Science.gov

Sample records for reversible phosphatidylserine exposure

  1. Erythrocyte phosphatidylserine exposure in β-thalassemia.

    PubMed

    Ibrahim, Hamdy A; Fouda, Manal I; Yahya, Raida S; Abousamra, Nashwa K; Abd Elazim, Rania A

    2014-06-01

    [ABS]Phospholipid asymmetry is well maintained in erythrocyte (RBC) membranes with phosphatidylserine (PS) exclusively present in the inner leaflet. Eryptosis, the suicidal death of RBCs, is characterized by cell shrinkage, membrane blebbing, and cell membrane phospholipids scrambling with PS exposure at the cell surface. Erythrocytes exposing PS are recognized, bound, engulfed, and degraded by macrophages. Eryptosis thus fosters clearance of affected RBCs from circulating blood, which may aggravate anemia in pathological conditions. Thalassemia patients are more sensitive to the eryptotic depletion and osmotic shock which may affect RBC membrane phospholipid asymmetry. We aimed in this work to determine the RBC PS exposure in splenectomized and nonsplenectomized β-thalassemia major (β-TM) patients and correlate it with the clinical presentation and laboratory data. RBCs were stained for annexin V to detect phosphatidylserine (PS) exposure in 46 β-TM patients (27 splenectomized and 19 nonsplenectomized) compared to 17 healthy subjects as a control group. We observed a significant increase in RBC PS exposure in β-TM patients compared to control group (P = .0001). Erythrocyte PS exposure was significantly higher in splenectomized β-TM patients compared with nonsplenectomized β-TM patients (P = .001). No correlation was found between RBC PS exposure and clinical or hematological data of β-TM patients, but there was a positive correlation between RBC PS exposure and ferritin level in β-TM patients have higher levels of RBC PS exposure, and splenectomy was shown to aggravate RBC PS exposure without aggravation of anemia.

  2. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.

    PubMed

    Segawa, Katsumori; Nagata, Shigekazu

    2015-11-01

    Apoptosis and the clearance of apoptotic cells are essential processes in animal development and homeostasis. For apoptotic cells to be cleared, they must display an 'eat me' signal, most likely phosphatidylserine (PtdSer) exposure, which prompts phagocytes to engulf the cells. PtdSer, which is recognized by several different systems, is normally confined to the cytoplasmic leaflet of the plasma membrane by a 'flippase'; apoptosis activates a 'scramblase' that quickly exposes PtdSer on the cell surface. The molecules that flip and scramble phospholipids at the plasma membrane have recently been identified. Here we discuss recent findings regarding the molecular mechanisms of apoptotic PtdSer exposure and the clearance of apoptotic cells.

  3. Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure.

    PubMed

    Harper, Matthew T; Londoño, Juan E Camacho; Quick, Kathryn; Londoño, Julia Camacho; Flockerzi, Veit; Philipp, Stephan E; Birnbaumer, Lutz; Freichel, Marc; Poole, Alastair W

    2013-06-25

    Blood platelet aggregation must be tightly controlled to promote clotting at injury sites but avoid inappropriate occlusion of blood vessels. Thrombin, which cleaves and activates Gq-coupled protease-activated receptors, and collagen-related peptide, which activates the receptor glycoprotein VI, stimulate platelets to aggregate and form thrombi. Coincident activation by these two agonists synergizes, causing the exposure of phosphatidylserine on the cell surface, which is a marker of cell death in many cell types. Phosphatidylserine exposure is also essential to produce additional thrombin on platelet surfaces, which contributes to thrombosis. We found that activation of either thrombin receptors or glycoprotein VI alone produced a calcium signal that was largely dependent only on store-operated Ca(2+) entry. In contrast, experiments with platelets from knockout mice showed that the presence of both ligands activated nonselective cation channels of the transient receptor potential C (TRPC) family, TRPC3 and TRPC6. These channels principally allowed entry of Na(+), which coupled to reverse-mode Na(+)/Ca(2+) exchange to allow calcium influx and thereby contribute to Ca(2+) signaling and phosphatidylserine exposure. Thus, TRPC channels act as coincidence detectors to coordinate responses to multiple signals in cells, thereby indirectly mediating in platelets an increase in intracellular calcium concentrations and exposure of prothrombotic phosphatidylserine.

  4. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  5. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    SciTech Connect

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.; Klarl, Barbara A.; Niemoeller, Olivier; Wieder, Thomas; Huber, Stephan M.; Duranton, Christophe; Lang, Florian . E-mail: florian.lang@uni-tuebingen.de

    2006-01-15

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.

  6. Phosphatidylserine metabolism modification precedes manganese-induced apoptosis and phosphatidylserine exposure in PC12 cells.

    PubMed

    Ferrara, G; Gambelunghe, A; Mozzi, R; Marchetti, M C; Migliorati, G; Muzi, G; Buratta, S

    2013-12-01

    Long-term exposure to high manganese (Mn) levels can lead to Parkinson-like neurological disorders. Molecular mechanisms underlying Mn cytotoxicity have been not defined. It is known that Mn induces apoptosis in PC12 cells and that this involves the activation of some signal transduction pathways. Although the role of phospholipids in apoptosis and signal transduction is well-known, the membrane phospholipid component in Mn-related damage has not yet been investigated. Phosphatidylserine (PS) facilitates protein translocation from cytosol to plasma membrane and PS exposure on the cell surface allows macrophage recognition of apoptotic cells. This study investigates the effects of MnCl2 on PS metabolism in PC12 cells, relating them to those on cell apoptosis. Apoptosis induction decreased PS radioactivity of PC12 cells incubated with radioactive serine. MnCl2 reduced PS radioactivity even under conditions that did not affect cell viability or PS exposure, suggesting that the effects on PS metabolism may represent an early event in cell apoptosis. Thus the latter conditions that also induced a greater PS decarboxylation were utilized for further investigating on the effects on PS synthesis, by measuring the activity and expression of PS-synthesizing enzymes, in cell lysates and in total cellular membranes (TM). Compared with corresponding controls, enzyme activity of MnCl2-treated cells was lower in cell lysates and greater in TM. Evaluating the expression of two isoforms of PS-synthesizing enzyme (PSS), PSSII was increased both in cell lysate and TM, while PSSI was unchanged. MnCl2 addition to control cell lysate reduced enzyme activity. These results suggest Mn plays a dual role on PS synthesis. Once inside the cell, Mn inhibits the enzyme/s, thus accounting for reduced PS synthesis in lysates and intact cells. On the other hand, it increases PSSII expression in cell membranes. The possibility that this occurs to counteract the direct effects of Mn ions on enzyme

  7. Regulation of phosphatidylserine exposure in red blood cells.

    PubMed

    Nguyen, Duc Bach; Wagner-Britz, Lisa; Maia, Sara; Steffen, Patrick; Wagner, Christian; Kaestner, Lars; Bernhardt, Ingolf

    2011-01-01

    The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for eryptosis, a mechanism for the RBC clearance from blood circulation. The process of PS exposure was investigated as function of the intracellular Ca(2+) content and the activation of PKCα in human and sheep RBCs. Cells were treated with lysophosphatidic acid (LPA), 4-bromo-A23187, or phorbol-12 myristate-13 acetate (PMA) and analysed by flow cytometry, single cell fluorescence video imaging, or confocal microscopy. For human RBCs, no clear correlation existed between the number of cells with an elevated Ca(2+) content and PS exposure. Results are explained by three different mechanisms responsible for the PS exposure in human RBCs: (i) Ca(2+)-stimulated scramblase activation (and flippase inhibition) by LPA, 4-bromo-A23187, and PMA; (ii) PKC activation by LPA and PMA; and (iii) enhanced lipid flop caused by LPA. In sheep RBCs, only the latter mechanism occurs suggesting absence of scramblase activity. Copyright © 2011 S. Karger AG, Basel.

  8. Fertilization Induces a Transient Exposure of Phosphatidylserine in Mouse Eggs

    PubMed Central

    Curia, Claudio A.; Ernesto, Juan I.; Stein, Paula; Busso, Dolores; Schultz, Richard M.; Cuasnicu, Patricia S.; Cohen, Débora J.

    2013-01-01

    Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis. PMID:23951277

  9. Phosphatidylserine exposure is required for ADAM17 sheddase function

    PubMed Central

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D.; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the ‘Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca2+ elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  10. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro.

    PubMed

    Szabo, Imre; Kappelmayer, Janos; Alekseev, Stanislav I; Ziskin, Marvin C

    2006-04-01

    In vitro exposure of refrigerated samples (4 degrees C) of anti-coagulated blood with millimeter waves (MMWs) at incident power densities (IPDs) between 0.55 and 1.23 W/cm2 has been found to induce clot formation. We found a small but statistically significant change in clot size with increasing IPD value. MMW exposure of blood samples starting at room temperature (22 degrees C) did not induce blood coagulation; neither did conventional heating at temperatures up to 40 degrees C. Since cell-free plasma did not clot upon MMW exposure, the role of blood cells was particularly analyzed. Experiments on various mixtures of blood cells with plasma revealed an important role of red blood cells (RBC) in the coagulation process. Plasma coagulation also developed within the MMW beam above dense keratinocyte (HaCaT) monolayers suggesting it lacked cell-type specificity. We hypothesized that alteration of the membrane surface in exposed cells might be responsible for the circumscribed coagulation. The thrombogenic role of externalized phosphatidylserine (PS) molecules is well known. Therefore, we carried out experiments for immunolabeling PS molecules with fluorescein isothiocyanate (FITC)-conjugated Annexin V on exposed cells. Fluorescence microscopy of the adherent human keratinocytes (HaCaT) and murine melanoma cells (B16F10) showed that MMW exposure at an IPD of 1.23 W/cm2 is capable of inducing reversible externalization of PS molecules in cells within the beam area without detectable membrane damage. Nonadherent Jurkat cells exposed to MMW at an IPD of 34.5 mW/cm2 also showed reversible PS externalization with flow cytometry, whether the cell temperature was held constant or permitted to rise. These results suggest that certain biological effects induced by MMWs could be initiated by membrane changes in exposed cells.

  11. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality.

    PubMed

    Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M

    2014-04-01

    Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and

  12. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  13. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells.

    PubMed

    Pavone, Barbara; Bucci, Sonia; Sirolli, Vittorio; Merlini, Giampaolo; Del Boccio, Piero; Di Rienzo, Marianna; Felaco, Paolo; Amoroso, Luigi; Sacchetta, Paolo; Di Ilio, Carmine; Federici, Giorgio; Urbani, Andrea; Bonomini, Mario

    2011-03-01

    The exposure of the aminophospholipid phosphatidylserine on the external leaflet of red blood cell plasma membrane can have several pathophysiological consequences with particular regard to the processes of cell phagocytosis, haemostasis and cell-cell interaction. A significant increase in phosphatidylserine-exposing erythrocytes has been reported in chronic haemodialysis patients and found to be strongly influenced by the uraemic milieu. To identify uraemic compound(s) enhancing phosphatidylserine externalization in erythrocytes, we fractionated by chromatographic methods the ultrafiltrate obtained during dialysis, and examined by flow cytometry the effect of the resulting fractions on phosphatidylserine exposure in human red cells. Chromatographic procedures disclosed a homogeneous fraction able to increase erythrocyte phosphatidylserine exposure. The inducer of such externalization was identified by monodimensional gel electrophoresis and mass spectrometry investigations as beta2-microglobulin. To confirm the beta2-microglobulin effect and to examine the influence of protein glycation (as it occurs in uraemia) on phosphatidylserine erythrocyte exposure, erythrocytes from normal subjects were incubated with recombinant beta2-microglobulin (showing no glycation sites at mass analysis), commercial beta2-microglobulin (8 glycation sites), or with in vitro glycated recombinant beta2-microglobulin (showing multiple glycation sites). Elevated concentrations of beta2-microglobulin (corresponding to plasma levels reached in dialysis patients) increased slightly but significantly the protein's ability to externalize phosphatidylserine on human erythrocytes. Such an effect was markedly enhanced by glycated forms of the protein. Beta2-microglobulin is recognized as a surrogate marker of middle-molecule uraemic toxins and represents a key component of dialysis-associated amyloidosis. Our study adds further evidence to the potential pathophysiologic consequences of beta2

  14. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure

    PubMed Central

    Suzuki, Jun; Imanishi, Eiichi; Nagata, Shigekazu

    2016-01-01

    Xk-related protein (Xkr) 8, a protein carrying 10 transmembrane regions, is essential for scrambling phospholipids during apoptosis. Here, we found Xkr8 as a complex with basigin (BSG) or neuroplastin (NPTN), type I membrane proteins in the Ig superfamily. In BSG−/−NPTN−/− cells, Xkr8 localized intracellularly, and the apoptosis stimuli failed to expose phosphatidylserine, indicating that BSG and NPTN chaperone Xkr8 to the plasma membrane to execute its scrambling activity. Mutational analyses of BSG showed that the atypical glutamic acid in the transmembrane region is required for BSG’s association with Xkr8. In cells exposed to apoptotic signals, Xkr8 was cleaved at the C terminus and the Xkr8/BSG complex formed a higher-order complex, likely to be a heterotetramer consisting of two molecules of Xkr8 and two molecules of BSG or NPTN, suggesting that this cleavage causes the formation of a larger complex of Xkr8-BSG/NPTN for phospholipid scrambling. PMID:27503893

  15. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.

    PubMed

    van Zwieten, Rob; Bochem, Andrea E; Hilarius, Petra M; van Bruggen, Robin; Bergkamp, Ferry; Hovingh, G Kees; Verhoeven, Arthur J

    2012-12-01

    Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP-dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.

  16. Aminoglycoside-induced phosphatidylserine externalisation in sensory hair cells is regionally restricted, rapid and reversible

    PubMed Central

    Goodyear, R.J.; Gale, J.E.; Ranatunga, K.M.; Kros, C.J.; Richardson, G.P.

    2012-01-01

    The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasmalemma. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labelled with externally-applied annexin-V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin-V labelling reveals the aminoglycoside antibiotic neomycin induces rapid PS externalisation, specifically on the apical surface of hair cells. PS externalisation is observed within ~75 seconds of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application indicating blebbing is accompanied by membrane addition to the hair-cell surface. PS-externalisation and membrane blebbing can, nonetheless, occur independently. Pre-treating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a PIP2-binding pleckstrin-homology domain, can reduce neomycin-induced PS externalisation, suggesting neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. Following neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear and surface-bound annexin-V is internalised, distributing throughout the supra-nuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalised annexin-V, however, remains below the apical surface thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the hair cell’s periphery. PMID:18829952

  17. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm

    PubMed Central

    Lee, S-H; Meng, X W; Flatten, K S; Loegering, D A; Kaufmann, S H

    2013-01-01

    Phosphatidylserine (PS) exposure on the external leaflet of the plasma membrane is widely observed during apoptosis and forms the basis for the annexin V binding assay to detect apoptotic cell death. Current efforts to explain PS exposure focus on two potential mechanisms, activation of a phospholipid scramblase or calcium-mediated trafficking of lysosomes to the cell surface. Here, we provide evidence that apoptotic PS exposure instead reflects bidirectional trafficking of membrane between the cell surface and cytoplasm. Using a series of cell lines, some of which expose large amounts of PS during apoptosis and some of which do not, we demonstrate that accumulation of plasma membrane-derived cytoplasmic vesicles in a dynamin-, clathrin- and Cdc42-independent manner is a previously undescribed but widely occurring feature of apoptosis. The apoptotic exposure of PS occurs when these vesicles traffic back to cell surface in a calcium-dependent process that is deficient in a substantial fraction of human cancer cell lines. These observations provide a new model for PS externalization during apoptosis and simultaneously identify an altered step that accounts for the paucity of apoptotic PS exposure in many cell lines. PMID:22858544

  18. Phosphatidylserine exposure and other apoptotic-like events in Bernard-Soulier syndrome platelets.

    PubMed

    Rand, Margaret L; Wang, Hong; Bang, K W Annie; Teitel, Jerome M; Blanchette, Victor S; Freedman, John; Nurden, Alan T

    2010-08-01

    In the Bernard-Soulier syndrome (BSS), the giant platelets are said to have increased phosphatidylserine (PS) surface exposure in the resting state and shortened survival in the circulation. When normal platelets are activated, they undergo many biochemical and morphological changes, some of which are apoptotic. Herein, we investigated apoptotic-like events in BSS platelets upon activation, specifically, PS exposure, microparticle (MP) formation, cell shrinkage, and loss of mitochondrial inner membrane potential (DeltaPsi(m)). Platelets from two unrelated BSS patients were examined in whole blood; agonists used were collagen, thrombin, PAR1- or PAR4-activating peptides (APs), or combinations of collagen with thrombin, and the PAR-APs. Flow cytometry was used to measure PS exposure (annexin A5 binding), platelet-derived MPs (forward scatter; events <0.75 microm size), and DeltaPsi(m) (TMRM fluorescence). PS exposure was increased on resting and activated BSS platelets, and this was independent of the platelet size. MP formation by BSS platelets was generally enhanced. Cell shrinkage occurred on activation to form smaller, PS-exposing platelets in BSS and controls. A proportion of PS-exposing BSS and control platelets exhibited DeltaPsi(m) loss, but unlike controls, there was also loss of DeltaPsi(m) in the BSS platelets not exposing PS. Thus, BSS platelets undergo apoptotic-like events upon activation, with PS exposure and MP formation being enhanced. These events may play a role in the shortened survival in BSS, as well as affecting thrombin generation.

  19. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.

    PubMed

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-10-13

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.

  20. Phosphatidylserine Exposure in Human Red Blood Cells Depending on Cell Age.

    PubMed

    Wesseling, Mauro C; Wagner-Britz, Lisa; Huppert, Henri; Hanf, Benjamin; Hertz, Laura; Nguyen, Duc Bach; Bernhardt, Ingolf

    2016-01-01

    The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for suicidal erythrocyte death or eryptosis, which may be of importance for cell clearance from blood circulation. PS externalisation is realised by the scramblase activated by an increase of intracellular Ca2+ content. It has been described in literature that RBCs show an increased intracellular Ca2+ content as well as PS exposure when becoming aged up to 120 days (which is their life span). However, these investigations were carried out after incubation of the RBCs for 48 h. The aim of this study was to investigate this effect after short-time incubation using a variety of stimulating substances for Ca2+ uptake and PS exposure. We separated RBCs by age in five different fractions by centrifugation using Percoll density gradient. The intracellular Ca2+ content and the PS exposure of RBCs with different age has been investigated after treatment with lysophosphatidic acid (LPA) as well as after activation of protein kinase C (PKC) using phorbol-12 myristate-13 acetate (PMA). For positive control RBCs were treated with 4-bromo-A23187. Measurement techniques included flow cytometry and live cell imaging (fluorescence microscopy). The percentage of RBCs showing increased Ca2+ content as well as the PS exposure did not change significantly in dependence on cell age after short-time incubation in control experiments (without stimulating substances) or using LPA or PMA. However, we confirm findings reported that Ca2+ content and the PS exposure of RBCs increased after 48 h incubation. No significant differences of intracellular Ca2+ content and PS exposure can be seen for RBCs of different age in resting state or after stimulation of Ca2+ uptake at short-time incubation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia

    PubMed Central

    Boas, Franz Edward; Forman, Linda; Beutler, Ernest

    1998-01-01

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells. PMID:9501218

  2. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-10-28

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  3. Measurements of Intracellular Ca2+ Content and Phosphatidylserine Exposure in Human Red Blood Cells: Methodological Issues.

    PubMed

    Wesseling, Mauro C; Wagner-Britz, Lisa; Boukhdoud, Fatima; Asanidze, Salome; Nguyen, Duc Bach; Kaestner, Lars; Bernhardt, Ingolf

    2016-01-01

    The increase of the intracellular Ca2+ content as well as the exposure of phosphatidylserine (PS) on the outer cell membrane surface after activation of red blood cells (RBCs) by lysophosphatidic acid (LPA) has been investigated by a variety of research groups. Carrying out experiments, which we described in several previous publications, we observed some discrepancies when comparing data obtained by different investigators within our research group and also between batches of LPA. In addition, we found differences comparing the results of double and single labelling experiments (for Ca2+ and PS). Furthermore, the results of PS exposure depended on the fluorescent dye used (annexin V-FITC versus annexin V alexa fluor® 647). Therefore, it seems necessary to investigate these methodological approaches in more detail to be able to quantify results and to compare data obtained by different research groups. The intracellular Ca2+ content and the PS exposure of RBCs separated from whole blood have been investigated after treatment with LPA (2.5 µM) obtained from three different companies (Sigma-Aldrich, Cayman Chemical Company, and Santa Cruz Biotechnology Inc.). Fluo-4 and x-rhod-1 have been used to detect intracellular Ca2+ content, annexin V alexa fluor® 647 and annexin V-FITC have been used for PS exposure measurements. Both parameters (Ca2+ content, PS exposure) were studied using flow cytometry and fluorescence microscopy. The percentage of RBCs showing increased intracellular Ca2+ content as well as PS exposure changes significantly between different LPA manufacturers as well as on the condition of mixing of LPA with the RBC suspension. Furthermore, the percentage of RBCs showing PS exposure is reduced in double labelling compared to single labelling experiments and depends also on the fluorescent dye used. Finally, data on Ca2+ content are slightly affected whereas PS exposure data are not affected significantly by the measuring method (flow cytometry

  4. Exposure of Phosphatidylserine by Xk-related Protein Family Members during Apoptosis*

    PubMed Central

    Suzuki, Jun; Imanishi, Eiichi; Nagata, Shigekazu

    2014-01-01

    Apoptotic cells expose phosphatidylserine (PtdSer) on their surface as an “eat me” signal. Mammalian Xk-related (Xkr) protein 8, which is predicted to contain six transmembrane regions, and its Caenorhabditis elegans homolog CED-8 promote apoptotic PtdSer exposure. The mouse and human Xkr families consist of eight and nine members, respectively. Here, we found that mouse Xkr family members, with the exception of Xkr2, are localized to the plasma membrane. When Xkr8-deficient cells, which do not expose PtdSer during apoptosis, were transformed by Xkr family members, the transformants expressing Xkr4, Xkr8, or Xkr9 responded to apoptotic stimuli by exposing cell surface PtdSer and were efficiently engulfed by macrophages. Like Xkr8, Xkr4 and Xkr9 were found to possess a caspase recognition site in the C-terminal region and to require its direct cleavage by caspases for their function. Site-directed mutagenesis of the amino acid residues conserved among CED-8, Xkr4, Xkr8, and Xkr9 identified several essential residues in the second transmembrane and second cytoplasmic regions. Real time PCR analysis indicated that unlike Xkr8, which is ubiquitously expressed, Xkr4 and Xkr9 expression is tissue-specific. PMID:25231987

  5. CIRCULATING MICROPARTICLES, BLOOD CELLS, AND ENDOTHELIUM INDUCE PROCOAGULANT ACTIVITY IN SEPSIS THROUGH PHOSPHATIDYLSERINE EXPOSURE.

