Sample records for reverse vortex flow

  1. On the secondary instability of the most dangerous Goertler vortex

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Denier, James P.

    1993-01-01

    Recent studies have demonstrated the most unstable Goertler vortex mode is found in flows, both two and three-dimensional, with regions of (moderately) large body curvature and these modes reside within a thin layer situated at the base of the conventional boundary layer. Further work concerning the nonlinear development of the most dangerous mode demonstrates that the flow results in a self induced flow reversal. However, prior to the point at which flow reversal is encountered, the total streamwise velocity profile is found to be highly inflectional in nature. Previous work then suggests that the nonlinear vortex state will become unstable to secondary, inviscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is with the secondary instability of the nonlinear vortex states, which result from the streamwise evolution of the most unstable Goertler vortex mode, with the aim of determining whether such modes can induce a transition to a fully turbulent state before separation is encountered.

  2. Negative vortices: The formation of vortex rings with reversed rotation in viscoelastic liquids

    NASA Astrophysics Data System (ADS)

    Palacios-Morales, Carlos; Barbosa, Christophe; Solorio, Francisco; Zenit, Roberto

    2015-05-01

    The formation process of vortex rings in a viscoelastic liquid is studied experimentally considering a piston-cylinder arrangement. Initially, a vortex ring begins to form as fluid is injected from the cylinder into the tank in a manner similar to that observed for Newtonian liquids. For later times, when the piston ceases its motion, the flow changes dramatically. A secondary vortex with reversed spinning direction appears and grows to be as large in size as the original one. The formation process is studied by contrasting the evolution with that obtained for Newtonian liquids with equivalent Reynolds numbers and stroke ratios. We argue that the reversing flow, or negative vortex, results from the combined action of shear and extension rates produced during the vortex formation, in a process similar to that observed behind ascending bubbles and falling spheres in viscoelastic media.

  3. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ning; Liu, Kai-hua; Li, Jin-wei; Xian, Hai-zhen; Du, Xiao-ze

    2018-05-01

    Reversible pump turbines are widely employed in the pumped hydro energy storage power plants. The frequent shifts among various operational modes for the reversible pump turbines pose various instability problems, e.g., the strong pressure fluctuation, the shaft swing, and the impeller damage. The instability is related to the vortices generated in the channels of the reversible pump turbines in the generating mode. In the present paper, a new omega vortex identification method is applied to the vortex analysis of the reversible pump turbines. The main advantage of the adopted algorithm is that it is physically independent of the selected values for the vortex identification in different working modes. Both weak and strong vortices can be identified by setting the same omega value in the whole passage of the reversible pump turbine. Five typical modes (turbine mode, runaway mode, turbine brake mode, zero-flow-rate mode and reverse pump mode) at several typical guide vane openings are selected for the analysis and comparisons. The differences between various modes and different guide vane openings are compared both qualitatively in terms of the vortex distributions and quantitatively in terms of the areas of the vortices in the reversible pump turbines. Our findings indicate that the new omega method could be successfully applied to the vortex identification in the reversible pump turbines.

  4. Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed

    NASA Technical Reports Server (NTRS)

    Smith, Willard G.; Lazzeroni, Frank A.

    1960-01-01

    A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.

  5. Vortex Flow Correlation

    DTIC Science & Technology

    1981-01-01

    vorticity model used on the wing as well as on the leading-edge vortex sheet. Since the trailing-edge wake vorti- city does not have the close...z SECTION B-B ( WAKE ) FIGURE 11. FLOW PAST A SLENDER WING WITH LEADING-EDGE VORTEX FLOW 49 * -- A water tunnel is useful in visualizing the reversed...on fighter aircraft which generate strong vortical flows. The differences in apparent mass between a model in air and a model in water require analysis

  6. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  7. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures.

    PubMed

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process. © 2011 American Physical Society

  8. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor.

    PubMed

    Kim, J H; Cho, C H; Shin, D H; Hong, Y C; Shin, Y W

    2015-08-30

    Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF6, NF3 by varying plasma power and N2 flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF3 and SF6 in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF3 was achieved without an additive gas at the N2 flow rate of 150 liter per minute (L/min) by applying a microwave power of 6kW with RVR. Also, a DRE of SF6 was 99.99% at the N2 flow rate of 60 L/min using an applied microwave power of 6kW. The performance of reverse vortex reactor increased about 43% of NF3 and 29% of SF6 abatements results definition by decomposition energy per liter more than conventional vortex reactor. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Unsteady Flow About Porous Cambered Plates

    DTIC Science & Technology

    1988-06-01

    regular time intervals, and evolution of the vortex wake is calculated through the use of the velocities induced at each vortex location. Furthermore... Vorte Poiin o r C 22. at-1.54 o -. 38 . °°" . * ° 2 .- * *o C,, * .* I l * 0••.. . • .• 9• . " 0 - - .-. - - 9 Figure 24. Wake Vortex Positions for...Codes 18 Subject Terms (continue on reverse if necessary and identify by block number) Field Group Subgroup Unsteady Flow, Discrete Vortex Analysis

  10. Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Kalyana; Chakraborty, Debasis

    2017-07-01

    Two-dimensional large eddy simulation of a flow experiment intended for studying and understanding transition and parietal vortex shedding has brought to light some interesting features that have never been seen in previous similar simulations and have implications for future computational work on combustion instabilities in rocket motors. The frequency spectrum of pressure at head end shows a peak at the expected value associated with parietal vortex shedding but an additional peak at half this frequency emerges at downstream location. Using vorticity spectra at various distances away from the wall, it is shown that the frequency halving is due to vortex pairing as hypothesized by Dunlap et al. ["Internal flow field studies in a simulated cylindrical port rocket chamber," J. Propul. Power 6(6), 690-704 (1990)] for a similar experiment. As the flow transitions to turbulence towards the nozzle end, inertial range with Kolmogorov scaling becomes evident in the velocity spectrum. Given that the simulation is two-dimensional, such a scaling could be associated with a reverse energy cascade as per Kraichnan-Leith-Bachelor theory. By filtering the simulated flow field and identifying where the energy backscatters into the filtered scales, the regions with a reverse cascade are identified. The implications of this finding on combustion modeling are discussed.

  11. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  12. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    NASA Astrophysics Data System (ADS)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  13. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly on pitching kinematics. The cambered ellipse exhibits light reverse flow dynamic stall for a wide range of pitching kinematics. Deep dynamic stall over the cambered ellipse airfoil is observed for high mean pitch angles and pitch amplitudes. The detailed results and analysis in this work contributes to the development of a new generation of high-speed helicopters.

  14. Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Cheng, Liang; An, Hongwei; Zhao, Ming

    2017-04-01

    With the aid of direct numerical simulation, this paper presents a detailed investigation on the flow around a finite square cylinder at a fixed aspect ratio (AR) of 4 and six Reynolds numbers (Re = 50, 100, 150, 250, 500, and 1000). It is found that the mean streamwise vortex structure is also affected by Re, apart from the AR value. Three types of mean streamwise vortices have been identified and analyzed in detail, namely, "Quadrupole Type" at Re = 50 and Re = 100, "Six-Vortices Type" at Re = 150 and Re = 250, and "Dipole Type" at Re = 500 and Re = 1000. It is the first time that the "Six-Vortices Type" mean streamwise vortices are reported, which is considered as a transitional structure between the other two types. Besides, three kinds of spanwise vortex-shedding models have been observed in this study, namely, "Hairpin Vortex Model" at Re = 150, "C and Reverse-C and Hairpin Vortex Model (Symmetric Shedding)" at Re = 250, and "C and Reverse-C and Hairpin Vortex Model (Symmetric/Antisymmetric Shedding)" at Re = 500 and Re = 1000. The newly proposed "C and Reverse-C and Hairpin Vortex Model" shares some similarities with "Wang's Model" [H. F. Wang and Y. Zhou, "The finite-length square cylinder near wake," J. Fluid Mech. 638, 453-490 (2009)] but differs in aspects such as the absence of the connection line near the free-end and the "C-Shape" vortex structure in the early stage of the formation of the spanwise vortex.

  15. Flows about a rotating circular cylinder by the discrete-vortex method

    NASA Astrophysics Data System (ADS)

    Kimura, Takeyoshi; Tsutahara, Michihisa

    1987-01-01

    A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.

  16. Vortex shedding from obstacles: theoretical frequency prediction

    NASA Astrophysics Data System (ADS)

    Pier, Benoît

    2001-11-01

    The existence of self-sustained oscillations in spatially developing systems is closely related to the presence of a locally absolutely unstable region. A recent investigation of a ``synthetic wake'' (a wake with no solid obstacle and no reverse flow region) has proved [Pier and Huerre, J. Fluid Mech. 435, 145 (2001)] that the observed Kármán vortex street is a nonlinear elephant global mode. The same criterion is now shown to hold for real obstacles. Local properties are derived from the unperturbed basic flow computed by enforcing a symmetry condition on the central line. Application of the theoretical criterion then yields the expected Strouhal vortex shedding frequency. The thus predicted frequency is in excellent agreement with direct numerical simulations of the complete flow. The use of the frequency selection mechanism to control the vortex shedding will also be discussed.

  17. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    PubMed

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  18. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  19. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model

    NASA Astrophysics Data System (ADS)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu

    2016-12-01

    There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.

  20. Micromachined magnetohydrodynamic actuators and sensors

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  1. Rolling moments in a trailing vortex flow field

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Schwind, R. G.; Nielsen, J. N.; Dillenius, M. F. E.

    1977-01-01

    Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented.

  2. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence.

    PubMed

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R

    2015-06-30

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  3. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    PubMed Central

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-01-01

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. PMID:26080447

  4. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  5. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE PAGES

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; ...

    2015-06-15

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  6. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  7. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.

    1983-01-01

    A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.

  8. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  9. Large Eddy Simulation of Crashback in Marine Propulsors

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.

  10. Turbulent Suspension Mechanics in Sediment-Laden Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kiger, K.

    2013-05-01

    Accurate prediction of benthic sediment transport is a challenging problem due the two-phase nature of the flow near the mobile bed, as well as the large difference in scales between the meso-scale flow and smaller-scale structures interacting with the sediment bed. Of particular importance is the parameterization of the physics at the bottom boundary. This requires estimation of key quantities such as effective bed stress and sediment flux based on the on the outer regional-scale velocity field. An appropriate turbulence/sediment parameterization is needed to specify the correct bottom momentum and sediment flux. Prior work has shown the shortcoming of standard models to properly predict such behavior, which is speculated to result from the dominant role played by large-scale coherent structures in the generation of the bed morphology, suspension of particulates, and important particle-fluid coupling effects. The goal of the current work is to elucidate such relationships through a combination of direct simulation and laboratory-scale experiment, the latter of which will be the primary focus of this paper. Specifically, two-phase PIV is used to provide a novel quantitative description of both phases, allowing for a detailed examination of the flow behavior and particle-turbulence coupling. Experiments were conducted in both a steady, fully-developed turbulent channel flow and an oscillatory boundary layer in order to examine the fundamental behaviour of the suspension and particle coupling mechanisms. The turbulent channel flow measurements indicated an increase in the effective wall stress due to the presence of the sediment on the order of 7%. The sediment suspension was directly correlated with the ejection dynamics of prototypical hairpin structures, but were found to settle back towards the bed in a manner uncorrelated with the fluid structure. In contrast, the measurements of the oscillatory flow reveal it to be dominated by alternating streaming motions and the ejection of a large-scale vortex at flow reversal. The vortex formation is initiated by the separation from the lee side of the dune during the relaxation of the favourable pressure gradient approaching the peak velocity. Through the deceleration phase, the recirculation region strengthens and grows, detaching into a free vortex as flow reversal is approached. Examining the fluctuating component of Reynolds stress show the vortex to be the dominant source of turbulent transport into the outer flow, which gradually decays as it is transported over the dunes. This vortex is also seen to be the major source of sediment transport into the outer flow region, with the time-averaged sediment flux streaming in a recirculating pattern emanating from the dune crests. The recirculation region is continually populated by particles scoured from the high-shear region on the upstream stoss slope, and upon flow reversal are ejected into the outer flow. Comparison of particle a fluid velocity shows significant slip in the vortex/particle cloud, with the particles settling relative to the fluid at close to 2 cm/s. In other regions of the flow, the mean slip magnitude is generally small, but negative, as one might expect owing to the net settling influence exerted by gravity.

  11. Visualization of vortex flow field around a flat plate with noncircular hole

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.

    2018-02-01

    In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.

  12. An experimental study of airfoil-spoiler aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Karamcheti, K.

    1985-01-01

    The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.

  13. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  14. Sand transportation and reverse patterns over leeward face of sand dune

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux decreases with height in the reversed direction. The height of 0.5 H is the height of vortex core in the reversed flow region. The vortex core is a critical point in the flow region where few particles are transited. In the reversed region, the reversed mass flux of sand particles is 25% of the mass flux in the flow direction. This research may contribute to scientific understanding of the mechanisms of sand motion and wind flow over leeward of dune and it is likely to be significant in desertification control.

  15. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  16. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  17. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  18. Computational Study of Porous Treatment for Altering Flap Side-Edge Flowfield

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Khorrami, Mehdi R.

    2003-01-01

    Reynolds-averaged Navier-Stokes calculations are used to investigate porous side-edge treatment as a passive means for flap noise reduction. Steady-state simulations are used to infer effects of the treatment on acoustically relevant features of the mean flow near the flap side edge. Application of the porous treatment over a miniscule fraction of the wetted flap area (scaling with the flap thickness) results in significantly weaker side-edge vortex structures via modification of the vortex initiation and roll-up processes. At high flap deflections, the region of axial flow reversal associated with the breakdown of the side-edge vortex is also eliminated, indicating an absence of vortex bursting in the presence of the treatment. Potential ramifications of the mean-flow modifications for flap-noise reduction are examined in the light of lessons learned from recent studies on flap noise. Computations confirm that any noise reduction benefit via the porous treatment would be achieved without compromising the aerodynamic effectiveness of the flap. Results of the parameter study contribute additional insight into the measured data from the 7x10 wind tunnel at NASA Ames and provide preliminary guidance for specifying optimal treatment characteristics in terms of treatment location, spatial extent, and flow resistance of the porous skin.

  19. Vorticity dynamics in an intracranial aneurysm

    NASA Astrophysics Data System (ADS)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.

  20. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section

    NASA Astrophysics Data System (ADS)

    Lind, Andrew H.; Jones, Anya R.

    2016-07-01

    Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.

  1. Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.

    1995-08-01

    Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less

  2. Fluid-flow of a row of jets in crossflow - A numerical study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Benson, T. J.

    1992-01-01

    A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.

  3. Control of low-speed turbulent separated flow over a backward-facing ramp. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Lin, John C.

    1992-01-01

    The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ's), Viets' fluidic flappers, elongated arches at positive angle of attack, and large-eddy breakup devices (LEBU's) at positive angle of attack placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept grooves, Helmholtz resonators, and arches and LEBU's with angle of attack less than or = 0 degrees had no significant effect in reducing the extent of the separation region. Wall-cooling computations indicated that separation delay on a partially-cooled ramp is nearly the same as on a fully-cooled ramp, while minimizing the frictional drag increase associated with the wall cooling process. Dry-flow visualization tests in the water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanewise cylinder located near the wall and LEBU's at angle of attack = -10 degrees produced eddies or transverse vortices which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJ's produced streamwise co-rotating vortices. Comparative wind-tunnel test results indicated that transferring momentum from the outer region of a turbulent boundary layer through the action of embedded streamwise vortices is more effective than by transverse vortices for the separation control application studied herein.

  4. Slow transition of the Osborne Reynolds pipe flow: A direct numerical simulation study.

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-11-01

    Osborne Reynolds' pipe transition experiment marked the onset of fundamental turbulence research, yet the precise dynamics carrying the laminar state to fully-developed turbulence has been quite elusive. Our spatially-developing direct numerical simulation of this problem reveals interesting connections with theory and experiments. In particular, during transition the energy norms of localized, weakly finite inlet perturbations grow exponentially, rather than algebraically, with axial distance, in agreement with the edge-state based temporal results of Schneider et al. (PRL, 034502, 2007). When inlet disturbance is the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow produces small-scale hairpin packets. When inlet disturbance is near the wall, optimally positioned quasi-spanwise structure is stretched into a Lambda vortex, which grows into a turbulent spot of concentrated small-scale hairpin vortices. Waves of hairpin-like structures were observed by Mullin (Ann. Rev. Fluid Mech., Vol.43, 2011) in their experiment with very weak blowing and suction. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition. Further details of our simulation are reported in Wu et al. (PNAS, 1509451112, 2015).

  5. Turbulence and mechanism of resistance on spheres and cylinders

    NASA Technical Reports Server (NTRS)

    Ahlborn, FR

    1932-01-01

    The nature of turbulent flow through pipes and around obstacles is analyzed and illustrated by photographs of turbulence on screens and straighteners. It is shown that the reversal of flow and of the resistance law on spheres is not explainable by Prandtl's turbulence in the boundary layer. The investigation of the analogous phenomena on the cylinder yields a reversal of the total field of flow. The very pronounced changes in pressure distribution connected with it were affirmed by manometric measurements on spheres by Professor O. Krell. The reversal in a homogenous nonvortical flow is brought about by the advance of the stable arrangement of Karman's dead air vortices toward the test object and by the substitution of an alternatingly one-sided or rotating but stable vortex formation in place of the initially symmetrical formation. This also explains the marked variations of the models.

  6. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.

  7. Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane Olsen

    2016-02-11

    A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that whenmore » the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less

  8. Inter- and intraplane softening of the vortex structure in Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ: a two-step transition

    NASA Astrophysics Data System (ADS)

    Yazyi, J.; Arribére, A.; Durán, C.; de la Cruz, F.; Mitzi, D. B.; Kapitulnik, A.

    1991-12-01

    High Q mechanical oscillator and AC susceptibility techniques have been used to study vortex dynamics in high quality single crystals of Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ over a wide range of magnetic fields and different relative orientations between the magnetic field and the crystalline c-axis. Our results confirm the existence of two transitions in the vortex response. We show that the transition at lower temperatures is associated to currents flowing across the Cu-O planes and the other one to currents in the planes. This means that the reversible region of the phase diagram is reached in two steps when increasing temperature.

  9. The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid

    NASA Astrophysics Data System (ADS)

    Shinde, Sachin; Arakeri, Jaywant

    2010-11-01

    Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.

  10. On the mechanisms of secondary flows in a gas vortex unit

    PubMed Central

    Niyogi, Kaustav; Torregrosa, Maria M.; Marin, Guy B.; Shtern, Vladimir N.

    2018-01-01

    The hydrodynamics of secondary flow phenomena in a disc‐shaped gas vortex unit (GVU) is investigated using experimentally validated numerical simulations. The simulation using ANSYS FLUENT® v.14a reveals the development of a backflow region along the core of the central gas exhaust, and of a counterflow multivortex region in the bulk of the disc part of the unit. Under the tested conditions, the GVU flow is found to be highly spiraling in nature. Secondary flow phenomena develop as swirl becomes stronger. The backflow region develops first via the swirl‐decay mechanism in the exhaust line. Near‐wall jet formation in the boundary layers near the GVU end‐walls eventually results in flow reversal in the bulk of the unit. When the jets grow stronger the counterflow becomes multivortex. The simulation results are validated with experimental data obtained from Stereoscopic Particle Image Velocimetry and surface oil visualization measurements. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1859–1873, 2018 PMID:29937545

  11. Magnetization switching process in a torus nanoring with easy-plane surface anisotropy

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-11-01

    We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.

  12. Magnetic vortex core reversal by excitation of spin waves.

    PubMed

    Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela

    2011-01-01

    Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.

  13. Observation of end-vortex nucleation in individual ferromagnetic nanotubes

    NASA Astrophysics Data System (ADS)

    Mehlin, A.; Gross, B.; Wyss, M.; Schefer, T.; Tütüncüoglu, G.; Heimbach, F.; Fontcuberta i Morral, A.; Grundler, D.; Poggio, M.

    2018-04-01

    The reversal of uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to occur through the nucleation and propagation of vortex domains forming at the ends. We provide experimental evidence for this behavior through dynamic cantilever magnetometry measurements of individual FNTs. In particular, we identify the nucleation of the vortex end domains as a function of applied magnetic field and show that they mark the onset of magnetization reversal. We find that the nucleation field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end-vortex nucleation enabled by our findings is promising for the production of FNTs with tailored reversal properties.

  14. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  15. Research on external flow field of a car based on reverse engineering

    NASA Astrophysics Data System (ADS)

    Hu, Shushan; Liu, Ronge

    2018-05-01

    In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.

  16. Analysis and control of asymmetric vortex flows and supersonic vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1991-01-01

    Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

  17. Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka

    2011-09-01

    Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.

  18. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region

    PubMed Central

    BORAZJANI, IMAN; SOTIROPOULOS, FOTIS

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281

  19. Characteristics of a Strongly-Pulsed Non-Premixed Jet Flame in Cross-flow

    NASA Astrophysics Data System (ADS)

    Gamba, Mirko; Clemens, Noel T.; Ezekoye, Ofodike A.

    2006-11-01

    The effects of large-amplitude, high-frequency harmonic forcing of turbulent nonpremixed hydrogen/methane jet flames in cross-flow (JFICF) are investigated experimentally. Flame lengths, penetration lengths, and mixing characteristics are studied using flame luminosity imaging, planar laser Mie scattering visualization and particle image velocimetry. Mean jet Reynolds numbers of 1,600 and 3,250 (peak Re ˜2,500--6,500) with corresponding mean momentum flux ratios, r, of 1.9 and 3.7 (peak r ˜2.6--8.3) are considered. Forcing frequencies of 100 Hz and 300 Hz with amplitudes of ˜60%--300% are investigated. Consistent with previous work, a drastic decrease in flame length and soot emission, an increase in flame penetration and an improved jet fuel/cross-flow air mixing are observed for the larger forcing amplitude cases. Partial pre-mixing induced by near-field reverse flow, near-field vortex/vortex interaction and large-scale stirring, rendered stronger by large forcing amplitudes and frequencies, are thought to play a key role on the observed effects.

  20. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow

    NASA Astrophysics Data System (ADS)

    Gutsol, Alexander

    2012-10-01

    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  1. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  2. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    PubMed

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.

