technique provides a foundation for further tooth-tissue engineering and for improving our understanding of ameloblast biology. PMID:22567008

  18. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor.

    PubMed

    Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2016-07-15

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas' disease.

    PubMed

    Wen, Jian-Jun; Bhatia, Vandanajay; Popov, Vsevolod L; Garg, Nisha Jain

    2006-12-01

    In this study, we investigated the mechanism(s) of mitochondrial functional decline in acute Chagas' disease. Our data show a substantial decline in respiratory complex activities (39 to 58%) and ATP (38%) content in Trypanosoma cruzi-infected murine hearts compared with normal controls. These metabolic alterations were associated with an approximately fivefold increase in mitochondrial reactive oxygen species production rate, substantial oxidative insult of mitochondrial membranes and respiratory complex subunits, and >60% inhibition of mtDNA-encoded transcripts for respiratory complex subunits in infected myocardium. The antioxidant phenyl-alpha-tert-butyl nitrone (PBN) arrested the oxidative damage-mediated loss in mitochondrial membrane integrity, preserved redox potential-coupled mitochondrial gene expression, and improved respiratory complex activities (47 to 95% increase) and cardiac ATP level (>or=40% increase) in infected myocardium. Importantly, PBN resulted twofold decline in mitochondrial reactive oxygen species production rate in infected myocardium. Taken together, our data demonstrate the pathological significance of oxidative stress in metabolic decay and energy homeostasis in acute chagasic myocarditis and further suggest that oxidative injuries affecting mitochondrial integrity-dependent expression and activity of the respiratory complexes initiate a feedback cycle of electron transport chain inefficiency, increased reactive oxygen species production, and energy homeostasis in acute chagasic hearts. PBN and other mitochondria-targeted antioxidants may be useful in altering mitochondrial decay and oxidative pathology in Chagas' disease.

  20. Toward understanding of the mechanisms of Mediator function in vivo: Focus on the preinitiation complex assembly.

    PubMed

    Eychenne, Thomas; Werner, Michel; Soutourina, Julie

    2017-01-01

    Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.

  1. Function of the growth-regulated transcription initiation factor TIF-IA in initiation complex formation at the murine ribosomal gene promoter.

    PubMed

    Schnapp, A; Schnapp, G; Erny, B; Grummt, I

    1993-11-01

    Alterations in the rate of cell proliferation are accompanied by changes in the transcription of rRNA genes. In mammals, this growth-dependent regulation of transcription of genes coding for rRNA (rDNA) is due to reduction of the amount or activity of an essential transcription factor, called TIF-IA. Extracts prepared from quiescent cells lack this factor activity and, therefore, are transcriptionally inactive. We have purified TIF-IA from exponentially growing cells and have shown that it is a polypeptide with a molecular mass of 75 kDa which exists as a monomer in solution. Using a reconstituted transcription system consisting of purified transcription factors, we demonstrate that TIF-IA is a bona fide transcription initiation factor which interacts with RNA polymerase I. Preinitiation complexes can be assembled in the absence of TIF-IA, but formation of the first phosphodiester bonds of nascent rRNA is precluded. After initiation, TIF-IA is liberated from the initiation complex and facilitates transcription from templates bearing preinitiation complexes which lack TIF-IA. Despite the pronounced species specificity of class I gene transcription, this growth-dependent factor has been identified not only in mouse but also in human cells. Murine TIF-IA complements extracts from both growth-inhibited mouse and human cells. The analogous human activity appears to be similar or identical to that of TIF-IA. Therefore, despite the fact that the RNA polymerase transcription system has evolved sufficiently rapidly that an rDNA promoter from one species will not function in another species, the basic mechanisms that adapt ribosome synthesis to cell proliferation have been conserved.

  2. Saccharomyces cerevisiae RNA Polymerase I Terminates Transcription at the Reb1 Terminator In Vivo

    PubMed Central

    Reeder, Ronald H.; Guevara, Palmira; Roan, Judith G.

    1999-01-01

    We have mapped transcription termination sites for RNA polymerase I in the yeast Saccharomyces cerevisiae. S1 nuclease mapping shows that the primary terminator is the Reb1p terminator located at +93 downstream of the 3′ end of 25S rRNA. Reverse transcription coupled with quantitative PCR shows that approximately 90% of all transcripts terminate at this site. Transcripts which read through the +93 site quantitatively terminate at a fail-safe terminator located further downstream at +250. Inactivation of Rnt1p (an RNase III involved in processing the 3′ end of 25S rRNA) greatly stabilizes transcripts extending to both sites and increases readthrough at the +93 site. In vivo assay of mutants of the Reb1p terminator shows that this site operates in vivo by the same mechanism as has previously been delineated through in vitro studies. PMID:10523625

  3. Chromatin-associated HMG-17 is a major regulator of homeodomain transcription factor activity modulated by Wnt/β-catenin signaling

    PubMed Central

    Amen, Melanie; Espinoza, Herbert M.; Cox, Carol; Liang, Xiaowen; Wang, Jianbo; Link, Todd M. E.; Brennan, Richard G.; Martin, James F.; Amendt, Brad A.

    2008-01-01

    Homeodomain (HD) transcriptional activities are tightly regulated during embryogenesis and require protein interactions for their spatial and temporal activation. The chromatin-associated high mobility group protein (HMG-17) is associated with transcriptionally active chromatin, however its role in regulating gene expression is unclear. This report reveals a unique strategy in which, HMG-17 acts as a molecular switch regulating HD transcriptional activity. The switch utilizes the Wnt/β-catenin signaling pathway and adds to the diverse functions of β-catenin. A high-affinity HMG-17 interaction with the PITX2 HD protein inhibits PITX2 DNA-binding activity. The HMG-17/PITX2 inactive complex is concentrated to specific nuclear regions primed for active transcription. β-Catenin forms a ternary complex with PITX2/HMG-17 to switch it from a repressor to an activator complex. Without β-catenin, HMG-17 can physically remove PITX2 from DNA to inhibit its transcriptional activity. The PITX2/HMG-17 regulatory complex acts independently of promoter targets and is a general mechanism for the control of HD transcriptional activity. HMG-17 is developmentally regulated and its unique role during embryogenesis is revealed by the early embryonic lethality of HMG-17 homozygous mice. This mechanism provides a new role for canonical Wnt/β-catenin signaling in regulating HD transcriptional activity during development using HMG-17 as a molecular switch. PMID:18045789

  4. Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Yuhong; Steitz, Thomas A.

    2015-05-01

    During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that maymore » function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.« less

  5. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene

    PubMed Central

    Chan, Chi N.; Trinité, Benjamin

    2017-01-01

    ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. PMID:28652233

  6. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.

    PubMed

    Chan, Chi N; Trinité, Benjamin; Levy, David N

    2017-09-01

    HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.

  7. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells

    PubMed Central

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-01-01

    Background p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. Results p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Conclusion Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype. PMID:16351709

  8. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells.

    PubMed

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-12-13

    p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype.

  9. A novel quantitative reverse-transcription PCR (qRT-PCR) for the enumeration of total bacteria, using meat micro-flora as a model.

    PubMed

    Dolan, Anthony; Burgess, Catherine M; Barry, Thomas B; Fanning, Seamus; Duffy, Geraldine

    2009-04-01

    A sensitive quantitative reverse-transcription PCR (qRT-PCR) method was developed for enumeration of total bacteria. Using two sets of primers separately to target the ribonuclease-P (RNase P) RNA transcripts of gram positive and gram negative bacteria. Standard curves were generated using SYBR Green I kits for the LightCycler 2.0 instrument (Roche Diagnostics) to allow quantification of mixed microflora in liquid media. RNA standards were used and extracted from known cell equivalents and subsequently converted to cDNA for the construction of standard curves. The number of mixed bacteria in culture was determined by qRT-PCR, and the results correlated (r(2)=0.88, rsd=0.466) with the total viable count over the range from approx. Log(10) 3 to approx. Log(10) 7 CFU ml(-1). The rapid nature of this assay (8 h) and its potential as an alternative method to the standard plate count method to predict total viable counts and shelf life are discussed.