    PubMed

    Zhang, Yan; Meng, Huan; Ma, Ruishuang; He, Zhangxiu; Wu, Xiaoming; Cao, Muhua; Yao, Zhipeng; Zhao, Lu; Li, Tao; Deng, Ruijuan; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Thatte, Hemant S; Zhou, Jin; Shi, Jialan

    2016-03-01

    Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.

  6. EGF domain of coagulation factor IX is conducive to exposure of phosphatidylserine.

    PubMed

    Hidai, Chiaki; Fujiwara, Yusuke; Kokubun, Shinichiro; Kitano, Hisataka

    2017-04-01

    Lipid rafts are an initiation site for many different signals. Recently, we reported that an EGF domain in activated coagulation factor IX (EGF-F9) increases lipid raft formation and accelerates cell migration. However, the detailed mechanism is not well understood. This study aimed to evaluate the effects of EGF-F9 on the cell membrane. A431 cells (derived from human squamous cell carcinoma) were treated with recombinant EGF-F9. Cells were immunocytochemically stained with probes for lipid rafts or phosphatidylserine (PS). After 3 min of treatment with EGF-F9, cholera toxin subunit B (CTxB) binding domains emerged at the adhesive tips of filopodia. Subsequently, CTxB staining was observed on the filopodial shaft. Finally, large clusters of CTxB domains were observed at the edge of cell bodies. Markers for lipid rafts, such as caveolin-1 and a GPI anchored protein, co-localized with CTxB. Staining with annexin V and XII revealed that PS was exposed at the tips of filopodia, translocated on filopodial shafts, and co-localized with CTxB at the rafts. Immunocytochemistry showed that scramblase-1 protein was present at the filopodial tips. Our data indicates that EGF-F9 accelerates PS exposure around the filopodial adhesion complex and induces clustering of lipid rafts in the cell body. PS exposure is thought to occur on cells undergoing apoptosis. Further study of the function of the EGF-F9 motif in mediating signal transduction is necessary because it is shared by a number of proteins.

  7. Involvement of sodium in early phosphatidylserine exposure and phospholipid scrambling induced by P2X7 purinoceptor activation in thymocytes.

    PubMed

    Courageot, Marie-Pierre; Lépine, Sandrine; Hours, Michel; Giraud, Françoise; Sulpice, Jean-Claude

    2004-05-21

    Extracellular ATP (ATP(ec)), a possible effector in thymocyte selection, induces thymocyte death via purinoceptor activation. We show that ATP(ec) induced cell death by apoptosis, rather than lysis, and early phosphatidylserine (PS) exposure and phospholipid scrambling in a limited thymocyte population (35-40%). PS externalization resulted from the activation of the cationic channel P2X7 (formerly P2Z) receptor and was triggered in all thymocyte subsets although to different proportions in each one. Phospholipid movement was dependent on ATP(ec)-induced Ca(2+) and/or Na(+) influx. At physiological external Na(+) concentration, without external Ca(2+), PS was exposed in all ATP(ec)-responsive cells. In contrast, without external Na(+), physiological external Ca(2+) concentration promoted a submaximal response. Altogether these data show that Na(+) influx plays a major role in the rapid PS exposure induced by P2X7 receptor activation in thymocytes.

  8. 4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins

    PubMed Central

    Jeremy, Kris P.; Plummer, Zoe E.; Head, David J.; Madgett, Tracey E.; Sanders, Kelly L.; Wallington, Amanda; Storry, Jill R.; Gilsanz, Florinda; Delaunay, Jean; Avent, Neil D.

    2009-01-01

    Background Protein 4.1R is an important component of the red cell membrane skeleton. It imparts structural integrity and has transmembrane signaling roles by direct interactions with transmembrane proteins and other membrane skeletal components, notably p55 and calmodulin. Design and Methods Spontaneous and ligation-induced phosphatidylserine exposure on erythrocytes from two patients with 4.1R deficiency were studied, using CD47 glycoprotein and glycophorin C as ligands. We also looked for protein abnormalities in the 4.1R - based multiprotein complex. Results Phosphatidylserine exposure was significantly increased in 4.1R-deficient erythrocytes obtained from the two different individuals when ligands to CD47 glycoprotein were bound. Spontaneous phosphatidylserine exposure was normal. 4.1R, glycophorin C and p55 were missing or sharply reduced. Furthermore there was an alteration or deficiency of CD47 glycoprotein and a lack of CD44 glycoprotein. Based on a recent study in 4.1R-deficient mice, we found that there are clear functional differences between interactions of human red cell 4.1R and its murine counterpart. Conclusions Glycophorin C is known to bind 4.1R, and we have defined previously that it also binds CD47. From our evidence, we suggest that 4.1R plays a role in the phosphatidylserine exposure signaling pathway that is of fundamental importance in red cell turnover. The linkage of CD44 to 4.1R may be relevant to this process. PMID:19794081

  9. Low level of lead can induce phosphatidylserine exposure and erythrophagocytosis: a new mechanism underlying lead-associated anemia.

    PubMed

    Jang, Won-Hee; Lim, Kyung-Min; Kim, Keunyoung; Noh, Ji-Yoon; Kang, Seojin; Chang, Youn-Kyeong; Chung, Jin-Ho

    2011-07-01

    Anemia is probably one of the most well-known toxic effects of lead. Previously, lead-induced anemia was considered to be from the inhibition of δ-aminolevulinic acid dehydratase participating in the heme biosynthesis. However, little is known whether lead could affect the destruction of erythrocyte, another important factor for anemia. In the present study, we demonstrated that lead could accelerate the splenic sequestration of erythrocytes through phosphatidylserine (PS) exposure and subsequently increased erythrophagocytosis. In freshly isolated human erythrocytes, Pb(2+)- induced PS exposure at relatively low concentrations (∼0.1 μM) by inhibiting flippase, a key aminophospholipid translocase for the maintenance of PS asymmetry and adenosine triphosphate depletion appeared to underlie this phenomenon. Abnormal shape changes of erythrocytes and microvesicle generation and other triggers for the erythrophagocytosis were also observed in the Pb(2+)-exposed erythrocytes. In vitro data showed that human macrophage indeed recognized and phagocytosis PS-exposed erythrocytes. In good accordance with these in vitro results, the oral administration of Pb(2+) increased PS exposure on erythrocytes in rat in vivo. In addition, reduction of hematocrit and hemoglobin and increased spleen weight were observed along with enhanced splenic sequestration of erythrocytes in the rats exposed to Pb(2+) subchronically for 4 weeks through drinking water. In conclusion, these results suggest that Pb(2+)-induced anemia may be explained at least in part by increased PS exposure on erythrocytes, erythrophagocytosis, and splenic sequestration.

  10. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

    PubMed Central

    Schoenwaelder, Simone M.; Darbousset, Roxane; Cranmer, Susan L.; Ramshaw, Hayley S.; Orive, Stephanie L.; Sturgeon, Sharelle; Yuan, Yuping; Yao, Yu; Krycer, James R.; Woodcock, Joanna; Maclean, Jessica; Pitson, Stuart; Zheng, Zhaohua; Henstridge, Darren C.; van der Wal, Dianne; Gardiner, Elizabeth E.; Berndt, Michael C.; Andrews, Robert K.; James, David E.; Lopez, Angel F.; Jackson, Shaun P.

    2016-01-01

    The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. PMID:27670677

  11. Unconventional apoptosis of polymorphonuclear neutrophils (PMN): staurosporine delays exposure of phosphatidylserine and prevents phagocytosis by MΦ-2 macrophages of PMN

    PubMed Central

    Franz, S; Muñoz, L E; Heyder, P; Herrmann, M; Schiller, M

    2015-01-01

    Apoptosis of polymorphonuclear neutrophils (PMN) and subsequent ‘silent’ removal represents an important check-point for the resolution of inflammation. Failure in PMN clearance resulting in secondary necrosis-driven tissue damage has been implicated in conditions of chronic inflammation and autoimmunity. Apoptotic PMN undergo profound biophysical changes that warrant their efficient recognition and uptake by phagocytes before fading to secondary necrosis. In this study, we demonstrate that staurosporine (STS), a non-selective but potent inhibitor of cyclin-dependent kinase and protein kinase C, exerts a drastic impact on PMN apoptosis. PMN treated with STS underwent an unconventional form of cell death characterized by a delayed exposure of aminophospholipids, including phosphatidylserine (PS) and phosphatidylethanolamine and an increased exposure of neo-glycans. STS caused an impaired cellular fragmentation and accelerated DNA fragmentation. Phagocytosis of STS-treated PMN lacking PS on their surfaces was decreased significantly, which highlights the importance of PS for the clearance of apoptotic PMN. Specific opsonization with immune complexes completely restored phagocytosis of STS-treated PMN, demonstrating the efficiency of back-up clearance pathways in the absence of PS exposure. PMID:24995908

  12. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    PubMed

    Riddell, Meghan R; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T; Guilbert, Larry J

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly

  13. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    PubMed

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  14. LABCG2, a New ABC Transporter Implicated in Phosphatidylserine Exposure, Is Involved in the Infectivity and Pathogenicity of Leishmania

    PubMed Central

    González-Rey, Elena; Delgado, Mario; Castanys, Santiago; Pérez-Victoria, José M.; Gamarro, Francisco

    2013-01-01

    Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite. PMID:23638200

  15. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    SciTech Connect

    Bae, Ok-Nam; Lim, Kyung-Min; Chung, Jin-Ho

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resulted in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.

  16. Escherichia coli α-Hemolysin Triggers Shrinkage of Erythrocytes via KCa3.1 and TMEM16A Channels with Subsequent Phosphatidylserine Exposure*

    PubMed Central

    Skals, Marianne; Jensen, Uffe B.; Ousingsawat, Jiraporn; Kunzelmann, Karl; Leipziger, Jens; Praetorius, Helle A.

    2010-01-01

    α-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca2+]i. The Ca2+-activated K+ channel KCa3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca2+-activated Cl− channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A−/− mice showed significantly attenuated crenation and increased lysis compared with controls. Additionally, we found that HlyA leads to acute exposure of phosphatidylserine in the outer leaflet of the plasma membrane. This exposure was considerably reduced by KCa3.1 antagonists. In conclusion, this study shows that HlyA triggers acute erythrocyte shrinkage, which depends on Ca2+-activated efflux of K+ via KCa3.1 and Cl− via TMEM16A, with subsequent phosphatidylserine exposure. This mechanism might potentially allow HlyA-damaged erythrocytes to be removed from the bloodstream by macrophages and thereby reduce the risk of intravascular hemolysis. PMID:20231275

  17. Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation.

    PubMed

    van Kruchten, Roger; Mattheij, Nadine J A; Saunders, Christine; Feijge, Marion A H; Swieringa, Frauke; Wolfs, Jef L N; Collins, Peter W; Heemskerk, Johan W M; Bevers, Edouard M

    2013-03-07

    Scott syndrome, a bleeding disorder caused by defective phospholipid scrambling, has been associated with mutations in the TMEM16F gene. The role of TMEM16F in apoptosis- or agonist-induced phosphatidylserine (PS) exposure was studied in platelets from a Scott syndrome patient and control subjects. Whereas stimulation of control platelets with the BH3-mimetic ABT737 resulted in 2 distinct fractions with moderate and high PS exposure, the high PS-exposing fraction was markedly delayed in Scott platelets. High, but not moderate, PS exposure in platelets was suppressed by chelation of intracellular Ca(2+), whereas caspase inhibition completely abolished ABT737-induced PS exposure in both Scott and control platelets. On the other hand, high PS exposure induced by the Ca(2+)-mobilizing agonists convulxin/thrombin fully relied on mitochondrial depolarization and was virtually absent in Scott platelets. Finally, PS exposure induced by collagen/thrombin was partly affected in Scott platelets, and the residual PS positive fraction was insensitive to inhibition of caspases or mitochondrial depolarization. In conclusion, TMEM16F is not required for, but enhances, caspase-dependent PS exposure; convulxin-/thrombin-induced PS exposure is entirely dependent on TMEM16F, whereas collagen/thrombin-induced PS exposure results from 2 distinct pathways, one of which involves mitochondrial depolarization and is mediated by TMEM16F.

  18. Inhibitors of second messenger pathways and Ca(2+)-induced exposure of phosphatidylserine in red blood cells of patients with sickle cell disease.

    PubMed

    Gbotosho, O T; Cytlak, U M; Hannemann, A; Rees, D C; Tewari, S; Gibson, J S

    2014-07-01

    The present work investigates the contribution of various second messenger systems to Ca(2+)-induced phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients. The Ca(2+) dependence of PS exposure was confirmed using the Ca(2+) ionophore bromo-A23187 to clamp intracellular Ca(2+) over 4 orders of magnitude in high or low potassium-containing (HK or LK) saline. The percentage of RBCs showing PS exposure was significantly increased in LK over HK saline. This effect was reduced by the Gardos channel inhibitors, clotrimazole and charybdotoxin. Nevertheless, although Ca(2+) loading in the presence of an outwardly directed electrochemical gradient for K(+) stimulated PS exposure, substantial exposure still occurred in HK saline. Under the conditions used inhibitors of other second messenger systems (ABT491, quinacrine, acetylsalicylic acid, 3,4-dichloroisocoumarin, GW4869 and zVAD-fmk) did not inhibit the relationship between [Ca(2+)] and PS exposure. Inhibitors of phospholipase A2, cyclooxygenase, platelet-activating factor, sphingomyelinase and caspases, therefore, were without effect on Ca(2+)-induced PS exposure in RBCs, incubated in either HK or LK saline.

  19. Identification of the Ca²⁺ entry pathway involved in deoxygenation-induced phosphatidylserine exposure in red blood cells from patients with sickle cell disease.

    PubMed

    Cytlak, U M; Hannemann, A; Rees, D C; Gibson, J S

    2013-11-01

    Phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients is increased compared to levels in normal individuals and may participate in the anaemic and ischaemic complications of SCD. Exposure is increased by deoxygenation and occurs with elevation of intracellular Ca²⁺ to low micromolar levels. The Ca²⁺ entry step has not been defined but a role for the deoxygenation-induced pathway, Psickle, is postulated. Partial Psickle inhibitors 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS), 4,4'-dithiocyano-2,2'-stilbene-disulphonic acid (DIDS) and dipyridamole inhibited deoxygenation-induced PS exposure (DIDS IC50, 118 nM). Inhibitors and activators of other pathways (including these stimulated by depolarisation, benzodiazepines, glutamate and stretch) were without effect. Zn²⁺ and Gd³⁺ stimulated PS exposure to high levels. In the case of Zn²⁺, this effect was independent of oxygen (and hence HbS polymerisation and RBC sickling) but required extracellular Ca²⁺. The effect was completely abolished when Zn²⁺ (100 μM) was added to RBCs suspended in autologous plasma, implying a requirement of high levels of free Zn²⁺.

  20. Procoagulant activity induced by transcatheter closure of atrial septal defects is associated with exposure of phosphatidylserine on microparticles, platelets and red blood cells.

    PubMed

    Ding, Wenbo; Kou, Junjie; Meng, Huan; Kou, Yan; He, Zhangxiu; Cao, Muhua; Wang, Lixiu; Bi, Yayan; Thatte, Hemant S; Shi, Jialan

    2015-08-01

    The mechanism of hypercoagulable state following transcatheter closure of atrial septal defects (ASDs) remains unclear. We evaluated the exposure of phosphatidylserine (PS) on released microparticles (MPs) and also the cells of their origin from peripheral blood, and the associated increase in procoagulant activity (PCA) following transcatheter ASD closure. We demonstrate that PS(+) MP levels were elevated immediately after device implantation (P <0.002), peaked at 24hour (P <0.002), and persisted at high levels for 1-week post procedure (P <0.002). Flow cytometry analysis indicated that PS(+) MPs were mainly derived from platelets, endothelial cells, and the red blood cells (RBCs). Concomittantly, PS(+) platelet and RBC count also increased after transcatheter closure of ASDs, while PS(+) leukocytes levels remained the same. Compared to the baseline, coagulation time of PS(+) MPs, platelets, and RBCs at 24hours post procedure decreased by about 18.7% (P <0.004), 21.5% (P <0.001), and 26.8% (P <0.001), respectively. Intrinsic factor Xa and prothrombinase were produced abundantly by platelets, RBCs, and MPs leading to materialization of fibrin by 24hours. Additionally, Xase complex formation and thrombin generation was inhibited by about 74% by the addition of lactadherin to the assays. Our results thus demonstrate that PS exposure on MPs, platelets, and RBCs play an important role in hypercoagulability following transcatheter ASD closure.

  1. Role of Calcium in Phosphatidylserine Externalisation in Red Blood Cells from Sickle Cell Patients

    PubMed Central

    Weiss, Erwin; Rees, David Charles; Gibson, John Stanley

    2011-01-01

    Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates Ca2+ entry, providing an obvious link with phosphatidylserine exposure. The role of Ca2+ was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [Ca2+] was increased. This effect was inhibited by dipyridamole, intracellular Ca2+ chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high K+ saline. Ca2+ levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with Ca2+ entry through the deoxygenation-induced pathway (Psickle), activating the Gardos channel. [Ca2+] required for phosphatidylserine scrambling are in the range achievable in vivo. PMID:21490763

  2. Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane.

    PubMed

    Azab, Walid; Gramatica, Andrea; Herrmann, Andreas; Osterrieder, Nikolaus

    2015-10-20

    Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca(2+) release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca(2+) levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca(2+) release, while EHV-4 with gH1 triggered significant Ca(2+) release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca(2+) release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca(2+) release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. Herpesviruses are a large family of enveloped viruses that infect a wide range of hosts, causing a variety of diseases. These viruses have developed a number of strategies for successful entry into different cell types. We and others have shown that alphaherpesviruses, including EHV-1 and herpes simplex virus 1 (HSV-1), can route their entry pathway and do so by manipulation of cell signaling cascades to ensure viral genome delivery to nuclei. We show here that the interaction between EHV-1 gH and cellular α4β1-integrins is necessary to induce emptying of ER calcium stores, which induces phosphatidylserine exposure on the plasma membrane

  3. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.

    PubMed

    Liu, Ming-Lin; Reilly, Michael P; Casasanto, Peter; McKenzie, Steven E; Williams, Kevin Jon

    2007-02-01

    Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

  4. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis.

    PubMed

    Hornik, Tamara C; Vilalta, Anna; Brown, Guy C

    2016-01-01

    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.

  5. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  6. Sub-chronic (13-week) oral toxicity study, preceded by an in utero exposure phase and genotoxicity studies with fish source phosphatidylserine in rats.

    PubMed

    Lifshitz, Y; Levi, L; Eyal, I; Cohen, T; Tessler, S

    2015-12-01

    The safety of fish phosphatidylserine (PS) conjugated to DHA (InCog™) was examined in a series of toxicology studies as first step to support future use in infants and general population using in vitro genotoxicity tests and in a sub-chronic toxicity study with an in-utero exposure phase. PS is a major lipid in the cell membrane, active in various membrane-mediated processes. PS-DHA, present in human milk, has been suggested to be important for early brain development. Rats were exposed to diets containing 1.5%, 3% or 4.5% InCog or two control diets. Parental (F0) animals were fed throughout mating, gestation and lactation. Subsequently, a subchronic, 13-week study was conducted on the F1 animals followed by 4 weeks of recovery. The genotoxicity tests showed no mutagenicity potential. No significant toxicological findings were found in the F0 rats or the F1 pups. In the 13-weeks study, an increase in the presence of renal minimal-mild multifocal corticomedullary mineralization was noted in nine females of the high-dose group. This change was not associated with any inflammatory or degenerative changes in the kidneys. The no-observed-adverse-effect level (NOAEL) in the present study was placed at 3% in the diet (mid-dose group), equivalent to an overall intake of at least 2.1 g InCog/kg bw/day in the F1 generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sensing phosphatidylserine in cellular membranes.

    PubMed

    Kay, Jason G; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  8. Binding of Alphaherpesvirus Glycoprotein H to Surface α4β1-Integrins Activates Calcium-Signaling Pathways and Induces Phosphatidylserine Exposure on the Plasma Membrane

    PubMed Central

    Gramatica, Andrea; Herrmann, Andreas; Osterrieder, Nikolaus

    2015-01-01

    ABSTRACT Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca2+ release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca2+ levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca2+ release, while EHV-4 with gH1 triggered significant Ca2+ release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca2+ release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca2+ release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. PMID:26489864

  9. Brief Exposure to Secondhand Smoke Reversibly Impairs Endothelial Vasodilatory Function

    PubMed Central

    2014-01-01

    Introduction: We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time. Methods: We measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30min, 10min, 1min, and 4 breaths (roughly 15 s). Results: We observed a dose-response relationship between SHS particle concentration over 30min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD. Conclusions: Brief SHS exposure at real-world levels reversibly impairs FMD. Even 1min of SHS exposure can cause reduction of endothelial function. PMID:24302638

  10. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  11. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.

  12. Apical phosphatidylserine externalization in auditory hair cells.

    PubMed

    Shi, Xiaorui; Gillespie, Peter G; Nuttall, Alfred L

    2007-01-01

    In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.

  13. Association of reversible alopecia with occupational topical exposure to common borax-containing solutions.

    PubMed

    Beckett, W S; Oskvig, R; Gaynor, M E; Goldgeier, M H

    2001-04-01

    Boron is widely used in industrial materials, most frequently as the salt borax. Systemic exposure (eg, ingestion) to boron in boric acid been associated with reversible toxic alopecia among other manifestations. There is scant clinical literature on alopecia caused by topical exposure to boron. We observed a series of 3 patients in 2 workplaces who suffered reversible alopecia from cutaneous boron exposure. The scalp alopecia was global in 1 patient and patchy in 2 patients. Alopecia was completely reversed by elimination or reduction of exposure to boron-containing materials in all 3 patients. We conclude that occupational topical exposure to boron in solutions may cause reversible alopecia.