  3. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  4. Wake structure and wing motion in bat flight

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana; Breuer, Kenneth; Swartz, Sharon

    2008-11-01

    We report on experiments concerning the wake structure and kinematics of bat flight, conducted in a low-speed wind tunnel using time-resolved PIV (200Hz) and 4 high-speed cameras to capture wake and wing motion simultaneously. 16 Lesser dog-faced fruit bats (C. brachyotis) were trained to fly in the wind tunnel at 3-6.5m/s. The PIV recordings perpendicular to the flow stream allowed observing the development of the tip vortex and circulation over the wing beat cycle. Each PIV acquisition sequence is correlated with the respective kinematic history. Circulation within wing beat cycles were often quite repeatable, however variations due to maneuvering of the bat are clearly visible. While no distinct vortex structure was observed at the upper reversal point (defined according the vertical motion of the wrist) a tip vortex was observed to develop in the first third of the downstroke, growing in strength, and persisting during much of the upstroke. Correlated to the presence of a strong tip vortex the circulation has almost constant strength over the middle half of the wing beat. At relatively low flight speeds (3.4 m/s), a closed vortex structure behind the bat is postulated.

  5. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  6. An experimental investigation of S-duct flow control using arrays of low-profile vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, Bruce A.; Wendt, Bruce J.

    1993-01-01

    An experimental investigation was undertaken to measure the effect of various configurations of low-profile vortex generator arrays on the flow in a diffusing S-duct. Three parameters that characterize the vortex generator array were systematically varied to determine their effect: (1) the vortex generator height; (2) the streamwise location of the vortex generator array; and (3) the vortex generator spacing. Detailed measurements of total pressure at the duct exit, surface static pressure, and surface flow visualization were gathered for each vortex generator configuration. These results are reported here along with total pressure recovery and distortion coefficients determined from the experimental data. Each array of vortex generators tested improved total pressure recovery. The configuration employing the largest vortex generators was the most effective in reducing total pressure recovery. No configuration of vortex generators completely eliminated the flow separation that naturally occurs in the S-duct, however the extent of the separated flow region was reduced.

  7. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  8. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  9. Clinical impact of quantitative left atrial vortex flow analysis in patients with atrial fibrillation: a comparison with invasive left atrial voltage mapping.

    PubMed

    Lee, Jung Myung; Hong, Geu-Ru; Pak, Hui-Nam; Shim, Chi Young; Houle, Helene; Vannan, Mani A; Kim, Minji; Chung, Namsik

    2015-08-01

    Recently, left atrial (LA) vortex flow analysis using contrast transesophageal echocardiography (TEE) has been shown to be feasible and has demonstrated significant differences in vortex flow morphology and pulsatility between normal subjects and patients with atrial fibrillation (AF). However, the relationship between LA vortex flow and electrophysiological properties and the clinical significance of LA vortex flow are unknown. The aims of this study were (1) to compare LA vortex flow parameters with LA voltage and (2) to assess the predictive value of LA vortex flow parameters for the recurrence of AF after radiofrequency catheter ablation (RFCA). Thirty-nine patients with symptomatic non-valvular AF underwent contrast TEE before undergoing RFCA for AF. Quantitative LA vortex flow parameters were analyzed by Omega flow (Siemens Medical Solution, Mountain View, CA, USA). The morphology and pulsatility of LA vortex flow were compared with electrophysiologic parameters that were measured invasively. Hemodynamic, electrophysiological, and vortex flow parameters were compared between patients with and without early recurrence of AF after RFCA. Morphologic parameters, including LA vortex depth, length, width, and sphericity index were not associated with LA voltage or hemodynamic parameters. The relative strength (RS), which represents the pulsatility power of LA, was positively correlated with LA voltage (R = 0.53, p = 0.01) and LA appendage flow velocity (R = 0.73, p < 0.001) and negatively correlated with LA volume index (R = -0.56, p < 0.001). Patients with recurrent AF after RFCA showed significantly lower RS (1.7 ± 0.2 vs 1.9 ± 0.4, p = 0.048) and LA voltage (0.9 ± 0.7 vs 1.7 ± 0.8, p = 0.004) than patients without AF recurrence. In the relatively small LA dimension group (LA volume index ≤ 33 ml/m(2)), RS was significantly lower (2.1 ± 0.3 vs 1.7 ± 0.1, p = 0.029) in patients with the recurrent AF. Quantitative LA vortex flow analysis, especially RS, correlated well with LA voltage. Decreased pulsatility strength in the LA was associated with recurrent AF. LA vortex may have incremental value in predicting the recurrence of AF.

  10. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  11. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    NASA Astrophysics Data System (ADS)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  12. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  13. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  14. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  15. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  16. Gliding arc in tornado using a reverse vortex flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander

    The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes themore » design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.« less

  17. Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Ramesh, Kiran; Granlund, Kenneth; Ol, Michael V.; Gopalarathnam, Ashok; Edwards, Jack R.

    2018-04-01

    A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil-Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.

  18. Numerical investigation of separated nozzle flows

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.

    1994-01-01

    A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.

  19. The Effect of the Air-Delivery Method on Parameters of the Precessing Vortex Core in a Hydrodynamic Vortex Chamber

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.

    2018-03-01

    The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.

  20. Leading-edge vortex research: Some nonplanar concepts and current challenges

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Osborn, R. F.

    1986-01-01

    Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts.

  1. Evolution of hairpin vortices in a shear flow

    NASA Technical Reports Server (NTRS)

    Hon, T.-L.; Walker, J. D. A.

    1988-01-01

    Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations.

  2. The migration and growth of nuclei in an ideal vortex flow

    NASA Astrophysics Data System (ADS)

    Zhang, Lingxin; Chen, Linya; Shao, Xueming

    2016-12-01

    Tip vortex cavitation occurs on ship propellers which can cause significant noise compared to the wet flow. In order to predict the inception of tip vortex cavitation, numerous researches have been investigated about the detailed flow field around the tip. According to informed studies, the inception of tip vortex cavitation is affected by many factors. To understand the effect of water quality on cavitation inception, the motion of nuclei in an ideal vortex flow, i.e., the Rankine vortex flow, was investigated. The one-way coupling point-particle tracking model was employed to simulate the trajectory of nuclei. Meanwhile, Rayleigh-Plesset equation was introduced to describe the growth of nuclei. The results show that the nucleus size has a significant effect on nucleus' trajectory. The capture time of a nucleus is approximately inversely proportional to its radius. The growth of nucleus accelerates its migration in the vortex flow and shortens its capture time, especially for the case of explosive growth.

  3. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  4. Guiding principles for vortex flow controls

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1991-01-01

    In the practice of vortex flow controls, the most important factor is that the persistency and obstinacy of a concentrated vortex depend on its stability and dissipation. In this paper, the modern nonlinear stability theory for circulation-preserving flows is summarized, and the dissipation for general viscous flows is analyzed in terms of the evolution of total enstrophy. These analyses provide a theoretical base for understanding relevant physics of vortex flows, and lead to some guiding principles and methods for their controls. Case studies taken from various theoretical and/or experimental works of vortex controls, due to the present authors as well as others, confirm the feasibility of the recommended principles and methods.

  5. A water tunnel flow visualization study of the F-15

    NASA Technical Reports Server (NTRS)

    Lorincz, D. J.

    1978-01-01

    Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.

  6. Flow visualization study of the HiMAT RPRV

    NASA Technical Reports Server (NTRS)

    Lorincz, D. J.

    1980-01-01

    Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.

  7. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE PAGES

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; ...

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir 20Mn 80/Fe 20Ni 80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet,more » which leads to unexpected asymmetries in the annihilation and nucleation fields. Lastly, these results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  8. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor

    NASA Astrophysics Data System (ADS)

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  9. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor.

    PubMed

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  10. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  11. Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/Without Vortex Generators

    NASA Technical Reports Server (NTRS)

    Cho, Soo-Yong; Greber, Isaac

    1994-01-01

    Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.

  12. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  13. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  14. The Effect of Uniform Background Flow on Vortex Ring Formation and Pinch-off

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Dabiri, John O.; Gharib, Morteza

    2002-11-01

    Experimental investigations of vortex ring formation are extended to include the effects of a uniform background flow, in a manner relevant to the locomotion of aquatic animals utilizing jet propulsion. Gharib et. al. [J. Fluid Mech. 360, 121 (1998)] generated vortex rings using a piston/cylinder apparatus with relatively large discharge times to demonstrate that the vortex ring at the leading edge of the jet attains its maximum circulation at a piston stroke-to-diameter ratio L/D of 4. This "formation number" is robust over a range of piston motions and cylinder boundary conditions, and can be explained in terms of the Kelvin-Benjamin variational principle. To determine the effect of background flow on formation number and pinch-off of the leading vortex ring, uniform co-flow is established in a large annulus surrounding the vortex generator. The ratio of co-flow velocity to piston velocity is varied between 0 and 1. In addition, the co-flow is initiated at times both before and after the start of vortex ring formation. We present results for stroke ratios L/D = 2 and L/D = 8, in order to discern effects of the co-flow on the leading vortex ring in isolation and in the presence of a trailing jet.

  15. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    DTIC Science & Technology

    2014-08-06

    dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex

  16. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  17. Theoretical and Numerical Studies of a Vortex - Interaction Problem

    NASA Astrophysics Data System (ADS)

    Hsu, To-Ming

    The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.

  18. Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Raman, G.

    1997-01-01

    Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.

  19. Secondary Vortex Structures in Vortex Generator Induced Flow

    NASA Astrophysics Data System (ADS)

    Velte, Clara; Okulov, Valery; Hansen, Martin

    2010-11-01

    Passive rectangular vane actuators can induce a longitudinal vortex that redistributes the momentum in the boundary layer to control the flow. Recent experiments [1] as well as previous studies [2] have shown that a secondary vortex of opposite sign is generated along with the primary one, supposedly from local separation of the boundary layer due to the primary vortex. 2D flow visualizations of a vortex in the vicinity of a boundary support this hypothesis [3]. These secondary vortices are studied for various configurations -- single generator, counter- and co-rotating cascades. The objective is to study their removal through cancelation in cascades using Stereoscopic Particle Image Velocimetry and flow visualization.[4pt] [1] Velte, Hansen and Okulov, J. Fluid Mech. 619, 2009.[0pt] [2] Zhang, Int. J. Heat Fluid Flow 21 2000.[0pt] [3] Harris, Miller and Williamson, APS abstract 2009.

  20. Discrete-vortex model for the symmetric-vortex flow on cones

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    1990-01-01

    A relatively simple but accurate potential flow model was developed for studying the symmetric vortex flow on cones. The model is a modified version of the model first developed by Bryson, in which discrete vortices and straight-line feeding sheets were used to represent the flow field. It differs, however, in the zero-force condition used to position the vortices and determine their circulation strengths. The Bryson model imposed the condition that the net force on the feeding sheets and discrete vortices must be zero. The proposed model satisfies this zero-force condition by having the vortices move as free vortices, at a velocity equal to at the local crossflow velocity at their centers. When the free-vortex assumption is made, a solution is obtained in the form of two nonlinear algebraic equations that relate the vortex center coordinates and vortex strengths to the cone angle and angle of attack. The vortex center locations calculated using the model are in good agreement with experimental values. The cone normal forces as well as center locations are in good agreement with the vortex cloud method of calculating symmetric flow fields.

  1. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    NASA Astrophysics Data System (ADS)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  2. Fluid-structure-interaction of a flag in a channel flow

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  3. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  4. Visualization of a vortex flow in a rotating tank

    NASA Astrophysics Data System (ADS)

    Kawano, Yosuke

    Flow structures of a vortex in a rotating tank were studied employing tracer method. The velocity measurements were made by photographing the motions of small polystyrene particles and analyzing strobo flash light pictures. The vortex flow is confined to a cylindrical region which is composed of a spiral upward flow in the center surrounded by an annular downward flow.

  5. Computation of viscous flows over airfoils, including separation, with a coupling approach

    NASA Technical Reports Server (NTRS)

    Leballeur, J. C.

    1983-01-01

    Viscous incompressible flows over single or multiple airfoils, with or without separation, were computed using an inviscid flow calculation, with modified boundary conditions, and by a method providing calculation and coupling for boundary layers and wakes, within conditions of strong viscous interaction. The inviscid flow is calculated with a method of singularities, the numerics of which were improved by using both source and vortex distributions over profiles, associated with regularity conditions for the fictitious flows inside of the airfoils. The viscous calculation estimates the difference between viscous flow and inviscid interacting flow, with a direct or inverse integral method, laminar or turbulent, with or without reverse flow. The numerical method for coupling determines iteratively the boundary conditions for the inviscid flow. For attached viscous layers regions, an underrelaxation is locally calculated to insure stability. For separated or separating regions, a special semi-inverse algorithm is used. Comparisons with experiments are presented.

  6. Computation of Incompressible Potential Flow over an Airfoil Using a High Order Aerodynamic Panel Method Based on Circular Arc Panels.

    DTIC Science & Technology

    1982-08-01

    Vortex Sheet Figure 4 - Properties of Singularity Sheets they may be used to model different types of flow. Transfer of boundary... Vortex Sheet Equivalence Singularity Behavior Using Green’s theorem it is clear that the problem of potential flow over a body can be modeled using ...that source, doublet, or vortex singularities can be used to model potential flow problems, and that the doublet and vortex singularities are

  7. On the combination of kinematics with flow visualization to compute total circulation - Application to vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.; Chang, I.-D.

    1980-01-01

    To date the computation of the total circulation, or strength of a vortex has required detailed measurements of the velocity field within the vortex. In this paper a method is described in which the kinematics of the vortical flow field is exploited to calculate the strength of a vortex from relatively simple flow visualization measurements. There are several advantages in the technique, the most important being the newly acquired ability to calculate the transient changes in strength of a single vortex as it evolves. The method is applied to the study of vortex rings, although the development can be carried over directly to study vortex pairs, and it is expected that it can be generalized to other flows which contain regions of concentrated vorticity. The accuracy of the method as applied to vortex rings, assessed in part by comparing with the laser Doppler velocimeter (LDV) measurements of Sullivan et al., is shown to be excellent.

  8. Flow visualization study of a vortex-wing interaction

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.; Lim, T. T.

    1984-01-01

    A flow visualization study in water was completed on the interaction of a streamwise vortex with a laminar boundary layer on a two-dimensional wing. The vortex was generated at the tip of a finite wing at incidence, mounted perpendicular to the main wing, and having the same chord as the main wing. The Reynolds number based on wing chord was about 5000. Two different visualization techniques were used. One involved the injection of two different colored dyes into the vortex and the boundary layer. The other technique utilized hydrogen bubbles as an indicator. The position of the vortex was varied in a directional normal to the wing. The angle of attack of the main wing was varied from -5 to +12.5 deg. The vortex induced noticeable cross flows in the wing boundary layer from a distance equivalent to 0.75 chords. When very close to the wing, the vortex entrained boundary layer fluid and caused a cross flow separation which resulted in a secondary vortex.

  9. Topological formation of a multiply charged vortex in the Rb Bose-Einstein condensate: Effectiveness of the gravity compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumakura, M.; PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012; CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012

    2006-06-15

    In a Bose-Einstein condensate of {sup 87}Rb (F=2,m{sub F}=2) atoms we have topologically created a quantized vortex with a charge of 4 by reversing the magnetic field of the trap. Experimental conditions of reversal time and initial magnetic field strength for the successful vortex creation were restricted within narrower ranges, compared to those in the case of the {sup 23}Na condensate. The experimental difficulty was explained in terms of a non-negligible gravitational sag arising from its large atomic mass. We have successfully stabilized the vortex formation by compensating gravity with a blue-detuned laser beam.

  10. Vortex reconnection in the K-type transitional channel flow

    NASA Astrophysics Data System (ADS)

    Zhao, Yaomin; Yang, Yue; Chen, Shiyi

    2016-11-01

    Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the K-type temporal transition in channel flow. Based on the VSF, both qualitative visualization and quantitative analysis are used to investigate the reconnection between the hairpin-like vortical structures evolving from the opposite channel halves. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the VSF isolines on the spanwise symmetric plane. In addition, we find that the surge of the wall friction coefficient begins at the identified reconnection time, which is discussed with the induced velocity during reconnection and the Biot-Sarvart law. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  11. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  12. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  13. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  14. How effective is aeration with vortex flow regulators? Pilot scale experiments

    NASA Astrophysics Data System (ADS)

    Wójtowicz, Patryk; Szlachta, Małgorzata

    2017-11-01

    Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.

  15. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  16. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  17. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  18. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  19. Interaction of a Vortex with Axial Flow and a Cylindrical Surface

    NASA Astrophysics Data System (ADS)

    Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.

    1998-11-01

    The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.

  20. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  1. Magnetoresistance measurement of permalloy thin film rings with triangular fins

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Feng; Hsu, Chia-Jung; Liao, Chun-Neng; Chen, Ying-Jiun; Wei, Zung-Hang

    2010-01-01

    Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.

  2. Low energy consumption vortex wave flow membrane bioreactor.

    PubMed

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  3. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the inlet and outlet pressure-drop is obtained by considering a least restrictive porous medium core. Finally, modified K and C are proposed and predictive equations, accurate to within 2.5%, are obtained for both channel configurations with Re ranging from 10-2 to 102 and φ from 6% to 95%. When momentum driven flows interact with thin porous media, the interaction of vortices with the media's complex structure gives way to a number of phenomena of fundamental and applied interest, such as unsteady flow separation. A special case that embodies many of the key features of these flows is the interaction of a vortex ring with a permeable flat surface. Although fundamental, this complex flow configuration has never been considered. The present investigation experimentally studies the fluid mechanics of the interaction of a vortex ring impinging directly on thin permeable flat targets. The vortex ring is formed in water using a piston-cylinder mechanism and visualized using planar laser-induced fluorescence (PLIF). The rings are formed for jet Reynolds numbers of 3000 and 6000, and piston stroke-to-diameter ratios of 1.0, 3.0, and 6.0. Thin screens of similar geometry having surface opening fractions of 44, 60, 69, and 79% are targeted by the rings. The flow that emerges downstream of the screens reforms into a new, "transmitted" vortex ring. For the lower porosity targets, features that are characteristic of vortex ring impingement on walls are also observed, such as primary vortex ring rebound and reversal, flow separation, formation of secondary vortices and mixing. As the interaction proceeds, however, the primary vortex ring and secondary vortices are drawn toward the symmetry axis of the flow by fluid passing through the permeable screen. Quantitative flow measurements using digital particle image velocimetry (DPIV), indicate the transmitted vortex ring has lower velocity and less (total) kinetic energy than the incident ring. Ring trajectories and total kinetic energy relationships between vortices upstream and downstream the porous targets as a function of the porosity are presented, based on the velocity field from the DPIV measurements. Results show that kinetic energy dissipation is more intense for the low porosity targets and that flows with higher initial kinetic energy impacting on the same target loose a smaller percentage of their initial energy.

  4. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  5. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    PubMed Central

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  6. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    PubMed

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  7. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  8. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  9. Experimental Determination of Ultra-Sharp Stray Field Distribution from a Magnetic Vortex Core Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Zhu, Y.; Zhong, H.

    2009-08-01

    The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less

  10. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  11. Counterexamples to Moffatt's statements on vortex knots.

    PubMed

    Bogoyavlenskij, Oleg

    2017-04-01

    One of the well-known problems of hydrodynamics is studied: the problem of classification of vortex knots for ideal fluid flows. In the literature there are known Moffatt statements that all torus knots K_{m,n} for all rational numbers m/n (0

  12. Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,

    DTIC Science & Technology

    1984-01-12

    Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density

  13. Modeling Vortex Generators in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  14. Flow characteristics and spillage mechanisms of an inclined quad-vortex range hood subject to influence from draft.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Lin, Jyun-Hua

    2015-01-01

    The flow and spillage characteristics of an inclined quad-vortex (IQV) range hood subject to the influence of drafts from various directions were studied. The laser-assisted smoke flow visualization technique was used to reveal the flow characteristics, and the tracer-gas (sulfur hexafluoride) concentration detection method was used to indicate the quantitative values of the capture efficiency of the hood. It was found that the leakage mechanisms of the IQV range hood are closely related to the flow characteristics. A critical draft velocity of about 0.5 m/s and a critical face velocity of about 0.25 m/s for the IQV range hood were found. When the IQV range hood was influenced by a draft with a velocity larger than the critical draft velocity, the spillage of pollutants became significant and the pollutant spillage rate increased with increasing draft velocity. At draft velocities less than or equal to the critical value, no containment leakages induced by the turbulence diffusion, reverse flow, or boundary-layer separation were observed, and the capture efficiency was about 100%. The IQV range hood exhibited a high ability to resist the influences of lateral and frontal drafts. The capture efficiency of the IQV range hood operated at the suction flow rate 5 to 9 m(3)/min is higher than that of the conventional range hood operated at 11 to 15 m(3)/min.

  15. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.

  16. Recent theoretical developments and experimental studies pertinent to vortex flow aerodynamics - With a view towards design

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Luckring, J. M.

    1978-01-01

    A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.

  17. Lee-side flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.

  18. Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lane, David A.

    1996-01-01

    Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.

  19. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  20. Behavior of streamwise rib vortices in a three-dimensional mixing layer

    NASA Technical Reports Server (NTRS)

    Lopez, J. M.; Bulbeck, C. J.

    1992-01-01

    The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.

  1. Rotor Aerodynamics in Ground Effect at Low Advance Ratios.

    DTIC Science & Technology

    1982-07-27

    the rotor wake flows entirely downstream. At test conditions were the recirculating flow or ground vortex is present there are marked departures...ILLUSTRATIONS Figure Page 1 Cross Section of Test Facilty 12 2 Overall View of Test Facility and Rotor Model 13 3 Flow Pattern in Ground Vortex Regime, (v...entirely flowing downstream splits and a portion of the rotor wake flows forward (upstream) and then recirculates through the rotor or forms a vortex or

  2. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices, the saturation becomes delayed. In addition, for decreased vertical spacing of micro-cylinders (R = 40 μm) falling below the diameter-length "2R," the SO2 absorption (mso2 ') only gets slower. We provide extensive analysis of two-phase transport phenomena in terms of interactive shear-stress, pressure, and characteristic time-ratio "Tr" of advection-diffusion processes, for varied G/R, Re, and liquid phase Peclet number "Pel" (96 ≤ Pel ≤ 1333), to present a better insight into the governing physics.

  3. Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins

    NASA Astrophysics Data System (ADS)

    Devoria, Adam C.; Ringuette, Matthew J.

    2012-02-01

    We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.

  4. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  5. Combined action of transverse oscillations and uniform cross-flow on vortex formation and pattern of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.; Hu, J. C.

    2010-07-01

    This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.

  6. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases, resulting in less NO titration. In the deep street canyons, outward flow becomes weak and outward NOX flux decreases, resulting in an increase (decrease) in NOX (O3) concentration.