  10. Increases in intracellular calcium via activation of potentially multiple phospholipase C isozymes in mouse olfactory neurons

    PubMed Central

    Szebenyi, Steven A.; Ogura, Tatsuya; Sathyanesan, Aaron; AlMatrouk, Abdullah K.; Chang, Justin; Lin, Weihong

    2014-01-01

    Phospholipase C (PLC) and internal Ca2+ stores are involved in a variety of cellular functions. However, our understanding of PLC in mammalian olfactory sensory neurons (OSNs) is generally limited to its controversial role in odor transduction. Here we employed single-cell Ca2+ imaging and molecular approaches to investigate PLC-mediated Ca2+ responses and its isozyme gene transcript expression. We found that the pan-PLC activator m-3M3FBS (25 μM) induces intracellular Ca2+ increases in vast majority of isolated mouse OSNs tested. Both the response amplitude and percent responding cells depend on m-3M3FBS concentrations. In contrast, the inactive analog o-3M3FBS fails to induce Ca2+ responses. The m-3M3FBS-induced Ca2+ increase is blocked by the PLC inhibitor U73122, while its inactive analog U73433 has no effect. Removal of extracellular Ca2+ does not change significantly the m-3M3FBS-induced Ca2+ response amplitude. Additionally, in the absence of external Ca2+, we found that a subset of OSNs respond to an odorant mixture with small Ca2+ increases, which are significantly suppressed by U73122. Furthermore, using reverse transcription polymerase chain reaction and real-time quantitative polymerase chain reaction, we found that multiple PLC isozyme gene transcripts are expressed in olfactory turbinate tissue in various levels. Using RNA in situ hybridization analysis, we further show expression of β4, γ1, γ2 gene transcripts in OSNs. Taken together, our results establish that PLC isozymes are potent enzymes for mobilizing intracellular Ca2+ in mouse OSNs and provide molecular insight for PLC isozymes-mediated complex cell signaling and regulation in the peripheral olfactory epithelium. PMID:25374507

  11. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition

    PubMed Central

    Juss, Jatinder K.; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M. L.; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M.; Condliffe, Alison

    2016-01-01

    Rationale: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease’s complex pathophysiology, yet these cells have been little studied. Objectives: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Methods: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase–dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells. PMID:27064380

  12. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication.

    PubMed

    Kim, Bo Kyung; Lim, Seoung Ok; Park, Yun Gyu

    2008-08-01

    The cyclic adenosine monophosphate-response element (CRE)-transcription factor complex participates in the regulation of viral gene expression and pathologic processes caused by various viruses. The hepatitis B virus (HBV) enhancer I directs liver-specific transcription of viral genes and contains a CRE sequence (HBV-CRE); however, whether the HBV-CRE and CRE-binding protein (CREB) are required for the HBV life cycle remains to be determined. This study was designed to investigate the role of CREB in HBV replication and gene expression. Sequence-comparison analysis of 984 HBVs reported worldwide showed that the HBV-CRE sequence is highly conserved, indicating the possibility that it plays an important role in the HBV life cycle. The binding of CREB to the HBV-CRE site was markedly inhibited by oligonucleotides containing HBV-CRE and consensus CRE sequences in vitro and in vivo. The HBV promoter activity was demonstrated to be dependent upon the transactivation activity of CREB. Treatment with CRE decoy oligonucleotides reduced HBV promoter activity, and this was reversed by CREB overexpression. The levels of viral transcripts, DNA, and antigens were remarkably decreased in response to the overexpression of CREB mutants or treatment with the CRE decoy oligonucleotides, whereas enhancing CREB activity increased the levels of viral transcripts. In addition, introduction of a three-base mutation into the HBV-CRE led to a marked reduction in HBV messenger RNA synthesis. Taken together, our results demonstrate that both replication and gene expression of HBV require a functional CREB and HBV-CRE. We have also demonstrated that CRE decoy oligonucleotides and the overexpression of CREB mutants can effectively block the HBV life cycle, suggesting that interventions against CREB activity could provide a new avenue to treat HBV infection.

  13. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  14. Expression of mRNA encoding leukaemia inhibitory factor (LIF) and its receptor (LIFRβ) in buffalo preimplantation embryos produced in vitro: markers of successful embryo implantation.

    PubMed

    Eswari, S; Sai Kumar, G; Sharma, G Taru

    2013-05-01

    Summary The objective of this study was to evaluate the effect of supplementation of recombinant leukaemia inhibitory factor (LIF) in culture media on blastocyst development, total cell number and blastocyst hatching rates and the reverse transcription-polymerase chain reaction analysis of preimplantation buffalo embryos to determine whether they contain the LIF-encoding mRNA and its beta receptor (LIFRβ) genes in different stages of preimplantation buffalo embryos. Cumulus-oocyte complexes retrieved from slaughterhouse buffalo ovaries were matured in vitro and fertilized using frozen buffalo semen. After 18 h of co-incubation with sperm, the presumptive zygotes were cultured in modified synthetic oviductal fluid without (control) or with rhLIF (100 ng/ml). There was no significant difference in the overall cleavage rate up to morula stage however the development of blastocysts, hatching rate and total cell numbers were significantly higher in the LIF-treated group than control. Transcripts for LIFRβ were detected from immature, in vitro-matured oocytes and in the embryos up to blastocyst stage, while transcripts for the LIF were detected from 8-16-cell stage up to blastocyst, which indicated that embryo-derived LIF can act in an autocrine manner on differentiation process and blastocyst formation. This study indicated that the addition of LIF to the embryo culture medium improved development of blastocysts, functional (hatching) and morphological (number of cells) quality of the blastocysts produced in vitro. The stage-specific expression pattern of LIF and LIFRβ mRNA transcripts in buffalo embryos indicated that LIF might play an important role in the preimplantation development and subsequent implantation of buffalo embryos.

  15. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development.

    PubMed

    Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun

    2017-12-14

    Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.

  16. The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation

    PubMed Central

    Millán-Zambrano, Gonzalo; Rodríguez-Gil, Alfonso; Peñate, Xenia; de Miguel-Jiménez, Lola; Morillo-Huesca, Macarena; Krogan, Nevan; Chávez, Sebastián

    2013-01-01

    Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction. PMID:24068951

  17. The prefoldin complex regulates chromatin dynamics during transcription elongation.

    PubMed

    Millán-Zambrano, Gonzalo; Rodríguez-Gil, Alfonso; Peñate, Xenia; de Miguel-Jiménez, Lola; Morillo-Huesca, Macarena; Krogan, Nevan; Chávez, Sebastián

    2013-01-01

    Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction.

  18. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    PubMed

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  19. A structure-based kinetic model of transcription.

    PubMed

    Zuo, Yuhong; Steitz, Thomas A

    2017-01-01

    During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.

  20. An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles

    PubMed Central

    Tang, Grace Y.; Pribisko, Melanie A.; Henning, Ryan K.; Lim, Punnajit; Termini, John; Gray, Harry B.; Grubbs, Robert H.

    2015-01-01

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates. PMID:25867444

  1. An in vitro enzymatic assay to measure transcription inhibition by gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles.

    PubMed

    Tang, Grace Y; Pribisko, Melanie A; Henning, Ryan K; Lim, Punnajit; Termini, John; Gray, Harry B; Grubbs, Robert H

    2015-03-18

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates.

  2. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    PubMed Central

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  3. Understanding large multiprotein complexes: applying a multiple allosteric networks model to explain the function of the Mediator transcription complex.

    PubMed

    Lewis, Brian A

    2010-01-15

    The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.

  4. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes.