  14. Unaltered reversible magnetic transition in Fe nanostructures upon ambient exposure.

    PubMed

    Quesada, A; Gargallo-Caballero, R; Montaña, Y; Foerster, M; Aballe, L; Fernández, J F; de la Figuera, J

    2017-10-01

    High aspect-ratio Fe nanostrips are known to reversibly switch from a single-domain magnetic state to a multidomain diamond pattern as a function of temperature (T) and width. This magnetic bistability can be understood by the temperature-dependent balance between magnetocrystalline, shape and magnetoelastic anisotropies and has potential applications in magnetic logic devices. However, as Fe nanostructures easily oxidize, protecting the surface with capping layers may be required, which could largely affect the anisotropy balance. Here, we employ x-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) to study these thin Fe nanostrips before and after exposure to air. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors.

    PubMed

    Walker, Britta; Towhid, Syeda T; Schmid, Evi; Hoffmann, Sascha M; Abed, Majed; Münzer, Patrick; Vogel, Sebastian; Neis, Felix; Brucker, Sara; Gawaz, Meinrad; Borst, Oliver; Lang, Florian

    2014-02-01

    Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.

  16. Use of Autoantigen-Loaded Phosphatidylserine-Liposomes to Arrest Autoimmunity in Type 1 Diabetes

    PubMed Central

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M.; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes

  17. Phosphatidylserine dynamics in cellular membranes

    PubMed Central

    Kay, Jason G.; Koivusalo, Mirkka; Ma, Xiaoxiao; Wohland, Thorsten; Grinstein, Sergio

    2012-01-01

    Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes—green fluorescent protein (GFP)–LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-l-serine (TopFluor-PS), a synthetic fluorescent PS analogue—to examine PS distribution and dynamics inside live cells. The mobility of PS was assessed by a combination of advanced optical methods, including single-particle tracking and fluorescence correlation spectroscopy. Our results reveal the existence of a sizable fraction of PS with limited mobility, with cortical actin contributing to the confinement of PS in the plasma membrane. We were also able to measure the dynamics of PS in endomembrane organelles. By targeting GFP-LactC2 to the secretory pathway, we detected the presence of PS in the luminal leaflet of the endoplasmic reticulum. Our data provide new insights into properties of PS inside cells and suggest mechanisms to account for the subcellular distribution and function of this phospholipid. PMID:22496416

  18. PROcEED: Probabilistic reverse dosimetry approaches for estimating exposure distributions

    EPA Science Inventory

    As increasing amounts of biomonitoring survey data become available, a new discipline focused on converting such data into estimates of chemical exposures has developed. Reverse dosimetry uses a pharmacokinetic model along with measured biomarker concentrations to determine the p...

  19. PROcEED: Probabilistic reverse dosimetry approaches for estimating exposure distributions

    EPA Science Inventory

    As increasing amounts of biomonitoring survey data become available, a new discipline focused on converting such data into estimates of chemical exposures has developed. Reverse dosimetry uses a pharmacokinetic model along with measured biomarker concentrations to determine the p...

  20. Probabilistic Reverse dOsimetry Estimating Exposure Distribution (PROcEED)

    EPA Pesticide Factsheets

    PROcEED is a web-based application used to conduct probabilistic reverse dosimetry calculations.The tool is used for estimating a distribution of exposure concentrations likely to have produced biomarker concentrations measured in a population.

  1. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes.

    PubMed

    Fadok, V A; Bratton, D L; Frasch, S C; Warner, M L; Henson, P M

    1998-07-01

    Exposure of phosphatidylserine on the outer leaflet of the plasma membrane is a surface change common to many apoptotic cells. Normally restricted to the inner leaflet, phosphatidylserine appears as a result of decreased aminophospholipid translocase activity and activation of a calcium-dependent scramblase. Phosphatidylserine exposure has several potential biological consequences, one of which is recognition and removal of the apoptotic cell by phagocytes. It is still not clear which receptors mediate PS recognition on apoptotic cells; however, several interesting candidates have been proposed. These include the Class B scavenger and thrombospondin receptor CD36, an oxLDL receptor (CD68), CD14, annexins, beta2 glycoprotein I, gas-6 and a novel activity expressed on macrophages stimulated with digestible particles such as beta-glucan. Whether PS is the sole ligand recognized by phagocytes or whether it associated with other molecules to form a complex ligand remains to be determined.

  2. Differential roles of tissue factor and phosphatidylserine in activation of coagulation.

    PubMed

    Spronk, Henri M H; ten Cate, Hugo; van der Meijden, Paola E J

    2014-05-01

    It has been suggested that the main physiological trigger of coagulation, tissue factor, possesses limited procoagulant activity and occurs in an inactive or so-called encrypted state. For the conversion of encrypted into decrypted tissue factor with sufficient procoagulant activity, four distinct models have been proposed: 1; dimer formation, 2; lipid rafts, 3; disulfide bonds, and 4; phosphatidylserine exposure. Pro and cons can be given for each of these mechanisms of tissue factor encryption/decryption, however, it seems most likely that two or more mechanisms act together in activating the procoagulant activity. The exposure of phosphatidylserine in the outer layer of cell membranes supports coagulation through enhanced formation of the tenase (factors IXa, VIIIa and X) and prothrombinase (factors Xa, Va and prothrombin) complexes. The proposed role for phosphatidylserine in decryption of tissue factor could contribute to the correct orientation of the tissue factor - factor VII complex. Overall, the contribution of both tissue factor and phosphatidylserine to coagulation seems distinct with tissue factor being the physiological activator and phosphatidylserine the driving force of propagation of coagulation.

  3. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    SciTech Connect

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-05-05

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and /sup 32/Pi, the incorporation of /sup 32/Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. /sup 32/Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of /sup 32/Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using (/sup 3/H)serine-labeled phospholipid. Pulse and pulse-chase experiments with L-(U-/sup 14/C) serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine.

  4. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane.

    PubMed

    Bissinger, Rosi; Malik, Abaid; Warsi, Jamshed; Jilani, Kashif; Lang, Florian

    2014-10-14

    Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.

  5. Gestational Exposure to Methylmercury and Selenium: Effects on a Spatial Discrimination Reversal in Adulthood

    PubMed Central

    Reed, Miranda N; Paletz, Elliott M.; Newland, M. Christopher

    2007-01-01

    Selenium, a nutrient, and methylmercury, a developmental neurotoxicant, are both found in fish. There are reports that selenium sometimes ameliorates methylmercury’s neurotoxicity, but little is known about the durability of this protection after low-level gestational exposure. Developmental methylmercury exposure disrupts behavioral plasticity, and these effects extend well into adulthood and aging. The present experiment was designed to examine interactions between developmental low-level methylmercury and nutritionally relevant dietary selenium on discrimination reversals in adulthood. Female rats were exposed, in utero, to 0, 0.5, or 5 ppm mercury as methylmercury via drinking water, approximating mercury exposures of 0, 40, and 400 μg/kg/day. They also received both prenatal and postnatal exposure to a diet containing selenium from casein only (0.06 ppm) or 0.6 ppm selenium, creating a 2 (chronic Se) x 3 (gestational MeHg) full factorial design, with 6 – 8 rats per cell. Behavior was evaluated with a spatial discrimination procedure using two levers and sucrose reinforcers. All groups acquired the original discrimination similarly. Rats exposed to low selenium (0.06 ppm), regardless of MeHg exposure, required more sessions to complete the first reversal and made more omissions during this reversal than high selenium (0.6 ppm) animals, but the two diet groups did not differ on subsequent reversals. Rats exposed to MeHg, regardless of selenium exposure, made more errors than controls on the first and third reversals, which was away from the original discrimination. MeHg-exposed animals also had shorter choice latencies than controls during the first session of a reversal. Low selenium increased the number of omissions during a reversal, whereas high MeHg exposure produced perseverative responding (errors) on the lever that was reinforced during the original discrimination. However, there was no interaction between selenium and MeHg exposure. PMID:16759706

  6. Product-to-parent reversion processes: Stream-hyporheic spiraling increases ecosystem exposure and environmental persistence

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Cwiertny, D. M.; Kolodziej, E. P.

    2014-12-01

    The product-to-parent reversion of metabolites of trenbolone acetate (TBA), a steroidal growth promoter used widely in beef cattle production, was recently observed to occur in environmental waters. The rapid forward reaction is by direct photolysis (i.e., photohydration), with the much slower reversion reaction occurring via dehydration in the dark. The objective of this study is to quantify the potential effect of this newly discovered reversible process on TBA metabolite concentrations and total bioactivity exposure in fluvial systems. Here, we demonstrate increased persistence of TBA metabolites in the stream and hyporheic zone due to the reversion process, increasing chronic and acute exposure to these endocrine-active compounds along a stream. The perpetually dark hyporheic zone is a key location for reversion in the system, ultimately providing a source of the parent compound to the stream and increasing mean in-stream concentration of 17α-trenbolone (17α-TBOH) by 40% of the input concentration under representative fluvial conditions. As such, regulatory frameworks for compounds undergoing product-to-parent reversion will require new approaches for assessing total exposure to bioactive compounds. Further, we demonstrate generalized cases for prediction of exposure for species with product-to-parent reversion in stream-hyporheic systems.

  7. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran.

    PubMed

    Duan, Zhang-Qun; Hu, Fei

    2013-01-10

    2-Methyltetrahydrofuran has recently been described as a promising and green solvent. Herein, it was successfully used as the reaction medium for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine with the aim of phosphatidylserine synthesis for the first time. Our results indicated that as high as 90% yield of phosphatidylserine could be achieved after 12 h combined with no byproduct (phosphatidic acid) forming. The present work accommodated a facilely and efficiently enzymatic strategy for preparing phosphatidylserine, which possessed obvious advantages over the reported processes in terms of high efficiency and environmental friendliness. This work is also a proof-of-concept opening the use of 2-methyltetrahydrofuran in biosynthesis as well.

  8. Phosphatidylserine: A cancer cell targeting biomarker.

    PubMed

    Sharma, Bhupender; Kanwar, Shamsher S

    2017-09-01

    Cancer is a leading cause of mortality and morbidity globally. Many prominent cancer-associated molecules have been identified over the recent years which include EGFR, CD44, TGFbRII, HER2, miR-497, NMP22, BTA, Fibrin/FDP etc. These biomarkers are often used for screening, detection, diagnosis, prognosis, prediction and monitoring of cancer development. Phosphatidylserine (PS) is an essential component in all human cells which is present on the inner leaflet of the cell membrane. The oxidative stress causes exposure of PS on the surface of the vascular endothelium in the cancer cells (lung, breast, pancreatic, bladder, skin, brain metastasis, rectal adenocarcinoma etc.) but not on the normal cells. The external PS is regulated by calcium-dependent flippase activity. Cancer cell lines with high surface PS have low flippase activity and high intracellular calcium content. Human Annexin-V, PS targeting antibodies (PGN635 and bavituximab and mch1N11), lysosomal protein, phospholipid Saposin C dioleoylphosphatidylserine (SapC-DOPS), peptide-peptoid hybrid PPS1, PS-binding 14-mer peptide (PSBP-6) and hexapeptide (E3) have been reported to target PS present on cancer cell surface. High expression of CD47 inhibits tumor cell phagocytosis by macrophages. The PS cancer biomarker has also been used to target the drugs to cancer cells specifically without affecting other healthy cells. Currently, the fusion protein (FP) consisting of L-methionase linked to human Annexin-V has been reported to target the cancer cells. The FP catalyzes the conversion of non-toxic prodrug selenomethionine into toxic methyl selenol which thus also prevents the methionine (essential amino acid) supplementation to the cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Specific stabilization of CFTR by phosphatidylserine.

    PubMed

    Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L

    2017-02-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.

  10. Exposure Assessment Tools by Approaches - Exposure Reconstruction (Biomonitoring and Reverse Dosimetry)

    EPA Pesticide Factsheets

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases,

  11. Deciphering the plasma membrane hallmarks of apoptotic cells: Phosphatidylserine transverse redistribution and calcium entry

    PubMed Central

    Martínez, M Carmen; Freyssinet, Jean-Marie

    2001-01-01

    Background During apoptosis, Ca2+-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca2+ entry in Scott cells which may be part of the Scott phenotype. Results Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca2+ entry and phosphatidylserine redistribution during apoptosis. Ca2+ ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca2+ channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca2+ entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. Conclusions The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective. PMID:11701087

  12. A new high-temperature transition of crystalline cholesterol in mixtures with phosphatidylserine.

    PubMed Central

    Epand, R M; Bach, D; Epand, R F; Borochov, N; Wachtel, E

    2001-01-01

    , the 96 degrees C peak disappears and the 38 degrees C transition reappears on heating. For samples of 1-palmitoyl-2-oleoyl phosphatidylserine or of 1-stearoyl-2-oleoyl phosphatidylserine having mol fractions of cholesterol between 0.4 and 0.7, the 38 degrees C transition that reappears after the melting of the 96 degrees C component generally has the same enthalpy as do freshly prepared samples. This demonstrates that, at least for these samples, the amount of anhydrous cholesterol crystallites formed is indeed a property of the lipid mixture. We have also examined variations in the method of preparation of the sample and find similar behavior in all cases, although there are quantitative differences. The 96 degrees C transition is partially reversible on cooling and reheating. This transition is also scan rate dependent, indicating that it is, at least in part, kinetically determined. The enthalpy of the 96 degrees C transition, after incubation of the sample for 3 weeks at 37 degrees C is dependent on the ratio of cholesterol to 1-palmitoyl-2-oleoyl phosphatidylserine or to 1-stearoyl-2-oleoyl phosphatidylserine, with the enthalpy per mole cholesterol increasing between cholesterol mol fractions of 0.2 and 0.5. Dimyristoyl phosphatidylserine at a 1:1 molar ratio with cholesterol, after incubation at 37 degrees C, exhibits a transition at 95 degrees C that reverses on cooling at 44 degrees C, instead of 60 degrees C, as observed with either 1-palmitoyl-2-oleoyl phosphatidylserine or 1-stearoyl-2-oleoyl phosphatidylserine. These findings along with the essential absence of the 96 degrees C transition in pure cholesterol or in cholesterol/phosphatidylcholine mixtures, indicates that the phospholipid affects the characteristics of the transition, and therefore the cholesterol crystallites must be in direct contact with the phospholipid and are not simply in the form of pure crystals of cholesterol. These observations are particularly important in view of recent

  13. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with /sup 32/Pi and L-(U-/sup 14/C)serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.

  14. Phosphatidylserine in the brain: metabolism and function.

    PubMed

    Kim, Hee-Yong; Huang, Bill X; Spector, Arthur A

    2014-10-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.

  15. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries.

    PubMed

    Ravindran, J; Manikandan, B; Shirodkar, P V; Francis, K X; Mani Murali, R; Vethamony, P

    2014-10-01

    The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples.

  16. Effects of Repeated Cocaine Exposure on Habit Learning and Reversal by N-Acetylcysteine

    PubMed Central

    Corbit, Laura H; Chieng, Billy C; Balleine, Bernard W

    2014-01-01

    Exposure to drugs of abuse can result in a loss of control over both drug- and nondrug-related actions by accelerating the transition from goal-directed to habitual control, an effect argued to reflect changes in glutamate homeostasis. Here we examined whether exposure to cocaine accelerates habit learning and used in vitro electrophysiology to investigate its effects on measures of synaptic plasticity in the dorsomedial (DMS) and dorsolateral (DLS) striatum, areas critical for actions and habits, respectively. We then administered N-acetylcysteine (NAC) in an attempt to normalize glutamate homeostasis and hence reverse the cellular and behavioral effects of cocaine exposure. Rats received daily injections of cocaine (30 mg/kg) for 6 days and were then trained to lever press for a food reward. We used outcome devaluation and whole-cell patch-clamp electrophysiology to assess the behavioral and cellular effects of cocaine exposure. We then examined the ability of NAC to reverse the effects of cocaine exposure on these measures. Cocaine treatment produced a deficit in goal-directed action, as assessed by outcome devaluation, and increased the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) in the DMS but not in the DLS. Importantly, NAC treatment both normalized EPSC frequency and promoted goal-directed control in cocaine-treated rats. The promotion of goal-directed control has the potential to improve treatment outcomes in human cocaine addicts. PMID:24531561

  17. Vascular Dysfunction in Patients with Chronic Arsenosis Can Be Reversed by Reduction of Arsenic Exposure

    PubMed Central

    Pi, Jingbo; Yamauchi, Hiroshi; Sun, Guifan; Yoshida, Takahiko; Aikawa, Hiroyuki; Fujimoto, Wataru; Iso, Hiroyasu; Cui, Renzhe; Waalkes, Michael P.; Kumagai, Yoshito

    2005-01-01

    Chronic arsenic exposure causes vascular diseases associated with systematic dysfunction of endogenous nitric oxide. Replacement of heavily arsenic-contaminated drinking water with low-arsenic water is a potential intervention strategy for arsenosis, although the reversibility of arsenic intoxication has not established. In the present study, we examined urinary excretion of cyclic guanosine 3′,5′-monophosphate (cGMP), a second messenger of the vasoactive effects of nitric oxide, and signs and symptoms for peripheral vascular function in 54 arsenosis patients before and after they were supplied with low-arsenic drinking water in an endemic area of chronic arsenic poisoning in Inner Mongolia, China. The arsenosis patients showed a marked decrease in urinary excretion of cGMP (mean ± SEM: male, 37.0 ± 6.1; female, 37.2 ± 5.4 nmol/mmol creatinine), and a 13-month period of consuming low-arsenic drinking water reversed this trend (male, 68.0 ± 5.6; female, 70.6 ± 3.0 nmol/mmol creatinine) and improved peripheral vascular response to cold stress. Our intervention study indicates that peripheral vascular disease in arsenosis patients can be reversed by exposure cessation and has important implications for the public health approach to arsenic exposure. PMID:15743725

  18. Vascular dysfunction in patients with chronic arsenosis can be reversed by reduction of arsenic exposure.

    PubMed

    Pi, Jingbo; Yamauchi, Hiroshi; Sun, Guifan; Yoshida, Takahiko; Aikawa, Hiroyuki; Fujimoto, Wataru; Iso, Hiroyasu; Cui, Renzhe; Waalkes, Michael P; Kumagai, Yoshito

    2005-03-01

    Chronic arsenic exposure causes vascular diseases associated with systematic dysfunction of endogenous nitric oxide. Replacement of heavily arsenic-contaminated drinking water with low-arsenic water is a potential intervention strategy for arsenosis, although the reversibility of arsenic intoxication has not established. In the present study, we examined urinary excretion of cyclic guanosine 3 ,5 -monophosphate (cGMP), a second messenger of the vasoactive effects of nitric oxide, and signs and symptoms for peripheral vascular function in 54 arsenosis patients before and after they were supplied with low-arsenic drinking water in an endemic area of chronic arsenic poisoning in Inner Mongolia, China. The arsenosis patients showed a marked decrease in urinary excretion of cGMP (mean +/- SEM: male, 37.0 +/- 6.1; female, 37.2 +/- 5.4 nmol/mmol creatinine), and a 13-month period of consuming low-arsenic drinking water reversed this trend (male, 68.0 +/- 5.6; female, 70.6 +/- 3.0 nmol/mmol creatinine) and improved peripheral vascular response to cold stress. Our intervention study indicates that peripheral vascular disease in arsenosis patients can be reversed by exposure cessation and has important implications for the public health approach to arsenic exposure.

  19. Wet heat exposure: a potentially reversible cause of low semen quality in infertile men.

    PubMed

    Shefi, Shai; Tarapore, Phiroz E; Walsh, Thomas J; Croughan, Mary; Turek, Paul J

    2007-01-01

    To evaluate the recovery of semen quality in a cohort of infertile men after known hyperthermic exposure to hot tubs, hot baths or whirlpool baths. A consecutive cohort of infertile men had a history remarkable for wet heat exposure in the forms of hot tubs, Jacuzzi or hot baths. Clinical characteristics and exposure parameters were assessed before exposure was discontinued, and semen parameters analyzed before and after discontinuation of hyperthermic exposure. A significant seminal response to withdrawal of hyperthermia was defined as >or= 200% increase in the total motile sperm count (TMC = volume x concentration x motile fraction) during follow-up after cessation of wet heat exposure. Eleven infertile men (mean age 36.5 years, range 31-44) exposed to hyperthermia were evaluated pre and post-exposure. Five patients (45%) responded favorably to cessation of heat exposure and had a mean increase in total motile sperm counts of 491%. This increase was largely the result of a statistically significant increase in sperm motility from a mean of 12% at baseline to 34% post-intervention (p = 0.02). Among non-responders, a smoking history revealed a mean of 5.6 pack-years, compared to 0.11 pack-years among responders. The prevalence of varicoceles was similar in both cohorts. The toxic effect of hyperthermia on semen quality may be reversible in some infertile men. We observed that the seminal response to exposure elimination varies biologically among individuals and can be profound in magnitude. Among non-responders, other risk factors that could explain a lack of response to elimination of hyperthermia should be considered.

  20. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism.

    PubMed

    Schuiki, Irmgard; Daum, Günther

    2009-02-01

    Phosphatidylserine decarboxylases (PSDs) (E.C. 4.1.1.65) are enzymes which catalyze the formation of phosphatidylethanolamine (PtdEtn) by decarboxylation of phosphatidylserine (PtdSer). This enzymatic activity has been identified in both prokaryotic and eukaryotic organisms. PSDs occur as two types of proteins depending on their localization and the sequence of a conserved motif. Type I PSDs include enzymes of eukaryotic mitochondria and bacterial origin which contain the amino acid sequence LGST as a characteristic motif. Type II PSDs are found in the endomembrane system of eukaryotes and contain a typical GGST motif. These characteristic motifs are considered as autocatalytic cleavage sites where proenzymes are split into alpha- and beta-subunits. The S-residue set free by this cleavage serves as an attachment site of a pyruvoyl group which is required for the activity of the enzymes. Moreover, PSDs harbor characteristic binding sites for the substrate PtdSer. Substrate supply to eukaryotic PSDs requires lipid transport because PtdSer synthesis and decarboxylation are spatially separated. Targeting of PSDs to their proper locations requires additional intramolecular domains. Mitochondrially localized type I PSDs are directed to the inner mitochondrial membrane by N-terminal targeting sequences. Type II PSDs also contain sequences in their N-terminal extensions which might be required for subcellular targeting. Lack of PSDs causes various defects in different cell types. The physiological relevance of these findings and the central role of PSDs in lipid metabolism will be discussed in this review.

  1. Reversals.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers nine materials for remediating reversals in handicapped students at the early childhood and elementary levels. Entries are presented in order of NIMIS accession…

  2. Elevated Human telomerase reverse transcriptase gene expression in blood cells associated with chronic and arsenic exposure in Inner Mongolia, China

    EPA Science Inventory

    BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...

  3. Elevated Human telomerase reverse transcriptase gene expression in blood cells associated with chronic and arsenic exposure in Inner Mongolia, China

    EPA Science Inventory

    BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...