  7. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows

    PubMed Central

    Green, Melissa A.; Rowley, Clarence W.; Smits, Alexander J.

    2010-01-01

    We use direct Lyapunov exponents to identify Lagrangian coherent structures (LCSs) in a bioinspired fluid flow: the wakes of rigid pitching panels with a trapezoidal planform geometry chosen to model idealized fish caudal fins. When compared with commonly used Eulerian criteria, the Lagrangian method has previously exhibited the ability to define structure boundaries without relying on a preselected threshold. In addition, qualitative changes in the LCS have previously been shown to correspond to physical changes in the vortex structure. For this paper, digital particle image velocimetry experiments were performed to obtain the time-resolved velocity fields for Strouhal numbers of 0.17 and 0.27. A classic reverse von Kármán vortex street pattern was observed along the midspan of the near wake at low Strouhal number, but at higher Strouhal number the complexity of the wake increased downstream of the trailing edge. The spanwise vortices spread transversely across the wake and lose coherence, and this event was shown to correspond to a qualitative change in the LCS at the same time and location. PMID:20370300

  8. Experimental investigation on the effects of swirling flow on augmentor performance

    NASA Astrophysics Data System (ADS)

    Tan, Haoyuan; Huang, Xianjian

    1991-06-01

    This paper describes an investigation on the effect of centrifugal force distributions on swirl augmentor performance. The experiments were conducted on the flow drag, temperature-distribution efficiency in the swirl augmentor model with different tangential velocity profiles. Four tangential velocity distributions considered are the Rankine vortex, forced vortex, free vortex, and the constant-angle vortex. The results show that the flow drag of the Rankine vortex swirler is the smallest one, and, in a swirl augmentor where flame is stabilized by using centrifugal force, the combustion efficiency can reach 90 percent or over, though the swirl number is low (S = 0.25).

  9. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  10. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  11. In-flight leading-edge extension vortex flow-field survey measurements on a F-18 aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Fisher, David F.

    1992-01-01

    Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.

  12. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows

    PubMed Central

    Boghosian, M. E.; Cassel, K. W.

    2016-01-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM. PMID:27795617

  13. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows.

    PubMed

    Boghosian, M E; Cassel, K W

    2016-12-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.

  14. Vortices and turbulence (The 23rd Lanchester Memorial Lecture)

    NASA Astrophysics Data System (ADS)

    Lilley, G. M.

    1983-12-01

    A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.

  15. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  16. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  17. Magnetization reversal in circular vortex dots of small radius.

    PubMed

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  18. Several examples where turbulence models fail in inlet flow field analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1993-01-01

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  19. Numerical investigation of influence of tip leakage flow on secondary flow in transonic centrifugal compressor at design condition

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanao; Tsujita, Hoshio

    2015-04-01

    In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the interaction with the main flow, and consequently makes the flow in the impeller passage more complex by the interaction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance especially for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.

  20. Tip leakage vortex dynamics and inception

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David

    2002-11-01

    The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.

  1. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.

  2. Schlieren photography on freely flying hawkmoth.

    PubMed

    Liu, Yun; Roll, Jesse; Van Kooten, Stephen; Deng, Xinyan

    2018-05-01

    The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren , a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth ( Manduca ). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects. © 2018 The Author(s).

  3. Identification of vortices in complex flows

    NASA Astrophysics Data System (ADS)

    Chakraborty, P.; Balachandar, S.; Adrian, R. J.

    2007-12-01

    Dating back to Leonardo da Vinci's famous sketches of vortices in turbulent flows, fluid dynamicists for over five centuries have continued to visualize and interpret complex flows in terms of motion of vortices. Nevertheless, much debate surrounds the question of how to unambiguously define vortices in complex flows. This debate has resulted in the availability of many vortex identification criteria---mathematical statements of what constitutes a vortex. Here we review the popularly used local or point- wise vortex identification criteria. Based on local flow kinematics, we describe a unified framework to interpret the similarities and differences in the usage of these criteria. We discuss the limitations on the applicability of these criteria when there is a significant component of vortex interactions. Finally, we provide guidelines for applying these criteria to geophysical flows.

  4. Reactive Flow Control of Delta Wing Vortex (Postprint)

    DTIC Science & Technology

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  5. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects.

    PubMed

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J

    2015-11-01

    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  6. Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode)

    NASA Astrophysics Data System (ADS)

    Attie, R.; Innes, D. E.; Potts, H. E.

    2009-01-01

    Context: Twisting motions of different sorts are observed in several layers of the solar atmosphere. Chromospheric sunspot whorls and rotation of sunspots or even higher up in the lower corona sigmoids are examples of the large-scale twisted topology of many solar features. Nevertheless, their occurrence on a large scale in the quiet photosphere has not been investigated yet. Aims: The present study reveals the existence of vortex flows located at the supergranular junctions of the quiet Sun. Methods: We used a 1-h and a 5-h time series of the granulation in blue continuum and G-band images from FG/SOT to derive the photospheric flows. A feature-tracking technique called balltracking was performed to track the granules and reveal the underlying flow fields. Results: In both time series, we identify long lasting vortex flow located at supergranular junctions. The first vortex flow lasts at least 1 h and is ~20´´ wide (~15.5 Mm). The second vortex flow lasts more than 2 h and is ~27´´ wide (~21 Mm).

  7. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.

    PubMed

    Liu, Hanlin; Curet, Oscar M

    2018-06-18

    Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or human-piloted vessels. © 2018 IOP Publishing Ltd.

  8. A point vortex model for the formation of ocean eddies by flow separation

    NASA Astrophysics Data System (ADS)

    Southwick, O. R.; Johnson, E. R.; McDonald, N. R.

    2015-01-01

    A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown-Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown-Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.

  9. Low flow vortex shedding flowmeter for hypergolics/all media

    NASA Technical Reports Server (NTRS)

    Thinh, Ngo

    1990-01-01

    A family of vortex shedding flowmeters for flow measurement of hypergols that requires a long term operation without removal from system lines was further developed. A family of vortex shedding flowmeters without moving parts was designed. The test loop to evaluate the meters for the Freon flow, which simulates the hypergolic fluids, was modified and reconstructed. Preliminary results were obtained on the output frequency characteristics of an 1/2 inch flowmeter as a function of the flow rate.

  10. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  11. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Chen, Hui; Liu, Yingwen

    2017-06-01

    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  12. A Computational Fluid Dynamics Study of Swirling Flow Reduction by using Anti-vortex Baffle

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John W.; West, Jeff S..

    2013-01-01

    An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6- DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.

  13. A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John W.; West, Jeff S.

    2017-01-01

    An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.

  14. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  15. Hysteretic growth and decay of a waterspout column

    NASA Astrophysics Data System (ADS)

    Naumov, Igor V.; Herrada, Miguel A.; Sharifullin, Bulat R.; Shtern, Vladimir N.

    2018-02-01

    This work explores a model waterspout: a flow of water and sunflower oil driven by the rotating lid in a sealed vertical cylindrical container. The experiments reveal the hysteretic growth and decay of a water column. The numerical simulations uncover vortex breakdown (VB) in the water and oil flows. As the rotation speeds up, (1) a VB water cell emerges near the bottom center, (2) it expands and occupies almost the entire water volume except a thin layer adjusted to the interface, (3) a VB oil cell emerges and disappears above the interface-axis intersection, (4) the interface rises near the axis, descends at the periphery, and shifts from the sidewall to the bottom, (5) the water touches the lid near the axis and forms a column, extending from the bottom up to the lid. As the rotation decelerates, the process reverses, but the flow states differ from those for the direct process at same rotation speeds. It is argued that the hysteresis is a capillary phenomenon and occurs because the interface-wall contact angle differs in the direct and reverse processes.

  16. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  17. Experimental Investigation of the Influence of a Reverse Delta Type Add-on Device on the Flap-tip Vortex of a Wing

    NASA Astrophysics Data System (ADS)

    Altaf, A.; Thong, T. B.; Omar, A. A.; Asrar, W.

    2017-03-01

    Particle Image Velocimetry was used in a low speed wind tunnel to investigate the effect of interactions of vortices produced by an outboard flap-tip of a half wing (NACA 23012 in landing configuration) and a slender reverse delta type add-on device, placed in the proximity of the outboard flap-tip, on the upper surface of the half wing. This work investigates the characteristics of the vortex interactions generated downstream in planes perpendicular to the free stream direction at a chord-based Reynolds number of Rec=2.74×105 . It was found that the add-on device significantly reduces the tangential velocity magnitude and enlarges the vortex core of the resultant vortex by up to 36.1% and 36.8%, respectively.

  18. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  19. Influence of columnar defects on the thermodynamic properties of BSCCO

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-03-01

    Amorphous columnar defects strongly affect the reversible magnetization of Bi2Sr2CaCu2O8+δ single crystals both in the vortex solid, where the change reflects the change in vortex energy due to pinning, and in the vortex liquid, where the randomly positioned columns disrupt the interaction between superconducting fluctuations.

  20. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  1. Numerical research of the swirling supersonic gas flows in the self-vacuuming vortex tube

    NASA Astrophysics Data System (ADS)

    Volov, V. T.; Lyaskin, A. S.

    2018-03-01

    This article presents the results of simulation for a special type of vortex tubes – self-vacuuming vortex tube (SVVT), for which extreme values of temperature separation and vacuum are realized. The main results of this study are the flow structure in the SVVT and energy loss estimations on oblique shock waves, gas friction, instant expansion and organization of vortex bundles in SVVT.

  2. Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI.

    PubMed

    Kim, Guk Bae; Ha, Hojin; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-05-01

    To investigate the details of the flow structure of a plug-like jet that had a vortex ring in pulsatile stenotic phantoms using 4D flow MRI. Pulsatile Newtonian flows in two stenotic phantoms with 50% and 75% reductions in area were scanned by 4D flow MRI. Blood analog working fluid was circulated via the stenotic phantom using a pulsatile pump at a constant pulsating frequency of 1Hz. The velocity and vorticity fields of the plug-like jet with a vortex ring were quantitatively analyzed in the spatial and temporal domains. Pulsatile stenotic flow showed a plug-like jet at the specific stenotic degree of 50% in our pulsatile waveform design. This plug-like jet was found at the decelerating period in the post-stenotic region of 26.4mm (1.2 D). It revealed a vortex ring structure with vorticity strength in the range of ±100s(-1). We observed a plug-like jet with a vortex ring in pulsatile stenotic flow by in vitro visualization using 4D flow MRI. In this plug-like jet, the local fastest flow region occurred at the post-systole phase in the post-stenotic region, which was distinguishable from a typical stenotic jet flow at systole phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  4. A study of the vortex structures around circular cylinder mounted on vertical heated plate

    NASA Astrophysics Data System (ADS)

    Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.

    2018-05-01

    In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.

  5. Transition of unsteady velocity profiles with reverse flow

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.

  6. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    NASA Astrophysics Data System (ADS)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  7. Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

    NASA Astrophysics Data System (ADS)

    Xia, X.; Mohseni, K.

    2017-11-01

    Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.

  8. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  9. Unsteady Separated Flows: Vorticity and Turbulence.

    DTIC Science & Technology

    1982-10-01

    investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c

  10. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  11. A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly.

    PubMed

    Krishnaraj, K P; Nott, Prabhu R

    2016-02-11

    Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.

  12. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  13. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  14. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  15. Calculation of wake vortex structures in the near-field wake behind cruising aircraft

    NASA Astrophysics Data System (ADS)

    Ehret, T.; Oertel, H.

    Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.

  16. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the

  17. Low Flow Vortex Shedding Flow Meter for Hypergolics/all Media

    NASA Technical Reports Server (NTRS)

    Thinh, Ngo Dinh

    1991-01-01

    A family of vortex shedding flow meters, for measurement of hypergol flows, was designed and fabricated. The test loops to evaluate the flow meters for water flow, as well as Freon -113 flow which simulates the hypergolic fluids, were modified and constructed to utilize a pump system which has an output capacity of 200 gpm. Test runs were conducted on the small 1/2 inch model with Freon 113 and on the larger models with water. Results showed that the linearity between the frequency of the vortices and the flow rate of the fluids was very close to that of the turbine flow meter. It is suggested that the vortex shedding flow meter is a possible replacement for the existing turbine type.

  18. Computation of the turbulent boundary layer downstream of vortex generators

    NASA Astrophysics Data System (ADS)

    Chang, Paul K.

    1987-12-01

    The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.

  19. Visualization of flow separation and control by vortex generators on an single flap in landing configuration

    NASA Astrophysics Data System (ADS)

    Součková, Natálie; Kuklová, Jana; Popelka, Lukáš; Matějka, Milan

    2012-04-01

    This paper focuses on a suppression of the flow separation, which occurs on a deflected flap, by means of vortex generators (VG's). An airfoil NACA 63A421 with a simple flap and vane-type vortex generators were used. The investigation was carried out by using experimental and numerical methods. The data from the numerical simulation of the flapped airfoil without VG's control were used for the vortex generator design. Two sizes, two different shapes and various spacing of the vortex generators were tested. The flow past the airfoil was visualized through three methods, namely tuft filaments technique, oil and thermo camera visualization. The experiments were performed in closed circuit wind tunnels with closed and open test sections. The lift curves for both cases without and with vortex generators were acquired for a lift coefficient improvement determination. The improvement was achieved for several cases by means all of the applied methods.

  20. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  1. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  2. On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.

    2000-12-01

    The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.

  3. A Visualization Study of Secondary Flows in Cascades

    NASA Technical Reports Server (NTRS)

    Herzig, Howard Z; Hansen, Arthur G; Costello, George R

    1954-01-01

    Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.

  4. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The calculation of rotor/fuselage interaction for two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1990-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces have a significant influence on the aerodynamic performance of the helicopter, ride quality, and vibration. A Computational Fluid Dynamic (CFD) method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary 2-D bodies was developed to address this helicopter problem. The vorticity and flow field velocities are calculated on a body-fitted computational mesh using an uncoupled iterative solution. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a simulated rotor wake with the flow about 2-D bodies, representing cross sections of fuselage components, was calculated to address the vortex interaction problem. The vortex interaction was calculated for the flow about a circular and an elliptic cylinder at 45 and 90 degrees incidence. The results demonstrate the significant variation in lift and drag on the 2-D bodies during the vortex interaction.

  6. Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking

    NASA Astrophysics Data System (ADS)

    Derakhti, M.; Kirby, J. T., Jr.

    2016-12-01

    Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.

  7. Linear Instability of a Uni-Directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.

  8. CFD Analysis of a T-38 Wing Fence

    DTIC Science & Technology

    2007-06-01

    or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of...devices are vortex generators, fences, high lift flaps, and winglets . Active flow control injects the boundary layer with energy from small jets of

  9. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  10. Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo

    2017-11-01

    It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.

  11. Self-Similar Compressible Free Vortices

    NASA Technical Reports Server (NTRS)

    vonEllenrieder, Karl

    1998-01-01

    Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.

  12. Large eddy simulation of tip-leakage flow in an axial flow fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung

    2016-11-01

    An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).

  13. A test of a vortex method for the computation of flap side edge noise

    NASA Technical Reports Server (NTRS)

    Martin, James E.

    1995-01-01

    Upon approach to landing, a major source location of airframe noise occurs at the side edges of the part span, trailing edge flaps. In the vicinity of these flaps, a complex arrangement of spanwise flow with primary and secondary tip vortices may form. Each of these vortices is observed to become fully three-dimensional. In the present study, a numerical model is developed to investigate the noise radiated from the side edge of a flap. The inherent three-dimensionality of this flow forces us to carefully consider a numerical scheme which will be both accurate in its prediction of the flow acoustics and also computationally efficient. Vortex methods have offered a fast and efficient means of simulating many two and three-dimensional, vortex dominated flows. In vortex methods, the time development of the flow is tracked by following exclusively the vorticity containing regions. Through the Biot-Savart law, knowledge of the vorticity field enables one to obtain flow quantities at any desired location during the flow evolution. In the present study, a numerical procedure has been developed which incorporates the Lagrangian approach of vortex methods into a calculation for the noise radiated by a flow-surface interaction. In particular, the noise generated by a vortex in the presence of a flat half plane is considered. This problem serves as a basic model of flap edge flow. It also permits the direct comparison between our computed results and previous acoustic analyses performed for this problem. In our numerical simulations, the mean flow is represented by the complex potential W(z) = Aiz(exp l/2), which is obtained through conformal mapping techniques. The magnitude of the mean flow is controlled by the parameter A. This mean flow has been used in the acoustic analysis by Hardin and is considered a reasonable model of the flow field in the vicinity of the edge and away from the leading and trailing edges of the flap. To represent the primary vortex which occurs near the flap, a point vortex is introduced just below the flat half plane. Using a technique from panel methods, boundary conditions on the flap surface are satisfied by the introduction of a row of stationary point vortices along the extent of the flap. At each time step in the calculation, the strength of these vortices is chosen to eliminate the normal velocity at intermediary collocation points. The time development of the overall flow field is then tracked using standard techniques from vortex methods. Vortex trajectories obtained through this computation are in good agreement with those predicted by the analytical solution given by Hardin, thus verifying the viability of this procedure for more complex flow arrangements. For the flow acoustics, the Ffowcs Williams-Hawkings equation is numerically integrated. This equation supplies the far field acoustic pressure based upon pressures occurring along the flap surface. With our vortex method solution, surface pressures may be obtained with exceptional resolution. The Ffowcs Williams-Hawkings equation is integrated using a spatially fourth order accurate Simpson's rule. Rational function interpolation is used to obtain the surface pressures at the appropriate retarded times. Comparisons between our numerical results for the acoustic pressure and those predicted by the Hardin analysis have been made. Preliminary results indicate the need for an improved integration technique. In the future, the numerical procedure developed in this study will be applied to the case of a rectangular flap of finite thickness and ultimately modified for application to the fully three-dimensional problem.

  14. Vortex multiplication in applied flow: A precursor to superfluid turbulence.

    PubMed

    Finne, A P; Eltsov, V B; Eska, G; Hänninen, R; Kopu, J; Krusius, M; Thuneberg, E V; Tsubota, M

    2006-03-03

    A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc. Our measurements indicate that the formation of new loops is associated with a single vortex interacting in the applied flow with the sample boundary. Numerical calculations show that the single-vortex instability arises when a helical Kelvin wave expands from a reconnection kink at the wall and then intersects again with the wall.

  15. Analysis and control of supersonic vortex breakdown flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  16. Some observations of tip-vortex cavitation

    NASA Astrophysics Data System (ADS)

    Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.

    1991-08-01

    Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

  17. Vortex developments over steady and accelerated airfoils incorporating a trailing edge jet

    NASA Technical Reports Server (NTRS)

    Finaish, F.; Okong'o, N.; Frigerio, J.

    1993-01-01

    Computational and experimental studies are conducted to investigate the influence of a trailing edge jet on flow separation and subsequent vortex formation over steady and accelerated airfoils at high angles of attack. A computer code, employing the stream function-vorticity approach, is developed and utilized to conduct numerical experiments on the flow problem. To verify and economize such efforts, an experimental system is developed and incorporated into a subsonic wind tunnel where streamline and vortex flow visualization experiments are conducted. The study demonstrates the role of the trailing edge jet in controlling flow separation and subsequent vortex development for steady and accelerating flow at angles past the static stall angle of attack. The results suggest that the concept of the trailing edge jet may be utilized to control the characteristics of unsteady separated flows over lifting surfaces. This control possibility seems to be quite effective and could have a significant role in controlling unsteady separated flows.

  18. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  19. Stability of barotropic vortex strip on a rotating sphere

    PubMed Central

    Sohn, Sung-Ik; Kim, Sun-Chul

    2018-01-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524

  20. Stability of barotropic vortex strip on a rotating sphere.

    PubMed

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  1. Vortex dynamics and heat transfer behind self-oscillating inverted flags of various lengths in channel flow

    NASA Astrophysics Data System (ADS)

    Yu, Yuelong; Liu, Yingzheng; Chen, Yujia

    2018-04-01

    The influence of an inverted flag's length-to-channel-width ratio (C* = L/W) on its oscillating behavior in a channel flow and the resultant vortex dynamics and heat transfer are determined experimentally. Three systems with C* values of 0.125, 0.250, and 0.375 were chosen for comparison. The interaction of highly unsteady flow with the inverted flag is measured with time-resolved particle image velocimetry. Variations in the underlying flow physics are discussed in terms of the statistical flow quantities, flag displacement, phase-averaged flow field, and vortex dynamics. The results show that the increase in C* shifts the occurrence of the flapping regime at high dimensionless bending stiffness. With the flag in the flapping region, three distinct vortex dynamics—the von Kármán vortex street, the G mode, and the singular mode—are identified at C* values of 0.375, 0.250, and 0.125, respectively. Finally, the heat transfer enhancement from the self-oscillating inverted flag is measured to serve as complementary information to quantify the cause-and-effect relationship between vortex dynamics and wall heat transfer. The increase in C* strongly promotes wall heat removal because disruption of the boundary layer by the energetic vortices is substantially intensified. Among all systems, wall heat transfer removal is most efficient at the intermediate C* value of 0.250.

  2. In-flight flow visualization results from the X-29A aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Saltzman, John A.

    1992-01-01

    Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.

  3. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  4. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  5. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  6. The effects of micro-vortex generators on normal shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Herges, Thomas G.