  5. HIV-1 Vpr Enhances PPARβ/δ-Mediated Transcription, Increases PDK4 Expression, and Reduces PDC Activity

    PubMed Central

    Shrivastav, Shashi; Zhang, Liyan; Okamoto, Koji; Lee, Hewang; Lagranha, Claudia; Abe, Yoshifusa; Balasubramanyam, Ashok; Lopaschuk, Gary D.; Kino, Tomoshige

    2013-01-01

    HIV infection and its therapy are associated with disorders of lipid metabolism and bioenergetics. Previous work has suggested that viral protein R (Vpr) may contribute to the development of lipodystrophy and insulin resistance observed in HIV-1–infected patients. In adipocytes, Vpr suppresses mRNA expression of peroxisomal proliferator-activating receptor-γ (PPARγ)-responsive genes and inhibits differentiation. We investigated whether Vpr might interact with PPARβ/δ and influence its transcriptional activity. In the presence of PPARβ/δ, Vpr induced a 3.3-fold increase in PPAR response element-driven transcriptional activity, a 1.9-fold increase in pyruvate dehydrogenase kinase 4 (PDK4) protein expression, and a 1.6-fold increase in the phosphorylated pyruvate dehydrogenase subunit E1α leading to a 47% decrease in the activity of the pyruvate dehydrogenase complex in HepG2 cells. PPARβ/δ knockdown attenuated Vpr-induced enhancement of endogenous PPARβ/δ-responsive PDK4 mRNA expression. Vpr induced a 1.3-fold increase in mRNA expression of both carnitine palmitoyltransferase I (CPT1) and acetyl-coenzyme A acyltransferase 2 (ACAA2) and doubled the activity of β-hydroxylacyl coenzyme A dehydrogenase (HADH). Vpr physically interacted with the ligand-binding domain of PPARβ/δ in vitro and in vivo. Consistent with a role in energy expenditure, Vpr increased state-3 respiration in isolated mitochondria (1.16-fold) and basal oxygen consumption rate in intact HepG2 cells (1.2-fold) in an etomoxir-sensitive manner, indicating that the oxygen consumption rate increase is β-oxidation–dependent. The effects of Vpr on PPAR response element activation, pyruvate dehydrogenase complex activity, and β-oxidation were reversed by specific PPARβ/δ antagonists. These results support the hypothesis that Vpr contributes to impaired energy metabolism and increased energy expenditure in HIV patients. PMID:23842279

  6. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells.

    PubMed

    Natesampillai, Sekar; Kerkvliet, Jason; Leung, Peter C K; Veldhuis, Johannes D

    2008-02-01

    Kruppel-like factors (KLFs) are important Sp1-like eukaryotic transcriptional proteins. The LDLR, StAR, and CYP11A genes exhibit GC-rich Sp1-like sites, which have the potential to bind KLFs in multiprotein complexes. We now report that KLF4, KLF9, and KLF13 transcripts are expressed in and regulate ovarian cells. KLF4 and 13, but not KLF9, mRNA expression was induced and then repressed over time (P < 0.001). Combined LH and IGF-I stimulation increased KLF4 mRNA at 2 h (P < 0.01), whereas LH decreased KLF13 mRNA at 6 h (P < 0.05), and IGF-I reduced KLF13 at 24 h (P < 0.01) compared with untreated control. KLF9 was not regulated by either hormone. Transient transfection of KLF4, KLF9, and KLF13 suppressed LDLR/luc, StAR/luc, and CYP11A/luc by 80-90% (P < 0.001). Histone-deacetylase (HDAC) inhibitors stimulated LDLR/luc five- to sixfold and StAR/luc and CYP11A/luc activity twofold (P < 0.001) and partially reversed suppression by all three KLFs (P < 0.001). Deletion of the zinc finger domain of KLF13 abrogated repression of LDLR/luc. Lentiviral overexpression of the KLF13 gene suppressed LDLR mRNA (P < 0.001) and CYP11A mRNA (P = 0.003) but increased StAR mRNA (P = 0.007). Collectively, these data suggest that KLFs may recruit inhibitory complexes containing HDAC corepressors, thereby repressing LDLR and CYP11A transcription. Conversely, KLF13 may recruit unknown coactivators or stabilize StAR mRNA, thereby explaining enhancement of in situ StAR gene expression. These data introduce new potent gonadal transregulators of genes encoding proteins that mediate sterol uptake and steroid biosynthesis.

  7. Genome-Wide Spectra of Transcription Insertions and Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity

    PubMed Central

    Traverse, Charles C.

    2017-01-01

    ABSTRACT Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola, which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. PMID:28851848

  8. The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis.

    PubMed

    Bottardi, Stefania; Mavoungou, Lionel; Pak, Helen; Daou, Salima; Bourgoin, Vincent; Lakehal, Yahia A; Affar, El Bachir; Milot, Eric

    2014-12-01

    IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of Ik(NULL) hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation.

  9. The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis

    PubMed Central

    Bottardi, Stefania; Mavoungou, Lionel; Pak, Helen; Daou, Salima; Bourgoin, Vincent; Lakehal, Yahia A.; Affar, El Bachir; Milot, Eric

    2014-01-01

    IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of IkNULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation. PMID:25474253

  10. Interference of transcription across H-NS binding sites and repression by H-NS.

    PubMed

    Rangarajan, Aathmaja Anandhi; Schnetz, Karin

    2018-05-01

    Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.

  11. Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo

    PubMed Central

    Petrenko, Natalia; Jin, Yi; Wong, Koon Ho; Struhl, Kevin

    2017-01-01

    The Mediator complex has been described as a general transcription factor, but it is unclear if it is essential for Pol II transcription and/or is a required component of the preinitiation complex (PIC) in vivo. Here, we show that depletion of individual subunits, even those essential for cell growth, causes a general but only modest decrease in transcription. In contrast, simultaneous depletion of all Mediator modules causes a drastic decrease in transcription. Depletion of head or middle subunits, but not tail subunits, causes a downstream shift in the Pol II occupancy profile, suggesting that Mediator at the core promoter inhibits promoter escape. Interestingly, a functional PIC and Pol II transcription can occur when Mediator is not detected at core promoters. These results provide strong evidence that Mediator is essential for Pol II transcription and stimulates PIC formation, but it is not a required component of the PIC in vivo. DOI: http://dx.doi.org/10.7554/eLife.28447.001 PMID:28699889

  12. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    PubMed

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  13. Primary Respiratory Chain Disease Causes Tissue-Specific Dysregulation of the Global Transcriptome and Nutrient-Sensing Signaling Network

    PubMed Central

    Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.

    2013-01-01

    Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440

  14. Structural dissection of an interaction between transcription initiation and termination factors implicated in promoter-terminator cross-talk.

    PubMed

    Bratkowski, Matthew; Unarta, Ilona Christy; Zhu, Lizhe; Shubbar, Murtada; Huang, Xuhui; Liu, Xin

    2018-02-02

    Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    PubMed

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  16. Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression.

    PubMed

    Dyer, Jamie O; Dutta, Arnob; Gogol, Madelaine; Weake, Vikki M; Dialynas, George; Wu, Xilan; Seidel, Christopher; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Abmayr, Susan M; Workman, Jerry L

    2017-06-30

    Mutations that affect myelodysplasia/myeloid leukemia factor (MLF) proteins are associated with leukemia and several other cancers. However, with no strong homology to other proteins of known function, the role of MLF proteins in the cell has remained elusive. Here, we describe a proteomics approach that identifies MLF as a member of a nuclear chaperone complex containing a DnaJ protein, BCL2-associated anthanogene 2, and Hsc70. This complex associates with chromatin and regulates the expression of target genes. The MLF complex is bound to sites of nucleosome depletion and sites containing active chromatin marks (e.g., H3K4me3 and H3K4me1). Hence, MLF binding is enriched at promoters and enhancers. Additionally, the MLF-chaperone complex functions to regulate transcription factor stability, including the RUNX transcription factor involved in hematopoiesis. Although Hsc70 and other co-chaperones have been shown to play a role in nuclear translocation of a variety of proteins including transcription factors, our findings suggest that MLF and the associated co-chaperones play a direct role in modulating gene transcription. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library.