  4. Exposure Stress Induces Reversible Corneal Graft Opacity in Recipients With Herpes Simplex Virus-1 Infections

    PubMed Central

    Rowe, Alexander M.; Yun, Hongmin; Hendricks, Robert L.

    2017-01-01

    Purpose Most of the inflammation in murine herpes simplex virus type 1 (HSV-1)-induced stromal keratitis (HSK) is due to exposure stress resulting from loss of corneal nerves and blink reflex. Corneal grafts often fail when placed on corneal beds with a history of HSK. We asked if corneal exposure contributes to the severe pathology of corneal grafts on HSV-1–infected corneal beds. Methods Herpes simplex virus type 1–infected corneas were tested for blink reflex. Opacity and vascularization were monitored in allogeneic and syngeneic corneal grafts that were transplanted to corneal beds with no blink reflex or to those that retained blink reflex in at least one quadrant following infection. Results Retention of any level of blink reflex significantly reduced inflammation in HSV-1–infected corneas. Corneal allografts placed on HSV-1–infected beds lacking corneal blink reflex developed opacity faster and more frequently than those placed on infected beds that partially or completely retained blink reflex. Corneal grafts placed on infected corneal beds with no blink reflex rapidly became opaque to a level that would be considered rejection. However, protecting these grafts from exposure by tarsorrhaphy prevented or reversed the opacity in both syngeneic and allogenic grafts. Conclusions Exposure due to HSV-1–engendered hypoesthesia causes rapid, severe, persistent, but reversible opacification of both allogeneic and syngeneic corneal grafts. This opacity should not be interpreted as immunologic rejection. Exposure stress may contribute to the high rate of corneal graft pathology in patients with recurrent HSK. PMID:28055100

  5. Behavioural treatment of tics: habit reversal and exposure with response prevention.

    PubMed

    van de Griendt, J M T M; Verdellen, C W J; van Dijk, M K; Verbraak, M J P M

    2013-07-01

    Behaviour therapy has been shown to be an effective strategy in treating tics; both habit reversal (HR) and exposure and response prevention (ER) are recommended as first-line interventions. This review provides an overview of the history, theoretical concepts and evidence at present for HR and ER. In addition, treatment manuals for HR and ER are described. Despite the evidence and availability of treatment manuals, many patients do not receive a first-line psychological intervention for tics. Barriers to the acceptance and dissemination of behaviour therapy are discussed as are ways to overcome these barriers, such as the use of E-health and E-learning.

  6. Prenatal betamethasone exposure has sex specific effects in reversal learning and attention in juvenile baboons

    PubMed Central

    RODRIGUEZ, Jesse S.; ZÜRCHER, Nicole R.; KEENAN, Kathryn E.; BARTLETT, Thad Q.; NATHANIELSZ, Peter W.; NIJLAND, Mark J.

    2011-01-01

    Objective We investigated effects of three weekly courses of fetal betamethasone (βM) exposure on motivation and cognition in juvenile baboon offspring utilizing the Cambridge Neuropsychological Test Automated Battery. Study design Pregnant baboons (Papio sp.) received two injections of saline control (C) or 175 μg/kg βM 24h apart at 0.6, 0.65 and 0.7 gestation. Offspring [Female (FC), n = 7 and Male (MC), n = 6; Female (FβM), n = 7 and Male (MβM), n = 5] were studied at 2.6–3.2 years with a progressive ratio test for motivation, simple discriminations (SD) and reversals (SR) for associative learning and rule change plasticity, and an intra-dimensional/extra-dimensional (IDED) set-shifting test for attention allocation. Results βM exposure decreased motivation in both sexes. In IDED testing, FβM made more errors in the SR [mean difference of errors (FβM minus MβM) = 20.2 ± 9.9; P≤0.05], compound discrimination [mean difference of errors = 36.3 ± 17.4; P≤0.05] and compound reversal [mean difference of errors = 58 ± 23.6; P<0.05] stages as compared to the MβM offspring. Conclusion This central nervous system developmental programming adds growing concerns of long-term effects of repeated fetal synthetic glucocorticoid exposure. In summary, behavioral effects observed show sex specific differences in resilience to multiple fetal βM exposures. PMID:21411054

  7. Vitamin E Reversed Apoptosis of Cardiomyocytes Induced by Exposure to High Dose Formaldehyde During Mice Pregnancy.

    PubMed

    Wu, Dongyuan; Jiang, Zhirong; Gong, Bing; Dou, Yue; Song, Mingxuan; Song, Xiaoxia; Tian, Yu

    2017-09-30

    In this study, we investigated the protection effect of Vitamin E (Vit E) on formaldehyde (FA) exposure during pregnancy induced apoptosis of cardiomyocytes, and used an HL-1 cell line to confirmed the findings in vivo.Pregnant mice received different doses of FA (0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 0.1 μg Vit E, or 1.5 mg/kg + 0.1 μg Vit E). TUNEL staining was used to reveal the apoptosis in cardiomyocytes, and SOD, MDA, GSH, Livin, and Caspase-3 in cardiomyocytes were detected by ELISA, RT-PCR, and Western blot. For in vitro study, HL-1 cells were treated with vehicle, 5 μmol/L FA, 25 μmol/L FA, 50 μmol/L FA, 10 mg/L Vit. E, and 50 μmol/L FA+ 10 mg/L Vit E, respectively. CCK-8 assay and flow cytometry were used to evaluate cell vitality and apoptosis. A high dose of FA exposure led to cytotoxicity in both pregnant mice and offspring, as TUNEL staining revealed a significant apoptosis of cardiomyocytes, and the alternation in SOD, GSH, MDA, Livin, and Caspase-3 was found in cardiomyocytes. 0.1 μg Vit. E could reverse high doses of FA exposure induced apoptosis of cardiomyocytes in both pregnant mice and offspring. The in vitro study revealed that FA exposure induced a decrease of cell viability and increased cell apoptosis, as well as oxidative stress in HL-1 cells with alternation in SOD, GSH, MDA, Livin, and Caspase-3.This study revealed a high dose of FA induced oxidative stress and apoptosis of cardiomyocytes in both pregnant mice and offspring, and Vit E supplement during pregnancy reversed the systemic and myocardial toxicity of FA.

  8. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes.

  9. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  10. Product-to-parent reversion increases ecosystem exposure to and environmental persistence of 17α-trenbolone

    NASA Astrophysics Data System (ADS)

    Ward, Adam; Cwiertny, David; Kolodziej, Edward; Brehm, Colleen

    2016-04-01

    The product-to-parent reversion of metabolites of trenbolone acetate (TBA), a steroidal growth promoter used widely in beef cattle production, was recently observed to occur in environmental waters. The rapid forward reaction is by direct photolysis (i.e., photohydration), with the much slower reversion reaction occurring via dehydration in the dark. The objective of this study is to quantify the potential effect of this newly discovered reversible process on TBA metabolite concentrations and total bioactivity exposure in fluvial systems. Here, we demonstrate increased persistence of TBA metabolites in the stream and hyporheic zone due to the reversion process, increasing chronic and acute exposure to these endocrine-active compounds along a stream. The perpetually dark hyporheic zone is a key location for reversion in the system, ultimately providing a source of the parent compound to the stream and increasing mean in-stream concentration of 17α-trenbolone (17α-TBOH) by 40% of the input concentration under representative fluvial conditions. We demonstrate generalized cases for prediction of exposure for species with product-to-parent reversion in stream-hyporheic systems. Recognizing this risk, regulatory frameworks for compounds undergoing product-to-parent reversion will require new approaches for assessing total exposure to bioactive compounds. We discuss the role of regulating "joint" or "mixture" bioactivity as an emerging paradigm for more meaningful management of micropollutants.

  11. Behavioral training reverses global cortical network dysfunction induced by perinatal antidepressant exposure

    PubMed Central

    Zhou, Xiaoming; Lu, Jordan Y.-F.; Darling, Ryan D.; Simpson, Kimberly L.; Zhu, Xiaoqing; Wang, Fang; Yu, Liping; Sun, Xinde; Merzenich, Michael M.; Lin, Rick C. S.

    2015-01-01

    Abnormal cortical circuitry and function as well as distortions in the modulatory neurological processes controlling cortical plasticity have been argued to underlie the origin of autism. Here, we chemically distorted those processes using an antidepressant drug-exposure model to generate developmental neurological distortions like those characteristics expressed in autism, and then intensively trained altered young rodents to evaluate the potential for neuroplasticity-driven renormalization. We found that young rats that were injected s.c. with the antidepressant citalopram from postnatal d 1–10 displayed impaired neuronal repetition-rate following capacity in the primary auditory cortex (A1). With a focus on recovering grossly degraded auditory system processing in this model, we showed that targeted temporal processing deficits induced by early-life antidepressant exposure within the A1 were almost completely reversed through implementation of a simple behavioral training strategy (i.e., a modified go/no-go repetition-rate discrimination task). Degraded parvalbumin inhibitory GABAergic neurons and the fast inhibitory actions that they control were also renormalized by training. Importantly, antidepressant-induced degradation of serotonergic and dopaminergic neuromodulatory systems regulating cortical neuroplasticity was sharply reversed. These findings bear important implications for neuroplasticity-based therapeutics in autistic patients. PMID:25646455

  12. Glutamate NMDA receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure

    PubMed Central

    Li, Nanxin; Liu, Rong-Jian; Dwyer, Jason M.; Banasr, Mounira; Lee, Boyoung; Son, Hyeon; Li, Xiao-Yuan; Aghajanian, George; Duman, Ronald S.

    2011-01-01

    Background Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants, or the molecular mechanisms that could account for the rapid responses. Methods We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex (PFC) neurons. Results The results demonstrate that acute treatment with the non-competitive NMDA channel blocker ketamine or the selective NR2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonia and anxiogenic behaviors. We also find that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (EPSCs) in layer V pyramidal neurons in the PFC, and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin (mTOR) protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. Conclusions The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in an mTOR-dependent manner. PMID:21292242

  13. Effects of Short-Term Hypergravity Exposure are Reversible in Triticum aestivum L. Caryopses

    NASA Astrophysics Data System (ADS)

    Dixit, Jyotsana P.; Jagtap, Sagar S.; Kamble, Shailendra M.; Vidyasagar, Pandit B.

    2017-07-01

    Short-term hypergravity exposure is shown to retard seed germination, growth and photosynthesis in wheat caryopses. This study investigates the reversibility of effects of short-term hypergravity on imbibed wheat (Triticum aestivum var L.) caryopses. After hypergravity exposure (500 × g - 2500 × g for 10 min) on a centrifuge, exposed caryopses were kept under normal gravity (1 × g) up to six days and then sown on agar. Results of the present study showed that percentage germination and growth were completely restored for DAY 6 compared to DAY 0. Restoration of germination and growth was accompanied by increased α-amylase activity. The specific activity of antioxidative enzyme viz. catalase and guaiacol peroxidase was lowered on DAY 6 compared to DAY 0 suggesting an alleviation of oxidative cellular damage against hypergravity stress. Chlorophyll pigment recovery along with chlorophyll fluorescence (PI and Fv/Fm) on DAY 6 indicates a transient rather than permanent damage of the photosynthetic apparatus. Thus, our findings demonstrate that short-term hypergravity effects are reversible in wheat caryopses. The metabolic cause of restoration of seed germination and growth upon transferring the caryopses to normal gravity is performed by a reactivation of carbohydrate- metabolizing enzymes, α-amylase and alleviation of oxidative stress damage with subsequent recovery of chlorophyll biosynthesis and photosynthetic activity.

  14. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide.

    PubMed

    Shvedova, Anna A; Tyurina, Julia Y; Kawai, Kazuaki; Tyurin, Vladimir A; Kommineni, Choudari; Castranova, Vincent; Fabisiak, James P; Kagan, Valerian E

    2002-06-01

    Reactive oxygen species not only modulate important signal transduction pathways, but also induce DNA damage and cytotoxicity in keratinocytes. Hydrogen peroxide and organic peroxides are particularly important as these chemicals are widely used in dermally applied cosmetics and pharmaceuticals, and also represent endogenous metabolic intermediates. Lipid peroxidation is of fundamental interest in the cellular response to peroxides, as lipids are extremely sensitive to oxidation and lipid-based signaling systems have been implicated in a number of cellular processes, including apoptosis. Oxidation of specific phospholipid classes was measured in normal human epidermal keratinocytes exposed to cumene hydroperoxide after metabolic incorporation of the fluorescent oxidation-sensitive fatty acid, cis-parinaric acid, using a fluorescence high-performance liquid chromatography assay. In addition, lipid oxidation was correlated with changes in membrane phospholipid asymmetry and other markers of apoptosis. Although cumene hydroperoxide produced significant oxidation of cis-parinaric acid in all phospholipid classes, one phospholipid, phosphatidylserine, appeared to be preferentially oxidized above all other species. Using fluorescamine derivatization and annexin V binding it was observed that specific oxidation of phosphatidylserine was accompanied by phosphatidylserine translocation from the inner to the outer plasma membrane surface where it may serve as a recognition signal for interaction with phagocytic macrophages. These effects occurred much earlier than any detectable changes in other apoptotic markers such as caspase-3 activation, DNA fragmentation, or changes in nuclear morphology. Thus, normal human epidermal keratinocytes undergo profound lipid oxidation with preference for phosphatidylserine followed by phosphatidylserine externalization upon exposure to cumene hydroperoxide. It is therefore likely that normal human epidermal keratinocytes exposed to similar

  15. Incomplete reversibility of estimated glomerular filtration rate decline following tenofovir disoproxil fumarate exposure.

    PubMed

    Jose, Sophie; Hamzah, Lisa; Campbell, Lucy J; Hill, Teresa; Fisher, Martin; Leen, Clifford; Gilson, Richard; Walsh, John; Nelson, Mark; Hay, Phillip; Johnson, Margaret; Chadwick, David; Nitsch, Dorothea; Jones, Rachael; Sabin, Caroline A; Post, Frank A

    2014-08-01

    Tenofovir disoproxil fumarate (TDF) has been linked to renal impairment, but the extent to which this impairment is reversible is unclear. We aimed to investigate the reversibility of renal decline during TDF therapy. Cox proportional hazards models assessed factors associated with discontinuing TDF in those with an exposure duration of >6 months. In those who discontinued TDF therapy, linear piecewise regression models estimated glomerular filtration rate (eGFR) slopes before initiation of, during, and after discontinuation of TDF therapy. Factors associated with not achieving eGFR recovery 6 months after discontinuing TDF were assessed using multivariable logistic regression. We observed declines in the eGFR during TDF exposure (mean slopes, -15.7 mL/minute/1.73 m(2)/year [95% confidence interval {CI}, -20.5 to -10.9] during the first 3 months and -3.1 mL/minute/1.73 m(2)/year [95% CI, -4.6 to -1.7] thereafter) and evidence of eGFR increases following discontinuation of TDF therapy (mean slopes, 12.5 mL/minute/1.73 m(2)/year [95% CI, 8.9-16.1] during the first 3 months and 0.8 mL/minute/1.73 m(2)/year [95% CI, .1-1.5] thereafter). Following TDF discontinuation, 38.6% of patients with a decline in the eGFR did not experience recovery. A higher eGFR at baseline, a lower eGFR after discontinuation of TDF therapy, and more-prolonged exposure to TDF were associated with an increased risk of incomplete recovery 6 months after discontinuation of TDF therapy. This study shows that a decline in the eGFR during TDF therapy was not fully reversible in one third of patients and suggests that prolonged TDF exposure at a low eGFR should be avoided. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  16. Incomplete Reversibility of Estimated Glomerular Filtration Rate Decline Following Tenofovir Disoproxil Fumarate Exposure

    PubMed Central

    Jose, Sophie; Hamzah, Lisa; Campbell, Lucy J.; Hill, Teresa; Fisher, Martin; Leen, Clifford; Gilson, Richard; Walsh, John; Nelson, Mark; Hay, Phillip; Johnson, Margaret; Chadwick, David; Nitsch, Dorothea; Jones, Rachael; Sabin, Caroline A.; Post, Frank A.; Ainsworth, Jonathan; Anderson, Jane; Babiker, Abdel; Chadwick, David; Delpech, Valerie; Dunn, David; Fisher, Martin; Gazzard, Brian; Gilson, Richard; Gompels, Mark; Hay, Phillip; Hill, Teresa; Johnson, Margaret; Kegg, Stephen; Leen, Clifford; Nelson, Mark; Orkin, Chloe; Palfreeman, Adrian; Phillips, Andrew; Pillay, Deenan; Post, Frank; Sabin, Caroline; Sachikonye, Memory; Schwenk, Achim; Walsh, John; Hill, Teresa; Huntington, Susie; Josie, Sophie; Phillips, Andrew; Sabin, Caroline; Thornton, Alicia; Dunn, David; Glabay, Adam; Orkin, C.; Garrett, N.; Lynch, J.; Hand, J.; de Souza, C.; Fisher, M.; Perry, N.; Tilbury, S.; Churchill, D.; Gazzard, B.; Nelson, M.; Waxman, M.; Asboe, D.; Mandalia, S.; Delpech, V.; Anderson, J.; Munshi, S.; Korat, H.; Poulton, M.; Taylor, C.; Gleisner, Z.; Campbell, L.; Babiker, Abdel; Dunn, David; Glabay, Adam; Gilson, R.; Brima, N.; Williams, I.; Schwenk, A.; Ainsworth, J.; Wood, C.; Miller, S.; Johnson, M.; Youle, M.; Lampe, F.; Smith, C.; Grabowska, H.; Chaloner, C.; Puradiredja, D.; Walsh, J.; Weber, J.; Ramzan, F.; Mackie, N.; Winston, A.; Leen, C.; Wilson, A.; Gompels, M.; Allan, S.; Palfreeman, A.; Moore, A.; Chadwick, D.; Wakeman, K.; Kegg, Stephen; Main, Paul; Mitchell; Hunter; Sachikonye, Memory; Hay, Phillip; Dhillon, Mandip

    2014-01-01

    Background. Tenofovir disoproxil fumarate (TDF) has been linked to renal impairment, but the extent to which this impairment is reversible is unclear. We aimed to investigate the reversibility of renal decline during TDF therapy. Methods. Cox proportional hazards models assessed factors associated with discontinuing TDF in those with an exposure duration of >6 months. In those who discontinued TDF therapy, linear piecewise regression models estimated glomerular filtration rate (eGFR) slopes before initiation of, during, and after discontinuation of TDF therapy. Factors associated with not achieving eGFR recovery 6 months after discontinuing TDF were assessed using multivariable logistic regression. Results. We observed declines in the eGFR during TDF exposure (mean slopes, −15.7 mL/minute/1.73 m2/year [95% confidence interval {CI}, −20.5 to −10.9] during the first 3 months and −3.1 mL/minute/1.73 m2/year [95% CI, −4.6 to −1.7] thereafter) and evidence of eGFR increases following discontinuation of TDF therapy (mean slopes, 12.5 mL/minute/1.73 m2/year [95% CI, 8.9–16.1] during the first 3 months and 0.8 mL/minute/1.73 m2/year [95% CI, .1–1.5] thereafter). Following TDF discontinuation, 38.6% of patients with a decline in the eGFR did not experience recovery. A higher eGFR at baseline, a lower eGFR after discontinuation of TDF therapy, and more-prolonged exposure to TDF were associated with an increased risk of incomplete recovery 6 months after discontinuation of TDF therapy. Conclusions. This study shows that a decline in the eGFR during TDF therapy was not fully reversible in one third of patients and suggests that prolonged TDF exposure at a low eGFR should be avoided. PMID:24585896

  17. Investigation into the role of phosphatidylserine in modifying the susceptibility of human lymphocytes to secretory phospholipase A(2) using cells deficient in the expression of scramblase.

    PubMed

    Nelson, Jennifer; Francom, Lyndee L; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M; Bell, John D

    2012-05-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A(2) but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt's lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A(2). Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A(2). These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A(2), it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine.

  18. Epigenetic Alterations May Regulate Temporary Reversal of CD4+ T Cell Activation Caused by Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Nelson, Ashley R.; Cooney, Craig A.; Reisfeld, Brad; Blossom, Sarah J.

    2012-01-01

    Previous studies have shown that short-term (4 weeks) or chronic (32 weeks) exposure to trichloroethylene (TCE) in drinking water of female MRL+/+ mice generated CD4+ T cells that secreted increased levels of interferon (IFN)-γ and expressed an activated (CD44hiCD62Llo) phenotype. In contrast, the current study of subchronic TCE exposure showed that midway in the disease process both of these parameters of CD4+ T cell activation were reversed. This phase of the disease process may represent an attempt by the body to counteract the inflammatory effects of TCE. The decrease in CD4+ T cell production of IFN-γ following subchronic TCE exposure could not be attributed to skewing toward a Th2 or Th17 phenotype or to an increase in Treg cells. Instead, the suppression corresponded to alterations in markers used to assess DNA methylation, namely increased expression of retrotransposons Iap (intracisternal A particle) and Muerv (murine endogenous retrovirus). Also observed was an increase in the expression of Dnmt1 (DNA methyltransferase-1) and decreased expression of several genes known to be downregulated by DNA methylation, namely Ifng, Il2, and Cdkn1a. CD4+ T cells from a second study in which MRL+/+ mice were treated for 17 weeks with TCE showed a similar increase in Iap and decrease in Cdkn1a. In addition, DNA collected from the CD4+ T cells in the second study showed TCE-decreased global DNA methylation. Thus, these results described the biphasic nature of TCE-induced alterations in CD4+ T cell function and suggested that these changes represented potentially reversible alterations in epigenetic processes. PMID:22407948

  19. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors

    PubMed Central

    Blanco, Víctor M.; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D.; Sulaiman, Mahaboob K.; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E.; Franco, Robert S.; Qi, Xiaoyang

    2014-01-01

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors. PMID:25051370

  20. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D; Sulaiman, Mahaboob K; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E; Franco, Robert S; Qi, Xiaoyang

    2014-08-30

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.

  1. Ribavirin-induced externalization of phosphatidylserine in erythrocytes is predominantly caused by inhibition of aminophospholipid translocase activity.