    Shock wave/boundary-layer interactions (SWBLIs) are complex flow phenomena that are important in the design and performance of internal supersonic and transonic flow fields such as engine inlets. This investigation was undertaken to study the effects of passive flow control devices on normal shock wave/boundary layer interactions in an effort to gain insight into the physics that govern these complex interactions. The work concentrates on analyzing the effects of vortex generators (VGs) as a flow control method by contributing a greater understanding of the flowfield generated by these devices and characterizing their effects on the SWBLI. The vortex generators are utilized with the goal of improving boundary layer health (i.e., reducing/increasing the boundary-layer incompressible shape factor/skin friction coefficient) through a SWBLI, increasing pressure recovery, and reducing flow distortion at the aerodynamic interface plane while adding minimal drag to the system. The investigation encompasses experiments in both small-scale and large-scale inlet testing, allowing multiple test beds for improving the characterization and understanding of vortex generators. Small-scale facility experiments implemented instantaneous schlieren photography, surface oil-flow visualization, pressure-sensitive paint, and particle image velocimetry to characterize the effects of an array of microramps on a normal shock wave/boundary-layer interaction. These diagnostics measured the time-averaged and instantaneous flow organization in the vicinity of the microramps and SWBLI. The results reveal that a microramp produces a complex vortex structure in its wake with two primary counter-rotating vortices surrounded by a train of Kelvin- Helmholtz (K-H) vortices. A streamwise velocity deficit is observed in the region of the primary vortices in addition to an induced upwash/downwash which persists through the normal shock with reduced strength. The microramp flow control also increased the spanwise-averaged skin-friction coefficient and reduced the spanwise-averaged incompressible shape factor, thereby improving the health of the boundary layer. The velocity in the near-wall region appears to be the best indicator of microramp effectiveness at controlling SWBLIs. Continued analysis of additional micro-vortex generator designs in the small-scale facility revealed reduced separation within a subsonic diffuser downstream of the normal shock wave/boundary layer interaction. The resulting attached flow within the diffuser from the micro-vortex generator control devices reduces shock wave position and pressure RMS fluctuations within the diffuser along with increased pressure recovery through the shock and at the entrance of the diffuser. The largest effect was observed by the micro-vortex generators that produce the strongest streamwise vortices. High-speed pressure measurements also indicated that the vortex generators shift the energy of the pressure fluctuations to higher frequencies. Implementation of micro-vortex generators into a large-scale, supersonic, axisymmetric, relaxed-compression inlet have been investigated with the use of a unique and novel flow-visualization measurement system designed and successfully used for the analysis of both upstream micro-VGs (MVGs) and downstream VGs utilizing surface oil-flow visualization and pressure-sensitive paint measurements. The inlet centerbody and downstream diffuser vortex-generator regions were imaged during wind-tunnel testing internally through the inlet cowl with the diagnostic system attached to the cowl. Surface-flow visualization revealed separated regions along the inlet centerbody for large mass-flow rates without vortex generators. Upstream vortex generators did reduce separation in the subsonic diffuser, and a unique perspective of the flowfield produced by the downstream vortex generators was obtained. In addition, pressure distributions on the inlet centerbody and vortex generators were measured with pressure-sensitive paint. At low mass-flow ratios the onset of buzz occurs in the large-scale low-boom inlet. Inlet buzz and how it is affected by vortex generators was characterized using shock tracking through high-speed schlieren imaging and pressure fluctuation measurements. The analysis revealed a dominant low frequency oscillation at 21.0 Hz for the single-stream inlet, corresponding with the duration of one buzz cycle. Pressure oscillations prior to the onset of buzz were not detected, leaving the location where the shock wave triggers large separation on the compression spike as the best indicator for the onset of buzz. The driving mechanism for a buzz cycle has been confirmed as the rate of depressurization and repressurization of the inlet as the buzz cycle fluctuates between an effectively unstarted (blocked) inlet and supercritical operation (choked flow), respectively. High-frequency shock position oscillations/pulsations (spike buzz) were also observed throughout portions of the inlet buzz cycle. The primary effect of the VGs was to trigger buzz at a higher mass-flow ratio.

  7. Vortex Design Problem

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz

    2007-11-01

    In this investigation we are concerned with a family of solutions of the 2D steady--state Euler equations, known as the Prandtl--Batchelor flows, which are characterized by the presence of finite--area vortex patches embedded in an irrotational flow. We are interested in flows in the exterior of a circular cylinder and with a uniform stream at infinity, since such flows are often employed as models of bluff body wakes in the high--Reynolds number limit. The ``vortex design'' problem we consider consists in determining a distribution of the wall--normal velocity on parts of the cylinder boundary such that the vortex patches modelling the wake vortices will have a prescribed shape and location. Such inverse problem have applications in various areas of flow control, such as mitigation of the wake hazard. We show how this problem can be solved computationally by formulating it as a free--boundary optimization problem. In particular, we demonstrate that derivation of the adjoint system, required to compute the cost functional gradient, is facilitated by application of the shape differential calculus. Finally, solutions of the vortex design problem are illustrated with computational examples.

  8. Weak solutions of the three-dimensional vorticity equation with vortex singularities

    NASA Technical Reports Server (NTRS)

    Winckelmans, G.; Leonard, A.

    1988-01-01

    The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.

  9. An experimental investigation of delta wing vortex flow with and without external jet blowing

    NASA Technical Reports Server (NTRS)

    Iwanski, Kenneth P.; Ng, T. Terry; Nelson, Robert C.

    1989-01-01

    A visual and quantitative study of the vortex flow field over a 70-deg delta wing with an external jet blowing parallel to and at the leading edge was conducted. In the experiment, the vortex core was visually marked with TiCl4, and LDA was used to measure the velocity parallel and normal to the wing surface. It is found that jet blowing moved vortex breakdown farther downstream from its natural position and influenced the breakdown characteristics.

  10. Vortex dynamics in Patient-Specific Stenotic Tricuspid and Bicuspid Aortic Valves pre- and post- Trans-catheter Aortic Valve Replacement

    NASA Astrophysics Data System (ADS)

    Hatoum, Hoda; Dasi, Lakshmi Prasad

    2017-11-01

    Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.

  11. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 1

    PubMed Central

    Pasipoularides, Ares

    2015-01-01

    Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. This 2-article series proposes that variable forces associated with diastolic RV/LV rotatory intraventricular flows can exert physiologically and clinically important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations and/or maladaptations. Taken in-toto, the 2-part survey formulates a new paradigm in which intraventricular diastolic filling vortex-associated forces play a fundamental epigenetic role, and examines how heart cells react to these forces. The objective is to provide a perspective on vortical epigenetic effects, to introduce emerging ideas and suggest directions of multidisciplinary translational research. The main goal is to make pertinent biophysics and cytomechanical dynamic systems concepts accessible to interested translational and clinical cardiologists. I recognize that the diversity of the epigenetic problems can give rise to a diversity of approaches and multifaceted specialized research undertakings. Specificity may dominate the picture. However, I take a contrasting approach. Are there concepts that are central enough that they should be developed in some detail? Broadness competes with specificity. Would however this viewpoint allow for a more encompassing view that may otherwise be lost by generation of fragmented results? Part 1 serves as a general introduction, focusing on background concepts, on intracardiac vortex imaging methods, and on diastolic filling vortex-associated forces acting epigenetically on RV/LV endocardium and myocardium. Part 2 will describe pertinent available pluridisciplinary knowledge/research relating to mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations and to their epigenetic actions on myocardial and ventricular function and adaptations. PMID:25624114

  12. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  13. Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu; Zabusky, Norman

    2001-11-01

    We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.

  14. Fundamental Understanding of Rotor Aeromechanics at High Advance Ratio Through Wind Tunnel Testing

    NASA Astrophysics Data System (ADS)

    Berry, Benjamin

    The purpose of this research is to further the understanding of rotor aeromechanics at advance ratios (mu) beyond the maximum of 0.5 (ratio of forward airspeed to rotor tip speed) for conventional helicopters. High advance ratio rotors have applications in high speed compound helicopters. In addition to one or more conventional main rotors, these aircraft employ either thrust compounding (propellers), lift compounding (fixed-wings), or both. An articulated 4-bladed model rotor was constructed, instrumented, and tested up to a maximum advance ratio of mu=1.6 in the Glenn L. Martin Wind Tunnel at the University of Maryland. The data set includes steady and unsteady rotor hub forces and moments, blade structural loads, blade flapping angles, swashplate control angles, and unsteady blade pressures. A collective-thrust control reversal--where increasing collective pitch results in lower rotor thrust--was observed and is a unique phenomenon to the high advance ratio flight regime. The thrust reversal is explained in a physical manner as well as through an analytical formulation. The requirements for the occurrence of the thrust reversal are enumerated. The effects of rotor geometry design on the thrust reversal onset are explored through the formulation and compared to the measured data. Reverse-flow dynamic stall was observed to extend the the lifting capability of the edgewise rotor well beyond the expected static stall behavior of the airfoil sections. Through embedded unsteady blade surface pressure transducers, the normal force, pitching moment, and shed dynamic stall vortex time histories at a blade section in strong reverse flow were analyzed. Favorable comparisons with published 2-D pitching airfoil reverse flow dynamic stall data indicate that the 3-D stall environment can likely be predicted using models developed from such 2-D experiments. Vibratory hub loads were observed to increase with advance ratio. Maximum amplitude was observed near mu=1, with a reduction in vibratory loads at higher advance ratios. Blade load 4/rev harmonics dominated due to operation near a 4/rev fanplot crossing of the 2nd flap bending mode natural frequency. Oscillatory loads sharply increase in the presence of retreating blade reverse flow dynamic stall, and are evident in blade torsion, pitch link, and hub load measurements. The blades exhibited torsion moment vibrations at the frequency of the 1st torsion mode in response to the reverse flow pitching moment loading.

  15. Experimental study of the velocity field on a delta wing

    NASA Technical Reports Server (NTRS)

    Payne, F. M.; Ng, T. T.; Nelson, R. C.

    1987-01-01

    An experimental study of the leading edge vortices on delta wings at large angles of incidence is presented. A combination of flow visualization, seven-hole pressure probe surveys and laser velocimeter measurements were used to study the leading edge vortex formation and breakdown for a set of delta wings. The delta wing models were thin flat plates with sharp leading edges having sweep angles of 70, 75, 80, and 85 degrees. The flow structure was examined for angles of incidence from 10 to 40 degrees and chord Reynolds numbers from 85,000 to 640,000. Vortex breakdown was observed on all the wings tested. Both bubble and spiral modes of breakdown were observed. The visualization and wake survey data shows that when vortex breakdown occurs the core flow transforms abruptly from a jet-like flow to a wake-like flow. The result also revealed that probe induced vortex breakdown was more steady than the natural breakdown.

  16. Synthesis, Characterization, and Application of High Surface Area, Mesoporous, Stabilized Anatase TiO2 Catalyst Supports

    NASA Astrophysics Data System (ADS)

    Olsen, Rebecca Elizabeth

    Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows. To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally-generated starting jet. Since most naturally-occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally-occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.

  17. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  18. Kinematics and dynamics of vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.

    1979-01-01

    Kinematic theory and flow visualization experiments were combined to examine the dynamic processes which control the evolution of vortex rings from very low to very high Reynolds numbers, and to assess the effects of the wall as a vortex ring travels up a tube. The kinematic relationships among the size, shape, speed, and strength of vortex rings in a tube were computed from the theory. Relatively simple flow visualization measurements were used to calculate the total circulation of a vortex rings at a given time. Using this method, the strength was computated and plotted as a function of time for experimentally produced vortex rings. Reynolds number relationships are established and quantitative differences among the three Reynolds number groups are discussed.

  19. Visualization of vortex structures and analysis of frequency of PVC

    NASA Astrophysics Data System (ADS)

    Gesheva, E. S.; Shtork, S. I.; Alekseenko, S. V.

    2018-03-01

    The paper presents the results of the study of large-scale vortex structures in a model chamber. Methods of forming quasi-stationary vortices of various shapes by changing the geometric parameters of the chamber have been proposed. In the model chamber with a tangential swirl of the flow, a rectilinear vortex, single helical and double helical vortices were obtained. The double helical structure of the vortex is unique due to its immovability around the axis of the chamber. The resulting structures slowly oscillate around their own axes, which is called the vortex core precession; while the oscillation frequency depends linearly on the liquid flow rate. The use of stationary vortex structures in power plants will increase the efficiency of combustion chambers and reduce slagging.

  20. Characteristics of a trapped-vortex (TV) combustor

    NASA Technical Reports Server (NTRS)

    Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.

    1994-01-01

    The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.

  1. Theoretical analysis of an oscillatory plane Poiseuille flow—A link to the design of vortex flow meter

    NASA Astrophysics Data System (ADS)

    Ma, Huai-Lung; Kuo, Cheng-Hsiung

    2017-05-01

    Theoretical analysis on an oscillatory plane Poiseuille flow is conducted in terms of a non-dimensional ratio (η) of the channel half-width to Stokes' layer thickness. The cyclic velocity profiles, the phase shifts and the magnitudes among the driving pressure gradient, the induced wall shear stress, and the volume flux are investigated. Also, the flow physics at a different ratio η is demonstrated. In this study, the mechanism of the driving pressure gradient and the oscillating volume flux is similar to and can be employed to demonstrate the slit flow in the application of the novel vortex flow meter using a slit cylinder as a shedder. When applied to the novel vortex flow meter, the non-dimensional ratio η can be expressed as the relation of the slit width ratio (S/D), the Strouhal number, and the Reynolds number. Finally, a range of η between 0.97 < η < 20 will be suggested for the vortex flow meter at the design stage. Large values of η are employed at a high Reynolds number, and small η is used for low Reynolds number applications. In the novel vortex flow meters, a cylinder with a normal axial slit of width (S) is employed as the shedder. Due to the primary lock-on, the process of vortex shedding synchronizes with the rhythm of slit flow leading to a stable shedding frequency. The value η is well correlated by the value of ηopt obtained by experiments and shows a one-to-one correspondence to the slit ratio at each Reynolds number. Once the design value of ηopt is determined, the optimal slit ratio can be estimated for a fixed applied Reynolds number at the design stage.

  2. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  3. Aeroacoustic interaction of a distributed vortex with a lifting Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Lamkin, S. L.

    1984-01-01

    A first principles computational aeroacoustics calculation of the flow and noise fields produced by the interaction of a distributed vortex with a lifting Joukowski airfoil is accomplished at the Reynolds number of 200. The case considered is that where the circulations of the vortex and the airfoil are of opposite sign, corresponding to blade vortex interaction on the retreating side of a single helicopter rotor. The results show that the flow is unsteady, even in the absence of the incoming vortex, resulting in trailing edge noise generation. After the vortex is input, it initially experiences a quite rapid apparent diffusion rate produced by stretching in the airfoil velocity gradients. Consideration of the effects of finite vortex size and viscosity causes the noise radiation during the encounter to be much less impulsive than predicted by previous analyses.

  4. An Overview of the RTO Symposium on Vortex Flow and High Angle of Attack Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2002-01-01

    In May of 2001 the Research and Technology Organization (RTO) sponsored a symposium on Vortex Flow and High Angle of Attack aerodynamics. Forty-six papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results. Selected highlights are included in this paper to provide a perspective toward the scope of the full symposium.

  5. Numerical Simulation of Tip Vortices of Wings in Subsonic and Transonic Flows,

    DTIC Science & Technology

    1986-01-01

    roll-up of the tip vor- rv : dimensionless strength of tip vortex " tex in both subsonic and transonic flows. Four test cases which used small and large...of their po- tion and the roll-up of the tip vortex has been observed for tential hazard to aircraft that encounter them in flight. To all the cases...such flows encompassing large air- tip- vortex strength. craft wakes (see for example Refs. 1-2). In spite of this, the present understanding of such

  6. Investigation of inner aerodynamics of the four-vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Shadrin, E. Yu; Sharypov, O. V.

    2018-03-01

    The internal aerodynamics of a perspective vortex furnace chamber of a pulverized coal boiler with a diagonal arrangement of burners is studied using the non-contact optical method of flow diagnostics. The results of laser Doppler anemometry, characterizing the complex spatial structure of a swirling flow in an isothermal laboratory model of the furnace device, are presented. The velocity distribution in the vortex chamber volume is obtained, and the flow structure in the form of four conjugate closed vortices with curved axes is visualized.

  7. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  8. Application of computational fluid dynamics to the study of vortex flow control for the management of inlet distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1992-01-01

    A study is presented to demonstrate that the Reduced Navier-Stokes code RNS3D can be employed effectively to develop a vortex generator installation that minimizes engine face circumferential distortion by controlling the development of secondary flow. The necessary computing times are small enough to show that similar studies are feasible within an analysis-design environment with all its constraints of costs and time. This study establishes the nature of the performance enhancements that can be realized with vortex flow control, and indicates a set of aerodynamic properties that can be utilized to arrive at a successful vortex generator installation design.

  9. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Zheng, Xianghao; Zhang, Yu-ning; Li, Shengcai

    2018-02-01

    Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.

  10. Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.

    1992-01-01

    As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.

  11. Investigation of Stable Atmospheric Stratification Effect on the Dynamics of Descending Vortex Pairs

    DOT National Transportation Integrated Search

    1979-02-01

    The physics of vortex flows in stratified fluids is studied with the objective of determining the influence of stable stratification on the descent of aircraft vortex pairs. Vortex rings descending into linear and discontinuous density stratification...

  12. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  13. Collision dynamics of two-dimensional non-Abelian vortices

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  14. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE PAGES

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta; ...

    2017-08-28

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  15. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  16. Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor. Part 2; Effects of Tip Gap Size On the Tip Clearance Flow Structure at Near Stall Operation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph

    2014-01-01

    The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.

  17. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  18. Definition of the unsteady vortex flow over a wing/body configuration

    NASA Technical Reports Server (NTRS)

    Liou, S. G.; Debry, B.; Lenakos, J.; Caplin, J.; Komerath, N. M.

    1991-01-01

    A problem of current interest in computational aerodynamics is the prediction of unsteady vortex flows over aircraft at high angles of attack. A six-month experimental effort was conducted at the John H. Harper Wind Tunnel to acquire qualitative and quantitative information on the unsteady vortex flow over a generic wing-body configuration at high angles of attack. A double-delta flat-plate wing with beveled edges was combined with a slender sharp-nosed body-of-revolution fuselage to form the generic configuration. This configuration produces a strong attached leading edge vortex on the wing, as well as sharply-peaked flow velocity spectra above the wing. While it thus produces flows with several well-defined features of current interest, the model was designed for efficiency of representation in computational codes. A moderate number of surface pressure ports and two unsteady pressure sensors were used to study the pressure distribution over the wing and body surface at high angles of attack; the unsteady pressure sensing did not succeed because of inadequate signal-to-noise ratio. A pulsed copper vapor laser sheet was used to visualize the vortex flow over the model, and vortex trajectories, burst locations, mutual induction of vortex systems from the forebody, strake, and wing, were quantified. Laser Doppler velocimetry was used to quantify all 3 components of the time-average velocity in 3 data planes perpendicular to the freestream direction. Statistics of the instantaneous velocity were used to study intermittency and fluctuation intensity. Hot-film anemometry was used to study the fluctuation energy content in the velocity field, and the spectra of these fluctuations. In addition, a successful attempt was made to measure velocity spectra, component by component, using laser velocimetry, and these were compared with spectra measured by hot-film anemometry at several locations.

  19. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  20. Tip vortex computer code SRATIP. User's guide

    NASA Technical Reports Server (NTRS)

    Levy, R.; Lin, S. J.

    1985-01-01

    This User's Guide applies to the three dimensional viscous flow forward marching analysis, PEPSIG, as used for the calculation of the helicopter tip vortex flow field. The guide presents a discussion of the program flow and subroutines, as well as a list of sample input and output.

  1. Identification of vortex structures in a cohort of 204 intracranial aneurysms

    PubMed Central

    Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui

    2017-01-01

    An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. PMID:28539480

  2. Identification of vortex structures in a cohort of 204 intracranial aneurysms.

    PubMed

    Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui

    2017-05-01

    An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).

  3. Energy dynamics of the intraventricular vortex after mitral valve surgery.

    PubMed

    Nakashima, Kouki; Itatani, Keiichi; Kitamura, Tadashi; Oka, Norihiko; Horai, Tetsuya; Miyazaki, Shohei; Nie, Masaki; Miyaji, Kagami

    2017-09-01

    Mitral valve morphology after mitral valve surgery affects postoperative intraventricular flow patterns and long-term cardiac performance. We visualized ventricular flow by echocardiography vector flow mapping (VFM) to reveal the impact of different mitral valve procedures. Eleven cases of mechanical mitral valve replacement (nine in the anti-anatomical and two in the anatomical position), three bioprosthetic mitral valve replacements, and four mitral valve repairs were evaluated. The mean age at the procedure was 57.4 ± 17.8 year, and the echocardiography VFM in the apical long-axis view was performed 119.9 ± 126.7 months later. Flow energy loss (EL), kinetic pressure (KP), and the flow energy efficiency ratio (EL/KP) were measured. The cases with MVR in the anatomical position and with valve repair had normal vortex directionality ("Clockwise"; N = 6), whereas those with MVR in the anti-anatomical position and with a bioprosthetic mitral valve had the vortex in the opposite direction ("Counterclockwise"; N = 12). During diastole, vortex direction had no effect on EL ("Clockwise": 0.080 ± 0.025 W/m; "Counterclockwise": 0.083 ± 0.048 W/m; P = 0.31) or KP ("Clockwise": 0.117 ± 0.021 N; "Counterclockwise": 0.099 ± 0.057 N; P = 0.023). However, during systole, the EL/KP ratio was significantly higher in the "Counterclockwise" vortex than that in the "Clockwise" vortex (1.056 ± 0.463 vs. 0.617 ± 0.158; P = 0.009). MVP and MVR with a mechanical valve in the anatomical position preserve the physiological vortex, whereas MVR with a mechanical valve in the anti-anatomical position and a bioprosthetic mitral valve generate inefficient vortex flow patterns, resulting in a potential increase in excessive cardiac workload.

  4. Low Reynolds Number Wing Transients in Rotation and Translation

    NASA Astrophysics Data System (ADS)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  5. Turbulence and Cavitation Suppression by Quaternary Ammonium Salt Additives.

    PubMed

    Naseri, Homa; Trickett, Kieran; Mitroglou, Nicholas; Karathanassis, Ioannis; Koukouvinis, Phoevos; Gavaises, Manolis; Barbour, Robert; Diamond, Dale; Rogers, Sarah E; Santini, Maurizio; Wang, Jin

    2018-05-16

    We identify the physical mechanism through which newly developed quaternary ammonium salt (QAS) deposit control additives (DCAs) affect the rheological properties of cavitating turbulent flows, resulting in an increase in the volumetric efficiency of clean injectors fuelled with diesel or biodiesel fuels. Quaternary ammonium surfactants with appropriate counterions can be very effective in reducing the turbulent drag in aqueous solutions, however, less is known about the effect of such surfactants in oil-based solvents or in cavitating flow conditions. Small-angle neutron scattering (SANS) investigations show that in traditional DCA fuel compositions only reverse spherical micelles form, whereas reverse cylindrical micelles are detected by blending the fuel with the QAS additive. Moreover, experiments utilising X-ray micro computed tomography (micro-CT) in nozzle replicas, quantify that in cavitation regions the liquid fraction is increased in the presence of the QAS additive. Furthermore, high-flux X-ray phase contrast imaging (XPCI) measurements identify a flow stabilization effect in the region of vortex cavitation by the QAS additive. The effect of the formation of cylindrical micelles is reproduced with computational fluid dynamics (CFD) simulations by including viscoelastic characteristics for the flow. It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector's volumetric efficiency.