    PubMed

    Waugh, Caryll; Cromer, Deborah; Grimm, Andrew; Chopra, Abha; Mallal, Simon; Davenport, Miles; Mak, Johnson

    2015-04-09

    Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles. Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses. We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts. Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.

  18. Measurement of messenger RNA encoding the alpha-chain, polymeric immunoglobulin receptor, and J-chain in duodenal mucosa from dogs with and without chronic diarrhea by use of quantitative real-time reverse transcription-polymerase chain reaction assays.

    PubMed

    Peters, Iain R; Helps, Chris R; Calvert, Emma L; Hall, Edward J; Day, Michael J

    2005-01-01

    To examine the difference in expression of messenger RNA (mRNA) transcripts for polymeric immunoglobulin receptor (plgR), alpha-chain, and J-chain determined by use of quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) assays in duodenal biopsy specimens obtained from dogs with and without chronic diarrhea. Biopsy specimens of the proximal portion of the duodenum were obtained endoscopically from 39 dogs evaluated because of chronic diarrhea (12 German Shepherd Dogs and 27 non-German Shepherd Dog breeds); specimens were also obtained from a control group of 7 dogs evaluated because of other gastrointestinal tract diseases and 2 dogs that were euthanatized as a result of nongastrointestinal tract disease. Dogs were anesthetized, and multiple mucosal biopsy specimens were obtained endoscopically at the level of the caudal duodenal flexure by use of biopsy forceps; in 2 control dogs, samples were obtained from the descending duodenum within 5 minutes of euthanasia. One-step QRT-PCR was used to quantify the level of expression of transcripts for the housekeeper gene glyceraldehyde-3-phosphate dehydrogenase, plgR, alpha-chain, and J-chain in duodenal mucosal tissue. There was no significant difference in the level of expression of any transcript among non-German Shepherd Dog breeds without diarrhea (control group), non-German Shepherd Dog breeds with chronic diarrhea, and German Shepherd Dogs with chronic diarrhea. Conclusions and Clinical Relevance-Results indicated that the susceptibility of German Shepherd Dogs to chronic diarrhea is not a result of simple failure of transcription of the key genes that encode molecules involved in mucosal IgA secretion.

  19. The effect of enriched environment across ages: A study of anhedonia and BDNF gene induction.

    PubMed

    Dong, B E; Xue, Y; Sakata, K

    2018-05-02

    Enriched environment treatment (EET) is a potential intervention for depression by inducing brain-derived neurotrophic factor (BDNF). However, its age dependency remains unclear. We recently found that EET during early-life development (ED) was effective in increasing exploratory activity and anti-despair behavior, particularly in promoter IV-driven BDNF deficient mice (KIV), with the largest BDNF protein induction in the hippocampus and frontal cortex. Here, we further determined age dependency of EET effects on anhedonia and promoter-specific BDNF transcription, by using the sucrose preference test and qRT-PCR. Wild-type (WT) and KIV mice received 2 months of EET during ED, young-adulthood and old-adulthood (0-2, 2-4 and 12-14 months, respectively). All KIV groups showed reduced sucrose preference, which EET equally reversed regardless of age. EET increased hippocampal BDNF mRNA levels for all ages and genotypes, but increased frontal cortex BDNF mRNA levels only in ED KIV and old WT mice. Transcription by promoters I and IV was age-dependent in the hippocampus of WT mice: more effective induction of exon IV or I during ED or old-adulthood, respectively. Transcription by almost all 9 promoters was age-specific in the frontal cortex, mostly observed in ED KIV mice. After discontinuance of EET, the EET effects on anti-anhedonia and BDNF transcription in both regions persisted only in ED KIV mice. These results suggested that EET was equally effective in reversing anhedonia and inducing hippocampal BDNF transcription, but was more effective during ED in inducing frontal cortex BDNF transcription and for lasting anti-anhedonic and BDNF effects particularly in promoter IV-BDNF deficiency. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A structure-based kinetic model of transcription

    PubMed Central

    Steitz, Thomas A.

    2017-01-01

    ABSTRACT During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement. PMID:27656764

  2. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of the fathead minnow nidovirus.

    PubMed

    Zhang, Qingli; Standish, Isaac; Winters, Andrew D; Puzach, Corey; Ulferts, Rachel; Ziebuhr, John; Faisal, Mohamed

    2014-06-01

    Fathead minnow nidovirus (FHMNV) is a serious baitfish-pathogenic virus in North America. Studies to trace the spread of the virus and determine its host range are hampered by the absence of reliable diagnostic assays. In this study, a one-step, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed that targets a region in the FHMNV spike protein gene. The assay was optimized, and the best results were obtained at 8 mM of Mg(2+) with an incubation time of 40 min at 63 °C in the presence of calcein. The analytical sensitivity of the RT-LAMP method was estimated to be as low as 5 viral copies and was 1000-fold more sensitive than the conventional reverse transcription polymerase chain reaction (RT-PCR) method. The diagnostic sensitivity and specificity of the developed RT-LAMP assay versus the RT-PCR assay was 100% and 95.7%, respectively. A quantitative RT-LAMP of FHMNV with a high correlation coefficient (r(2)=0.9926) was also developed and the result of quantitation of viral copies in tissue samples of infected fish showed that the viral loads of the infected fish tissue samples reached up to 4.7×10(10) copies per mg. It is anticipated that the developed RT-LAMP and quantitative RT-LAMP methods will be instrumental for diagnosis and surveillance of FHMNV. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2005-01-01

    Diagnostic systems based on reverse transcription (RT)-PCR are widely used for the detection of viral genomes in different human specimens. The application of internal controls (IC) to monitor each step of nucleic acid amplification is necessary to prevent false-negative results due to inhibition or human error. In this study, we designed various real-time RT-PCRs utilizing the coliphage MS2 replicase gene, which differ in detection format, amplicon size, and efficiency of amplification. These noncompetitive IC assays, using TaqMan, hybridization probe, or duplex scorpion probe techniques, were tested on the LightCycler and Rotorgene systems. In our approach, clinical specimens were spiked with the control virus to monitor the efficiency of extraction, reverse transcription, and amplification steps. The MS2 RT-PCR assays were applied for internal control when using a second target hepatitis C virus RNA in duplex PCR in blood donor screening. The 95% detection limit was calculated by probit analysis to 44.9 copies per PCR (range, 38.4 to 73.4). As demonstrated routinely, application of MS2 IC assays exhibits low variability and can be applied in various RT-PCR assays. MS2 phage lysates were obtained under standard laboratory conditions. The quantification of phage and template RNA was performed by plating assays to determine PFU or via real-time RT-PCR. High stability of the MS2 phage preparations stored at −20°C, 4°C, and room temperature was demonstrated. PMID:16145106

  5. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods.

    PubMed

    Jean, Julie; D'Souza, Doris H; Jaykus, Lee-Ann

    2004-11-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10(-1) reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 10(0) to 10(2) reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods.