    PubMed

    Kleinegris, Marie-Claire; Koek, Ger H; Mast, Kelly; Mestrom, Eveline H C; Wolfs, Jef L N; Bevers, Edouard M

    2012-10-15

    Ribavirin in combination with interferon-α is the standard treatment for chronic hepatitis C, but often induces severe anemia forcing discontinuation of the therapy. Whereas suppression of bone marrow by interferon may impact on the production of erythrocytes, it has been suggested that accumulation of ribavirin in erythrocytes induces alterations causing an early removal of these cells by the mononuclear phagocytic system. Externalization of phosphatidylserine, which is exclusively present in the cytoplasmic leaflet of the plasma membrane, is a recognition signal for phagocytosis in particular of apoptotic cells. Here, we demonstrate that surface exposure of phosphatidylserine upon prolonged treatment of erythrocytes with ribavirin results mainly from inactivation of the aminophospholipid translocase, an ATP-dependent lipid pump, which specifically transports phosphatidylserine from the outer to the inner leaflet of the plasma membrane. Inactivation is due to severe ATP depletion, although competitive inhibition by ribavirin or its phosphorylated derivatives cannot be excluded. Phospholipid scramblase, responsible for collapse of lipid asymmetry, appears to be of minor importance as erythrocytes of patients with the Scott syndrome, lacking Ca(2+)-induced lipid scrambling, are equally sensitive to ribavirin treatment. Neither the antioxidant N-acetylcysteine nor the pan-caspase inhibitor Q-VD-OPH did affect ribavirin-induced phosphatidylserine exposure, suggesting that oxidative stress or apoptotic-related mechanisms are not involved in this process. In conclusion, we propose that spontaneous loss of lipid asymmetry, not corrected by aminophospholipid translocase activity, is the mechanism for ribavirin-induced phosphatidylserine exposure that may contribute to ribavirin-induced anemia.

  2. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation

    PubMed Central

    Huynh, Mai-Lan N.; Fadok, Valerie A.; Henson, Peter M.

    2002-01-01

    Ingestion of apoptotic cells in vitro by macrophages induces TGF-β1 secretion, resulting in an anti-inflammatory effect and suppression of proinflammatory mediators. Here, we show in vivo that direct instillation of apoptotic cells enhanced the resolution of acute inflammation. This enhancement appeared to require phosphatidylserine (PS) on the apoptotic cells and local induction of TGF-β1. Working with thioglycollate-stimulated peritonea or LPS-stimulated lungs, we examined the effect of apoptotic cell uptake on TGF-β1 induction. Viable or opsonized apoptotic human Jurkat T cells, or apoptotic PLB-985 cells, human monomyelocytes that do not express PS during apoptosis, failed to induce TGF-β1. PS liposomes, or PS directly transferred onto the PLB-985 surface membranes, restored the TGF-β1 induction. Apoptotic cell instillation into LPS-stimulated lungs reduced proinflammatory chemokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, total inflammatory cell counts in the BALF were markedly reduced 1–5 days after apoptotic cell instillation, an effect that could be reversed by opsonization or coinstillation of TGF-β1 neutralizing antibody. This reduction resulted from early decrease in neutrophils and later decreases in lymphocytes and macrophages. In conclusion, apoptotic cell recognition and clearance, via exposure of PS and ligation of its receptor, induce TGF-β1 secretion, resulting in accelerated resolution of inflammation. PMID:11781349

  3. Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Howard, Mackenzie A.; Stagner, Barden B.; Lonsbury-Martin, Brenda L.; Martin, Glen K.

    2002-01-01

    Distortion-product otoacoustic emissions (DPOAEs) at 2f1-f2 can be suppressed by the introduction of a third ``suppressor'' tone. Plotting the suppression of the DPOAE level against the changing frequency and level of the suppressor produces frequency-tuning functions referred to as suppression tuning curves (STCs). The dominant features of STCs, including their shape, are similar to the features of neural tuning curves (NTCs) recorded from single auditory nerve fibers. However, recent findings using reversible diuretics suggest that STCs do not provide the same measure of cochlear frequency selectivity as provided by NTCs. To determine if STCs are also insensitive to the adverse effects of excessive sounds, the present study exposed rabbits to a moderate-level noise that produced temporary threshold shift-like (TTS) effects on DPOAEs, and examined the influence of such exposures on STCs. DPOAEs were produced using primary tones with geometric-mean frequencies centered at 2.8 or 4 kHz, and with L1 and L2 values of 45/45, 50/35, 50/50, and 55/45 dB SPL. STCs were obtained before and during recovery for a period of approximately 2 h immediately following, and at 1, 2, 3, and 7 d post-exposure to a 2 kHz octave band noise, at levels and durations sufficient to cause significant but reversible reductions in DPOAE levels. STC data included tip center frequency, tip threshold, and Q10dB measures of tuning for suppression criteria of 3, 6, 9, and 12 dB. Recovery was variable between animals, but all rabbits recovered fully by 7 d post-exposure. STC center frequencies measured during the TTS typically tuned to a slightly higher frequency, while tip thresholds tended to decrease and Q10dB increase. Together, the results indicate that, despite similarities in the general properties of STCs and NTCs, these two types of tuning curves are affected differently following reversible cochlear insult.

  4. Phosphorylation of Yeast Phosphatidylserine Synthase by Protein Kinase A

    PubMed Central

    Choi, Hyeon-Son; Han, Gil-Soo; Carman, George M.

    2010-01-01

    The CHO1-encoded phosphatidylserine synthase from Saccharomyces cerevisiae is phosphorylated and inhibited by protein kinase A in vitro. CHO1 alleles bearing Ser46 → Ala and/or Ser47 → Ala mutations were constructed and expressed in a cho1Δ mutant lacking phosphatidylserine synthase. In vitro, the S46A/S47A mutation reduced the total amount of phosphorylation by 90% and abolished the inhibitory effect protein kinase A had on phosphatidylserine synthase activity. The enzyme phosphorylation by protein kinase A, which was time- and dose-dependent and dependent on the concentration of ATP, caused a electrophoretic mobility shift from a 27-kDa form to a 30-kDa form. The two electrophoretic forms of phosphatidylserine synthase were present in exponential phase cells, whereas only the 27-kDa form was present in stationary phase cells. In vivo labeling with 32Pi and immune complex analysis showed that the 30-kDa form was predominantly phosphorylated when compared with the 27-kDa form. However, the S46A/S47A mutations abolished the protein kinase A-mediated electrophoretic mobility shift. The S46A/S47A mutations also caused a 55% reduction in the total amount of phosphatidylserine synthase in exponential phase cells and a 66% reduction in the amount of enzyme in stationary phase cells. In phospholipid composition analysis, cells expressing the S46A/S47A mutant enzyme exhibited a 57% decrease in phosphatidylserine and a 40% increase in phosphatidylinositol. These results indicate that phosphatidylserine synthase is phosphorylated on Ser46 and Ser47 by protein kinase A, which results in a higher amount of enzyme for the net effect of stimulating the synthesis of phosphatidylserine. PMID:20145252

  5. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection

    PubMed Central

    Moller-Tank, Sven; Maury, Wendy

    2014-01-01

    A variety of both RNA and DNA viruses envelop their capsids in a lipid bilayer. One of the more recently appreciated benefits this envelope is incorporation of phosphatidylserine (PtdSer). Surface exposure of PtdSer disguises viruses as apoptotic bodies; tricking cells into engulfing virions. This mechanism is termed apoptotic mimicry. Several PtdSer receptors have been identified to enhance virus entry and we have termed this group of proteins PtdSer-mediated virus entry enhancing receptors or PVEERs. These receptors enhance entry of a broad range of enveloped viruses. Internalization of virions by PVEERs provides a broad mechanism of entry with little investment by the virus itself and may allow some viruses to attach to cells, thereby making viral glycoprotein/cellular receptor interactions more probable. Alternatively, other viruses may rely entirely on PVEERs for internalization into endosomes. This review provides an overview of PtdSer receptors that serve as PVEERs and the biology behind virion/PVEER interaction. PMID:25277499

  6. Molecular substrates of social avoidance seen following prenatal ethanol exposure and its reversal by social enrichment

    PubMed Central

    Middleton, Frank A.; Varlinskaya, Elena I.; Mooney, Sandra M.

    2013-01-01

    Prenatal ethanol exposure is associated with, and is a risk factor for, developmental disorders with abnormal social behaviors, including autism spectrum disorders. We hypothesize that the specific effects on social behavior are defined by the timing of the exposure as well as subsequent changes in brain regions such as the amygdala and ventral striatum. We recently reported that in utero ethanol exposure on gestational day (G)12 alters social behaviors of weanling (postnatal day (P)28), adolescent (P42), and young adult (P75) rats. Male, but not female, offspring of the ethanol-exposed dams showed significant decreases in social investigation (sniffing of a social partner), contact behavior (grooming or crawling over/under the partner), and play fighting (following, chasing, nape attacks, or pinning) at all ages tested (with maximal effects at P28 and P42). Furthermore, both males and females showed evidence of social avoidance at P42 and P75. The present study sought to test whether a form of social enrichment could normalize any of the social deficits and what the molecular mechanisms of such effects might be. We found that housing rats with non-manipulated control rats normalized the social avoidance phenotype normally seen when they are housed with sex-matched prenatal ethanol-exposed littermates. There was no mitigation of the other ethanol-induced behavioral deficits. Conversely, male control-treated rats housed with non-littermates showed deficits in play fighting, social investigation and contact behavior. Molecular analyses of the amygdala and ventral striatum of adolescent rats following fetal ethanol exposure indicated several specific neurotransmitter systems and pathways that might underlie the social avoidance phenotype as well as its reversal. PMID:22572756

  7. Cognitive behavioral training reverses the effect of pain exposure on brain network activity.

    PubMed

    Kucyi, Aaron; Salomons, Tim V; Davis, Karen D

    2016-09-01

    Repeated sensory exposures shape the brain's function and its responses to environmental stimuli. An important clinical and scientific question is how exposure to pain affects brain network activity and whether that activity is modifiable with training. We sought to determine whether repeated pain exposure would impact brain network activity and whether these effects can be reversed by cognitive behavioral therapy (CBT)-based training. Healthy subjects underwent 8 experimental sessions on separate days on which they received painful thermal stimuli. They were randomly assigned to groups receiving either CBT-based training (regulate group, n = 17) or a non-pain-focused treatment (control group, n = 13). Before and after these sessions, participants underwent functional magnetic resonance imaging (fMRI) during painful stimulation and at rest. The effect of repeated pain over time in the control group was a decrease in the neurotypical pain-evoked default mode network (DMN) deactivation. The regulate group did not show these DMN effects but rather had decreased deactivation of the right ventrolateral prefrontal cortex (R vlPFC) of the executive control network. In the regulate group, reduced pain-evoked DMN deactivation was associated with greater individual reduction in pain intensity and unpleasantness over time. Finally, the regulate group showed enhanced resting functional connectivity between areas of the DMN and executive control network over time, compared with the control group. Our study demonstrates that trainable cognitive states can alter the effect of repeated sensory exposure on the brain. The findings point to the potential utility of cognitive training to prevent changes in brain network connectivity that occur with repeated experience of pain.

  8. Reversible Antibiotic Tolerance Induced in Staphylococcus aureus by Concurrent Drug Exposure

    PubMed Central

    Haaber, Jakob; Friberg, Cathrine; McCreary, Mark; Lin, Richard

    2015-01-01

    ABSTRACT   Resistance of Staphylococcus aureus to beta-lactam antibiotics has led to increasing use of the glycopeptide antibiotic vancomycin as a life-saving treatment for major S. aureus infections. Coinfection by an unrelated bacterial species may necessitate concurrent treatment with a second antibiotic that targets the coinfecting pathogen. While investigating factors that affect bacterial antibiotic sensitivity, we discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram-negative pathogens. We show that colistin-induced vancomycin tolerance persists only as long as the inducer is present and is accompanied by gene expression changes similar to those resulting from mutations that produce stably inherited reduction of vancomycin sensitivity (vancomycin-intermediate S. aureus [VISA] strains). As colistin-induced vancomycin tolerance is reversible, it may not be detected by routine sensitivity testing and may be responsible for treatment failure at vancomycin doses expected to be clinically effective based on such routine testing. Importance   Commonly, antibiotic resistance is associated with permanent genetic changes, such as point mutations or acquisition of resistance genes. We show that phenotypic resistance can arise where changes in gene expression result in tolerance to an antibiotic without any accompanying genetic changes. Specifically, methicillin-resistant Staphylococcus aureus (MRSA) behaves like vancomycin-intermediate S. aureus (VISA) upon exposure to colistin, which is currently used against infections by Gram-negative bacteria. Vancomycin is a last-resort drug for treatment of serious S. aureus infections, and VISA is associated with poor clinical prognosis. Phenotypic and reversible resistance will not be revealed by standard susceptibility testing and may underlie treatment failure. PMID:25587013

  9. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  10. Interaction of phosphatidylserine with mast cells.

    PubMed Central

    Martin, T W; Lagunoff, D

    1978-01-01

    Phosphatidylserine (PtdSer) potentiates histamine secretion from mast cells exposed to concanavalin A and Ca2+. In order to identify the form of PtdSer that is responsible for its effect on mast cell secretion, PtdSer containing a tritium-labeled serine moiety (3H-PtdSer) was synthesized from egg yolk phosphatidylcholine. The critical micelle concentration (CMC) of 3H-PtdSer and the binding isotherm for 3H-PtdSer interaction with mast cells were determined. The midpoints of the binding isotherm and the dose-response curve for potentiation of secretion coincide and are 2 orders of magnitude greater than the CMC. The shape of the binding curve is explicable either in terms of simple binding of preformed PtdSer micelles or of cooperative binding of monomeric PtdSer in which the number of molecules cooperatively associating with a mast cell binding site is equal to the number of monomers in a PtdSer micelle. In either case, at equilibrium, PtdSer micelles are bound to the mast cells. The number of PtdSer molecules bound to a single mast cell at equilibrium was estimated to be 3.7 X 10(9). PMID:84384

  11. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier.

    PubMed

    Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio

    2016-03-15

    Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy.

  12. Effects of adolescent exposure to methylmercury and d-amphetamine on reversal learning and an extradimensional shift in male mice.

    PubMed

    Boomhower, Steven R; Newland, M Christopher

    2017-04-01

    Adolescence is associated with the continued maturation of dopamine neurotransmission and is implicated in the etiology of many psychiatric illnesses. Adolescent exposure to neurotoxicants that distort dopamine neurotransmission, such as methylmercury (MeHg), may modify the effects of chronic d-amphetamine (d-AMP) administration on reversal learning and attentional-set shifting. Male C57Bl/6n mice were randomly assigned to two MeHg-exposure groups (0 ppm and 3 ppm) and two d-AMP-exposure groups (saline and 1 mg/kg/day), producing four treatment groups (n = 10-12/group): control, MeHg, d-AMP, and MeHg + d-AMP. MeHg exposure (via drinking water) spanned postnatal days 21-59 (the murine adolescent period), and once daily intraperitoneal injections of d-AMP or saline spanned postnatal days 28-42. As adults, mice were trained on a spatial-discrimination-reversal (SDR) task in which the spatial location of a lever press predicted reinforcement. Following 2 SDRs, a visual-discrimination task (extradimensional shift) was instated in which the presence of a stimulus light above a lever predicted reinforcement. Responding was modeled using a logistic function, which estimated the rate (slope) of a behavioral transition and trials required to complete half a transition (half-max). MeHg, d-AMP, and MeHg + d-AMP exposure increased estimates of half-max on the second reversal. MeHg exposure increased half-max and decreased the slope term following the extradimensional shift, but these effects did not occur following MeHg + d-AMP exposure. MeHg + d-AMP exposure produced more perseverative errors and omissions following a reversal. Adolescent exposure to MeHg can modify the behavioral effects of chronic d-AMP administration. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Reversible resistance modulation in mesoscopic silver wires induced by exposure to amine vapor.

    PubMed

    Murray, B J; Newberg, J T; Walter, E C; Li, Q; Hemminger, J C; Penner, R M

    2005-08-15

    Ensembles of silver nanowires (AgNEs) with diameters ranging from 200 nm to 1.0 microm have been prepared by electrochemical step edge decoration. These AgNEs showed a rapid (< 5 s), reversible increase in resistance upon exposure to the vapor of ammonia, trimethylamine, and pyridine. The amplitude of the resistance change was up to +3000% (DeltaR/Ro)-more than 2 orders of magnitude larger than can be explained based on boundary layer scattering effects. We experimentally probe the mechanism for this resistance modulation in the case of ammonia, and we propose a model to describe it. Conductive tip atomic force microscopy was used to probe individual sections of nanowires in AgNEs; these data revealed that the resistance change caused by NH(3) exposure was concentrated within a minority (approximately 10%) of the 5-microm wire segments that were probed--not uniformly distributed along each nanowire. All AgNEs showed a temperature dependence of their resistance, alpha, that was smaller than expected for silver metal. Highly sensitive AgNEs sometimes showed a negative alpha, characteristic of semiconductors, but negative alpha values were never observed for AgNEs with a low sensitivity to NH3. AgNEs did not respond to hydrocarbons, O2, H2O, N2, CO, or Ar, but a large (DeltaR/Ro > |-50%|) irreversible decrease in resistance was seen upon exposures to acids including HCl, HNO3, and H2SO4. Based on these and other data, we propose a model in which oxidized constrictions in silver nanowires limit the conductivity of the wire and provide a means for "gating" conduction based on the protonation state of the oxide surface.

  14. The effect of phosphatidylserine on golf performance

    PubMed Central

    Jäger, Ralf; Purpura, Martin; Geiss, Kurt-Reiner; Weiß, Michael; Baumeister, Jochen; Amatulli, Francesco; Schröder, Lars; Herwegen, Holger

    2007-01-01

    Background A randomized, double-blind, placebo-controlled study was performed to evaluate the effect of oral phosphatidylserine (PS) supplementation on golf performance in healthy young golfers with handicaps of 15–40. Methods Perceived stress, heart rate and the quality of the ball flight was evaluated before (pre-test) and after (post-test) 42 days of 200 mg per day PS (n = 10) or placebo (n = 10) intake in the form of a nutritional bar. Subjects teed-off 20 times aiming at a green 135 meters from the tee area. Results PS supplementation significantly increased (p < 0.05) the number of good ball flights (mean: pre-test 8.3 ± 3.5, post-test 10.1 ± 3.0), whereas placebo intake (mean: pre-test 7.8 ± 2.4, post-test 7.9 ± 3.6) had no effect. PS supplementation showed a trend towards improving perceived stress levels during teeing-off (mean: pre-test 5.8 ± 2.0, post-test 4.0 ± 2.0, p = 0.07), whereas stress levels remained unchanged in the placebo group (mean: pre-test: 5.1 ± 2.0, post-test: 5.1 ± 3.1). Supplementation did not influence mean heart rate in either group. Conclusion It is concluded that six weeks of PS supplementation shows a statistically not significant tendency (p = 0.07) to improve perceived stress levels in golfers and significantly improves (p < 0.05) the number of good ball flights during tee-off which might result in improved golf scores. PMID:18053194

  15. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol.

    PubMed

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Rehberger, Kristina; Volz, Sina; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-08-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1-10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Liver growth factor treatment reverses emphysema previously established in a cigarette smoke exposure mouse model.

    PubMed

    Pérez-Rial, Sandra; Del Puerto-Nevado, Laura; Girón-Martínez, Alvaro; Terrón-Expósito, Raúl; Díaz-Gil, Juan J; González-Mangado, Nicolás; Peces-Barba, Germán

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease largely associated with cigarette smoke exposure (CSE) and characterized by pulmonary and extrapulmonary manifestations, including systemic inflammation. Liver growth factor (LGF) is an albumin-bilirubin complex with demonstrated antifibrotic, antioxidant, and antihypertensive actions even at extrahepatic sites. We aimed to determine whether short LGF treatment (1.7 μg/mouse ip; 2 times, 2 wk), once the lung damage was established through the chronic CSE, contributes to improvement of the regeneration of damaged lung tissue, reducing systemic inflammation. We studied AKR/J mice, divided into three groups: control (air-exposed), CSE (chronic CSE), and CSE + LGF (LGF-treated CSE mice). We assessed pulmonary function, morphometric data, and levels of various systemic inflammatory markers to test the LGF regenerative capacity in this system. Our results revealed that the lungs of the CSE animals showed pulmonary emphysema and inflammation, characterized by increased lung compliance, enlargement of alveolar airspaces, systemic inflammation (circulating leukocytes and serum TNF-α level), and in vivo lung matrix metalloproteinase activity. LGF treatment was able to reverse all these parameters, decreasing total cell count in bronchoalveolar lavage fluid and T-lymphocyte infiltration in peripheral blood observed in emphysematous mice and reversing the decrease in monocytes observed in chronic CSE mice, and tends to reduce the neutrophil population and serum TNF-α level. In conclusion, LGF treatment normalizes the physiological and morphological parameters and levels of various systemic inflammatory biomarkers in a chronic CSE AKR/J model, which may have important pathophysiological and therapeutic implications for subjects with stable COPD.

  17. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes

    SciTech Connect

    Jeong, Jaemin; Conboy, Irina M.

    2011-10-14

    Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.

  18. Reversing the mere exposure effect in spider fearfuls: Preliminary evidence of sensitization.

    PubMed

    Becker, Eni S; Rinck, Mike

    2016-12-01

    A mere exposure effect (MEE) is said to occur when individuals' liking of a suboptimally and repeatedly presented stimulus increases compared to never-presented stimuli, while they are unable to indicate which stimuli were previously presented and which were not. In two experiments, we used the MEE to study automatic evaluative processes in highly spider-fearful individuals (SFs). Pictures of spiders and butterflies were repeatedly presented suboptimally to SFs and to non-anxious controls (NACs). In Experiment 1, both groups showed the MEE for butterflies, preferring previously presented butterfly pictures over new ones. For spider pictures, only NACs showed an MEE, whereas SFs showed no preference. Experiment 2 involved a more unpleasant presentation situation, because for each picture, participants had the difficult task to indicate what had been presented to them. This led to a reversed MEE for spiders in SFs: They preferred new spider pictures over previously presented ones. In both experiments, no evidence was observed for the ability to differentiate between old an new pictures. The results are tentatively explained within Zajonc' theory of the MEE, and they are related to the concept of sensitization in anxiety disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats.

    PubMed

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.

  20. Maternal Obesity Caused by Overnutrition Exposure Leads to Reversal Learning Deficits and Striatal Disturbance in Rats

    PubMed Central

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  1. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    SciTech Connect

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Rehberger, Kristina; Volz, Sina; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-08-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population.