  6. Flow Phenomena in the Very Near Wake of a Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    The very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from a direct numerical simulation. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers, the evolution of rib-vortex induced localized regions of reverse flow that detach from the main body of reverse flow in the trailing edge region and convect downstream, and phaseaveraged velocity statistics in the very near wake. The detached shear layers are found to exhibit unstable behavior intermittently, including the development of shear layer vortices as in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layers undergo this instability, and form the initial shed vortices. Pressure spectra within the shear layers show a broadband peak at a multiple of shedding frequency. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity are compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.

  7. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  8. A Model for the Vortex Pair Associated with a Jet in a Cross Flow

    NASA Technical Reports Server (NTRS)

    Sellers, William L.

    1975-01-01

    A model is presented for the contrarotating vortex pair that is formed by a round, turbulent, subsonic jet directed normally into a uniform, subsonic cross flow. The model consists of a set of algebraic equations that describe the properties of the vortex pair as a function of their location in the jet plume. The parameters of the model are physical characteristics of the vortices such as the vortex strength, spacing, and core size. These parameters are determined by velocity measurements at selective points in the jet plume.

  9. A new approach to the effect of sound on vortex dynamics

    NASA Technical Reports Server (NTRS)

    Lund, Fernando; Zabusky, Norman J.

    1987-01-01

    Analytical results are presented on the effect of acoustic radiation on three-dimensional vortex motions in a homogeneous, slightly compressible, inviscid fluid. The flow is considered as linear and irrotational everywhere except inside a very thin cylindrical core region around the vortex filament. In the outside region, a velocity potential is introduced that must be multivalued, and it is shown how to compute this scalar potential if the motion of the vortex filament is prescribed. To find the motion of this singularity in an external potential flow, a variational principle involving a volume integral that must exclude the singular region is considered. A functional of the external potential and vortex filament position is obtained whose extrema give equations to determine the sought-after evolution. Thus, a generalization of the Biot-Savart law to flows with constant sound speed at low Mach number is obtained.

  10. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  11. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  12. Numerical study of turbulent secondary flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Hur, N.; Thangam, S.; Speziale, C. G.

    1990-01-01

    The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight and curved ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.

  13. Numerical study of turbulent secondary flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Hur, N.; Thangam, S.; Speziale, C. G.

    1989-01-01

    The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square cross-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.

  14. Relationships between development/decay of a vortex and its topology in different flow scales in an isotropic homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keisuke; Nakayama, Katsuyuki

    2017-11-01

    Development or decay of a vortex in terms of the local flow topology has been shown to be highly correlated with its topological feature, i.e., vortical flow symmetry (skewness), in an isotropic homogeneous turbulence. Since a turbulent flow might include vortices in multi-scales, the present study investigates the characteristics of this relationships between the development or decay of a vortex and the vortical flow symmetry in several scales in an isotropic homogeneous turbulence in low Reynols number. Swirlity is a physical quantity of an intensity of swirling in terms of the geometrical average of the azimuthal flow, and represents the behavior of the development or decay of a vortex in this study. Flow scales are decomposed into three scales specified by the Fourier coefficients of the velocity applying the band-pass filter. The analysis shows that vortices in the different scales have a universal feature that the time derivative of swirlity and that of the symmetry have high correlation. Especially they have more stronger correlation at their birth and extinction.

  15. Observation of the spiral flow and vortex induced by a suction pump in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ohyama, K.; Obara, K.; Ishikawa, O.

    2018-03-01

    A suction flow generates a whirlpool, namely a bathtub vortex, in a classical fluid; in contrast, rotating containers, which are usually used for studies of superfluid helium, can produce only simple solid rotation. In the present work, the superfluid flow and concentrated quantized vortices induced by a cryogenic motor immersed in superfluid 4He were investigated. Using a motor with six blades in a cylinder caused the free surface of the superfluid 4He to take on a parabolic shape, indicating that the motor produces a rotating superfluid flow. To drive a suction flow in superfluid helium, the motor was mounted in a cylindrical container with a small hole at the center of the top and a slit at the side, acting as a superfluid pump. This pump was successfully used to generate a spiral flow and a vortex with a funnel-shaped core in superfluid 4He, suggesting that the resulting suction flow transports and centralizes quantized vortices to the suction hole, increasing the vortex circulation and sucking the free surface of the superfluid down.

  16. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  17. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.

    PubMed

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor

    2014-03-25

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.

  18. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B

    PubMed Central

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor

    2014-01-01

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872

  19. Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.

  20. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.

    PubMed

    Sun, Yanzhao; Zhang, Tao; Zheng, Dandan

    2018-04-10

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.

  1. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    PubMed Central

    Zhang, Tao; Zheng, Dandan

    2018-01-01

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577

  2. Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.

    1992-01-01

    A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.

  3. An investigation of the flow characteristics in the blade endwall corner region

    NASA Technical Reports Server (NTRS)

    Hazarika, Birinchi K.; Raj, Rishi S.

    1987-01-01

    Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.

  4. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  5. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  6. Investigation on asymmetric flow over a blunt-nose slender body at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhongyang, Qi; Yankui, Wang; Lei, Wang; Qian, Li

    2017-12-01

    The asymmetric vortices over a blunt-nose slender body are investigated experimentally and numerically at a high angle of attack (AoA, α = 50°) and a Reynolds number of Re D = 1.54 × 105 on the basis of an incoming free-stream velocity and diameter (D) of the model. A micro-perturbation in the form of a hemispherical protrusion with a radius of r = 0.012D is introduced and attached on the nose of the slender body to control the behavior of the asymmetric vortices. Given the predominant role of micro perturbation in the asymmetric vortex pattern, a square wave, which is singly periodic, is observed for side-force variation by setting the circumferential angle (θ) of the micro perturbation from 0° to 360°. The asymmetric vortex pattern and the corresponding side force are manageable and highly dependent on the location of perturbation. The flow structure over the blunt-nose slender body is clarified by building a physical model of asymmetric vortex flow structure in a regular state at a high AoA (α = 50°). This model is divided into several regions by flow structure development along the model body-axis, i.e., inception region at x/D ≤ 3.0, triple-vortex region at 3.0 ≤ x/D ≤ 6.0, four-vortex region at 6.0 ≤ x/D ≤ 8.5, and five-vortex region at 8.5 ≤ x/D ≤ 12. The model reveals a complicated multi-vortex system. The associated pressure distributions and flow characteristics are discussed in detail.

  7. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.

    PubMed

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien

    2017-02-01

    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  8. Dynamic mode decomposition of separated flow over a finite blunt plate: time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Zhang, Qingshan

    2015-07-01

    Dynamic mode decomposition (DMD) analysis was performed on a large number of realizations of the separated flow around a finite blunt plate, which were determined by using planar time-resolved particle image velocimetry (TR-PIV). Three plates with different chord-to-thickness ratios corresponding to globally different flow patterns were particularly selected for comparison: L/D = 3.0, 6.0 and 9.0. The main attention was placed on dynamic variations in the dominant events and their interactive influences on the global fluid flow in terms of the DMD analysis. Toward this end, a real-time data transfer from the high-speed camera to the arrayed disks was built to enable continuous sampling of the spatiotemporally varying flows at the frequency of 250 Hz for a long run. The spectra of the wall-normal velocity fluctuation, the energy spectra of the DMD modes, and their spatial patterns convincingly determined the energetic unsteady events, i.e., St = 0.051 (Karman vortex street), 0.109 (harmonic event of Karman vortex street) and 0.197 (leading-edge vortex) in the shortest system L/D = 3.0, St = 0.159 (Karman vortex street) and 0.242 (leading-edge vortex) in the system L/D = 6.0, and St = 0.156 (Karman vortex street) and 0.241 (leading-edge vortex) in the longest system L/D = 9.0. In the shortest system L/D = 3.0, the first DMD mode pattern demonstrated intensified entrainment of the massive fluid above and below the whole plate by the Karman vortex street. The phase-dependent variation in the low-order flow field elucidated that this motion was sustained by the consecutive mechanisms of the convective leading-edge vortices near the upper and lower trailing edges, and the large-scale vortical structures occurring immediately behind the trailing edge, whereas the leading-edge vortices were entrained and decayed into the near wake. For the system L/D = 6.0, the closely approximated energy spectra at St = 0.159 and 0.242 indicated the balanced dominance of dual unsteady events in the measurement region. The Karman vortex street was found to induce considerable localized movement of the fluid near the trailing edges of the plate. However, the leading-edge vortices near the trailing edge were found to detach away from the plate and fully decay around 0.5 D behind the trailing edge, where a well-ordered origination of the downstream large-scale vortical structures (the Karman vortex street) was established and might be locally energized by the decayed leading-edge vortex. In the longest system L/D = 9.0, the phase-dependent variations in the low-order flow disclosed a rapid decay of the leading-edge vortices beyond the reattachment zone, reaching the fully diffused state near the trailing edges. Accordingly, no clear signature of the interaction between the Karman vortex street and the leading-edge vortex could be found in the dynamic process of the leading-edge vortex.

  9. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  10. Theoretical study of aerodynamic characteristics of wings having vortex flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1979-01-01

    The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values.

  11. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.

  12. On Multiple-Layered Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    As part of an ongoing effort to find ways to make vortex flow fields decompose more quickly, photographs and observations are presented of vortex flow fields that indicate the presence of multiple layers of fluid rotating about a common axis. A survey of the literature indicates that multiple-layered vortices form in waterspouts, tornadoes and lift-generated vortices of aircraft. An explanation for the appearance of multiple-layered structures in vortices is suggested. The observations and data presented are intended to improve the understanding of the formation and persistence of vortex flow fields.

  13. An airborne system for vortex flow visualization on the F-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Richwine, David M.

    1988-01-01

    A flow visualization system for the F-18 high-alpha research vehicle is described which allows direct observation of the separated vortex flows over a wide range of flight conditions. The system consists of a smoke generator system, on-board photographic and video systems, and instrumentation. In the present concept, smoke is entrained into the low-pressure vortex core, and vortice breakdown is indicated by a rapid diffusion of the smoke. The resulting pattern is observed using photographic and video images and is correlated with measured flight conditions.

  14. On the flow structure of cloud cavitating flow around an axisymmetric body near the free surface

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Wu, Xiaocui; Huang, Chenguang; Yu, XianXian

    2015-12-01

    The influence of the free surface on the cavitating flow is an important issue involved in the design of high speed surface vehicles. In the present paper, unsteady cavitating turbulent flow around an axisymmetric body near the free surface was investigated by both launching experiment and LES simulation. The vortex motion induced by cavity shedding under the effect of the free surface is emphatically analyzed by comparing with the submerged condition. The vortex shedding process around the projectile is not synchronized, while the asymmetric characteristic in collapse process is more remarkable, with the generation of multiple vortex ring structures.

  15. Tricritical spiral vortex instability in cross-slot flow.

    PubMed

    Haward, Simon J; Poole, Robert J; Alves, Manuel A; Oliveira, Paulo J; Goldenfeld, Nigel; Shen, Amy Q

    2016-03-01

    We examine fluid flow through cross-slot devices with various depth to width ratios α. At low Reynolds number, Re, flow is symmetric and a sharp boundary exists between the two incoming fluid streams. Above an α-dependent critical value, Re(c)(α), a steady symmetry-breaking bifurcation occurs and a spiral vortex structure develops. Order parameters characterizing the instability grow according to a sixth-order Landau potential, and show a progression from second- to first-order transitions as α increases beyond a tricritical value of α ≈ 0.55. Flow simulations indicate the instability is driven by vortex stretching at the stagnation point.

  16. Formation of eyes in large-scale cyclonic vortices

    NASA Astrophysics Data System (ADS)

    Oruba, L.; Davidson, P. A.; Dormy, E.

    2018-01-01

    We present numerical simulations of steady, laminar, axisymmetric convection of a Boussinesq fluid in a shallow, rotating, cylindrical domain. The flow is driven by an imposed vertical heat flux and shaped by the background rotation of the domain. The geometry is inspired by that of tropical cyclones and the global flow pattern consists of a shallow swirling vortex combined with a poloidal flow in the r -z plane which is predominantly inward near the bottom boundary and outward along the upper surface. Our numerical experiments confirm that, as suggested in our recent work [L. Oruba et al., J. Fluid Mech. 812, 890 (2017), 10.1017/jfm.2016.846], an eye forms at the center of the vortex which is reminiscent of that seen in a tropical cyclone and is characterized by a local reversal in the direction of the poloidal flow. We establish scaling laws for the flow and map out the conditions under which an eye will, or will not, form. We show that, to leading order, the velocity scales with V =(αg β ) 1 /2H , where g is gravity, α is the expansion coefficient, β is the background temperature gradient, and H is the depth of the domain. We also show that the two most important parameters controlling the flow are Re =V H /ν and Ro =V /(Ω H ) , where Ω is the background rotation rate and ν the viscosity. The Prandtl number and aspect ratio also play an important, if secondary, role. Finally, and most importantly, we establish the criteria required for eye formation. These consist of a lower bound on Re , upper and lower bounds on Ro , and an upper bound on the Ekman number.

  17. Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1988-01-01

    The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.

  18. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Nakahara, Mikio; Ohmi, Tetsuo

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt employing Na23 atoms. Recently similar experiments have been conducted by Hirotani in which a BEC of Rb87 atoms was used. In the latter experiments the authors found that fine-tuning of the field reverse time Trev is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue mB of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with mB=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless Trev is properly tuned.

  19. Nonlinear Binormal Flow of Vortex Filaments

    NASA Astrophysics Data System (ADS)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  20. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  1. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  2. Measurement of Turbulent Fluxes of Swirling Flow in a Scaled Up Multi Inlet Vortex Reactor

    NASA Astrophysics Data System (ADS)

    Olsen, Michael; Hitimana, Emmanual; Hill, James; Fox, Rodney

    2017-11-01

    The multi-inlet vortex reactor (MIVR) has been developed for use in the FlashNanoprecipitation (FNP) process. The MIVR has four identical square inlets connected to a central cylindrical mixing chamber with one common outlet creating a highly turbulent swirling flow dominated by a strong vortex in the center. Efficient FNP requires rapid mixing within the MIVR. To investigate the mixing, instantaneous velocity and concentration fields were acquired using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. The simultaneous velocity and concentration data were used to determine turbulent fluxes and spatial cross-correlations of velocity and concentration fluctuations. The measurements were performed for four inlet flow Reynolds numbers (3250, 4875, 6500, and 8125) and at three measurement planes within the reactor. A correlation between turbulent fluxes and vortex strength was found. For all Reynolds numbers, turbulent fluxes are maximum in the vortex dominated central region of the reactor and decay away from the vortex. Increasing Reynolds number increased turbulent fluxes and subsequently enhanced mixing. The mixing performance was confirmed by determining coefficients of concentration variance within the reactor.

  3. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  4. Persistent magnetic vortex flow at a supergranular vertex

    NASA Astrophysics Data System (ADS)

    Requerey, Iker S.; Cobo, Basilio Ruiz; Gošić, Milan; Bellot Rubio, Luis R.

    2018-03-01

    Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims: We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods: We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results: One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions: This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow. A movie attached to Fig. 2 is available at http://https://www.aanda.org

  5. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    PubMed

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  6. Development of an Unmanned Air Research Vehicle for Supermaneuverability Studies

    DTIC Science & Technology

    1990-03-29

    VORTEX CONTROL Another emerging concept involves strake- generated vortex interactions, which improves maneuverability using non-linear lift generated by...undisturbed flow and is capable of prcJucing powerful vortex flow fields at high angles of attack. Asymmetrical vort ,;x control is feasible with actuated...control configuration, serves as an initial test vehicle for supermaneuverability analysis . Due to the relatively small scale of the UAV and the use of

  7. Modelling of Time-Variant Flows Using Vortex Dynamics.

    DTIC Science & Technology

    1987-02-01

    eopennage.... ) avec nappes enroul~es et d~ chir ~cs. REFERENCES Ji .T. BEALE, A. MAJDA "Nigh order accurate vortex methods with explicit velocity kernel...discrete vortices. Two papers, Longuet- Higgins (37) and Smith and Stansby (38) deal with the problem. In (37) conformal transformation is used for the...Longuet- Higgins (37). Most experiments on separated flows undoubtedly contain three-dimensional effects and again vortex decay is occasionally put into the

  8. Mathematical Fluid Dynamic Modeling of Plasma Stall-Spin Departure Control

    DTIC Science & Technology

    2007-04-01

    filter (4), is appropriate for further CSN modeling of the vortical flow. The CNS solver reproduces symmetric and asymmetric vortex fields (Figure 11...calculations conducted for laminar flow showed that the CNS solver reproduces symmetric and asymmetric vortex fields and can be used for estimation of the...Galilean-invariant leeward vortex filter. The modified k-F EASM model was incorporated into our CSN solver. Parametric calculations showed that numerical

  9. Numerical Capture of Wing-tip Vortex Using Vorticity Confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard

    2012-11-01

    Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.

  10. The effect of vortex formation on left ventricular filling and mitral valve efficiency.

    PubMed

    Pierrakos, Olga; Vlachos, Pavlos P

    2006-08-01

    A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.

  11. A universal time scale for vortex ring formation

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza; Rambod, Edmond; Shariff, Karim

    1998-04-01

    The formation of vortex rings generated through impulsively started jets is studied experimentally. Utilizing a piston/cylinder arrangement in a water tank, the velocity and vorticity fields of vortex rings are obtained using digital particle image velocimetry (DPIV) for a wide range of piston stroke to diameter (L/D) ratios. The results indicate that the flow field generated by large L/D consists of a leading vortex ring followed by a trailing jet. The vorticity field of the leading vortex ring formed is disconnected from that of the trailing jet. On the other hand, flow fields generated by small stroke ratios show only a single vortex ring. The transition between these two distinct states is observed to occur at a stroke ratio of approximately 4, which, in this paper, is referred to as the ‘formation number’. In all cases, the maximum circulation that a vortex ring can attain during its formation is reached at this non-dimensional time or formation number. The universality of this number was tested by generating vortex rings with different jet exit diameters and boundaries, as well as with various non-impulsive piston velocities. It is shown that the ‘formation number’ lies in the range of 3.6 4.5 for a broad range of flow conditions. An explanation is provided for the existence of the formation number based on the Kelvin Benjamin variational principle for steady axis-touching vortex rings. It is shown that based on the measured impulse, circulation and energy of the observed vortex rings, the Kelvin Benjamin principle correctly predicts the range of observed formation numbers.

  12. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  13. Elastic wake instabilities in a creeping flow between two obstacles

    NASA Astrophysics Data System (ADS)

    Varshney, Atul; Steinberg, Victor

    2017-05-01

    It is shown that a channel flow of a dilute polymer solution between two widely spaced cylinders hindering the flow is an important paradigm of an unbounded flow in the case in which the channel wall is located sufficiently far from the cylinders. The quantitative characterization of instabilities in a creeping viscoelastic channel flow between two widely spaced cylinders reveals two elastically driven transitions, which are associated with the breaking of time-reversal and mirror symmetries: Hopf and forward bifurcations described by two order parameters vrms and ω ¯, respectively. We suggest that a decrease of the normalized distance between the obstacles leads to a collapse of the two bifurcations into a codimension-2 point, a situation general for many nonequilibrium systems. However, the striking and unexpected result is the discovery of a mechanism of the vorticity growth via an increase of a vortex length at the preserved streamline curvature in a viscoelastic flow, which is in sharp contrast to the well-known suppression of the vorticity in a Newtonian flow by polymer additives.

  14. DIRECT NUMERICAL SIMULATION OF TRANSITIONAL FLOW IN A STENOSED CAROTID BIFURCATION

    PubMed Central

    Lee, Seung E.; Lee, Sang-Wook; Fischer, Paul F.; Bassiouny, Hisham S.; Loth, Francis

    2008-01-01

    The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100–300 Hz. Instantaneous wall shear stress within the stenosis was relatively high during systole (~25-45 Pa) compared to that in a healthy carotid. In addition, high spatial gradients of wall shear stress were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the internal carotid artery. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery. PMID:18656199

  15. Three-dimensional simulation of the free shear layer using the vortex-in-cell method

    NASA Technical Reports Server (NTRS)

    Couet, B.; Buneman, O.; Leonard, A.

    1979-01-01

    We present numerical simulations of the evolution of a mixing layer from an initial state of uniform vorticity with simple two- and three-dimensional small perturbations. A new method for tracing a large number of three-dimensional vortex filaments is used in the simulations. Vortex tracing by Biot-Savart interaction originally implied ideal (non-viscous) flow, but we use a 3-d mesh, Fourier transforms and filtering for vortex tracing, which implies 'modeling' of subgrid scale motion and hence some viscosity. Streamwise perturbations lead to the usual roll-up of vortex patterns with spanwise uniformity maintained. Remarkably, spanwise perturbations generate streamwise distortions of the vortex filaments and the combination of both perturbations leads to patterns with interesting features discernable in the movies and in the records of enstrophy and energy for the three components of the flow.

  16. A comparison of airborne wake vortex detection measurements with values predicted from potential theory

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1991-01-01

    An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.

  17. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  18. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  19. Diagnostic studies of the Antarctic vortex during the 1987 Airborne Antarctic Ozone Experiment - Ozone miniholes

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Austin, J.; Browell, E. V.; Mccormick, M. P.; Krueger, A. J.

    1989-01-01

    Localized rapid reductions in total ozone (miniholes), which were observed during the Airborne Antarctic Ozone Experiment, are studied with particular attention given to meteorological aspects. It is suggested that miniholes are forced by tropospheric weather features and that they are largely reversible distortions to the airflow around the vortex. The relationship between the miniholes and upper tropospheric and lower stratospheric synoptic-scale disturbances is studied. Trajectory calculations are presented which demonstrate the exchange of air from low latitudes with air from within the vortex, with the vortex air subsequently moving to lower latitudes.

  20. Flow visualization study of the horseshoe vortex in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1982-01-01

    Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.

  1. Numerical study of spherical Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Yang, R.-J.

    1989-01-01

    A new technique to simulate Taylor vortices in a spherical gap between a rotating inner sphere and a stationary outer one has been developed and tested. Paths leading to zero-, one-, and two-vortex flows are designed heuristically. Fictitious symmetric boundaries near the equator are imposed, and the choice of the location of the fictitious boundaries is determined by either one- or two-vortex flow being stimulated. The imposition of one or two fictitious boundaries during the initial calculation generates the state suitable for one-or two-vortex flow to exist. After removing the fictitious boundaries, the flow settles down into its own attractor. Using this method, the three steady flow modes can be simulated by using a half domain. The technique can converge to desired flows very fast, and its results show excellent agreement with experimental ones.