  6. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    PubMed

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  7. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  8. Circadian Rhythm in the Expression of the mRNA Coding for the Apoprotein of the Light-Harvesting Complex of Photosystem II 1

    PubMed Central

    Tavladoraki, Paraskevi; Kloppstech, Klaus; Argyroudi-Akoyunoglou, Joan

    1989-01-01

    The mRNA coding for light-harvesting complex of PSII (LHC-II) apoprotein is present in etiolated bean (Phaseolus vulgaris L.) leaves; its level is low in 5-day-old leaves, increases about 3 to 4 times in 9- to 13-day-old leaves, and decreases thereafter. A red light pulse induces an increase in LHC-II mRNA level, which is reversed by far red light, in all ages of the etiolated tissue tested. The phytochrome-controlled initial increase of LHC-II mRNA level is higher in 9- and 13-day-old than in 5- and 17-day-old bean leaves. The amount of LHC-II mRNA, accumulated in the dark after a red light pulse, oscillates rhythmically with a period of about 24 hours. This rhythm is also observed in continuous white light and in the dark following exposure to continuous white light, and persists for at least 70 hours. A second red light pulse, applied 36 hours after initiation of the rhythm, induces a phase-shift, which is prevented by far red light immediately following the second red light pulse. A persistent, but gradually reduced, far red reversibility of the red light-induced increase in LHC-II mRNA level is observed. In contrast, far red reversibility of the red light-induced clock setting is only observed when far red follows immediately the red light. It is concluded that (a) the light-induced LHC-II mRNA accumulation follows an endogenous, circadian rhythm, for the appearance of which a red light pulse is sufficient, (b) the circadian oscillator is under phytochrome control, and (c) a stable Pfr form, which exists for several hours, is responsible for sustaining LHC-II gene transcription. Images Figure 1 Figure 2 Figure 8 PMID:16666825

  9. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells.

    PubMed

    Li, LiQi; Jothi, Raja; Cui, Kairong; Lee, Jan Y; Cohen, Tsadok; Gorivodsky, Marat; Tzchori, Itai; Zhao, Yangu; Hayes, Sandra M; Bresnick, Emery H; Zhao, Keji; Westphal, Heiner; Love, Paul E

    2011-02-01

    The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.

  10. The Mediator complex: a master coordinator of transcription and cell lineage development.

    PubMed

    Yin, Jing-wen; Wang, Gang

    2014-03-01

    Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.

  11. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.

    PubMed

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

    2014-05-15

    In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Automated RNA amplification for the rapid identification of Mycobacterium tuberculosis complex in respiratory specimens].

    PubMed

    Drouillon, V; Houriez, F; Buze, M; Lagrange, P; Herrmann, J-L

    2006-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis complex (MTB) directly on clinical respiratory specimens is essential for a correct management of patients suspected of tuberculosis. For this purpose PCR-based kits are available to detect MTB in respiratory specimen but most of them need at least 4 hours to be completed. New methods, based on TRC method (TRC: Transcription Reverse transcription Concerted--TRCRapid M. Tuberculosis--Tosoh Bioscience, Tokyo, Japon) and dedicated monitor have been developed. A new kit (TRC Rapid M. tuberculosis and Real-time monitor TRCRapid-160, Tosoh Corporation, Japan) enabling one step amplification and real-time detection of MTB 16S rRNA by a combination of intercalative dye oxazole yellow-linked DNA probe and isothermal RNA amplification directly on respiratory specimens has been tested in our laboratory. 319 respiratory specimens were tested in this preliminary study and results were compared to smear and culture. Fourteen had a positive culture for MTB. Among theses samples, smear was positive in 11 cases (78.6%) and TRC process was positive in 8 cases (57.1%). Overall sensitivity of TRC compared to smear positive samples is 73%. Theses first results demonstrated that a rapid identification of MTB was possible (less than 2 processing hours for 14 specimens and about 1 hour for 1 specimen) in most cases of smear positive samples using ready to use reagents for real time detection of MTB rRNA in clinical samples. New pretreatment and extraction reagents kits to increase the stability of the sputum RNA and the extraction efficiency are now tested in our laboratory.

  13. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svintradze, David V.; Virginia Commonwealth University, Richmond, VA 23219-1540; Peterson, Darrell L.

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces,more » which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.« less

  14. URI Regulates KAP1 Phosphorylation and Transcriptional Repression via PP2A Phosphatase in Prostate Cancer Cells*

    PubMed Central

    Mita, Paolo; Savas, Jeffrey N.; Briggs, Erica M.; Ha, Susan; Gnanakkan, Veena; Yates, John R.; Robins, Diane M.; David, Gregory; Boeke, Jef D.; Garabedian, Michael J.; Logan, Susan K.

    2016-01-01

    URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells. PMID:27780869

  15. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    PubMed

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription.

    PubMed

    Portnoy, Victoria; Lin, Szu Hua Sharon; Li, Kathy H; Burlingame, Alma; Hu, Zheng-Hui; Li, Hao; Li, Long-Cheng

    2016-03-01

    Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process.

  17. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    PubMed Central

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  18. Regulation of metabolism by the Mediator complex.

    PubMed

    Youn, Dou Yeon; Xiaoli, Alus M; Pessin, Jeffrey E; Yang, Fajun

    2016-01-01

    The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

  19. Photochemical Reactions of (n(5)-Pentamethylcyclpentadienyl)-Dicarbonyliron-Alkyl and -Silyl Complexes: Reversible Ethylene Insertion into an Iron-Silicon Bond and Implications for the Mechanism of Transition Metal-Catalyzed Hydrosilation of Alkenes.

    DTIC Science & Technology

    1985-12-11

    RD-R162 462 PHOTOCHEMICAL REACTIONS OF(N(S)-P NTANETNYLCVCLPENTADIENYL)-DICARRONVLIR.. (U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY...34 Photochemical Reactions of (n5-Pentamethylcyclpentadienyl)- Dicarbonyliron-Alkyl and -Silyl Complexes: Reversible Ethylene Insertion into an Iron-Silicon Bond...Chemical Society) PHOTOCHEMICAL REACTIONS OF (n5-PENTAMETHYLCYCLOPENTADIENYL)- DICARBONYLIRON-ALKYL AND -SILYL COMPLEXES: REVERSIBLE ETHYLENE INSERTION INTO

  20. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors.

    PubMed

    Thakore, Pratiksha I; Gersbach, Charles A

    2016-01-01

    Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.

  1. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus) Growth Hormone Receptor Type I

    PubMed Central

    2009-01-01

    Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes. PMID:19495916

  2. Disappearance of AML1-MTG8 transcript by reverse transcriptase polymerase chain reaction in a patient in remission of acute myeloid leukemia (M2) after low-dose cytosine arabinoside.

    PubMed

    Sawada, H; Serino, Y; Wake, A; Yamasaki, Y; Izumi, Y

    1998-09-01

    It is well-known that low dose cytosine arabinoside (LDAC) has activity in elderly patients with acute myeloid leukemia (AML). Several studies have shown that AML patients with t(8;21) in long term complete remission (CR) following intensive chemotherapy or allogeneic bone marrow transplantation (BMT) still have persistence of AML1-MTG8 transcripts by reverse transcriptase polymerase chain reaction (RT-PCR) method. We report here a patient who has no evidence of residual disease detectable by RT-PCR after LDAC. A 69-year-old patient did not obtain CR after two courses of intensive chemotherapy with behenoyl-ara-C, daunorubicin, 6-mercaptopurine and prednisolone. He received subcutaneous LDAC 10 mg every 12 h and granulocyte colony-stimulating factor (G-CSF) for 29 days and achieved CR. He continued on a 21 to 28-day course of LDAC without G-CSF every 2 or 3 months and has remained well and in CR for 5 years without chimeric AMLI-MTG8 transcript by RT-PCR. LDAC therapy seems to be effective in eradicating the leukemic clone as post-induction or maintenance therapy in this patient. This is the first case report of the disappearance of AML1-MTG8 transcript by RT-PCR in a patient with t(8;21) in long-term remission after LDAC.

  3. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.

    PubMed

    Lee, T C; Ziff, E B

    1999-01-08

    The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.

  4. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  5. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile, and accurate RNA structure analysis

    PubMed Central

    Smola, Matthew J.; Rice, Greggory M.; Busan, Steven; Siegfried, Nathan A.; Weeks, Kevin M.