  2. Exposure to Silica Nanoparticles Causes Reversible Damage of the Spermatogenic Process in Mice

    PubMed Central

    Yu, Yang; Li, Yang; Li, Yan-Bo; Yu, Yong-Bo; Zhou, Xian-Qing; Sun, Zhi-Wei

    2014-01-01

    Environmental exposure to nanomaterials is inevitable, as nanomaterials have become part of our daily life now. In this study, we firstly investigated the effects of silica nanoparticles on the spermatogenic process according to their time course in male mice. 48 male mice were randomly divided into control group and silica nanoparticle group with 24 mice per group, with three evaluation time points (15, 35 and 60 days after the first dose) per group. Mice were exposed to the vehicle control and silica nanoparticles at a dosage of 20 mg/kg every 3 days, five times over a 13-day period, and were sacrificed at 15, 35 and 60 days after the first dose. The results showed that silica nanoparticles caused damage to the mitochondrial cristae and decreased the levels of ATP, resulting in oxidative stress in the testis by days 15 and 35; however, the damage was repaired by day 60. DNA damage and the decreases in the quantity and quality of epididymal sperm were found by days 15 and 35; but these changes were recovered by day 60. In contrast, the acrosome integrity and fertility in epididymal sperm, the numbers of spermatogonia and sperm in the testes, and the levels of three major sex hormones were not significantly affected throughout the 60-day period. The results suggest that nanoparticles can cause reversible damage to the sperms in the epididymis without affecting fertility, they are more sensitive than both spermatogonia and spermatocytes to silica nanoparticle toxicity. Considering the spermatogenesis time course, silica nanoparticles primarily influence the maturation process of sperm in the epididymis by causing oxidative stress and damage to the mitochondrial structure, resulting in energy metabolism dysfunction. PMID:25003337

  3. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2014-10-01

    signal intensity lesions (arrowheads) on four consecutive coronal sections of a representative mouse brain . Only a few of the lesions (arrowheads...To radiolabel the PS-targeting antibody, mch635, with β- emitters and evaluate its biodistribution and pharmacokinetics in breast cancer brain ...Award Number: W81XWH-12-1-0317 TITLE: Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis PRINCIPAL

  4. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins.

    PubMed

    Cho, Kwang-jin; Park, Jin-Hee; Piggott, Andrew M; Salim, Angela A; Gorfe, Alemaheyu A; Parton, Robert G; Capon, Robert J; Lacey, Ernest; Hancock, John F

    2012-12-21

    Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.

  5. The effects of synthetic estrogen exposure on premating and postmating episodes of selection in sex-role-reversed Gulf pipefish

    PubMed Central

    Rose, Emily; Paczolt, Kimberly A; Jones, Adam G

    2013-01-01

    Environmental estrogens have been shown to affect populations of aquatic organisms in devastating ways, including feminization of males, alterations in mating behaviors, and disruption of sexual selection. Studies have shown 17α-ethinylestradiol (EE2) exposure to induce female-like secondary sexual traits in male Gulf pipefish, changing how females perceive affected males. We aimed to understand the effects of EE2 exposure on the sex-role-reversed mating system and the strength of selection in Gulf pipefish. We used artificial Gulf pipefish breeding aggregations and microsatellite-based parentage analysis to determine maternity. We then calculated the opportunity for selection and selection differentials on body size for both sexes during three consecutive episodes of selection. Exposure to EE2 did not affect the strength of selection, likely due to the unusual sex-role-reversed mating system found in this species. With respect to multiply mated females, EE2-exposed females produced more eggs with higher embryo survivorship than nonexposed females. Thus, short-term exposure to low concentrations (2.0 ng/L) of EE2 in Gulf pipefish enhanced female reproductive success. However, higher EE2 concentrations (5.0 ng/L) caused complete reproductive failure in Gulf pipefish males. These results call for more work on the long-term effects of EE2 exposure in Gulf pipefish in artificial and natural populations. PMID:24478798

  6. Phosphatidylserine synthase 2 and phosphatidylserine decarboxylase are essential for aminophospholipid synthesis in T rypanosoma brucei

    PubMed Central

    Farine, Luce; Jelk, Jennifer; Choi, Jae‐Yeon; Voelker, Dennis R.; Nunes, Jon

    2017-01-01

    Summary Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline‐inducible down‐regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down‐regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth. PMID:28142188

  7. Phosphatidylserine synthase 2 and phosphatidylserine decarboxylase are essential for aminophospholipid synthesis in Trypanosoma brucei.

    PubMed

    Farine, Luce; Jelk, Jennifer; Choi, Jae-Yeon; Voelker, Dennis R; Nunes, Jon; Smith, Terry K; Bütikofer, Peter

    2017-05-01

    Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline-inducible down-regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down-regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth. © 2017 The Authors Molecular Microbiology Published by John Wiley & Sons Ltd.

  8. In Vitro Induction of Erythrocyte Phosphatidylserine Translocation by the Natural Naphthoquinone Shikonin

    PubMed Central

    Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

    2014-01-01

    Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

  9. The Effects of Synthetic Estrogen Exposure on the Sexually Dimorphic Liver Transcriptome of the Sex-Role-Reversed Gulf Pipefish.

    PubMed

    Rose, Emily; Flanagan, Sarah P; Jones, Adam G

    2015-01-01

    Species exhibiting sex-role reversal provide an unusual perspective on the evolution of sex roles and sex differences. However, the proximate effects of sex-role reversal are largely unknown. Endocrine disruptors provide an experimental mechanism to address hormonal regulation of sexually dimorphic gene expression in sex-role-reversed taxa. Here, we investigate gene expression patterns in the liver of the sex-role-reversed Gulf pipefish, because the liver is known to be sexually dimorphic and estrogen-regulated in species with conventional sex roles. Using next-generation RNA-sequencing technology (RNA-seq), we detected sexually dimorphic hepatic gene expression patterns, with a total of 482 differentially expressed genes between the sexes in Gulf pipefish. Two-thirds of these genes were over-expressed in females, and the sex-specific transcriptomes of this sex-role-reversed pipefish's liver were superficially similar to those of fishes with conventional sex-roles. We exposed females, pregnant males, and non-pregnant males to 17α-ethinylestradiol (EE2) at ecologically relevant concentrations of 5ng/L and compared gene expression patterns in the livers of exposed fish to control fish. Several genes that were up-regulated in EE2-exposed males relative to control males were also found to be female-biased in control animals. These genes included several of the classic estrogen biomarkers, such as vitellogenin, choriogenin, and zona pellucida. Thus, estrogen exposure induced feminization of the male liver transcriptome in a sex-role-reversed pipefish. These results suggest that the ancestral state of estrogen-regulated female reproductive physiology has been retained in all sex-role-reversed vertebrates thus far studied, despite substantial evolution of the hormonal regulation of ornamentation and mating behavior in these interesting taxa.

  10. The Effects of Synthetic Estrogen Exposure on the Sexually Dimorphic Liver Transcriptome of the Sex-Role-Reversed Gulf Pipefish

    PubMed Central

    Rose, Emily; Flanagan, Sarah P.; Jones, Adam G.

    2015-01-01

    Species exhibiting sex-role reversal provide an unusual perspective on the evolution of sex roles and sex differences. However, the proximate effects of sex-role reversal are largely unknown. Endocrine disruptors provide an experimental mechanism to address hormonal regulation of sexually dimorphic gene expression in sex-role-reversed taxa. Here, we investigate gene expression patterns in the liver of the sex-role-reversed Gulf pipefish, because the liver is known to be sexually dimorphic and estrogen-regulated in species with conventional sex roles. Using next-generation RNA-sequencing technology (RNA-seq), we detected sexually dimorphic hepatic gene expression patterns, with a total of 482 differentially expressed genes between the sexes in Gulf pipefish. Two-thirds of these genes were over-expressed in females, and the sex-specific transcriptomes of this sex-role-reversed pipefish’s liver were superficially similar to those of fishes with conventional sex-roles. We exposed females, pregnant males, and non-pregnant males to 17α-ethinylestradiol (EE2) at ecologically relevant concentrations of 5ng/L and compared gene expression patterns in the livers of exposed fish to control fish. Several genes that were up-regulated in EE2-exposed males relative to control males were also found to be female-biased in control animals. These genes included several of the classic estrogen biomarkers, such as vitellogenin, choriogenin, and zona pellucida. Thus, estrogen exposure induced feminization of the male liver transcriptome in a sex-role-reversed pipefish. These results suggest that the ancestral state of estrogen-regulated female reproductive physiology has been retained in all sex-role-reversed vertebrates thus far studied, despite substantial evolution of the hormonal regulation of ornamentation and mating behavior in these interesting taxa. PMID:26448558

  11. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2015-12-01

    Award Number: W81XWH-12-1-0316 TITLE: Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis PRINCIPAL...Cancer Brain Metastasis 5b. GRANT NUMBER W81XWH-12-1-0316 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Rolf A. Brekken...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Brain metastasis occurs in

  12. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase.

    PubMed

    Carman, George M; Han, Gil-Soo

    2017-08-16

    The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  14. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    ERIC Educational Resources Information Center

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  15. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    ERIC Educational Resources Information Center

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  16. Reversible formation of a PdC(x) phase in Pd nanoparticles upon CO and O2 exposure.

    PubMed

    Balmes, Olivier; Resta, Andrea; Wermeille, Didier; Felici, Roberto; Messing, Maria E; Deppert, Knut; Liu, Zhi; Grass, Michael E; Bluhm, Hendrik; van Rijn, Richard; Frenken, Joost W M; Westerström, Rasmus; Blomberg, Sara; Gustafson, Johan; Andersen, Jesper N; Lundgren, Edvin

    2012-04-14

    The structure and chemical composition of Pd nanoparticles exposed to pure CO and mixtures of CO and O(2) at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra high vacuum to 10 mbar and from room temperature to a few hundred degrees celsius. Our investigation shows that under CO exposure, above a certain temperature, carbon dissolves into the Pd particles forming a carbide phase. Upon exposure to CO and O(2) mixtures, the carbide phase forms and disappears reversibly, switching at the stoichiometric ratio for CO oxidation. This finding opens new scenarios for the understanding of catalytic oxidation of C-based molecules.

  17. Resveratrol may reverse the effects of long-term occupational exposure to electromagnetic fields on workers of a power plant.

    PubMed

    Zhang, Dan; Zhang, Yang; Zhu, Baoyu; Zhang, He; Sun, Ye; Sun, Chengxun

    2017-07-18

    High-voltage electricity lines are known to generate extremely low-frequency electromagnetic fields (ELF-EMFs). With the process of urbanization, increasing concerns has been focused on the potentially hazardous impacts of ELF-EMF on human health, and the conclusions are controversial. Little is known about the method of prevention against ELF-EMF induced healthy problems. A total of 186 male workers with occupational exposure to high-voltage electricity lines, and 154 male subjects with insignificant exposure as reference control were enrolled in this study. Resveratrol or placebo was given as dietary supplements (500 mg twice daily), and several inflammatory biomarkers and biomarkers of oxidative stress were assessed. Workers who had long-term exposure to high-voltage electricity lines exhibited elevated urinary levels of 8-hydroxy-2-deoxy-guanosine (8-OHdG) and F2-isoprostane, compared to the reference group. Lower plasma nuclear factor kappa B (NF-κB) and interleukin (IL)-6 were observed in exposed workers compared to the reference group. Resveratrol significantly reversed the adverse impacts of ELF-EMF. Stimulated cytokine production by resveratrol was found in exposed workers but not in the reference group. This study supported that occupational and long-term exposure to high-voltage electricity lines has an adverse effect on homeostasis of human body, and resveratrol supplement could be an effective protection strategy against the adverse effects induced by ELF-EMFs.

  18. Brief daily exposures to Asian females reverses perceptual narrowing for Asian faces in Caucasian infants.

    PubMed

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C; Pascalis, Olivier; Slater, Alan M; Heron-Delaney, Michelle; Tanaka, James W; Lee, Kang

    2012-08-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate between novel and familiarized Asian faces at the beginning of testing were given brief daily experience with Asian female faces in the experimental condition and Caucasian female faces in the control condition. At the end of 3 weeks, only infants who received daily experience with Asian females showed above-chance recognition of novel Asian female and male faces. Furthermore, infants in the experimental condition showed greater efficiency in learning novel Asian females compared with infants in the control condition. Thus, visual experience with a novel stimulus category can reverse the effects of perceptual narrowing during infancy via improved stimulus recognition and encoding.

  19. Trifluoperazine-Induced Suicidal Erythrocyte Death and S-Nitrosylation Inhibition, Reversed by the Nitric Oxide Donor Sodium Nitroprusside.

    PubMed

    Ghashghaeinia, Mehrdad; Wesseling, Mauro Carlos; Ramos, Elena; Petkova-Kirova, Polina; Waibel, Sabrina; Lang, Elisabeth; Bissinger, Rosi; Alzoubi, Kossai; Edelmann, Baerbel; Hosseinzadeh, Zohreh; Dreischer, Peter; Shahvaroughi-Farahani, Azam; Mrowietz, Ulrich; Köberle, Martin; Kaestner, Lars; Bernhardt, Ingolf; Martínez-Ruiz, Antonio; Wieder, Thomas; Lang, Florian

    2017-08-09

    The high potency antipsychotic drug trifluoperazine (10-[3-(4-methyl-1-piperazinyl)-propyl]-2-(trifluoromethyl)-(10)H-phenothiazine dihydrochloride; TFP) may either counteract or promote suicidal cell death or apoptosis. Similar to apoptosis, erythrocytes may enter eryptosis, characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis can be stimulated by an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) and inhibited by nitric oxide (NO). We explored whether TFP treatment of erythrocytes induces phosphatidylserine exposure, cell shrinkage, and calcium influx, whether it impairs S-nitrosylation and whether these effects are inhibited by NO. Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and protein nitrosylation from fluorescence switch of the Bodipy-TMR/Sypro Ruby signal. Exposure of human erythrocytes to TFP significantly enhanced the percentage of annexin-V-binding cells, raised [Ca2+]i, and decreased S-nitrosylation. The effect of TFP on annexin-V-binding was not affected by removal of extracellular Ca2+ alone, but was significantly inhibited by pre-treatment with sodium nitroprusside (SNP), an effect significantly augmented by additional removal of extracellular Ca2+. A 3 hours treatment with 0.1 µM Ca2+ ionophore ionomycin triggered annexin-V-binding and cell shrinkage, effects fully reversed by removal of extracellular Ca2+. TFP induces eryptosis and decreases protein S-nitrosylation, effects blunted by nitroprusside. The effect of nitroprusside is attenuated in the presence of extracellular Ca2+. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure

    PubMed Central

    Fan, Cunxiu; Zhao, Yuhua; Yu, Qian; Yin, Wu; Liu, Haipeng; Lin, Jianzhong; Yang, Tianhe; Fan, Ming; Gesang, Luobu; Zhang, Jiaxing

    2016-01-01

    A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure. PMID:27633944

  1. Reversible loss of reproductive fitness in zebrafish on chronic alcohol exposure.

    PubMed

    Dewari, Pooran Singh; Ajani, Funmilola; Kushawah, Gopal; Kumar, Damera Santhosh; Mishra, Rakesh K

    2016-02-01

    Alcoholism is one of the most prevalent diseases in society and causes significant health and social problems. Alcohol consumption by pregnant women is reported to cause adverse effects on the physical and psychological growth of the fetus. However, the direct effect of chronic alcohol consumption on reproductive fitness has not been tested. In recent years, the zebrafish (Danio rerio) has emerged as a versatile model system to study the effects of alcohol on behavior and embryonic development. We utilized the zebrafish model system to address the effect of chronic alcohol exposure (0.5% alcohol in the holding tank for 9 weeks) on reproductive capacity. We found a dramatic decrease in fecundity, measured by counting the number of eggs laid, when at least one of the parents is subject to chronic alcohol exposure. Interestingly, a 9-week alcohol withdrawal program completely restored the reproductive capacity of the treated subjects. In agreement with observations on fecundity, the chronic alcohol exposure leads to increased anxiety, as measured by the novel-tank diving assay. Conversely, the withdrawal program diminished heightened anxiety in alcohol-exposed subjects. Our results highlight the adverse effects of chronic alcohol exposure on the reproductive capacity of both males and females, and underscore the utility of the zebrafish model system to understand the biology of chronic alcoholism.

  2. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells.

    PubMed

    Audo, Rachel; Hua, Charlotte; Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells.

  3. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells

    PubMed Central

    Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I.

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells. PMID:28072868

  4. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

    PubMed

    Vallabhapurapu, Subrahmanya D; Blanco, Víctor M; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S; Qi, Xiaoyang

    2015-10-27

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

  5. Toxicant Exposure and Bioaccumulation: A Common and Potentially Reversible Cause of Cognitive Dysfunction and Dementia

    PubMed Central

    Genuis, Stephen J.; Kelln, Kasie L.

    2015-01-01

    Juxtaposed alongside the ongoing rise in the incidence and prevalence of dementia, is the surge of recent research confirming widespread exposure and bioaccumulation of chemical toxicants. Evidence from sources such as the Centers for Disease Control reveals that most people have accrued varying degrees of assorted toxic pollutants including heavy metals, flame retardants, and pesticide residues within their bodies. It has been well established that many of these toxicants have neurodegenerative as well as neurodevelopmental impact as a result of various pathophysiologic mechanisms including neuronal mitochondrial toxicity and disruption of neurotransmitter regulation. Elimination of stockpiled toxicants from the body may diminish adverse toxicant impact on human biology and allow restoration of normal physiological function. Incorporating a review of medical literature on toxicant exposure and dementia with a case history of a lead-exposed individual diagnosed with dementia, this paper will discuss a much overlooked and potentially widespread cause of declining brain function and dementia. PMID:25722540

  6. Cell biology, physiology and enzymology of phosphatidylserine decarboxylase.

    PubMed

    Di Bartolomeo, Francesca; Wagner, Ariane; Daum, Günther

    2017-01-01

    Phosphatidylethanolamine is one of the most abundant phospholipids whose major amounts are formed by phosphatidylserine decarboxylases (PSD). Here we provide a comprehensive description of different types of PSDs in the different kingdoms of life. In eukaryotes, type I PSDs are mitochondrial enzymes, whereas other PSDs are localized to other cellular compartments. We describe the role of mitochondrial Psd1 proteins, their function, enzymology, biogenesis, assembly into mitochondria and their contribution to phospholipid homeostasis in much detail. We also discuss briefly the cellular physiology and the enzymology of Psd2. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.

  7. Chronic ethanol exposure produces tolerance to elevations in neuroactive steroids: mechanisms and reversal by exogenous ACTH.

    PubMed

    Boyd, Kevin N; Kumar, Sandeep; O'Buckley, Todd K; Morrow, A Leslie

    2010-10-01

    Acute ethanol administration increases potent GABAergic neuroactive steroids, specifically (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one. In addition, neuroactive steroids contribute to ethanol actions. Chronic ethanol exposure results in tolerance to many effects of ethanol, including ethanol-induced increases in neuroactive steroid levels. To determine the mechanisms of tolerance to ethanol-induced increases in neuroactive steroids, we investigated critical signaling molecules that are required for acute ethanol effects. Male Sprague-Dawley rats were administered ethanol via liquid diet for 2 weeks and steroid levels, adrenocorticotrophic hormone (ACTH) and adrenal steroidogenic acute regulatory (StAR) protein expression were measured. Chronic ethanol exposure elicits tolerance to ethanol-induced elevation of serum ACTH and the steroids pregnenolone and progesterone. Surprisingly, chronic ethanol exposure does not result in tolerance to ethanol-induced increases in adrenal StAR protein. However, ethanol-induced StAR phosphorylation is decreased when compared to acute ethanol administration. A separate group of rats exposed to chronic ethanol diet were subsequently challenged with ethanol (2 g/kg) and exhibited a blunted elevation of serum ACTH and progesterone as well as cerebral cortical and hippocampal 3α,5α-THP. Administration of ACTH with the ethanol challenge restored the elevation of serum ACTH and progesterone as well as cerebral cortical 3α,5α-THP levels to those observed in ethanol-naïve rats. Thus, chronic ethanol exposure disrupts ACTH release, which results in tolerance to ethanol-induced increases in neuroactive steroid levels. Loss of the ethanol-induced increases in neuroactive steroids may contribute to behavioral tolerance to ethanol and influence the progression towards alcoholism. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  8. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    PubMed Central

    Nelson, Andrew J. D.; Killcross, Simon

    2013-01-01

    Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006). To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (three sessions). Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1A–C) or in non-sensitized animals (Experiment 2). Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behavior is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behavior. PMID:23720609

  9. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  10. Sex reversal of the amphibian, Xenopus tropicalis, following larval exposure to an aromatase inhibitor.

    PubMed

    Olmstead, Allen W; Kosian, Patricia A; Korte, Joseph J; Holcombe, Gary W; Woodis, Kacie K; Degitz, Sigmund J

    2009-01-31

    Aromatase is a steroidogenic enzyme that catalyzes the conversion of androgens to estrogens in vertebrates. Modulation of this enzyme's activity by xenobiotic exposure has been shown to adversely affect gonad differentiation in a number of diverse species. We hypothesized that exposure to the aromatase inhibitor, fadrozole, during the larval development of the tropical clawed frog, Xenopus tropicalis, would result in masculinization of the developing female gonad. Tadpoles were exposed to fadrozole at nominal concentrations from 1 to 64 microg/L in a flow-through system from < 24 h post-fertilization (Nieuwkoop Faber (NF) stage 15-20) to metamorphosis (NF stage 66). At metamorphosis, morphologically examined gonads indicated complete masculinization of all tadpoles at concentrations of 16 microg/L and above and a significant bias in sex ratio towards males at concentrations of 1 microg/L and above. No effects on time to metamorphosis, body mass, or body length were observed. A random subsample of frogs was raised to reproductive maturity (39 weeks post-fertilization) in control water. All frogs exposed as tadpoles to 16 microg/L fadrozole or greater possessed testes at sexual maturity. Intersexed gonads characterized by the presence of both testicular and ovarian tissue were observed in 12% of frogs in the 4 microg/L treatment. No differences in estradiol, testosterone, or vitellogenin plasma concentrations were observed in exposed males or females compared to controls. Females in the 4 microg/L treatment possessed a significantly greater percentage of pre-vitellogenic oocytes than controls and were significantly smaller in body mass. No differences in sperm counts were observed in exposed males compared to controls. Results from this study demonstrate that larval exposure to an aromatase inhibitor can result in the complete masculinization of female gonads. These masculinized females are phenotypically indistinguishable from normal males at adulthood. Lower levels

  11. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  12. Phosphatidylserine recognition and induction of apoptotic cell clearance by Drosophila engulfment receptor Draper.