  2. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  3. Control of unsteady separated flow associated with the dynamic pitching of airfoils

    NASA Technical Reports Server (NTRS)

    Ahmed, Sajeer

    1991-01-01

    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  4. Nonlinear effects in the bounded dust-vortex flow in plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, Devendra; Chattopdhyay, Prabal K.; Kaw, Predhiman K.

    2017-03-01

    The vortex structures in a cloud of electrically suspended dust in a streaming plasma constitutes a driven system with a rich nonlinear flow regime. Experimentally recovered toroidal formations of this system have motivated study of its volumetrically driven-dissipative vortex flow dynamics using two-dimensional hydrodynamics in the incompressible Navier-Stokes regime. Nonlinear equilibrium solutions are obtained for this system where a nonuniformly driven two-dimensional dust flow exhibits distinct regions of localized accelerations and strong friction caused by stationary fluids at the confining boundaries resisting the dust flow. In agreement with observations in experiments, it is demonstrated that the nonlinear effects appear in the limit of small viscosity, where the primary vortices form scaling with the most dominant spatial scales of the domain topology and develop separated virtual boundaries along their periphery. This separation is triggered beyond a critical dust viscosity that signifies a structural bifurcation. Emergence of uniform vorticity core and secondary vortices with a newer level of identical dynamics highlights the applicability of the studied dynamics to gigantic vortex flows, such as the Jovian great red spot, to microscopic biophysical intracellular activity.

  5. Vortical flow management techniques

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Campbell, James F.

    1987-01-01

    The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.

  6. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  7. Low flow vortex shedding flowmeter

    NASA Technical Reports Server (NTRS)

    Waugaman, Charles J.

    1989-01-01

    The purpose was to continue a development project on a no moving parts vortex shedding flowmeter used for flow measurement of hypergols. The project involved the design and construction of a test loop to evaluate the meter for flow of Freon which simulates the hypergol fluids. Results were obtained on the output frequency characteristics of the flow meter as a function of flow rate. A family of flow meters for larger size lines and ranges of flow was sized based on the results of the tested meter.

  8. Mesoscale Simulations of Gravity Waves During the 2008-2009 Major Stratospheric Sudden Warming

    NASA Technical Reports Server (NTRS)

    Limpasuvan, Varavut; Alexander, M. Joan; Orsolini, Yvan J.; Wu, Dong L.; Xue, Ming; Richter, Jadwiga H.; Yamashita, Chihoko

    2011-01-01

    A series of 24 h mesoscale simulations (of 10 km horizontal and 400 m vertical resolution) are performed to examine the characteristics and forcing of gravity waves (GWs) relative to planetary waves (PWs) during the 2008-2009 major stratospheric sudden wam1ing (SSW). Just prior to SSW occurrence, widespread westward propagating GWs are found along the vortex's edge and associated predominantly with major topographical features and strong near-surface winds. Momentum forcing due to GWs surpasses PW forcing in the upper stratosphere and tends to decelerate the polar westerly jet in excess of 30 m/s/d. With SSW onset, PWs dominate the momentum forcing, providing decelerative effects in excess of 50 m/s/d throughout the upper polar stratosphere. GWs related to topography become less widespread largely due to incipient wind reversal as the vortex starts to elongate. During the SSW maturation and early recovery, the polar vortex eventually splits and both wave signatures and forcing greatly subside. Nonetheless, during SSW, westward and eastward propagating GWs are found in the polar region and may be generated in situ by flow adjustment processes in the stratosphere or by secondary GW breaking. The simulated large-scale features agree well with those resolved in satellite observations and analysis products.

  9. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  10. Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Johnson, Thomas D., Jr.

    1988-01-01

    A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.

  11. Numerical and experimental evidence of the inter-blade cavitation vortex development at deep part load operation of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2016-11-01

    Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.

  12. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  13. Application of Computational Fluid Dynamics to the Study of Vortex Flow Control for the Management of Inlet Distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1992-01-01

    The present study demonstrates that the Reduced Navier-Stokes code RNS3D can be used very effectively to develop a vortex generator installation for the purpose of minimizing the engine face circumferential distortion by controlling the development of secondary flow. The computing times required are small enough that studies such as this are feasible within an analysis-design environment with all its constraints of time and costs. This research study also established the nature of the performance improvements that can be realized with vortex flow control, and suggests a set of aerodynamic properties (called observations) that can be used to arrive at a successful vortex generator installation design. The ultimate aim of this research is to manage inlet distortion by controlling secondary flow through an arrangements of vortex generators configurations tailored to the specific aerodynamic characteristics of the inlet duct. This study also indicated that scaling between flight and typical wind tunnel test conditions is possible only within a very narrow range of generator configurations close to an optimum installation. This paper also suggests a possible law that can be used to scale generator blade height for experimental testing, but further research in this area is needed before it can be effectively applied to practical problems. Lastly, this study indicated that vortex generator installation design for inlet ducts is more complex than simply satisfying the requirement of attached flow, it must satisfy the requirement of minimum engine face distortion.

  14. Surface-Streamline Flow Visualization

    NASA Technical Reports Server (NTRS)

    Langston, L.; Boyle, M.

    1985-01-01

    Matrix of ink dots covers matte surface of polyester drafting film. Film placed against wind-tunnel wall. Layer of methyl salicylate (oil of wintergreen) sprayed over dotted area. Ink dot streaklines show several characteristics of flow, including primary saddle point of separations, primary horseshoe vortex and smaller vortex at cylinder/ endwall junction. Surface streamline flow visualization technique suitable for use in low-speed windtunnels or other low-speed gas flows.

  15. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76o/40o double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  16. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2005-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76 deg/40 deg double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 30 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M = 0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  17. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  18. Some observations of separated flow on finite wings

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.

    1982-01-01

    Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.

  19. Production version of the extended NASA-Langley Vortex Lattice FORTRAN computer program. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Herbert, H. E.

    1982-01-01

    The latest production version, MARK IV, of the NASA-Langley vortex lattice computer program is summarized. All viable subcritical aerodynamic features of previous versions were retained. This version extends the previously documented program capabilities to four planforms, 400 panels, and enables the user to obtain vortex-flow aerodynamics on cambered planforms, flowfield properties off the configuration in attached flow, and planform longitudinal load distributions.

  20. Control of submersible vortex flows

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Donaldson, C. D.

    1990-01-01

    Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

  1. Study of flow structure in a four-vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Sharypov, O. V.; Dekterev, A. A.; Shadrin, E. Yu.; Papulov, A. P.

    2017-11-01

    The flow pattern was studied for a four-vortex furnace of a coal-dust boiler. The paper presents results of experimental study of inner aerodynamics performed on a lab-scale isothermal model of the furnace device. The PIV method was used to receive the flow velocity fields for several cross sections. The analysis was performed for the spatial structure of the flow comprising four stable closed vortices with vertical axes of flow swirling.

  2. Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review.

    PubMed

    Nguyen, Yen Ngoc; Ismail, Munirah; Kabinejadian, Foad; Tay, Edgar Lik Wui; Leo, Hwa Liang

    2018-04-01

    Intra-ventricular flow dynamics has recently emerged as an important evaluation and diagnosis tool in different cardiovascular conditions. The formation of vortex pattern during the cardiac cycle has been suggested to play important epigenetic and energy-modulation roles in cardiac remodelling, adaptations and mal-adaptations. In this new perspective, flow alterations due to different cardiovascular procedures can affect the long-term outcome of those procedures. Especially, repairs and replacements performed on atrioventricular valves are likely to exert direct impact on intra-ventricular flow pattern. In this review, current consensus around the roles of vortex dynamics in cardiac function is discussed. An overview of physiological vortex patterns found in healthy left and right ventricles as well as post-operative ventricular flow phenomenon owing to different atrioventricular valvular procedures are reviewed, followed by the summary of different vortex identification schemes used to characterise intraventricular flow. This paper also emphasises on future research directions towards a comprehensive understanding of intra-cardiac flow and its clinical relevance. The knowledge could encourage more effective pre-operative planning and better outcomes for current clinical practices. Copyright © 2018. Published by Elsevier Ltd.

  3. Topology and stability of a water-soybean-oil swirling flow

    NASA Astrophysics Data System (ADS)

    Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.

    2017-02-01

    This paper reveals and explains the flow topology and instability hidden in an experimental study by Tsai et al. [Tsai et al., Phys. Rev. E 92, 031002(R) (2015)], 10.1103/PhysRevE.92.031002. Water and soybean oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. The experiment shows a flattop interface shape and vortex breakdown in the oil flow developing as the rotation strength R eo increases. Our numerical study shows that vortex breakdown occurs in the water flow at R eo=300 and in the oil flow at R eo=941 . As R eo increases, the vortex breakdown cell occupies most of the water domain and approaches the interface at R eo around 600. The rest of the (countercirculating) water separates from the axis as the vortex breakdown cells in the oil and water meet at the interface-axis intersection. This topological transformation of water flow significantly contributes to the development of the flattop shape. It is also shown that the steady axisymmetric flow suffers from shear-layer instability, which emerges in the water domain at R eo=810 .

  4. Calculation of vortex lift effect for cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.

  5. A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Jordan, F. L., Jr.

    1975-01-01

    A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

  6. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  7. Flow-field in a vortex with breakdown above sharp edged delta wings

    NASA Technical Reports Server (NTRS)

    Hayashi, Y.; Nakaya, T.

    1978-01-01

    The behavior of vortex-flow, accompanied with breakdown, formed above sharp-edged delta wings, was studied experimentally as well as theoretically. Emphasis is placed particularly on the criterion for the breakdown at sufficiently large Reynolds numbers

  8. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  9. On the plasma flow inside magnetic tornadoes on the Sun

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Steiner, Oskar

    2014-12-01

    High-resolution observations with the Swedish 1-m Solar Telescope (SST) and the Solar Dynamics Observatory (SDO) reveal rotating magnetic field structures that extend from the solar surface into the chromosphere and the corona. These so-called magnetic tornadoes are primarily detected as rings or spirals of rotating plasma in the Ca II 854.2 nm line core (also known as chromospheric swirls). Detailed numerical simulations show that the observed chromospheric plasma motion is caused by the rotation of magnetic field structures, which again are driven by photospheric vortex flows at their footpoints. Under the right conditions, two vortex flow systems are stacked on top of each other. We refer to the lower vortex, which extends from the low photosphere into the convection zone, as intergranular vortex flow (IVF). Once a magnetic field structure is co-located with an IVF, the rotation is mediated into the upper atmospheric layers and an atmospheric vortex flow (AVF, or magnetic tornado) is generated. In contrast to the recent work by Shelyag et al. (2013, ApJ, 776, L4), we demonstrate that particle trajectories in a simulated magnetic tornado indeed follow spirals and argue that the properties of the trajectories decisively depend on the location in the atmosphere and the strength of the magnetic field.

  10. Unsteady behavior of leading-edge vortex and diffuser stall in a centrifugal compressor with vaned diffuser

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka

    2016-02-01

    The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.

  11. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Zuccarello, F. P.; Aulanier, G.

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171more » Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.« less

  12. A generalized vortex lattice method for subsonic and supersonic flow applications

    NASA Technical Reports Server (NTRS)

    Miranda, L. R.; Elliot, R. D.; Baker, W. M.

    1977-01-01

    If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.

  13. On hairpin vortex generation from near-wall streamwise vortices

    NASA Astrophysics Data System (ADS)

    Wang, Yinshan; Huang, Weixi; Xu, Chunxiao

    2015-04-01

    The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation (DNS) of the streak transient growth in the minimal channel flow at . The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number. The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity. It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker, opposite-signed streamwise vortex in their overlap region, forming a complete individual hairpin structure. The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector, respectively. The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.

  14. Apparatus for and method of simulating turbulence

    DOEpatents

    Dimas, Athanassios; Lottati, Isaac; Bernard, Peter; Collins, James; Geiger, James C.

    2003-01-01

    In accordance with a preferred embodiment of the invention, a novel apparatus for and method of simulating physical processes such as fluid flow is provided. Fluid flow near a boundary or wall of an object is represented by a collection of vortex sheet layers. The layers are composed of a grid or mesh of one or more geometrically shaped space filling elements. In the preferred embodiment, the space filling elements take on a triangular shape. An Eulerian approach is employed for the vortex sheets, where a finite-volume scheme is used on the prismatic grid formed by the vortex sheet layers. A Lagrangian approach is employed for the vortical elements (e.g., vortex tubes or filaments) found in the remainder of the flow domain. To reduce the computational time, a hairpin removal scheme is employed to reduce the number of vortex filaments, and a Fast Multipole Method (FMM), preferably implemented using parallel processing techniques, reduces the computation of the velocity field.

  15. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Patel, D. K.

    1974-01-01

    A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.

  16. A method for modeling finite-core vortices in wake-flow calculations

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1984-01-01

    A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.

  17. Ignition dynamics of a laminar diffusion flame in the field of a vortex embedded in a shear flow

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1994-01-01

    The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small Mach number. An idealized model is employed to describe the interaction process. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow. It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscillations which increase in magnitude with shear strength. These oscillations give rise to regions of strong temperature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis is placed on the ignition time and structure as a function of vortex and shear strength.

  18. Experimental studies of one-way reaction front barriers in three-dimensional vortex flows

    NASA Astrophysics Data System (ADS)

    Gannon, Joanie; Doan, Minh; Simons, Jj; Mitchell, Kevin; Solomon, Tom

    2017-11-01

    We present results of experimental studies of the evolution of the excitable, Ruthenium (Ru)-catalyzed, Belousov-Zhabotinsky (BZ) reaction in a three-dimensional (3D) flow composed of the superposition of horizontal and vertical vortex chains. The reaction fronts are imaged in 3D with a scanning, laser-induced fluorescence technique that takes advantage of the differential fluoresence of the Ruthenium indicated at the front. When the horizontal and vertical vortex chains are lined up, a dominant scroll structure is observed that acts as a one-way barrier blocking fronts propagating across vortex boundaries and into vortex centers. A second, quarter-tube barrier is observed along the edges of the unit cell. When the vortices are shifted relative to each other, tube-like barriers are observed in the interior. All of these barriers are compared with burning invariant manifolds predicted from a 6D set of differential equations describing the evolution of front elements in the flow. Supported by NSF Grants DMR-1361881 and DUE-1317446.

  19. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  20. Steady Aerodynamic Characteristics of Two-Dimensional NACA0012 Airfoil for One Revolution Angle of Attack

    NASA Astrophysics Data System (ADS)

    Park, Byung Ho; Han, Yong Oun

    2018-04-01

    Steady variations in aerodynamic forces and flow behaviors of two-dimensional NACA0012 airfoil were investigated using a numerical method for One Revolution Angle of Attack (AOA) at Reynolds number of 105 . The profiles of lift coefficients, drag coefficients, and pressure coefficients were compared with those of the experimental data. The AERODAS model was used to analyze the profiles of lift and drag coefficients. Wake characteristics were given along with the deficit profiles of incoming velocity components. Both the characteristics of normal and reverse airfoil models were compared with the basic aerodynamic data for the same range of AOA. The results show that two peaks of the lift coefficients appeared at 11.5{°} and 42{°} and are in good agreement with the pre-stall and post-stall models, respectively. Counter-rotating vortex flows originated from the leading and trailing edges at a high AOA, which formed an impermeable zone over the suction surface and made reattachments in the wake. Moreover, the acceleration of inflow along the boundary of the vortex wrap appeared in the profile of the wake velocity. The drag profile was found to be independent of the airfoil mode, but the lift profile was quite sensitive to the airfoil mode.

  1. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  2. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOEpatents

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  3. Starting buoyant plumes and vortex ring pinch-off

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait; Gharib, Mory

    2003-11-01

    The vortex ring formation process of a starting buoyant plume was studied experimentally. Buoyant plumes were produced using a heating element at the base of a water tank. The velocity and temperature fields in the flow were measured using digital particle image thermometry and velocimetry (DPITV), allowing the density and vorticity fields to be determined. The vortex ring initially grew, with additional circulation being supplied by the trailing plume. At later times, the vortex ring became disconnected from the trailing plume. This is analogous to the pinch-off of a vortex ring produced by a piston-cylinder apparatus reported by Gharib et al (1998 JFM 360: 121-140). The existence of a pinch-off process for starting buoyant plumes has many implications for environmental flows. Of particular interest is the effect of vortex ring pinch-off on the dispersal of particulates and contaminants in intermittent or sudden convection events.

  4. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  5. Investigation of Vortex Flaps and Other Flow Control Devices on Generic High-Speed Civil Transport Planforms

    NASA Technical Reports Server (NTRS)

    Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.

    1999-01-01

    A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.

  6. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  7. Effect of Oscillating Tabs on a Jet-in-Cross-Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2003-01-01

    A novel technique for active control of a jet-in-cross-flow is explored in this study. Two triangular tabs are placed at the 90 degree and 270 degree edges of the jet orifice, relative to the direction of the cross-flow. A slight asymmetry in the placement of the two tabs is reversed periodically. This causes a profound oscillation of the flow field that persists as far downstream as the measurements were permitted by the facility (100 orifice diameters). Parametric dependence of the unsteadiness and its impact on the flowfield has been investigated preliminarily. It is found that the effect becomes increasingly pronounced with increasing value of the momentum flux ratio (J). However, there is little or no effect at low values of J in the range, J less than 15. The effective frequencies of oscillation are low - more than an order of magnitude lower than that found with oscillatory blowing technique in previous studies. The flow mechanism apparently involves a direct perturbation of the counter-rotating streamwise vortex pair of the flow.

  8. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

  9. On the Vortex Waves in Nonadiabatic Flows

    NASA Astrophysics Data System (ADS)

    Ibáñez S., Miguel H.; Núñez, Luis A.

    2018-03-01

    Linear disturbances superposed on steady flows in nonadiabatic plasmas are analyzed. In addition to the potential modes resulting (two sound waves and a thermal mode) that are Doppler shifted, a rotational mode appears identified as an entropy-vortex wave (evw) which is carried along by the gas flow. In adiabatic flows, as well as in nonadiabatic flows, the evw always shows a null pressure disturbance. But in the second case, the wave number of the evw disturbance is fixed for the particular thermal conditions of the gas. The above holds for optically thin gases, as well as for radiating flows, if the dynamical effects of the radiation field are neglected in a first approximation. The above results allow us to calculate the dimensions of the vortex elements that are expected to be formed in nonadiabatic gas flows, particularly in hot ionized plasmas of interest in astrophysics.

  10. The Three-D Flow Structures of Gas and Liquid Generated by a Spreading Flame Over Liquid Fuel

    NASA Technical Reports Server (NTRS)

    Tashtoush, G.; Ito, A.; Konishi, T.; Narumi, A.; Saito, K.; Cremers, C. J.

    1999-01-01

    We developed a new experimental technique called: Combined laser sheet particle tracking (LSPT) and laser holographic interferometry (HI), which is capable of measuring the transient behavior of three dimensional structures of temperature and flow both in liquid and gas phases. We applied this technique to a pulsating flame spread over n-butanol. We found a twin vortex flow both on the liquid surface and deep in the liquid a few mm below the surface and a twin vortex flow in the gas phase. The first twin vortex flow at the liquid surface was observed previously by NASA Lewis researchers, while the last two observations are new. These observations revealed that the convective flow structure ahead of the flame leading edge is three dimensional in nature and the pulsating spread is controlled by the convective flow of both liquid and gas.

  11. Vortex methods and vortex statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorin, A.J.

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well asmore » in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.« less

  12. Vortex shedding flow meter performance at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1986-01-01

    In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.

  13. Flow past a Flat Plate with a Vortex/sink Combination

    NASA Technical Reports Server (NTRS)

    Mourtos, N. J.

    1984-01-01

    An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only: and (2) the Helmholtz solution of totally separated flow over the plate.

  14. Flow past a flat plat with a vortex/sink combination

    NASA Technical Reports Server (NTRS)

    Mourtos, N. J.

    1985-01-01

    An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only; and (2) the Helmholtz solution of totally separated flow over the plate.

  15. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

  16. Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin

    2016-07-15

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less

  17. Further studies of turbulence structure resulting from interactions between embedded vortices and wall jets at high blowing ratios

    NASA Astrophysics Data System (ADS)

    Doner, William D.

    1989-12-01

    Interactions of wall jets and vortices embedded in turbulent layers commonly occur near gas turbine blades and endwalls where film cooling is employed. These interactions frequently result in undesirable heat transfer effects at blade and endwall surfaces. In this thesis, a crossed hot-wire probe is used to measure the turbulence structure resulting from this type of interaction. The vortex is generated using a half delta-wing vortex generator mounted 12 deg with respect to a 10 m/s mean velocity flow over a flat plate. A single injection hole, 0.95 cm in diameter, inclined 30 deg to the horizontal, is positioned 59.3 cm downstream of the vortex generator. The vortex generator is positioned so that vortex upwash and downwash could be located over the injection hole. Streamwise development of the turbulent boundary layer was investigated for the following cases: (1) boundary layer with jet only (m = 1.5), and (2) boundary layer with vortex only. Measurement of interaction between the boundary layer, vortex upwash, and the wall jet was made at one station with various blowing ratios. At low blowing ratios (m = 0.5 and 1.5) the vortex dominates the flow. Significant alterations to the turbulent structure are seen in the Reynolds stress components, vorticity distributions and mean velocities. At higher blowing ratios (m = 2.5 and 3.5) the jet dominates the flow, the vortex is blown away from the wall, and its turbulence effects are dispersed over a larger area.

  18. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  19. Rossby wave breaking and Lagrangian structures inside the Antarctic stratospheric polar vortex during Vorcore and Concordiasi campaigns

    NASA Astrophysics Data System (ADS)

    de la Camara, Alvaro; Mechoso, Carlos R.; Mancho, Ana M.; Serrano, Encarna; Ide, Kayo

    2013-04-01

    The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by international field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away and towards the poleward flank of the polar night jet. The present work applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain filling calculations of potential vorticity (PV) fields from ECMWF ERA-Interim data set during the events show irreversible filamentation of the PV fields in the inner side of the polar night jet, which is a signature of planetary (Rossby) wave breaking. Balloons motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arch length) and small (~5° of arch length) balloon displacements from the vortex edge are associated to deep and shallow penetration into the core of the elongated PV contours. The function M is applied to study the configuration of Lagrangian coherent structures during the events. A close association is found between hyperbolic points and breaking waves inside the vortex. The geometric configuration of the invariant manifolds associated with the hyperbolic points helps to understand the apparent chaotic behavior of balloons motions, and to identify and analyze balloon transport events not captured by the Reverse Domain Filling calculations. The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.