    2016-01-01

    SHAPE chemistries exploit small electrophilic reagents that react with the 2′-hydroxyl group to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues based on the ability of reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as for simple model RNAs. This protocol describes the experimental steps, implemented over three days, required to perform SHAPE probing and construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. These steps include RNA folding and SHAPE structure probing, mutational profiling by reverse transcription, library construction, and sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots, and provides useful troubleshooting information, often within an hour. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures, and visualize probable and alternative helices, often in under a day. We illustrate these algorithms with the E. coli thiamine pyrophosphate riboswitch, E. coli 16S rRNA, and HIV-1 genomic RNAs. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles, and entire transcriptomes. The straightforward MaP strategy greatly expands the number, length, and complexity of analyzable RNA structures. PMID:26426499

  6. Genome-Wide Profiling of RNA–Protein Interactions Using CLIP-Seq

    PubMed Central

    Stork, Cheryl; Zheng, Sika

    2017-01-01

    UV crosslinking immunoprecipitation (CLIP) is an increasingly popular technique to study protein–RNA interactions in tissues and cells. Whole cells or tissues are ultraviolet irradiated to generate a covalent bond between RNA and proteins that are in close contact. After partial RNase digestion, antibodies specific to an RNA binding protein (RBP) or a protein–epitope tag is then used to immunoprecipitate the protein–RNA complexes. After stringent washing and gel separation the RBP–RNA complex is excised. The RBP is protease digested to allow purification of the bound RNA. Reverse transcription of the RNA followed by high-throughput sequencing of the cDNA library is now often used to identify protein bound RNA on a genome-wide scale. UV irradiation can result in cDNA truncations and/or mutations at the crosslink sites, which complicates the alignment of the sequencing library to the reference genome and the identification of the crosslinking sites. Meanwhile, one or more amino acids of a crosslinked RBP can remain attached to its bound RNA due to incomplete digestion of the protein. As a result, reverse transcriptase may not read through the crosslink sites, and produce cDNA ending at the crosslinked nucleotide. This is harnessed by one variant of CLIP methods to identify crosslinking sites at a nucleotide resolution. This method, individual nucleotide resolution CLIP (iCLIP) circularizes cDNA to capture the truncated cDNA and also increases the efficiency of ligating sequencing adapters to the library. Here, we describe the detailed procedure of iCLIP. PMID:26965263

  7. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    PubMed

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  8. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  9. Evidence for a relief of repression mechanism for activation of the human telomerase reverse transcriptase promoter.

    PubMed

    Wang, Shuwen; Zhu, Jiyue

    2003-05-23

    The transcriptional activation of human telomerase reverse transcriptase (hTERT) is an important step during cellular immortalization and tumorigenesis. To study how this activation occurs during immortalization, we have established a set of genetically related pre-crisis cells and their immortal progeny. As expected, hTERT mRNA was detected in our telomerase-positive immortal cells but not in pre-crisis cells or telomerase-negative immortal cells. However, transiently transfected luciferase reporters controlled by hTERT promoter sequences exhibited similar levels of luciferase activity in both telomerase-positive and -negative cells, suggesting that the endogenous chromatin context is likely required for hTERT regulation. Analysis of chromatin susceptibility to DNase I digestion consistently identified a DNase I hypersensitivity site (DHS) near the hTERT transcription initiation site in telomerase-positive cells. In addition, the histone deacetylase inhibitor trichostatin A (TSA) induced hTERT transcription and also a general increase in chromatin sensitivity to DNase treatment in telomerase-negative cells. The TSA-induced hTERT transcription in pre-crisis cells was accompanied by the formation of a DHS at the hTERT promoter. Furthermore, the TSA-induced hTERT transcription and chromatin alterations were not blocked by cycloheximide, suggesting that this induction does not require de novo protein synthesis and that TSA induces hTERT expression through the inhibition of histone deacetylation at the hTERT promoter. Taken together, our results suggest that the endogenous chromatin environment plays a critical role in the regulation of hTERT expression during cellular immortalization.

  10. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    PubMed

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  11. Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.

    PubMed

    Díaz-Triviño, Sara; Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2017-01-01

    In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.

  12. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  13. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.

    PubMed

    Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  14. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    PubMed

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis.

    PubMed

    Sono, Takashi; Akiyama, Haruhiko; Miura, Shigenori; Deng, Jian Min; Shukunami, Chisa; Hiraki, Yuji; Tsushima, Yu; Azuma, Yoshiaki; Behringer, Richard R; Matsuda, Shuichi

    2018-07-01

    Sex-determining region Y (Sry)-box (Sox)9 is required for chondrogenesis as a transcriptional activator of genes related to chondrocyte proliferation, differentiation, and cartilage-specific extracellular matrix. Although there have been studies investigating the Sox9-dependent transcriptional complexes, not all their components have been identified. In the present study, we demonstrated that thyroid hormone receptor-associated protein (THRAP)3 is a component of a SOX9 transcriptional complex by liquid chromatography mass spectrometric analysis of FLAG-tagged Sox9-binding proteins purified from FLAG-HA-tagged Sox9 knock-in mice. Thrap3 knockdown in ATDC5 chondrogenic cells increased the expression of Collagen type II alpha 1 chain (Col2a1) without affecting Sox9 expression. THRAP3 and SOX9 overexpression reduced Col2a1 levels to a greater degree than overexpression of SOX9 alone. The negative regulation of SOX9 transcriptional activity by THRAP3 was mediated by interaction between the proline-, glutamine-, and serine-rich domain of SOX9 and the innominate domain of THRAP3. These results indicate that THRAP3 negatively regulates SOX9 transcriptional activity as a cofactor of a SOX9 transcriptional complex during chondrogenesis.

  16. Reversible Modification of Adenomatous Polyposis Coli (APC) with K63-linked Polyubiquitin Regulates the Assembly and Activity of the β-Catenin Destruction Complex

    PubMed Central

    Tran, Hoanh; Polakis, Paul

    2012-01-01

    The adenomatous polyposis coli (APC) tumor suppressor forms a complex with Axin and GSK3β to promote the phosphorylation and degradation of β-catenin, a key co-activator of Wnt-induced transcription. Here, we establish that APC is modified predominantly with K63-linked ubiquitin chains when it is bound to Axin in unstimulated HEK293 cells. Wnt3a stimulation induced a time-dependent loss of K63-polyubiquitin adducts from APC, an effect synchronous with the dissociation of Axin from APC and the stabilization of cytosolic β-catenin. RNAi-mediated depletion of Axin or β-catenin, which negated the association between APC and Axin, resulted in the absence of K63-adducts on APC. Overexpression of wild-type and phosphodegron-mutant β-catenin, combined with analysis of thirteen human cancer cell lines that harbor oncogenic mutations in APC, Axin, or β-catenin, support the hypothesis that a fully assembled APC-Axin-GSK3β-phospho-β-catenin complex is necessary for the K63-polyubiquitylation of APC. Intriguingly, the degree of this modification on APC appears to correlate inversely with the levels of β-catenin in cells. Together, our results indicate that K63-linked polyubiquitin adducts on APC regulate the assembly and/or efficiency of the β-catenin destruction complex. PMID:22761442

  17. Impact of Noncoding Satellite Repeats on Pancreatic Cancer Metastasis

    DTIC Science & Technology

    2014-09-01

    nucleoside reverse transcriptase inhibitor ddC as a small molecule inhibitor of HSATII reverse transcription. Initial data indicates there are anti...proliferative effects of ddC in cancer cell lines. We will evaluate ddC and anti-sense locked nucleic acids as methods for inhibiting this process and...of these hybrids, we tested the effect of the nucleoside analog RT inhibitor (NRTI) 2’,3’-dideoxycytidine ( ddC ) in COLO205 cells (Fig. 2e). Notably

  18. hebp3, a novel member of the heme-binding protein gene family, is expressed in the medaka meninges with higher abundance in females due to a direct stimulating action of ovarian estrogens.