    PubMed

    Tung, Tran Thanh; Nagaosa, Kaz; Fujita, Yu; Kita, Asana; Mori, Hiroki; Okada, Ryo; Nonaka, Saori; Nakanishi, Yoshinobu

    2013-05-01

    The membrane phospholipid phosphatidylserine is exposed on the cell surface during apoptosis and acts as an eat-me signal in the phagocytosis of apoptotic cells in mammals and nematodes. However, whether this is also true in insects was unclear. When milk fat globule-epidermal growth factor 8, a phosphatidylserine-binding protein of mammals, was ectopically expressed in Drosophila, the level of phagocytosis was reduced, whereas this was not the case for the same protein lacking a domain responsible for the binding to phosphatidylserine. We found that the extracellular region of Draper, an engulfment receptor of Drosophila, binds to phosphatidylserine in an enzyme-linked immunosorbent assay-like solid-phase assay and in an assay for surface plasmon resonance. A portion of Draper containing domains EMI and NIM located close to the N-terminus was required for binding to phosphatidylserine, and a Draper protein lacking this region was not active in Drosophila. Finally, the level of tyrosine-phosphorylated Draper, indicative of the activation of Draper, in a hemocyte-derived cell line was increased after treatment with phosphatidylserine-containing liposome. These results indicated that phosphatidylserine serves as an eat-me signal in the phagocytic removal of apoptotic cells in Drosophila and that Draper is a phosphatidylserine-binding receptor for phagocytosis.

  13. Associations between proteins and heavy metals in urine at low environmental exposures: evidence of reverse causality.

    PubMed

    Chaumont, Agnès; Nickmilder, Marc; Dumont, Xavier; Lundh, Thomas; Skerfving, Staffan; Bernard, Alfred

    2012-05-05

    Heavy metals can cause renal effects on vulnerable populations but it is uncertain whether these metals still pose health risks at the low exposure levels now prevailing in most industrialized countries. In a cross-sectional study performed on 736 adolescents, we assessed the associations between the concentrations of cadmium and lead in blood and urine and the urinary concentrations of albumin and of low-molecular-weight (LMW) proteins, retinol-binding protein (RBP) and β(2)-microglobulin. Multiple regression analyses were tested using urinary markers normalized to urinary creatinine or specific gravity. Median metal concentrations were in blood (μg/L): lead, 15.1, cadmium, 0.18 and in urine (μg/g creatinine): cadmium, 0.09 and lead, 0.82. Multivariate analyses revealed significant associations in urine between RBP and cadmium as well as between β(2)-microglobulin and lead whereas no associations were seen with metals in blood. These associations were completely abolished in subjects with increased urinary albumin, which may be explained by the competitive inhibition of LMW protein reabsorption by albumin. Given the evidence that cadmium and lead circulate mainly bound to LMW proteins, these associations observed at low exposure might simply reflect the interindividual variations in the renal uptake of proteins sharing the same affinity for tubular binding sites.

  14. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  15. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    SciTech Connect

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek; Binukumar, B.K.; Gill, Kiran Dip; Flora, Swaran J.S.

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  16. Effect of membrane-associated f1 bacteriophage coat protein upon the activity of Escherichia coli phosphatidylserine synthetase.

    PubMed Central

    Chamberlain, B K; Webster, R E

    1978-01-01

    The effects of insertion of the major coat protein of f1 bacteriophage into Escherichia coli membranes were investigated under conditions allowing in vivo analysis of phosphatidylserine synthesis. An E. coli strain possessing a temperature-sensitive phosphatidylserine decarboxylase was utilized under conditions in which the decarboxylase activity was reduced but nonlethal. The presence of the coat protein in the host membranes inhibits the activity of the phosphatidylserine synthetase and perhaps affects the activity of the phosphatidylserine decarboxylase. PMID:211116

  17. Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine

    PubMed Central

    Maekawa, Masashi; Lee, Minhyoung; Wei, Kuiru; Ridgway, Neale D.; Fairn, Gregory D.

    2016-01-01

    Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin. PMID:27805006

  18. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dai, Bingbing; Roife, David; Kang, Ya'an; Gumin, Joy; Rios Perez, Mayrim V; Li, Xinqun; Pratt, Michael; Brekken, Rolf A; Fueyo-Margareto, Juan; Lang, Frederick F; Fleming, Jason B

    2017-04-01

    Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control (P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity (P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR.

  19. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.

    PubMed

    Drexl, Markus; Otto, Larissa; Wiegrebe, Lutz; Marquardt, Torsten; Gürkov, Robert; Krause, Eike

    2016-02-01

    Intense, low-frequency sound presented to the mammalian cochlea induces temporary changes of cochlear sensitivity, for which the term 'Bounce' phenomenon has been coined. Typical manifestations are slow oscillations of hearing thresholds or the level of otoacoustic emissions. It has been suggested that these alterations are caused by changes of the mechano-electrical transducer transfer function of outer hair cells (OHCs). Shape estimates of this transfer function can be derived from low-frequency-biased distortion product otoacoustic emissions (DPOAE). Here, we tracked the transfer function estimates before and after triggering a cochlear Bounce. Specifically, cubic DPOAEs, modulated by a low-frequency biasing tone, were followed over time before and after induction of the cochlear Bounce. Most subjects showed slow, biphasic changes of the transfer function estimates after low-frequency sound exposure relative to the preceding control period. Our data show that the operating point changes biphasically on the transfer function with an initial shift away from the inflection point followed by a shift towards the inflection point before returning to baseline values. Changes in transfer function and operating point lasted for about 180 s. Our results are consistent with the hypothesis that intense, low-frequency sound disturbs regulatory mechanisms in OHCs. The homeostatic readjustment of these mechanisms after low-frequency offset is reflected in slow oscillations of the estimated transfer functions.

  20. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae.

    PubMed

    Muthukumar, Kannan; Nachiappan, Vasanthi

    2013-01-01

    Cadmium (Cd) is a potent toxic element used in several industries and in the process contaminates air, soil, and water. Exposure of Saccharomyces cerevisiae to Cd increases the major phospholipids, and profound increase was observed in phosphatidylethanolamine (PE). In yeast, there are four different pathways contributing to the biosynthesis of PE, and contribution to PE pool through phosphatidylserine decarboxylase2 (psd2) is not significant in normal conditions. Upon Cd exposure, psd2Δ strain showed a significant decrease in major phospholipids including PE. When exposed to Cd, wild-type (WT) cells depicted an increase in ER stress and autophagy, whereas in psd2, ER stress was noted but autophagy process was impaired. The supplementation of ethanolamine did not overcome the Cd stress and also the autophagy process, whereas overexpression of PSD2 in psd2Δ increased the cellular tolerance, PE levels, and the autophagy process against Cd stress. From our studies, we can suggest that PSD2 of S. cerevisiae has an important role in PE synthesis and in autophagy process under Cd stress.

  1. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.

    2013-10-01

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.

  2. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  3. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  4. Differential binding of the HIV-1 envelope to phosphatidylserine receptors.

    PubMed

    Gu, Linlin; Sims, Brian; Krendelchtchikov, Alexandre; Tabengwa, Edlue; Matthews, Qiana L

    2017-10-01

    Prior work has shown that the HIV-1 envelope of the human immunodeficiency virus (HIV) interacts directly with T-cell immunoglobulin mucin (TIM) family proteins. Herein, we demonstrate that HIV-1 envelope glycoproteins from varying HIV-1 clades bind differentially to TIM proteins and functionally similar proteins acting as phosphatidylserine (PtdSer) receptors. Using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) technology, we show that lysate containing HIV-1 envelope and recombinant HIV-1 envelope glycoproteins bind TIM-4 and advanced glycosylation end product-specific receptor (AGER). The complex binding of HIV-1 UG21 gp140 to TIM-4 or AGER suggests a biphasic interaction with these proteins. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Effect of Ion Binding in Palmitoyl-Oleoyl Phosphatidylserine Monolayers

    NASA Astrophysics Data System (ADS)

    Eckler, Matthew; Matysiak, Silvina

    2013-03-01

    Molecular dynamics simulations of palmitoyl-oleoyl phosphatidylserine (POPS) monolayers at the air-water interface were performed with different ionic strengths with the aim of determining the specific organization and dynamics of counterion binding events. Na + ions penetrated the monolayers into both the ester carbonyl and carboxylate regions of the phospholipids. The binding events increase with the addition of salt. Differences in lipid order parameter, headgroup orientation, and prevalence of inter- and intramolecular hydrogen bonding events between the amine group of the lipid and oxygen groups are observed depending on whether the Na + is binding near the carboxylate or ester region of the lipid. The observed changes are explained in terms of the salting-out effect.

  6. Can phosphatidylserine enhance atheroprotective activities of high-density lipoprotein?

    PubMed

    Darabi, Maryam; Kontush, Anatol

    2016-01-01

    Although high-density lipoprotein (HDL) is well known to be protective against atherosclerotic cardiovascular disease, therapeutic interventions to raise HDL-cholesterol levels do not translate into reduction in cardiovascular risk. Due to the compositional complexity of HDL particles, molecular determinants of their atheroprotective function still remain to be clarified. Recent structural and functional data identify phospholipid as a major bioactive component of HDL. Such a role has recently been specifically evidenced for phosphatidylserine (PS); indeed, HDL content of PS displayed positive correlations with all metrics of HDL functionality assessed. This review summarizes current knowledge about HDL-associated PS; possible mechanisms for its atheroprotective role are discussed and potential applications of PS to HDL-based therapies are highlighted.

  7. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity.

    PubMed

    Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio

    2011-10-02

    Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.

  8. Efficient thrombin generation requires molecular phosphatidylserine, not a membrane surface.

    PubMed

    Majumder, Rinku; Weinreb, Gabriel; Lentz, Barry R

    2005-12-27

    Activation of prothrombin to thrombin is catalyzed by a "prothrombinase" complex, traditionally viewed as factor X(a) (FX(a)) in complex with factor V(a) (FV(a)) on a phosphatidylserine (PS)-containing membrane surface, which is widely regarded as required for efficient activation. Activation involves cleavage of two peptide bonds and proceeds via one of two released intermediates or through "channeling" (activation without the release of an intermediate). We ask here whether the PS molecule itself and not the membrane surface is sufficient to produce the fully active human "prothrombinase" complex in solution. Both FX(a) and FV(a) bind soluble dicaproyl-phosphatidylserine (C6PS). In the presence of sufficient C6PS to saturate both FX(a) and FV(a2) (light isoform of FV(a)), these proteins form a tight (Kd = 0.6 +/- 0.09 nM at 37 degrees C) soluble complex. Complex assembly occurs well below the critical micelle concentration of C6PS, as established in the presence of the proteins by quasi-elastic light scattering and pyrene fluorescence. Ferguson analysis of native gels shows that the complex migrates with an apparent molecular mass only slightly larger than that expected for one FX(a) and one FV(a2), further ruling out complex assembly on C6PS micelles. Human prothrombin activation by this complex occurs at nearly the same overall rate (2.2 x 10(8) M(-1) s(-1)) and via the same reaction pathway (50-60% channeling, with the rest via the meizothrombin intermediate) as the activation catalyzed by a complex assembled on PS-containing membranes (4.4 x 10(8) M(-1) s(-1)). These results question the accepted role of PS membranes as providing "dimensionality reduction" and favor a regulatory role for platelet-membrane-exposed PS.

  9. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.

  10. HMGB1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine

    PubMed Central

    Liu, Gang; Wang, Jing; Park, Young-Jun; Tsuruta, Yuko; Lorne, Emmanuel F; Zhao, Xia; Abraham, Edward

    2008-01-01

    Phagocytosis of apoptotic cells, also called efferocytosis, is an essential feature of immune responses and critical to resolution of inflammation. Impaired efferocytosis is associated with unfavorable outcome from inflammatory diseases, including acute lung injury and pulmonary manifestations of cystic fibrosis. HMGB1, a nuclear non-histone DNA-binding protein, has recently been found to be secreted by immune cells upon stimulation with LPS and cytokines. Plasma and tissue levels of HMGB1 are elevated for prolonged periods in chronic and acute inflammatory conditions, including sepsis, rheumatoid arthritis, acute lung injury, burns, and hemorrhage. In this study, we found that HMGB1 inhibits phagocytosis of apoptotic neutrophils by macrophages in vivo and in vitro. Phosphatidylserine (PS) is directly involved in the inhibition of phagocytosis by HMGB1, as blockade of HMGB1 by PS eliminates the effects of HMGB1 on efferocytosis. Confocal and FRET demonstrate that HMGB1 interacts with PS on the neutrophil surface. However, HMGB1 does not inhibit PS-independent phagocytosis of viable neutrophils. Bronchoalveolar lavage (BAL) fluid from Scnn+ mice, a murine model of cystic fibrosis lung disease, which contains elevated concentrations of HMGB1 inhibits neutrophil efferocytosis. Anti-HMGB1 antibodies reverse the inhibitory effect of Scnn+ BAL on efferocytosis, showing that this effect is due to HMGB1. These findings demonstrate that HMGB1 can modulate phagocytosis of apoptotic neutrophils and suggest an alternative mechanism by which HMGB1 is involved in enhancing inflammatory responses. PMID:18768881

  11. Reversible exposure of hydrophobic residues on albumin as a novel strategy for formulation of nanodelivery vehicles for taxanes

    PubMed Central

    Garro, AG; Beltramo, DM; Alasino, RV; Leonhard, V; Heredia, V; Bianco, ID

    2011-01-01

    Background: We report herein a novel strategy for the preparation of protein-based nanode-livery vehicles for hydrophobic active pharmaceutical ingredients. Methods: The procedure consisted of three steps, ie, exposure of hydrophobic residues of a protein to a pH-induced partial unfolding: interaction between hydrophobic residues on the protein and the hydrophobic active pharmaceutical ingredient, and a final step where the structure of the protein was reversed to a native-like state by returning to neutral pH. As proof of concept, the interaction of paclitaxel with partially unfolded states of human serum albumin was evaluated as a potential method for the preparation of water-soluble complexes of the taxane with albumin. Results: We found that paclitaxel readily binds to pH-induced partially unfolded albumin, leading to the formation of optically clear water-soluble complexes. The complexes thus formed were more stable in solution when the albumin native state was at least partially restored by neutralization of the solution to a pH around 7. It was also observed that the hydrodynamic radius of human serum albumin was only slightly increased after the cycle of pH changes, remaining in a monomeric state with a size according to paclitaxel binding. Furthermore, paclitaxel binding did not affect the overall exposure of charged groups of human serum albumin, as evaluated by its interaction with an ionic exchange resin. Conclusion: The in vitro biological activity of the complexes formed was qualitatively equivalent to that of a Cremophor®-based formulation. PMID:21822381

  12. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    PubMed

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Omega-3 fatty acids can reverse the long-term deficits in hippocampal synaptic plasticity caused by prenatal ethanol exposure.

    PubMed

    Patten, Anna R; Sickmann, Helle M; Dyer, Roger A; Innis, Sheila M; Christie, Brian R

    2013-09-13

    Fetal alcohol spectrum disorders result in long-lasting neurological deficits including decreases in synaptic plasticity and deficits in learning and memory. In this study we examined the effects of prenatal ethanol exposure on hippocampal synaptic plasticity in male and female Sprague-Dawley rats. Furthermore, we looked at the capacity for postnatal dietary intervention to rescue deficits in synaptic plasticity. Animals were fed an omega-3 enriched diet from birth until adulthood (PND55-70) and in vivo electrophysiology was performed by stimulating the medial perforant path input to the dentate gyrus and recording field excitatory post-synaptic potentials. LTP was induced by administering bursts of five 400 Hz pulses as a theta-patterned train of stimuli (200 ms inter-burst interval). Ethanol-exposed adult males, but not females, exhibited a significant reduction in LTP. This deficit in male animals was completely reversed with an omega-3 enriched diet. These results demonstrate that omega-3 fatty acids can have benefits following prenatal neuropathological insults and may be a viable option for alleviating some of the neurological deficits associated with FASD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Exposure to Polymers Reverses Inhibition of Pulmonary Surfactant by Serum, Meconium, or Cholesterol in the Captive Bubble Surfactometer

    PubMed Central

    López-Rodríguez, Elena; Ospina, Olga Lucía; Echaide, Mercedes; Taeusch, H. William; Pérez-Gil, Jesús

    2012-01-01

    Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant’s interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. PMID:23062337

  15. Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer.

    PubMed

    López-Rodríguez, Elena; Ospina, Olga Lucía; Echaide, Mercedes; Taeusch, H William; Pérez-Gil, Jesús

    2012-10-03

    Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant's interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Interaction of dipalmitoyl phosphatidylserine with ethanol: induction of an ordered gel phase at room temperature.

    PubMed

    Wachtel, E; Bach, D; Miller, I R; Borochov, N

    2007-05-01

    Using differential scanning calorimetry and small and wide-angle X-ray diffraction, we show that, unlike the saturated phosphatidylcholines, for which ethanol induces chain interdigitation in the gel state, and unlike natural phosphatidylserine in which the gel state is almost unaffected by the addition of ethanol, dipalmitoyl phosphatidylserine (DPPS) assumes an ordered structure after incubation at room temperature in the presence of as little as 5% (v/v) ethanol. In the liquid crystalline state, a progressive decrease in the interbilayer spacing is observed as a function of ethanol concentration, similar to what is found for natural phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS). The 0.37 molar fraction of cholesterol in the DPPS dispersion in the presence of 10% (v/v) ethanol, does not prevent the formation of the ordered gel.

  17. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia.

    PubMed

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-02-10

    Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia.

  18. Transbilayer movement of phosphatidylserine n erythrocytes: inhibition of transport and preferential labeling of a 31,000-dalton protein by sulfhydryl reactive reagents

    SciTech Connect

    Connor, J.; Schroit, A.J.

    1988-02-09

    A series of /sup 125/I-labeled thiolation reagents were synthesized on the basis of the parent structure pyridyldithioethylamine (PDA). These compounds specifically and reversibly inhibit the active intrabilayer transport of phosphatidylserine (PS) in human blood cells. The binding of PDA to cells can be quantified since the thiol-disulfide exchange reaction yields a chromophore. In addition, the presence of a primary amine makes it amenable to derivatization with a variety of compounds. An iodinated derivative of PDA preferentially labeled a 31,000-dalton red blood cell peptide. The labeled component, which may represent the PS transporter, comigrated with integral membrane protein band 7.

  19. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    PubMed

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  20. Effective binding of a phosphatidylserine-targeting antibody to Ebola virus infected cells and purified virions.

    PubMed

    Dowall, S D; Graham, V A; Corbin-Lickfett, K; Empig, C; Schlunegger, K; Bruce, C B; Easterbrook, L; Hewson, R

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus.

  1. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    SciTech Connect

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y. )

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

  2. Poloxamer 188 reduces normal and phosphatidylserine-exposing erythrocyte adhesion to endothelial cells in dextran solutions.

    PubMed

    Koo, Stephanie; Yang, Yang; Neu, Björn

    2013-12-01

    Abnormal red blood cell (RBC) adhesion to endothelial cells (ECs) has been correlated with vascular complications in diseases such as sickle cell anemia and diabetes. Poloxamer 188 (P188) has been clinically tested to treat vaso-occlusion. However, the underlying mechanism(s) have not been clarified, making a methodical application difficult. In this study, we investigate how and to what extent P188 reduces RBC adhesion to ECs in plasma-like solutions. RBC adhesion to ECs is studied in solutions containing dextran, which is known to induce adhesion via macromolecular depletion interaction. It is demonstrated that P188 itself does not induce adhesion of normal RBCs to ECs but significantly reduces the adhesion in solutions containing high molecular mass-dextran. In addition, it is shown that P188 can reduce the adhesion of RBCs with enhanced exposure of phosphatidylserine (PS). Measurements of the electrophoretic mobility indicate that P188 increases the local viscosity inside the electric double layer of RBCs. Based on these results this study suggests that P188 reduces macromolecular depletion interaction, via penetrating into the depletion layer. Taking into consideration that dextran mimics the effects of pro-adhesive non-adsorbing plasma proteins and macromolecules, our study therefore suggests a mechanism for the adhesion reducing effect of P188 and should thus be of potential value for a detailed understanding of how cell-cell interactions in pathological conditions can be reduced.

  3. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

    PubMed

    Tietjen, Gregory T; Gong, Zhiliang; Chen, Chiu-Hao; Vargas, Ernesto; Crooks, James E; Cao, Kathleen D; Heffern, Charles T R; Henderson, J Michael; Meron, Mati; Lin, Binhua; Roux, Benot; Schlossman, Mark L; Steck, Theodore L; Lee, Ka Yee C; Adams, Erin J

    2014-04-15

    Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.

  4. Changes of phosphatidylserine distribution in human red blood cells during the process of loading sugars.

    PubMed

    Quan, Guo Bo; Liu, Min Xia; Ren, Su Ping; Zhang, Jin Gang; Han, Ying

    2006-08-01

    The plasma membrane of red blood cells permits sugars to be loaded into the cytoplasm simply by incubation in a suitable buffer solution containing the sugar. This may provide some hope for the freeze-drying of human red blood cells. However, the effect of the loading process on red blood cells has not been fully investigated. The exposure of phosphatidylserine (PS) on the surface of the cell can be recognized by macrophages and result in shortened circulation in vivo. This study evaluates the effects of the concentration, the incubation time, and the temperature of exposure of human red blood cells to extracellular trehalose or glucose. Exposure of PS was demonstrated by annexin V labeling. It was shown that the efficiency of loading of glucose was significantly greater than that of trehalose. The loading efficiency of both sugars increased with increase in extracellular sugar concentration, prolongation of incubation time, and increase of incubation temperature. The percentages of cells with exposed PS and of damaged cells were dependent on the extracellular sugar concentration, the incubation time, and the temperature. With an extracellular glucose concentration of 0.8M, the percentage of cells with exposed PS was more than 80% and significantly higher than that of red blood cells loaded with trehalose (approximate 20%, P<0.01). As the incubation time was prolonged, the percentage of PS exposure and of damaged cells also increased. After incubation for 5h, the percentage of red cells with exposed PS following loading with glucose was more than 80% and significantly higher than that of cells loaded with trehalose (40%, P<0.01). In addition, the incubation temperature had a major effect on PS exposure. The percentage of cells with PS exposure and the proportion of damaged cells increased with increase of incubation temperature. At 37 degrees C, the percentage of cells with exposed PS and of damaged cells after loading with glucose was more than 80% and

  5. Timed Maternal Melatonin Treatment Reverses Circadian Disruption of the Fetal Adrenal Clock Imposed by Exposure to Constant Light

    PubMed Central

    Mendez, Natalia; Abarzua-Catalan, Lorena; Vilches, Nelson; Galdames, Hugo A.; Spichiger, Carlos; Richter, Hans G.; Valenzuela, Guillermo J.; Seron-Ferre, Maria; Torres-Farfan, Claudia

    2012-01-01

    Surprisingly, in our modern 24/7 society, there is scant information on the impact of developmental chronodisruption like the one experienced by shift worker pregnant women on fetal and postnatal physiology. There are important differences between the maternal and fetal circadian systems; for instance, the suprachiasmatic nucleus is the master clock in the mother but not in the fetus. Despite this, several tissues/organs display circadian oscillations in the fetus. Our hypothesis is that the maternal plasma melatonin rhythm drives the fetal circadian system, which in turn relies this information to other fetal tissues through corticosterone rhythmic signaling. The present data show that suppression of the maternal plasma melatonin circadian rhythm, secondary to exposure of pregnant rats to constant light along the second half of gestation, had several effects on fetal development. First, it induced intrauterine growth retardation. Second, in the fetal adrenal in vivo it markedly affected the mRNA expression level of clock genes and clock-controlled genes as well as it lowered the content and precluded the rhythm of corticosterone. Third, an altered in vitro fetal adrenal response to ACTH of both, corticosterone production and relative expression of clock genes and steroidogenic genes was observed. All these changes were reversed when the mother received a daily dose of melatonin during the subjective night; supporting a role of melatonin on overall fetal development and pointing to it as a ‘time giver’ for the fetal adrenal gland. Thus, the present results collectively support that the maternal circadian rhythm of melatonin is a key signal for the generation and/or synchronization of the circadian rhythms in the fetal adrenal gland. In turn, low levels and lack of a circadian rhythm of fetal corticosterone may be responsible of fetal growth restriction; potentially inducing long term effects in the offspring, possibility that warrants further research. PMID

  6. Exposure to chronic pregnancy stress reverses peripartum-associated adaptations: implications for postpartum anxiety and mood disorders.