  20. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Yuki; Ohmi, Tetsuo; Nakahara, Mikio

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt et al. employing {sup 23}Na atoms. Recently similar experiments have been conducted by Hirotani et al. in which a BEC of {sup 87}Rb atoms was used. In the latter experiments the authors found that fine-tuning of the fieldmore » reverse time T{sub rev} is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue m{sub B} of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with m{sub B}=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless T{sub rev} is properly tuned.« less

  1. Three-dimensional transition after wake deflection behind a flapping foil.

    PubMed

    Deng, Jian; Caulfield, C P

    2015-04-01

    We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ| indicates an unstable "short wavelength" mode at wave number β=30, or wavelength λ=0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=Uc/ν≃600, where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β=6 (λ=1.05) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.

  2. Three-dimensional transition after wake deflection behind a flapping foil

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Caulfield, C. P.

    2015-04-01

    We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ | indicates an unstable "short wavelength" mode at wave number β =30 , or wavelength λ =0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=U c /ν ≃600 , where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β =6 (λ =1.05 ) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.

  3. Perpendicular blade vortex interaction and its implications for helicopter noise prediction: Wave-number frequency spectra in a trailing vortex for BWI noise prediction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1993-01-01

    Perpendicular blade vortex interactions are a common occurrence in helicopter rotor flows. Under certain conditions they produce a substantial proportion of the acoustic noise. However, the mechanism of noise generation is not well understood. Specifically, turbulence associated with the trailing vortices shed from the blade tips appears insufficient to account for the noise generated. The hypothesis that the first perpendicular interaction experienced by a trailing vortex alters its turbulence structure in such a way as to increase the acoustic noise generated by subsequent interactions is examined. To investigate this hypothesis a two-part investigation was carried out. In the first part, experiments were performed to examine the behavior of a streamwise vortex as it passed over and downstream of a spanwise blade in incompressible flow. Blade vortex separations between +/- one eighth chord were studied for at a chord Reynolds number of 200,000. Three-component velocity and turbulence measurements were made in the flow from 4 chord lengths upstream to 15 chordlengths downstream of the blade using miniature 4-sensor hot wire probes. These measurements show that the interaction of the vortex with the blade and its wake causes the vortex core to loose circulation and diffuse much more rapidly than it otherwise would. Core radius increases and peak tangential velocity decreases with distance downstream of the blade. True turbulence levels within the core are much larger downstream than upstream of the blade. The net result is a much larger and more intense region of turbulent flow than that presented by the original vortex and thus, by implication, a greater potential for generating acoustic noise. In the second part, the turbulence measurements described above were used to derive the necessary inputs to a Blade Wake Interaction (BWI) noise prediction scheme. This resulted in significantly improved agreement between measurements and calculations of the BWI noise spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.

  4. The effects of free stream turbulence on the flow field through a compressor cascade

    NASA Astrophysics Data System (ADS)

    Muthanna Kolera, Chittiappa

    The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1°, a stagger angle of 56.9°, and a solidity of 1.08. The final turning angle of the cascade was 11.8°. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca = 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca = 0.77.

  5. Flight test to determine feasibility of a proposed airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Hastings, E. C., Jr.; Patterson, James C., Jr.

    1991-01-01

    This investigation was conducted to determine the radial extent at which aircraft mounted flow vanes or roll rate gyros can sense the circulatory flow field that exists around the lift induced vortex system generated by an aircraft in flight. The probe aircraft was equipped with wingtip sensors for measuring angle of attack and angle of sideslip, and with a fuselage mounted gyroscope for measuring roll rate. Analysis of flight test data indicated that the vortex was detectable at a lateral distance of about 105 feet (best results) using unsophisticated equipment. Measurements were made from the centerline of the probe aircraft to the center of the nearest vortex with the probe aircraft flying between one half and one and one half miles behind the vortex generating aircraft.

  6. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  7. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  8. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  9. Alteration of intraaneurysmal hemodynamics by placement of a self-expandable stent. Laboratory investigation.

    PubMed

    Tateshima, Satoshi; Tanishita, Kazuo; Hakata, Yasuhiro; Tanoue, Shin-ya; Viñuela, Fernando

    2009-07-01

    Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery-ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by approximately 23-40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43-64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22-51%. The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.

  10. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Nalimov, Anton G

    2018-06-15

    Using the Richards-Wolf formulas for an arbitrary circularly polarized optical vortex with an integer topological charge m, we obtain explicit expressions for all components of the electric and magnetic field strength vectors near the focus, as well as expressions for the intensity (energy density) and for the energy flux (components of the Poynting vector) in the focal plane of an aplanatic optical system. For m=2, from the obtained expressions it follows that the energy flux near the optical axis propagates in the reversed direction, rotating along a spiral around the optical axis. On the optical axis itself, the reversed flux is maximal and decays rapidly with the distance from the axis. For m=3, in contrast, the reversed energy flux in the focal plane is minimal (zero) on the optical axis and increases (until the first ring of the light intensity) as a squared distance from the axis.

  11. An experimental study on the effects of rough hydrophobic surfaces on the flow around a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin

    2015-08-01

    The present study investigates the effect that rough hydrophobic (or superhydrophobic) surfaces have on the flow separation and subsequent vortex structures in a turbulent wake behind a circular cylinder. The velocity fields were measured using two-dimensional particle image velocimetry in a water tunnel with Reynolds numbers of 0.7-2.3 × 104. The spray-coating of hydrophobic nanoparticles and roughened Teflon was used to produce the rough hydrophobic surfaces, and sandpapers with two different grit sizes were used to sand the Teflon into streamwise and spanwise directions, respectively, in order to examine the effect of the slip direction. The rough hydrophobic surface was found to enhance the turbulence in the flows above the circular cylinder and along the separating shear layers, resulting in a delay of the flow separation and early vortex roll-up in the wake. As a result, the size of the recirculation bubble in the wake was reduced by up to 40%, while the drag reduction of less than 10% is estimated from a wake survey. However, these effects are reversed as the Reynolds number increases. The surface texture normal to the flow direction (spanwise slip) was found to be more effective than that aligned to the flow (streamwise slip), supporting the suggested mechanism. In addition, the superhydrophobic surface is locally applied by varying the installation angle and that applied around the separation point is most effective, indicating that the rough hydrophobic surface directly affects the boundary layer at flow separation. In order to control the flow around a circular cylinder using rough hydrophobic surfaces, it is suggested to have a smaller roughness width, which can stably retain air pockets. In addition, a higher gas fraction and a more uniform distribution of the roughness size are helpful to enhance the performance such as the separation delay and drag reduction.

  12. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  13. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos A.

    2014-05-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.

  14. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  15. Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet

    NASA Astrophysics Data System (ADS)

    Yadav, Harekrishna; Agrawal, Amit

    2018-03-01

    This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.

  16. Prediction of subsonic vortex shedding from forebodies with chines

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1990-01-01

    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines.

  17. Swirl effect on flow structure and mixing in a turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.

    2018-03-01

    The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.

  18. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Visser, Kenneth D.

    1991-01-01

    Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating factors leading to the onset of breakdown are felt to be the local circulation of the vortex and the accompanying pressure field.

  19. The vortex as a clock

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert

    2003-11-01

    Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.

  20. Vortex Flux Pinning in Type-Ii Superconductors

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad-Khair A. M.

    1995-01-01

    Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.

  1. Eulerian and Lagrangian methods for vortex tracking in 2D and 3D flows

    NASA Astrophysics Data System (ADS)

    Huang, Yangzi; Green, Melissa

    2014-11-01

    Coherent structures are a key component of unsteady flows in shear layers. Improvement of experimental techniques has led to larger amounts of data and requires of automated procedures for vortex tracking. Many vortex criteria are Eulerian, and identify the structures by an instantaneous local swirling motion in the field, which are indicated by closed or spiral streamlines or pathlines in a reference frame. Alternatively, a Lagrangian Coherent Structures (LCS) analysis is a Lagrangian method based on the quantities calculated along fluid particle trajectories. In the current work, vortex detection is demonstrated on data from the simulation of two cases: a 2D flow with a flat plate undergoing a 45 ° pitch-up maneuver and a 3D wall-bounded turbulence channel flow. Vortices are visualized and tracked by their centers and boundaries using Γ1, the Q criterion, and LCS saddle points. In the cases of 2D flow, saddle points trace showed a rapid acceleration of the structure which indicates the shedding from the plate. For channel flow, saddle points trace shows that average structure convection speed exhibits a similar trend as a function of wall-normal distance as the mean velocity profile, and leads to statistical quantities of vortex dynamics. Dr. Jeff Eldredge and his research group at UCLA are gratefully acknowledged for sharing the database of simulation for the current research. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  2. Vortical Flow Structures in the Near-Wake of a Heaving Airfoil with Passively Actuated Leading and Trailing Flaps.

    NASA Astrophysics Data System (ADS)

    Siala, Firas; Totpal, Alexander; Liburdy, James

    2015-11-01

    The flow physics of flying animals has recently received significant attention, mostly in the context of developing bio-inspired micro air vehicles and oscillating flow energy harvesters. Of particular interest is the understanding of the impact of airfoil flexibility on the flow physics. Research efforts showed that some degree of surface flexibility enhanced the strength and size of the leading edge vortex. In this study, the influence of flexibility on the near-wake dynamics and flow structures is investigated using 2D PIV measurements. The experiments are conducted in a wind tunnel at a Reynolds number of 30,000 and a range of reduced frequencies from 0.09 to 0.2. The flexibility is attained using a torsion rod forming a hinge between the flap and the main wing. Vortex flow structures are visualized using large eddy scale decomposition technique and quantified using swirling strength analysis. It is found that trailing edge flexibility increases the vortex swirling strength compared to a rigid airfoil, whereas leading edge flexibility decreases the swirling strength. Furthermore, the integral length scale determined from the autocorrelation of the velocity fluctuations is found to be approximately equal to the actual vortex size. The vortex convective velocity is shown to be independent of flexibility and oscillation frequency, and it is represented by a trimodal distribution, with peak values at 0.8, 0.95 and 1 times the free stream velocity. Oregon State University.

  3. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot-wire measurement locations are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine. Changing the tip-speed ratio leads to substantial wake variation possibly because changing the tip-speed ratio changes the dynamic solidity. In this work, we achieve a similar change in dynamic solidity by varying the D/c ratio and holding the tip-speed ratio constant. This change leads to very similar characteristic shifts in the wake, such as a greater blockage effect, including averaged flow reversal in the case of high dynamic solidity (D/c = 3). The phase-averaged vortex identification shows that both the blockage effect and the wake structures are similarly affected by a change in dynamic solidity. At lower dynamic solidity, pairs of vortices are shed into the wake directly downstream of the turbine. For all three models, a vortex chain is shed into the shear layer at the edge of the wake where the blade is processing into the freestream.

  4. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  5. Experimental Study of the Structure of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Anderson, Elgin A.; Wright, Christopher T.

    2000-01-01

    A complete look at the near-field development and subsequent role-up of a wingtip vortex from a NACA 0015 wing section is investigated. Two separate but equally important surveys of the vortex structure in the region adjacent to the wingtip and approximately one chord length downstream of the trailing edge are performed. The two surveys provide qualitative flow-visualization an quantitative velocity measurement data. The near-field development and subsequent role-up of the vortex structures is strongly influenced by the angle-of-attack and the end-cap treatment of the wing section. The velocity field near the wingtip of the NACA 0015 wing section was measured with a triple-sensor hot wire probe and compared to flow visualization images produced with titanium tetrachloride smoke injection and laser illumination. The flat end-cap results indicate the formation of multiple, relatively strong vortex structures as opposed to the formation of a single vortex produced with the round end-cap. The multiple vortices generated by the flat end-cap are seen to rotate around a common ce te in a helical pattern until they eventually merge into a single vortex. Compared to a non-dimensional loading parameter, the results of the velocity and flow visualization data shows a "jetlike" axial velocity profile for loading parameter values on the order of 0.1 and a "wakelike" profile for much lower loading parameter values.

  6. In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.

    1990-01-01

    In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.

  7. Vortex breakdown and control experiments in the Ames-Dryden water tunnel

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Peake, D. J.

    1986-01-01

    Flow-field measurements have been made to determine the effects of core blowing on vortex breakdown and control. The results of these proof-of-concept experiments clearly demonstrate the usefulness of water tunnels as test platforms for advanced flow-field simulation and measurement.

  8. Quasi-periodic transverse plasma flow associated with an evolving MHD vortex street in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Siregar, Edouard; Roberts, D. A.; Goldstein, Melvyn L.

    1993-01-01

    We study a transverse plasma flow induced by the evolution of a Karman vortex street using a Chebyshev-Fourier spectral algorithm to solve both the compressible Navier-Stokes and MHD equations. The evolving vortex street is formed by the nonlinear interaction of two vortex sheets initially in equilibrium. We study spatial profiles of the total plasma velocity, the density, the meridional flow angle and the location of sector boundaries and find generally good agreement with Voyager 2 measurements of quasi-periodic transverse flow in the outer heliosphere. The pressure pulses associated with the meridional flows in the simulation are too small, although they are correctly located, and this may be due to the lack of any 'warp' in the current sheet in this model. A strong, flow-aligned magnetic field, such as would occur in the inner heliosphere, is shown to lead to weak effects that would be masked by the background interplanetary turbulence. We also study the plasma and magnetic transport resulting from the meridional flow and find that deficits of magnetic quantities do occur near the ecliptic. While the effect is relatively small, it is in general agreement with the most recent analysis of 'flux deficit' in the outer heliosphere.

  9. Vortex Imprints at the Wall, But Not in the Bulk, Distinguish Ruptured from Unruptured Intracranial Aneurysms

    NASA Astrophysics Data System (ADS)

    Varble, Nicole; Meng, Hui

    2015-11-01

    Intracranial aneurysms affect 3% of the population. Risk stratification of aneurysms is important, as rupture often leads to death or permanent disability. Image-based CFD analyses of patient-specific aneurysms have identified low and oscillatory wall shear stress to predict rupture. These stresses are sensed biologically at the luminal wall, but the flow dynamics related to aneurysm rupture requires further understanding. We have conducted two studies: one examines vortex dynamics, and the other, high frequency flow fluctuations in patient-specific aneurysms. In the first study, based on Q-criterion vortex identification, we developed two measures to quantify regions within the aneurysm where rotational flow is dominate: the ratio of volume or surface area where Q >0 vs. the total aneurysmal volume or surface area, respectively termed volume vortex fraction (VVF) and surface vortex fraction (SVF). Statistical analysis of 204 aneurysms shows that SVF, but not VVF, distinguishes ruptured from unruptured aneurysms, suggesting that once again, the local flow patterns on the wall is directly relevant to rupture. In the second study, high-resolution CFD (high spatial and temporal resolutions and second-order discretization schemes) on 56 middle cerebral artery aneurysms shows the presence of temporal fluctuations in 8 aneurysms, but such flow instability bears no correlation with rupture. Support for this work was partially provided by NIH grant (R01 NS091075-01) and a grant from Toshiba Medical Systems Corp.

  10. LES of a ducted propeller with rotor and stator in crashback

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Mahesh, Krishnan

    2012-11-01

    A sliding interface method is developed for large eddy simulation (LES) of flow past ducted propellers with both rotor and stator. The method is developed for arbitrarily shaped unstructured elements on massively parallel computing platforms. Novel algorithms for searching sliding elements, interpolation at the sliding interface, and data structures for message passing are developed. We perform LES of flow past a ducted propeller with stator blades in the crashback mode of operation, where a marine vessel is quickly decelerated by rotating the propeller in reverse. The unsteady loads predicted by LES are in good agreement with experiments. A highly unsteady vortex ring is observed outside the duct. High pressure fluctuations are observed near the blade tips, which significantly contribute to the side-force. This work is supported by the United States Office of Naval Research.

  11. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  12. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  13. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  14. Measurements of a turbulent horseshoe vortex formed around a cylinder

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Langston, L. S.

    1986-01-01

    An experimental investigation was conducted to characterize a symmetrical horseshoe vortex system in front of and around a single large-diameter right cylinder centered between the sidewalls of a wind tunnel. Surface flow visualization and surface static pressure measurements as well as extensive mean velocity and pressure measurements in and around the vortex system were acquired. The results lend new insight into the formation and development of the vortex system. Contrary to what has been assumed previously, a strong vortex was not identified in the streamwise plane of symmetry, but started a significant angular distance away from it. Rather than the multiple vortex systems reported by others, only a single primary vortex and saddle point were found. The scale of the separation process at the saddle point was much smaller than the scale of the approaching boundary layer thickness. Results of the present study not only shed light on such phenomena as the nonsymmetrical endwall flow in axial turbomachinery but can also be used as a test case for three-dimensional computational fluid mechanics computer codes.

  15. Vortex/surface interaction

    NASA Technical Reports Server (NTRS)

    Bodstein, G. C. R.; George, A. R.; Hui, C. Y.

    1993-01-01

    This paper considers the interaction of a vortex generated upstream in a flow field with a downstream aerodynamic surface that possesses a large chord. The flow is assumed to be steady, incompressible, inviscid and irrotational, and the surface to be semiinfinite. The vortex is considered to be a straight vortex filament. To lowest order the problem is modeled using potential theory, where the 3D Laplace's equation for the velocity potential on the surface is solved exactly. The closed-form equation for pressure distribution obtained from this theory is found to have a square root singularity at the leading-edge. It also converges, as x goes to infinity, to the solution of the 2D point-vortex/infinite plane problem. The pressure coefficient presents an anti-symmetric behavior, near the leading-edge and a symmetric behavior as x goes to infinity.

  16. Periodic vortex shedding in the supersonic wake of a planar plate

    NASA Technical Reports Server (NTRS)

    Xing, W. F.; Marenbach, G.

    1985-01-01

    Vortex sheets in the wake have been mainly studied in incompressible flows and in the transonic region. Heinemann et al. (1976) have shown that for the subsonic region the Strouhal number is nearly independent of the Mach number. Motallebi and Norbury (1981) have observed an increase in the Strouhal number in transonic supersonic flow at Mach numbers up to 1.25. The present investigation is concerned with an extension of the studies of vortex shedding to higher supersonic Mach numbers, taking into account questions regarding the possibility of a generation of stable von Karman vortex paths in the considered Mach number range. It is found that the vortex sheet observed in a supersonic wake behind a rough plate is only stable and reproducible in cases involving a certain surface roughness and certain aspects of trailing edge geometry.

  17. The numerical simulation of flow field characteristics for single vortex column in different shapes

    NASA Astrophysics Data System (ADS)

    Shangchang, Yu; Hanxiao, Liu; Wenhua, Li; Ying, Guo

    2017-11-01

    The coagulation technology of turbulence can improve the PM2.5 removal efficiency of ESP effectively, which is a hot technology researched by the scholars and manufacture. The turbulence produced by vortex column is the main power supply in the turbulence coagulation device, the velocity distribution, turbulence intensity, turbulence viscosity and pressure loss of single vortex column in different shapes and sizes were calculated in this paper. The turbulence produced by angle-steel had a better velocity and character than cylindrical vortex, and if the size of angle-steel and cylindrical vortex was bigge, the turbulence effect of the flow field would become better, but the pressure loss of different shapes would increase. We need to ensure the turbulence effect as well as minimize unnecessary pressure loss in practical applications.

  18. Calculation of symmetric and asymmetric vortex seperation on cones and tangent ogives based on discrete vortex models

    NASA Technical Reports Server (NTRS)

    Chin, S.; Lan, C. Edward

    1988-01-01

    An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.

  19. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  20. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  1. Vortex breakdown in closed containers with polygonal cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, I. V., E-mail: naumov@itp.nsc.ru; Dvoynishnikov, S. V.; Kabardin, I. K.

    2015-12-15

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position onmore » the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.« less

  2. Vortex breakdown incipience: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  3. The stability of a trailing-line vortex in compressible flow

    NASA Technical Reports Server (NTRS)

    Stott, Jillian A. K.; Duck, Peter W.

    1992-01-01

    We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories.

  4. Cavitation and Wake Structure of Unsteady Tip Vortex Flows

    DTIC Science & Technology

    1992-12-10

    wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex

  5. Analysis of turbulent synthetic jet by dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš; Netřebská, Hana; Devera, Jakub; Kalinay, Radomír

    The article deals with the analysis of CFD results of the turbulent synthetic jet. The numerical simulation of Large Eddy Simulation (LES) using commercial solver ANSYS CFX has been performed. The unsteady flow field is studied from the point of view of identification of the moving vortex ring, which has been identified both on the snapshots of flow field using swirling-strength criterion and using the Dynamic Mode Decomposition (DMD) of five periods. It is shown that travelling vortex ring vanishes due to interaction with vortex structures in the synthesised turbulent jet. DMD modes with multiple of the basic frequency of synthetic jet, which are connected with travelling vortex structure, have largest DMD amplitudes.

  6. Development of a nonlinear vortex method

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1982-01-01

    Steady and unsteady Nonliner Hybrid Vortex (NHV) method, for low aspect ratio wings at large angles of attack, is developed. The method uses vortex panels with first-order vorticity distribution (equivalent to second-order doublet distribution) to calculate the induced velocity in the near field using closed form expressions. In the far field, the distributed vorticity is reduced to concentrated vortex lines and the simpler Biot-Savart's law is employed. The method is applied to rectangular wings in steady and unsteady flows without any restriction on the order of magnitude of the disturbances in the flow field. The numerical results show that the method accurately predicts the distributed aerodynamic loads and that it is of acceptable computational efficiency.

  7. An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Lu, P.; Tinoco, E. N.

    1980-01-01

    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.

  8. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  9. Aeroelastic loads prediction for an arrow wing. Task 1: Evaluation of R. P. White's method

    NASA Technical Reports Server (NTRS)

    Borland, C. J.; Manro, M. E.

    1983-01-01

    The separated flow method is evaluated. This method was developed for moderately swept wings with multiple, constant strength vortex systems. The flow on the highly swept wing used in this evaluation is characterized by a single vortex system of continuously varying strength.

  10. Vortex Apparatus and Demonstrations

    ERIC Educational Resources Information Center

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  11. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow

    PubMed Central

    Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi

    2017-01-01

    Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076

  12. Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2016-11-04

    We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.

  13. Navier-Stokes solutions of unsteady separation induced by a vortex: Comparison with theory and influence of a moving wall

    NASA Astrophysics Data System (ADS)

    Obabko, Aleksandr Vladimirovich

    Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.

  14. Vortex-ring mixing as a measure of diastolic function of the human heart: Phantom validation and initial observations in healthy volunteers and patients with heart failure.