    PubMed

    Nakasone, Kiyoshi; Nagahama, Yoshitaka; Okubo, Kataaki

    2013-02-01

    The brains of teleost fish exhibit remarkable sexual plasticity throughout their life span. To dissect the molecular basis for the development and reversal of sex differences in the teleost brain, we screened for genes differentially expressed between sexes in the brain of medaka (Oryzias latipes). One of the genes identified in the screen as being preferentially expressed in females was found to be a new member of the heme-binding protein gene family that includes hebp1 and hebp2 and was designated here as hebp3. The medaka hebp3 is expressed in the meninges with higher abundance in females, whereas there is no expression within the brain parenchyma. This female-biased expression of hebp3 is not attributable to the direct action of sex chromosome genes but results from the transient and reversible action of estrogens derived from the ovary. Moreover, estrogens directly activate the transcription of hebp3 via a palindromic estrogen-responsive element in the hebp3 promoter. Taken together, our findings demonstrate that hebp3 is a novel transcriptional target of estrogens, with female-biased expression in the meninges. The definite but reversible sexual dimorphism of the meningeal hebp3 expression may contribute to the development and reversal of sex differences in the teleost brain.

  19. [Transcription activator-like effectors(TALEs)based genome engineering].

    PubMed

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  20. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    PubMed

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  1. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    PubMed

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  2. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impedemore » transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.« less

  4. Simultaneous detection of hemagglutinin and neuraminidase genes of novel influenza A (H7N9) by duplex real-time reverse transcription polymerase chain reaction.

    PubMed

    Li, Yan; Wu, Tao; Qi, Xian; Ge, Yiyue; Guo, Xiling; Wu, Bin; Yu, Huiyan; Zhu, Yefei; Shi, Zhiyang; Wang, Hua; Cui, Lunbiao; Zhou, Minghao

    2013-12-01

    A novel reassortant influenza A (H7N9) virus emerged recently in China. In this study, a duplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay was developed for the simultaneous detection of hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 influenza viruses. The sensitivity of the assay was determined to be 10 RNA copies per reaction for both HA and NA genes. No cross-reactivity was observed with other influenza virus subtypes or respiratory tract viruses. One hundred and forty-six clinical and environmental specimens were tested and compared with reference methods and were found to be consistent. The assay is suitable for large-scale screening due to short turnaround times and high specificity, sensitivity, and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Detection and genotyping of bovine diarrhea virus by reverse transcription-polymerase chain amplification of the 5' untranslated region.

    PubMed

    Letellier, C; Kerkhofs, P; Wellemans, G; Vanopdenbosch, E

    1999-01-01

    A reverse-transcription polymerase chain reaction (RT-PCR) was developed to differentiate the bovine diarrhea virus (BVDV) from other pestiviruses, and to determine the genotype of the BVDV isolates. For this purpose, primer pairs were selected in the 5' untranslated region (5'UTR). The primers BE and B2 were located in highly conserved regions and were pestivirus-specific. Two primer pairs named B3B4 and B5B6 were specific of BVDV genotypes I and II, respectively. With this technique, an amplification product of the expected size was obtained with either the B3B4 or the B5B6 primer pairs for the 107 BVDV isolates tested but not for BDV or CSFV. For some isolates that were grouped in the genotype II, sequence analysis of the PCR fragments confirmed their classification into this genotype.

  6. Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses

    PubMed Central

    Zhou, Bin; Barnes, John R.; Sessions, October M.; Chou, Tsui-Wen; Wilson, Malania; Stark, Thomas J.; Volk, Michelle; Spirason, Natalie; Halpin, Rebecca A.; Kamaraj, Uma Sangumathi; Ding, Tao; Stockwell, Timothy B.; Ghedin, Elodie; Barr, Ian G.

    2017-01-01

    ABSTRACT Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms. PMID:28978683

  7. Detection and differentiation of wild-type and vaccine strains of canine distemper virus by a duplex reverse transcription polymerase chain reaction

    PubMed Central

    Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.

    2015-01-01

    Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171

  8. Rapid and sensitive detection of Lily symptomless virus by reverse transcription loop-mediated isothermal amplification.

    PubMed

    He, Xiangfeng; Xue, Fei; Xu, Shufa; Wang, Wenhe

    2016-12-01

    Lily symptomless virus (LSV) is one of the most prevalent viruses that infect lily plants worldwide. A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detection of LSV, using two primer pairs that specifically amplified the conserved sequence of LSV coat protein. The optimum reaction conditions were as follows: 4mM MgCl 2 and 0.8M betaine with incubation at 64°C for 30min. The limit of detection of LSV from infected lily leaves was 10-fold higher for RT-LAMP than for conventional RT-PCR. Moreover, RT-LAMP detected LSV in not only symptomatic, but also in symptomless tissues of infected plants. These findings indicate that our RT-LAMP method for LSV can serve as a low-cost, simple, and rapid alternative to conventional detection assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    PubMed

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  10. Rapid Detection of Prunus Necrotic Ringspot Virus by Reverse Transcription-cross-priming Amplification Coupled with Nucleic Acid Test Strip Cassette.

    PubMed

    Huo, Ya-Yun; Li, Gui-Fen; Qiu, Yan-Hong; Li, Wei-Min; Zhang, Yong-Jiang

    2017-11-23

    Prunus necrotic ringspot virus (PNRSV) is one of the most devastating viruses to Prunus spp. In this study, we developed a diagnostic system RT-CPA-NATSC, wherein reverse transcription-cross-priming amplification (RT-CPA) is coupled with nucleic acid test strip cassette (NATSC), a vertical flow (VF) visualization, for PNRSV detection. The RT-CPA-NATSC assay targets the encoding gene of the PNRSV coat protein with a limit of detection of 72 copies per reaction and no cross-reaction with the known Prunus pathogenic viruses and viroids, demonstrating high sensitivity and specificity. The reaction is performed on 60 °C and can be completed less than 90 min with the prepared template RNA. Field sample test confirmed the reliability of RT-CPA-NATSC, indicating the potential application of this simple and rapid detection method in routine test of PNRSV.

  11. The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus

    PubMed Central

    Kim, In Hwang; Wen, Yancheng; Son, Jee-Soo; Lee, Kyu-Ho

    2013-01-01

    The gene vvpE, encoding the virulence factor elastase, is a member of the quorum-sensing regulon in Vibrio vulnificus and displays enhanced expression at high cell density. We observed that this gene was repressed under iron-rich conditions and that the repression was due to a Fur (ferric uptake regulator)-dependent repression of smcR, a gene encoding a quorum-sensing master regulator with similarity to luxR in Vibrio harveyi. A gel mobility shift assay and a footprinting experiment demonstrated that the Fur-iron complex binds directly to two regions upstream of smcR (−82 to −36 and −2 to +27, with respect to the transcription start site) with differing affinities. However, binding of the Fur-iron complex is reversible enough to allow expression of smcR to be induced by quorum sensing at high cell density under iron-rich conditions. Under iron-limiting conditions, Fur fails to bind either region and the expression of smcR is regulated solely by quorum sensing. These results suggest that two biologically important environmental signals, iron and quorum sensing, converge to direct the expression of smcR, which then coordinates the expression of virulence factors. PMID:23716618

  12. Quantitative Analysis of HIV-1 Preintegration Complexes

    PubMed Central

    Engelman, Alan; Oztop, Ilker; Vandegraaff, Nick; Raghavendra, Nidhanapati K.