    PubMed

    Töger, Johannes; Kanski, Mikael; Arvidsson, Per M; Carlsson, Marcus; Kovács, Sándor J; Borgquist, Rasmus; Revstedt, Johan; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2016-06-01

    To present and validate a new method for 4D flow quantification of vortex-ring mixing during early, rapid filling of the left ventricle (LV) as a potential index of diastolic dysfunction and heart failure. 4D flow mixing measurements were validated using planar laser-induced fluorescence (PLIF) in a phantom setup. Controls (n = 23) and heart failure patients (n = 23) were studied using 4D flow at 1.5T (26 subjects) or 3T (20 subjects) to determine vortex volume (VV) and inflowing volume (VVinflow ). The volume mixed into the vortex-ring was quantified as VVmix-in = VV-VVinflow . The mixing ratio was defined as MXR = VVmix-in /VV. Furthermore, we quantified the fraction of the end-systolic volume (ESV) mixed into the vortex-ring (VVmix-in /ESV) and the fraction of the LV volume at diastasis (DV) occupied by the vortex-ring (VV/DV). PLIF validation of MXR showed fair agreement (R(2) = 0.45, mean ± SD 1 ± 6%). MXR was higher in patients compared to controls (28 ± 11% vs. 16 ± 10%, P < 0.001), while VVmix-in /ESV and VV/DV were lower in patients (10 ± 6% vs. 18 ± 12%, P < 0.01 and 25 ± 8% vs. 50 ± 6%, P < 0.0001). Vortex-ring mixing can be quantified using 4D flow. The differences in mixing parameters observed between controls and patients motivate further investigation as indices of diastolic dysfunction. J. Magn. Reson. Imaging 2016;43:1386-1397. © 2015 Wiley Periodicals, Inc.

  15. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  16. Axisymmetric Vortices with Swirl

    NASA Astrophysics Data System (ADS)

    Elcrat, A.

    2007-11-01

    This talk is concerned with finding solutions of the Euler equations by solving elliptic boundary value problems for the Bragg-Hawthorne equation L u= -urr -(1/r)ur - = r^2f (u) + h(u). Theoretical results have been given for previously (Elcrat and Miller, Differential and Integral Equations 16(4) 2003, 949-968) for problems with swirl and general classes of profile functions f, h by iterating Lu(n+1)= rf(u)n)) + h(u(n)), and showing u(n) converges montonically to a solution. The solutions obtained depend on the initial guess, which can be thought of as prescribing level sets of the vortex. When a computational program was attempted these monotone iterations turned out to be numerically unstable, and a stable computation was acheived by fixing the moment of the cross section of a vortex in the merideanal plane. (This generalizes previous computational results in Elcrat, Fornberg and Miller, JFM 433 2001, (315-328) We obtain famillies of vortices related to vortex rings with swirl, Moffatt's generalization of Hill's vortex and tubes of vorticity with swirl wrapped around the symmetry axis. The vortices are embedded in either an irrotational flow or a flow with shear, and we deal with the transition form no swirl in the vortex to flow with only swirl, a Beltrami flow.

  17. Vortex depinning as a nonequilibrium phase transition phenomenon: Scaling of current-voltage curves near the low and the high critical-current states in 2 H -Nb S2 single crystals

    NASA Astrophysics Data System (ADS)

    Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.

    2018-04-01

    The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.

  18. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  19. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team

    2015-11-01

    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  20. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  1. A predictor-corrector technique for visualizing unsteady flow

    NASA Technical Reports Server (NTRS)

    Banks, David C.; Singer, Bart A.

    1995-01-01

    We present a method for visualizing unsteady flow by displaying its vortices. The vortices are identified by using a vorticity-predictor pressure-corrector scheme that follows vortex cores. The cross-sections of a vortex at each point along the core can be represented by a Fourier series. A vortex can be faithfully reconstructed from the series as a simple quadrilateral mesh, or its reconstruction can be enhanced to indicate helical motion. The mesh can reduce the representation of the flow features by a factor of one thousand or more compared with the volumetric dataset. With this amount of reduction it is possible to implement an interactive system on a graphics workstation to permit a viewer to examine, in three dimensions, the evolution of the vortical structures in a complex, unsteady flow.

  2. Study of the convective fluid flows with evaporation on the basis of the exact solution in a three-dimensional infinite channel

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-09-01

    The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system.

  3. Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids

    NASA Astrophysics Data System (ADS)

    Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.

    2017-01-01

    We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.

  4. Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders

    NASA Astrophysics Data System (ADS)

    Shao, J.; Zhang, C.

    Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.

  5. Einstein–Bose condensation of Onsager vortices

    NASA Astrophysics Data System (ADS)

    Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.

    2018-05-01

    We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.

  6. Some experiments in swirling flows: Detailed velocity measurements of a vortex breakdown using a laser Doppler anemometer. Ph.D. Thesis - Cornell Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Faler, J. H.

    1976-01-01

    The results of an experimental study of spiraling flows in a slightly diverging, circular duct are reported. Seven types of flow disturbances were observed. In addition to the spiral and axisymmetric vortex breakdowns and the double helix mode, four other forms were identified and are reported. The type and axial location of the disturbance depended on the Reynolds and circulation numbers of the flow. Detailed velocity measurements were made by using a laser Doppler anemometer. Measurements made far upstream of any disturbance showed that the introduction of swirl resulted in the formation of a high axial velocity jet centered around the vortex center. A mapping of the velocity field of a so-called axisymmetric breakdown, formed at a Reynolds number of 2560, revealed that the recirculation zone is a two-celled structure, with four stagnation points on the vortex axis marking the axial extremes of the concentric cells. The dominant feature of the flow inside the bubble was the strong, periodic velocity fluctuations. Existing theoretical models do not predict the two-celled structure and the temporal velocity fluctuations that were observed.

  7. Visualization and analysis of flow structures in an open cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng

    2018-05-01

    A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.

  8. Numerical Analysis of Incipient Separation on 53 Deg Swept Diamond Wing

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    2015-01-01

    A systematic analysis of incipient separation and subsequent vortex formation from moderately swept blunt leading edges is presented for a 53 deg swept diamond wing. This work contributes to a collective body of knowledge generated within the NATO/STO AVT-183 Task Group titled 'Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles'. The objective is to extract insights from the experimentally measured and numerically computed flow fields that might enable turbulence experts to further improve their models for predicting swept blunt leading-edge flow separation. Details of vortex formation are inferred from numerical solutions after establishing a good correlation of the global flow field and surface pressure distributions between wind tunnel measurements and computed flow solutions. From this, significant and sometimes surprising insights into the nature of incipient separation and part-span vortex formation are derived from the wealth of information available in the computational solutions.

  9. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  10. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators

    NASA Astrophysics Data System (ADS)

    Meng, Xuanshi; Long, Yuexiao; Wang, Jianlei; Liu, Feng; Luo, Shijun

    2018-02-01

    Detailed particle-image-velocimetry (PIV) and surface pressure measurements are presented to study the vortex flow behind a slender conical forebody at high angles of attack. The results confirm the existence of two randomly appearing mirror imaged asymmetric bi-stable states of the separation vortices, giving rise to large side force and moment. A pair of carefully designed dielectric barrier discharge plasma actuators mounted near the apex and on both sides of the conical body are used to manipulate the vortex flow and thus provide control of the side forces on the body without using flaps. By making use of a duty-cycle actuation scheme that alternately actuates the port and starboard plasma actuators and optimizing the duty-cycle frequency, the present work demonstrates the feasibility of achieving a nearly perfect linear proportional control of the side force and moment in response to the duty-cycle ratio. Phase-locked PIV and surface pressure measurements are used to study the unsteady dynamic evolution of the flow within one duty-cycle actuation to reveal the flow control mechanism. It is found that under the duty-cycle actuation with the optimized frequency, the vortex flow essentially follows the plasma actuation by alternating between the two bi-stable states controlled directly by the duty-cycle ratio.

  11. On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings

    NASA Astrophysics Data System (ADS)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.

  12. Tracking coherent structures in massively-separated and turbulent flows

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew; Huang, Yangzi; Green, Melissa

    2018-01-01

    Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.

  13. Interaction of vortex rings with multiple permeable screens

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa N.; Krueger, Paul S.

    2014-11-01

    Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing decreased as porosity decreased.

  14. Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices

    NASA Astrophysics Data System (ADS)

    Ma, Bao-Feng; Jiang, Hong-Gang

    2018-06-01

    Two-dimensional planar PIV (2D2C) is still extensively employed in flow measurement owing to its availability and reliability, although more advanced PIVs have been developed. It has long been recognized that there exist perspective errors in velocity fields when employing the 2D2C PIV to measure three-dimensional (3D) flows, the magnitude of which depends on out-of-plane velocity and geometric layouts of the PIV. For a variety of vortex flows, however, the results are commonly represented by vorticity fields, instead of velocity fields. The present study indicates that the perspective error in vorticity fields relies on gradients of the out-of-plane velocity along a measurement plane, instead of the out-of-plane velocity itself. More importantly, an estimation approach to the perspective error in 3D vortex measurements was proposed based on a theoretical vortex model and an analysis on physical characteristics of the vortices, in which the gradient of out-of-plane velocity is uniquely determined by the ratio of the maximum out-of-plane velocity to maximum swirling velocity of the vortex; meanwhile, the ratio has upper limits for naturally formed vortices. Therefore, if the ratio is imposed with the upper limits, the perspective error will only rely on the geometric layouts of PIV that are known in practical measurements. Using this approach, the upper limits of perspective errors of a concentrated vortex can be estimated for vorticity and other characteristic quantities of the vortex. In addition, the study indicates that the perspective errors in vortex location, vortex strength, and vortex radius can be all zero for axisymmetric vortices if they are calculated by proper methods. The dynamic mode decomposition on an oscillatory vortex indicates that the perspective errors of each DMD mode are also only dependent on the gradient of out-of-plane velocity if the modes are represented by vorticity.

  15. Numerical Simulation of Vortex Ring Formation in the Presence of Background Flow: Implications for Squid Propulsion

    NASA Astrophysics Data System (ADS)

    Jiang, Houshuo; Grosenbaugh, Mark A.

    2002-11-01

    Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.

  16. Vortex locking in direct numerical simulations of quantum turbulence.

    PubMed

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  17. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 2: User's manual for DIVORCE

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, F. D.; Vitz, J. F.

    1979-01-01

    The users manual for the Discrete Vortex Cross flow Evaluator (DIVORCE) computer program is presented. DIVORCE was developed in FORTRAN 4 for the DCD 6600 and CDC 7600 machines. Optimal calls to a NASA vector subroutine package are provided for use with the CDC 7600.

  18. Passive Control of Vortex Shedding via Screen Shroud

    NASA Astrophysics Data System (ADS)

    Azmi, A. M.; Zhou, T.

    2017-12-01

    The turbulent wake of screen-shrouded cylinders were experimentally investigated using flow visualization. Screen cylinders made from screen mesh of various porosity (37%, 49%, 61% and 67%) were used as the shrouds. The main purpose of the study is to examine the effect of screen porosity, β and screen diameter ratio, dw /D (wire diameter to cylinder diameter ratio) on the vortex development behind the shrouded cylinders, particularly in supressing the vortex shedding from a circular cylinder. The diameter ratio between the screen shroud and the plain cylinder, D/d was 2.0. The flow Reynolds number based on the shroud diameter, ReD was about 1000. Results showed that the inclusion of the screen shrouds has significant impact on the wake of the circular cylinder. With larger value of the non-dimensional parameter βdw /D, vortex was impaired and the formation length was longer in the shrouded cylinder wake. The vortex generation mechanism was also discussed.

  19. Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Berry, John D.; Zori, Laith A. J.; Elliott, Joe W.

    1996-01-01

    An experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to quantify the rotor wake behind a scale model helicopter rotor in forward level flight at one thrust level. The rotor system in this test consisted of a four-bladed fully articulated hub with blades of rectangular planform and an NACA 0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the vortex geometry in the flow in planes parallel and perpendicular to the free-stream flow. Quantitative measurements of wake geometric proper- ties, such as vortex location, vertical skew angle, and vortex particle void radius, were obtained as well as convective velocities for blade tip vortices. Comparisons were made between experimental data and four computational method predictions of experimental tip vortex locations, vortex vertical skew angles, and wake geometries. The results of these comparisons highlight difficulties of accurate wake geometry predictions.

  20. Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.

    2018-04-01

    The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.

  1. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  2. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2014-11-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.

  3. Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration

    2016-11-01

    Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.

  4. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.

  5. An experimental study of the vortex wake at Mach number of 3

    NASA Astrophysics Data System (ADS)

    Shmakov, A. S.; Shevchenko, A. M.

    2017-10-01

    The results of experimental study of the flow in the wing wake at Mach number of 3 are presented. These experiments extends the data obtained in the same experimental setup at Mach numbers of 2.5 and 4 [1]. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangular half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in two cross sections located 1.5 and 6 chord length downstream of the trailing edge at wing angle of attack of 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire aemometer was made of a tungsten wire with a diameter of 10 µm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time mass flow distribution and its pulsations in the supersonic longitudinal vortex was measured at Mach number of 3.

  6. Vortex Rings Generated by a Shrouded Hartmann-Sprenger Tube

    NASA Technical Reports Server (NTRS)

    DeLoof, Richard L. (Technical Monitor); Wilson, Jack

    2005-01-01

    The pulsed flow emitted from a shrouded Hartmann-Sprenger tube was sampled with high-frequency pressure transducers and with laser particle imaging velocimetry, and found to consist of a train of vortices. Thrust and mass flow were also monitored using a thrust plate and orifice, respectively. The tube and shroud lengths were altered to give four different operating frequencies. From the data, the radius, velocity, and circulation of the vortex rings was obtained. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A modified version of the slug model of vortex ring formation was used to compare the observations with calculated values. Because the flow exit area is an annulus, vorticity is shed at both the inner and outer edge of the jet. This results in a reduced circulation compared with the value calculated from slug theory accounting only for the outer edge. If the value of circulation obtained from laser particle imaging velocimetry is used in the slug model calculation of vortex ring velocity, the agreement is quite good. The vortex ring radius, which does not depend on the circulation, agrees well with predictions from the slug model.

  7. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    NASA Technical Reports Server (NTRS)

    Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.

    2016-01-01

    An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.

  8. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  9. Formation and behavior of counter-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Sadri, V.; Krueger, P. S.

    2017-08-01

    Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, Δ R/R, and jet stroke length-to-gap ratio, L/Δ R, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on Δ R and the jet velocity), L/Δ R in the range 1-20, and Δ R/R in the range 0.05-0.25. Five characteristic flow evolution patterns were observed and classified based on L/Δ R and Δ R/R. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low L/Δ R and small Δ R/R. For long L/Δ R and small Δ R/R, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin-Benjamin variational principle of maximal energy for steadily translating vortex rings.

  10. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  11. Full-Potential Modeling of Blade-Vortex Interactions

    DTIC Science & Technology

    1997-12-01

    modeled by any arbitrary distribution. Stremel (ref. 23) uses a method in which the vortex is modeled with an area-weighted distribution of vorticity. A...Helicopter Rotor. Ph.D. Thesis, StanfordUniv., 1978. 23. Stremel , P. M.: Computational Methods for Non-Planar Vortex Wake Flow Fields. M.S. Thesis

  12. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid

    2018-02-01

    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  13. Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.

    2017-04-01

    At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.

  14. Inertial migration of particles in Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  15. Documentation of roller-bearing effect on butterfly inspired grooves

    NASA Astrophysics Data System (ADS)

    Gautam, Sashank; Lang, Amy

    2017-11-01

    Butterfly wings are covered with scales in a roof shingle pattern which align together to form grooves. The increase or decrease of laminar friction drag depends on the flow orientation to the scales. Flow in the longitudinal direction to the grooves encounters increased surface area which increases the friction drag. However, in the transverse direction, for low Re laminar flow, a single vortex is formed inside each groove and is predicted to remain stable due to the very low Re of the flow in each cavity. These embedded vortices act as roller bearings to the flow above, such that the fluid from the outer boundary layer does not mix with fluid inside the cavities. This leads to a reduction of skin friction drag when compared to a smooth surface. When the cavity flow Re is increased beyond a critical point, the vortex becomes unstable and the low-momentum fluid in the grooves mixes with the outer boundary layer flow, increasing the drag. The objective of this experiment is to determine the critical Re where the embedded vortex transitions from a stable to an unstable state using DPIV. Subsequently, for steady vortex conditions, a comparison of skin friction drag between the grooved and flat plate can show that the butterfly scaled surface can result in sub-laminar friction drag. The National Science Foundation (Grant No. 1335848).

  16. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    PubMed Central

    Wang, Lei; Cao, Shibin

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  17. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  18. Development of the Technology of Vortex Diagnostics to Improve the Safety of Operation of Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Ivlev, O. A.; Pozdeeva, I. G.; Urtenov, D. S.

    2017-11-01

    The results of studies are aimed at developing theoretical foundations and instrumentation system to ensure a technology of vortex diagnostics of the state of flows of fluids for nuclear power installations with power water reactors and fast neutrons reactors with liquid-metal coolants. The technology of vortex diagnostics is based on the study of acoustic, magneto-hydrodynamic and resonant effects related to the formation of stable vortex structures. For creation a system of monitoring and diagnostics of the crisis phenomena due to hydrodynamics of the flow, it is proposed to use acoustic method to record the radiation of elastic waves in the fluids caused by the dynamic local rearrangement of its structure.

  19. An investigation of the vortex method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Jr., Duaine Wright

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. Thismore » is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.« less

  20. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  1. Flow characteristics of bounded self-organized dust vortex in a complex plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.

    2018-01-01

    Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.

  2. An experimental investigation of vortex breakdown on a delta wing

    NASA Technical Reports Server (NTRS)

    Payne, F. M.; Nelson, R. C.

    1986-01-01

    An experimental investigation of vortex breakdown on delta wings at high angles is presented. Thin delta wings having sweep angles of 70, 75, 80 and 85 degrees are being studied. Smoke flow visualization and the laser light sheet technique are being used to obtain cross-sectional views of the leading edge vortices as they break down. At low tunnel speeds (as low as 3 m/s) details of the flow, which are usually imperceptible or blurred at higher speeds, can be clearly seen. A combination of lateral and longitudinal cross-sectional views provides information on the three dimensional nature of the vortex structure before, during and after breakdown. Whereas details of the flow are identified in still photographs, the dynamic characteristics of the breakdown process were recorded using high speed movies. Velocity measurements were obtained using a laser Doppler anemometer with the 70 degree delta wing at 30 degrees angle of attack. The measurements show that when breakdown occurs the core flow transforms from a jet-like flow to a wake-like flow.

  3. Experimental Study of Boundary Layer Flow Control Using an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Zaman, Khairul B.M.Q.; Bencic, Tomothy J.

    2012-01-01

    The objective of this study was to obtain a database on the flowfield past an array of vortex generators (VGs) in a turbulent boundary layer. All testing was carried out in a low speed wind tunnel with a flow velocity of 29 ft/sec, giving a Reynolds number of 17,500 based on the width of the VG. The flowfield generated by an array of five ramp-shaped vortex generators was examined with hot wire anemometry and smoke flow visualization. The magnitude and extent of the velocity increase near the wall, the penetration of the velocity deficit into the core flow, and the peak streamwise vorticity are examined. Influence of various parameters on the effectiveness of the array is considered on the basis of the ability to pull high momentum fluid into the near wall region.

  4. Numerical studies of incompressible flow around delta and double-delta wings

    NASA Technical Reports Server (NTRS)

    Krause, E.; Liu, C. H.

    1989-01-01

    The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.

  5. A comparative study of full Navier-Stokes and Reduced Navier-Stokes analyses for separating flows within a diffusing inlet S-duct

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Reddy, D. R.; Kapoor, K.

    1993-01-01

    A three-dimensional implicit Full Navier-Stokes (FNS) analysis and a 3D Reduced Navier-Stokes (RNS) initial value space marching solution technique has been applied to a class of separate flow problems within a diffusing S-duct configuration characterized as vortex-liftoff. Both Full Navier-Stokes and Reduced Navier-Stokes solution techniques were able to capture the overall flow physics of vortex lift-off, however more consideration must be given to the development of turbulence models for the prediction of the locations of separation and reattachment. This accounts for some of the discrepancies in the prediction of the relevant inlet distortion descriptors, particularly circumferential distortion. The 3D RNS solution technique adequately described the topological structure of flow separation associated with vortex lift-off.

  6. An investigation of the effects of aft blowing on a 3.0 caliber tangent ogive body at high angles of attack. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gittner, Nathan M.

    1992-01-01

    An experimental investigation of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was investigated. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were investigated and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.

  7. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  8. Antisymmetric vortex interactions in the wake behind a step cylinder

    NASA Astrophysics Data System (ADS)

    Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.

    2017-10-01

    Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.

  9. Interaction of vortex ring with a stratified finite thickness interface

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Manu, K. V.; Tinaikar, Aashay; Chetia, Utpal Kumar; Basu, Saptarshi

    2017-09-01

    This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. ["Vortex rings descending in a stratified fluid," Phys. Fluids 10, 2819-2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.

  10. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob Aaron

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.

  11. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

  12. Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Delfrate, John

    1994-01-01

    A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.

  13. An Evaluation of the Measurement Requirements for an In-Situ Wake Vortex Detection System

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.; Stewart, Eric C.

    1996-01-01

    Results of a numerical simulation are presented to determine the feasibility of estimating the location and strength of a wake vortex from imperfect in-situ measurements. These estimates could be used to provide information to a pilot on how to avoid a hazardous wake vortex encounter. An iterative algorithm based on the method of secants was used to solve the four simultaneous equations describing the two-dimensional flow field around a pair of parallel counter-rotating vortices of equal and constant strength. The flow field information used by the algorithm could be derived from measurements from flow angle sensors mounted on the wing-tip of the detecting aircraft and an inertial navigation system. The study determined the propagated errors in the estimated location and strength of the vortex which resulted from random errors added to theoretically perfect measurements. The results are summarized in a series of charts and a table which make it possible to estimate these propagated errors for many practical situations. The situations include several generator-detector airplane combinations, different distances between the vortex and the detector airplane, as well as different levels of total measurement error.

  14. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.

    PubMed

    Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza

    2007-07-01

    This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.

  15. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  16. Vortex Structure Effects on Impingement, Effusion, and Cross Flow Cooling of a Double Wall Configuration

    NASA Astrophysics Data System (ADS)

    Ligrani, P. M.

    2018-03-01

    A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.

  17. Generating A Strobed Laser Light Sheet

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.

    1994-01-01

    An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.

  18. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  19. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  20. Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history

    NASA Astrophysics Data System (ADS)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2017-09-01

    The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re=100 , considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as Ω -type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.

Top