    2009-01-01

    Retroviral replication proceeds through the formation of a provirus, an integrated DNA copy of the viral RNA genome. The linear cDNA product of reverse transcription is the integration substrate and two different integrase activities, 3′ processing and DNA strand transfer, are required for provirus formation. Integrase nicks the cDNA ends adjacent to phylogenetically-conserved CA dinucleotides during 3′ processing. After nuclear entry and locating a suitable chromatin acceptor site, integrase joins the recessed 3′-OHs to the 5′-phosphates of a double-stranded staggered cut in the DNA target. Integrase functions in the context of a large nucleoprotein complex, called the preintegration complex (PIC), and PICs are analyzed to determine levels of integrase 3′ processing and DNA strand transfer activities that occur during acute virus infection. Denatured cDNA end regions are monitored by indirect end-labeling to measure the extent of 3′ processing. Native PICs can efficiently integrate their viral cDNA into exogenously added target DNA in vitro, and Southern blotting or nested PCR assays are used to quantify the resultant DNA strand transfer activity. This study details HIV-1 infection, PIC extraction, partial purification, and quantitative analyses of integrase 3′ processing and DNA strand transfer activities. PMID:19233280

  13. Antiviral effect of baicalin phospholipid complex against duck hepatitis A virus type 1.

    PubMed

    Chen, Y; Yang, Y; Wang, F; Yang, X; Yao, F; Ming, K; Yuan, W; Zeng, L; Liu, J

    2018-05-11

    Duck hepatitis A virus type 1 (DHAV-1) is one of the main pathogens of ducklings and causes a high mortality rate. Baicalin (BA) has potent antiviral effect, but the solubility is very poor. In order to increase the absorption, solubility, and pharmacological activity, the phospholipid complex was used to modify BA in present study. Therefore, BA phospholipid complex (BAPC) was prepared. The anti-DHAV-1 abilities of BA and BAPC in vitro was evaluated by cell counting kit-8 and reverse transcription quantitative PCR. The curative effects of BA and BAPC on ducklings which were infected by DHAV-1 in addition to the ALT and AST levels were also detected. The results indicated the anti-DHAV-1 ability of BAPC was stronger than that of BA both in vitro and in vivo. To explore the anti-DHAV-1 mechanism, the influence of BAPC on DHAV-1 adsorption, replication, and release was studied. Furthermore, the anti-oxidative and immuno-enhancing abilities of BAPC in the treatment of infected ducklings were also determined. The results showed BAPC inhibited DHAV-1 adsorption, replication and release. Furthermore, it played anti-oxidative and immno-enhancing roles in the treatment, and the immno-enhancing role was crucial to the treatment.

  14. Reverse transcription and polymerase chain reaction: principles and applications in dentistry.

    PubMed

    Santos, Carlos Ferreira Dos; Sakai, Vivien Thiemy; Machado, Maria Aparecida de Andrade Moreira; Schippers, Daniela Nicole; Greene, Andrew Seth

    2004-03-01

    Various molecular biology techniques have become available in the last few years. One of the most revolutionary of these techniques regarding nucleic acid analysis is the polymerase chain reaction (PCR), which was first described in 1985. This method relies on the exponential amplification of specific DNA fragments, resulting in millions of copies that can serve as templates for different kinds of analyses. PCR can be preceded by a reverse transcription (RT) reaction in order to produce cDNA from RNA (RT-PCR). RT-PCR provides the possibility to assess gene transcription in cells or tissues. PCR and RT-PCR techniques have been instrumental in dental research, and show potential to be used for diagnosis as well as for treatment and prevention of many diseases (dental caries, periodontal disease, endodontic infections and oral cancer). Compared to other traditional methodologies, PCR and RT-PCR show many advantages including high specificity, sensitivity, and speed. Since PCR and RT-PCR are relatively new techniques and are not available to most students and professionals involved with dentistry, the aim of this work is to present the details of these techniques as well as dental literature reports in which they were used.

  15. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    PubMed Central

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  16. Detection of alveolar rhabdomyosarcoma in pleural fluid with immunocytochemistry on cell block and determination of PAX/FKHR fusion mRNA by reverse transcription-polymerase chain reaction.

    PubMed

    Sawangpanich, Ruchchadol; Larbcharoensub, Noppadol; Jinawath, Artit; Pongtippan, Atcharaporn; Anurathapan, Usanarat; Hongeng, Suradej

    2011-11-01

    Alveolar rhabdomyosarcoma is a primitive malignant round cell neoplasm, which shows skeletal muscle differentiation. Although their histopathologic and immunohistochemical findings are well known, the cytology, immunocytochemistry and molecular study on pleural effusion have not been well documented. To apply molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma. The case of a 14-year-old Thai male, who presented with dyspnea and left pleural effusion. Computed tomography of the chest and abdomen showed a huge heterogeneous enhancing mass at the left retroperitoneum. Pleural fluid cytology showed malignant small round blue cells. Immunocytochemical stains on cell block material showed positive reactivity to vimentin, sarcomeric actin, desmin, MyoD1, myogenin, and CD56 in round cell tumor Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated PAX/FKHR fusion transcript. The patient received chemotherapeutic regimen for advanced-stage rhabdomyosarcoma. Finally, he succumbed to the disease, thirteen months after the diagnosis. Immunocytochemistry on cell block in conjunction with determination of PAX/FKHR fusion mRNA by RT-PCR is a molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma inpleural fluid.

  17. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  18. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    PubMed

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. The Homeodomain of PDX-1 Mediates Multiple Protein-Protein Interactions in the Formation of a Transcriptional Activation Complex on the Insulin Promoter

    PubMed Central

    Ohneda, Kinuko; Mirmira, Raghavendra G.; Wang, Juehu; Johnson, Jeffrey D.; German, Michael S.

    2000-01-01

    Activation of insulin gene transcription specifically in the pancreatic β cells depends on multiple nuclear proteins that interact with each other and with sequences on the insulin gene promoter to build a transcriptional activation complex. The homeodomain protein PDX-1 exemplifies such interactions by binding to the A3/4 region of the rat insulin I promoter and activating insulin gene transcription by cooperating with the basic-helix-loop-helix (bHLH) protein E47/Pan1, which binds to the adjacent E2 site. The present study provides evidence that the homeodomain of PDX-1 acts as a protein-protein interaction domain to recruit multiple proteins, including E47/Pan1, BETA2/NeuroD1, and high-mobility group protein I(Y), to an activation complex on the E2A3/4 minienhancer. The transcriptional activity of this complex results from the clustering of multiple activation domains capable of interacting with coactivators and the basal transcriptional machinery. These interactions are not common to all homeodomain proteins: the LIM homeodomain protein Lmx1.1 can also activate the E2A3/4 minienhancer in cooperation with E47/Pan1 but does so through different interactions. Cooperation between Lmx1.1 and E47/Pan1 results not only in the aggregation of multiple activation domains but also in the unmasking of a potent activation domain on E47/Pan1 that is normally silent in non-β cells. While more than one activation complex may be capable of activating insulin gene transcription through the E2A3/4 minienhancer, each is dependent on multiple specific interactions among a unique set of nuclear proteins. PMID:10629047

  20. The Enhancement of Phototropin-Induced Phototropic Curvature in Arabidopsis Occurs via a Photoreversible Phytochrome A-Dependent Modulation of Auxin Responsiveness1

    PubMed Central

    Stowe-Evans, Emily L.; Luesse, Darron R.; Liscum, Emmanuel

    2001-01-01

    The induction of phototropism in etiolated (dark-grown) seedlings exposed to an unidirectional pulse or extended irradiation with low fluence rate blue light (BL) requires the action of the phototropin (nph1) BL receptor. Although cryptochromes and phytochromes are not required for phototropic induction, these photoreceptors do modulate the magnitude of curvature resulting from phototropin activation. Modulatory increases in the magnitude of phototropic curvature have been termed “enhancement.” Here, we show that phototropic enhancement is primarily a phytochrome A (phyA)-dependent red/far-red-reversible low fluence response. This phyA-dependent response is genetically separable from the basal phototropin-dependent response, as demonstrated by its retention under extended irradiation conditions in the nph4 mutant background, which normally lacks the basal BL-induced response. It is interesting that the nph4 mutants fail to exhibit the basal phototropin-dependent and phyA-dependent enhancement responses under limiting light conditions. Given that NPH4 encodes a transcriptional activator, auxin response factor 7 (ARF7), we hypothesize that the ultimate target(s) of phyA action during the phototropic enhancement response is a rate-limiting ARF-containing transcriptional complex in which the constituent ARFs can vary in identity or activity depending upon the irradiation condition. PMID:11402210

Top