    PubMed

    Hillerer, Katharina M; Reber, Stefan O; Neumann, Inga D; Slattery, David A

    2011-10-01

    Maternal adaptations, such as decreased anxiety and attenuated stress responsiveness, are necessary to enable successful postnatal development of the offspring. However, there is growing evidence that they are also required to protect the mental health of the mother and that exposure to chronic stress during pregnancy may prevent such adaptations. Overcrowding stress (24 h) and restraint stress (2 × 1 h) were employed on alternate days between pregnancy d 4-16 to examine the impact of chronic pregnancy stress on relevant behavioral, neuroendocrine, and neuronal peripartum adaptations. To determine whether the chronic stress-induced alterations were specific to the peripartum period, we included virgins as controls. Validating the stress procedure, we demonstrated decreased body-weight gain and increased adrenal weight in stressed dams, relative to their nonstressed controls. Chronic stress prevented a number of peripartum adaptations, including basal plasma hypercorticosterone levels, increased oxytocin mRNA expression in the hypothalamic paraventricular nucleus, and anxiolysis. However, chronic stress did not prevent the peripartum-associated decrease in CRH mRNA expression or attenuate corticosterone response to an acute stressor, nor did it affect hypothalamic vasopressin mRNA expression. Illustrating the specificity of these stress-induced changes to the peripartum period, none of these parameters were affected in stressed virgins. Although chronic stress did not alter depression-related behavior, it reversed the response to acute imipramine treatment and increased active maternal behavior in lactation. Thus, prevention of the peripartum-associated increases in basal corticosterone and oxytocin system activity by pregnancy stress reveal two alterations that may increase the risk of postpartum psychiatric disorders, particularly anxiety.

  7. Chronic leucine exposure results in reduced but reversible glucose-stimulated insulin secretion in INS-1 cells.

    PubMed

    Zhang, Xiujuan; Han, Wenxia; Jiang, Xiuyun; Li, Min; Gao, Ling; Zhao, Jia Jun

    2014-06-01

    Previous studies have demonstrated that sustained high leucine exposure decreases glucose-stimulated insulin secretion (GSIS). However, whether this effect is recoverable following the removal of leucine is unclear. Pancreatic/duodenal homeobox-1 (PDX-1) and its downstream target, glucose transporter 2 (GLUT2), are reported to be positively associated with insulin secretion. However, it also remains unclear whether the effect of leucine on GSIS is accompanied by alterations in PDX-1 and GLUT2. In the present study, insulin secretion, insulin content, PDX-1 and GLUT2 protein expression in INS-1 (rat insulinoma cell line) cells were assessed following a 24-h incubation in 40 mmol/l leucine. Half of the cells were incubated in leucine-free media for a further 24 h to observe the abovementioned effects. In contrast to the control, 40 mmol/l leucine for 24 or 48 h diminished GSIS at high glucose concentrations by 11% (P=0.026) or 22% (P=0.003), insulin content by 14% (P=0.008) or 20% (P=0.002), as well as decreasing PDX-1 and GLUT2 expression. When leucine was removed from the media for a further 24-h incubation, in comparison with those cells that were maintained in leucine treatment for 24 and 48 h, the high GSIS increased by 13% (P=0.032) and 27% (P=0.002), insulin content was augmented by 10% (P=0.014) and 20% (P=0.003), and the protein expression of PDX-1 and GLUT2 also increased. The present study demonstrates that sustained high concentrations of leucine induce a reversible impairment of GSIS and alter insulin content, which is mediated by PDX-1 and GLUT2, in INS-1 cells.

  8. Towards programming immune tolerance through geometric manipulation of phosphatidylserine

    PubMed Central

    Johnson, Brandon M.; Short, Patrick J.; McKinnon, Karen P.; Reisdorf, Shannon; Luft, J. Christopher; DeSimone, Joseph M.

    2016-01-01

    The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research. PMID:26325217

  9. Phosphatidylserine is a critical modulator for Akt activation

    PubMed Central

    Huang, Bill X.; Akbar, Mohammed; Kevala, Karl

    2011-01-01

    Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP3) in the membrane. Here, we demonstrate that Akt activation requires not only PIP3 but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor–induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP3 binding, participates in PIP3-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS–Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP3 availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation. PMID:21402788

  10. Theory of lipid polymorphism: application to phosphatidylethanolamine and phosphatidylserine.

    PubMed Central

    Li, X; Schick, M

    2000-01-01

    We introduce a microscopic model of a lipid with a charged headgroup and flexible hydrophobic tails, a neutral solvent, and counter ions. Short-ranged interactions between hydrophilic and hydrophobic moieties are included as are the Coulomb interactions between charges. Further, we include a short-ranged interaction between charges and neutral solvent, which mimics the short-ranged, thermally averaged interaction between charges and water dipoles. We show that the model of the uncharged lipid displays the usual lyotropic phases as a function of the relative volume fraction of the headgroup. Choosing model parameters appropriate to dioleoylphosphatidylethanolamine in water, we obtain phase behavior that agrees well with experiment. Finally we choose a solvent concentration and temperature at which the uncharged lipid exhibits an inverted hexagonal phase and turn on the headgroup charge. The lipid system makes a transition from the inverted hexagonal to the lamellar phase, which is related to the increased waters of hydration correlated with the increased headgroup charge via the charge-solvent interaction. The polymorphism displayed upon variation of pH mimics that of the behavior of phosphatidylserine. PMID:10620271

  11. Acyl Chain Length of Phosphatidylserine Is Correlated with Plant Lifespan

    PubMed Central

    Tian, Xuejun; Li, Weiqi

    2014-01-01

    Plant lifespan is affected by factors with genetic and environmental bases. The laws governing these two factors and how they affect plant lifespan are unclear. Here we show that the acyl chain length (ACL) of phosphatidylserine (PS) is correlated with plant lifespan. Among the detected eight head-group classes of membrane lipids with lipidomics based on triple quadrupole tandem mass spectrometry, the ACL of PS showed high diversity, in contrast to the ACLs of the other seven classes, which were highly conserved over all stages of development in all plant species and organs and under all conditions that we studied. Further investigation found that acyl chains of PS lengthened during development, senescence, and under environmental stresses and that increasing length was accelerated by promoted- senescence. The acyl chains of PS were limited to a certain carbon number and ceased to increase in length when plants were close to death. These findings suggest that the ACL of PS can count plant lifespan and could be a molecular scale ruler for measuring plant development and senescence. PMID:25058060

  12. Towards programming immune tolerance through geometric manipulation of phosphatidylserine.

    PubMed

    Roberts, Reid A; Eitas, Timothy K; Byrne, James D; Johnson, Brandon M; Short, Patrick J; McKinnon, Karen P; Reisdorf, Shannon; Luft, J Christopher; DeSimone, Joseph M; Ting, Jenny P

    2015-12-01

    The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research.

  13. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair

    PubMed Central

    Middel, Volker; Zhou, Lu; Takamiya, Masanari; Beil, Tanja; Shahid, Maryam; Roostalu, Urmas; Grabher, Clemens; Rastegar, Sepand; Reischl, Markus; Nienhaus, Gerd Ulrich; Strähle, Uwe

    2016-01-01

    Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an ‘eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions. PMID:27641898

  14. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages.

    PubMed

    Geelen, Tessa; Yeo, Sin Yuin; Paulis, Leonie E M; Starmans, Lucas W E; Nicolay, Klaas; Strijkers, Gustav J

    2012-08-28

    Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells.

  15. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages

    PubMed Central

    2012-01-01

    Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. Results Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. Conclusions Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells. PMID:22929153

  16. Phosphatidylserine Increases IKBKAP Levels in Familial Dysautonomia Cells

    PubMed Central

    Keren, Hadas; Donyo, Maya; Zeevi, David; Maayan, Channa; Pupko, Tal; Ast, Gil

    2010-01-01

    Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease. PMID:21209961

  17. Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells.

    PubMed

    Keren, Hadas; Donyo, Maya; Zeevi, David; Maayan, Channa; Pupko, Tal; Ast, Gil

    2010-12-29

    Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.

  18. Phosphatidylserine immobilization of lentivirus for localized gene transfer

    PubMed Central

    Shin, Seungjin; Tuinstra, Hannah M.; Salvay, David M.; Shea, Lonnie D.

    2010-01-01

    Localized and efficient gene transfer can be promoted by exploiting the interaction between the vector and biomaterial. Regulation of the vector-material interaction was investigated by capitalizing on the binding between lentivirus and phosphatidylserine (PS), a component of the plasma membrane. PS was incorporated into microspheres composed of the copolymers of lactide and glycolide (PLG) using an emulsion process. Increasing the weight ratio of PS to PLG led to a greater incorporation of PS. Lentivirus, but not adenovirus, associated with PS-PLG microspheres, and binding was specific to PS relative to PLG alone or PLG modified with phosphatidylcholine. Immobilized lentivirus produced large numbers of transduced cells, and increased transgene expression relative to virus alone. Microspheres were subsequently formed into porous tissue engineering scaffolds, with retention of lentivirus binding. Lentivirus immobilization resulted in long-term and localized expression within a subcutaneously implanted scaffold. Microspheres were also formed into multiple channel bridges for implantation into the spinal cord. Lentivirus delivery from the bridge produced maximal expression at the implant and a gradient of expression rostrally and caudally. This specific binding of lentiviral vectors to biomaterial scaffolds may provide a versatile tool for numerous applications in regenerative medicine or within model systems that investigate tissue development. PMID:20206382

  19. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

    PubMed Central

    Lewis, R N; McElhaney, R N

    2000-01-01

    The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase

  20. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  1. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.

    PubMed

    Takeda, Miyoko; Yamagami, Kanako; Tanaka, Kazuma

    2014-03-01

    Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.

  2. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    SciTech Connect

    Rapallino, M.V.; Cupello, A.; Mainardi, P.; Besio, G.; Loeb, C.W. )

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  3. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    PubMed

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  4. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments.

    PubMed Central

    Makuch, R; Zasada, A; Mabuchi, K; Krauze, K; Wang, C L; Dabrowska, R

    1997-01-01

    Rotary shadowing electron microscopy revealed that attachment of caldesmon to phosphatidylserine (PS) liposomes was mainly through its C-terminal end. To determine the PS-binding sites of caldesmon, we have made use of synthetic peptides covering the two C-terminal calmodulin binding sites and a recombinant fragment corresponding to the N-terminal end of the C-terminal domain that contains an amphipathic helix. Interactions of these peptides with the PS liposomes were studied by nondenaturing gel electrophoresis and fluorescence spectroscopy. The results showed that both calmodulin-binding sites of caldesmon were able to interact with PS. The affinity (Kd) of PS for these sites was in the range of 1.8-14.3 x 10(-5) M, compared to 0.69 x 10(-5) M for the whole caldesmon molecule. Fragments located outside of calmodulin-binding sites bound PS weakly (3.85 x 10(-4) M) and thus may contain a second class of lipid-binding sites. Binding of PS induced conformational changes in regions other than the C-terminal PS-binding sites, as evidenced by the changes in the susceptibility to proteolytic cleavages. Most significantly, the presence of caldesmon greatly increased binding of PS to F-actin, suggesting that caldesmon may tether PS liposomes to actin filaments. These results raise the possibility that caldesmon-lipid interactions could play a functionally important role in the assembly of contractile filaments near the membranes. Images FIGURE 2 FIGURE 4 FIGURE 6 PMID:9284327

  5. Prenatal Ethanol Exposure Causes Glucose Intolerance with Increased Hepatic Gluconeogenesis and Histone Deacetylases in Adult Rat Offspring: Reversal by Tauroursodeoxycholic Acid

    PubMed Central

    Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire

    2013-01-01

    Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086

  6. The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion.

    PubMed Central

    Sánchez-Migallón, M P; Aranda, F J; Gómez-Fernández, J C

    1995-01-01

    We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed. PMID:7696508

  7. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    PubMed

    Wever, Kimberley E; Wagener, Frank A D T G; Frielink, Cathelijne; Boerman, Otto C; Scheffer, Gert J; Allison, Anthony; Masereeuw, Rosalinde; Rongen, Gerard A

    2011-01-01

    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  8. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong

    2015-02-11

    Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.

  9. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice.

    PubMed

    Zhang, Liang; Zhou, Heling; Belzile, Olivier; Thorpe, Philip; Zhao, Dawen

    2014-06-10

    Phosphatidylserine (PS) that is normally constrained to the inner plasma membrane becomes exposed on the surface of endothelial cells (ECs) in tumor vasculature. In the present study, we report the development of a novel tumor vasculature-targeted liposomal nanoprobe by conjugating a human monoclonal antibody, PGN635 that specifically targets PS to polyethylene glycol-coated liposomes. MR contrast, superparamagnetic iron oxide nanoparticles (SPIO) were packed into the core of liposomes, while near-infrared dye, DiR was incorporated into the lipophilic bilayer. The liposomal nanoprobe PGN-L-IO/DiR was fully characterized, and its binding specificity and subsequent internalization into PS-exposed vascular ECs was confirmed by in vitro MRI and histological staining. In vivo longitudinal MRI and optical imaging were performed after i.v. injection of the liposomal nanoprobes into mice bearing breast MDA-MB231 tumors. At 9.4T, T2-weighted MRI detected drastic reduction on signal intensity and T2 values of tumors at 24h. Ionizing radiation significantly increased PS exposure on tumor vascular ECs, resulting in a further MRI signal loss of tumors. Concurrent with MRI, optical imaging revealed a clear tumor contrast at 24h. Intriguingly, PGN-L-IO/DiR exhibited distinct pharmacokinetics and biodistribution with significantly reduced accumulations in liver or spleen. Localization of PGN-L-IO/DiR to tumor was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the tumors. Our studies indicate that PS-targeted liposomes may provide a useful platform for tumor-targeted delivery of imaging contrast agents or potentially anti-cancer drugs for cancer theranostics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Characterization of osseointegrative phosphatidylserine and cholesterol orthopaedic implant coatings

    NASA Astrophysics Data System (ADS)

    Rodgers, William Paul, III

    Total joint arthroplasties are one of the most successful surgeries available today for improving patients' quality of life. Increasing demand is driven largely by an ageing population and an increased occurrence of obesity. Current patient options have significant shortcomings. Nearly a third of patients require a revision surgery before the implant is 15 years old, and those who have revision surgeries are at an increased risk of requiring additional reoperations. A recent implant technology that has shown to be effective at improving bone to implant integration is the use of phosphatidylserine (DOPS) coatings. These coatings are challenging to analyze and measure due to their highly dynamic, soft, rough, thick, and optically diffractive properties. Previous work had difficulty investigating pertinent parameters for these coating's development due in large part to a lack of available analytical techniques and a dearth of understanding of the micro- and nano-structural configuration of the coatings. This work addresses the lack of techniques available for use with DOPS coatings through the development of original methods of measurement, including the use of scanning white light interferometry and nanoindentation. These techniques were then applied for the characterization of DOPS coatings and the study of effects from several factors: 1. influence of adding calcium and cholesterol to the coatings, 2. effects of composition and roughness on aqueous contact angles, and 3. impact of ageing and storage environment on the coatings. Using these newly developed, highly repeatable quantitative analysis methods, this study sheds light on the microstructural configuration of the DOPS coatings and elucidates previously unexplained phenomena of the coatings. Cholesterol was found to supersaturate in the coatings at high concentration and phase separate into an anhydrous crystalline form, while lower concentrations were found to significantly harden the coatings. Morphological

  11. Long term exposure to combination paradigm of environmental enrichment, physical exercise and diet reverses the spatial memory deficits and restores hippocampal neurogenesis in ventral subicular lesioned rats.

    PubMed

    Kapgal, Vijayakumar; Prem, Neethi; Hegde, Preethi; Laxmi, T R; Kutty, Bindu M

    2016-04-01

    Subiculum is an important structure of the hippocampal formation and plays an imperative role in spatial learning and memory functions. We have demonstrated earlier the cognitive impairment following bilateral ventral subicular lesion (VSL) in rats. We found that short term exposure to enriched environment (EE) did not help to reverse the spatial memory deficits in water maze task suggesting the need for an appropriate enriched paradigm towards the recovery of spatial memory. In the present study, the efficacy of long term exposure of VSL rats to combination paradigm of environmental enrichment (EE), physical exercise and 18 C.W. diet (Combination Therapy - CT) in reversing the spatial memory deficits in Morris water maze task has been studied. Ibotenate lesioning of ventral subiculum produced significant impairment of performance in the Morris water maze and reduced the hippocampal neurogenesis in rats. Post lesion exposure to C.T. restored the hippocampal neurogenesis and improved the spatial memory functions in VSL rats. Our study supports the hypothesis that the combination paradigm is critical towards the development of an enhanced behavioral and cognitive experience especially in conditions of CNS insults and the associated cognitive dysfunctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Temperature dependence of calcium-induced fusion of sonicated phosphatidylserine vesicles.

    PubMed Central

    Sun, S T; Day, E P; Ho, J T

    1978-01-01

    We have measured the temperature dependence calcium-induced fusion of sonicated phosphatidylserine vesicles. The vesicles were incubated in the presence of calcium at a specified temperature until the resulting aggregation or fusion process had gone to completion. EDTA was then added and the resulting final size of the vesicle population was measured by using dynamic light scattering. This final size was plotted against incubation temperature to show the temperature dependence of calcium-induced fusion. This curve has a peak near 11 degrees C which may be associated with the phase transition of the sonicated phosphatidylserine vesicles in the presence of calcium prior to the aggregation or fusion process. PMID:279918

  13. An assembly of proteins and lipid domains regulates transport of phosphatidylserine to phosphatidylserine decarboxylase 2 in Saccharomyces cerevisiae.

    PubMed

    Riekhof, Wayne R; Wu, Wen-I; Jones, Jennifer L; Nikrad, Mrinalini; Chan, Mallory M; Loewen, Christopher J R; Voelker, Dennis R

    2014-02-28

    Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.

  14. D-cycloserine into the BLA reverses the impairing effects of exposure to stress on the extinction of contextual fear, but not conditioned taste aversion.

    PubMed

    Akirav, Irit; Segev, Amir; Motanis, Helen; Maroun, Mouna

    2009-11-01

    We investigated whether the N-methyl-D-aspartate (NMDA) receptor partial agonist D-cycloserine (DCS, 20 microg/side) microinfused into the basolateral amygdala (BLA) would reverse stress-induced impairment of extinction in two aversive learning paradigms: contextual fear conditioning and conditioned taste aversion (CTA). We found that DCS in the BLA show differential involvement in the extinction of these two paradigms and in its modulation of stress-induced impairment of extinction. This may suggest that the dysfunctional extinction of fear and taste aversion following exposure to a stressful experience may be modulated by different mechanisms.

  15. Reversion of bioluminescent bacteria (Mutatox) to their luminescent state upon exposure to organic compounds, munitions, and metal salts.

    PubMed

    Arfsten, D P; Davenport, R; Schaeffer, D J

    1994-06-01

    Mutatox is a new genotoxicity bioassay which uses as the endpoint the bioluminescence produced on reversion of a dark strain of the marine bacterium Vibrio fischeri +/- S9. Reversion can occur by several mechanisms, including base substitution, frame-shift, SOS induction, and DNA intercalation. For screening, Mutatox provides many advantages over the Salmonella typhimurium (Ames) assay: it requires minimal sterility, employs a shorter incubation period, and does not require culture maintenance. Eighteen organic chemicals (phenol, polynuclear aromatic hydrocarbons, nitrotoluenes, others), Na3PO4, and 4 genotoxic metals (Cu2+, Ni2+, As3+, Cd2+) were tested. Most of the organic compounds positive in S. typhimurium assays were positive in Mutatox. None of the metals was genotoxic in V. fischeri, possibly due to poor uptake from the saline medium.

  16. Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation

    PubMed Central

    Tyurin, Vladimir A.; Kaynar, A. Murat; Kapralova, Valentyna I.; Wasserloos, Karla; Li, Jin; Mosher, Mackenzie; Wright, Lindsay; Wipf, Peter; Watkins, Simon; Pitt, Bruce R.; Kagan, Valerian E.

    2010-01-01

    Reactive oxygen species have been shown to play a significant role in hyperoxia-induced acute lung injury, in part, by inducing apoptosis of pulmonary endothelium. However, the signaling roles of phospholipid oxidation products in pulmonary endothelial apoptosis have not been studied. Using an oxidative lipidomics approach, we identified individual molecular species of phospholipids involved in the apoptosis-associated peroxidation process in a hyperoxic lung. C57BL/6 mice were killed 72 h after exposure to hyperoxia (100% oxygen). We found that hyperoxia-induced apoptosis (documented by activation of caspase-3 and -7 and histochemical terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of pulmonary endothelium) was accompanied by nonrandom oxidation of pulmonary lipids. Two anionic phospholipids, mitochondria-specific cardiolipin (CL) and extramitochondrial phosphatidylserine (PS), were the two major oxidized phospholipids in hyperoxic lung. Using electrospray ionization mass spectrometry, we identified several oxygenation products in CL and PS. Quantitative assessments revealed a significant decrease of CL and PS molecular species containing C18:2, C20:4, C22:5, and C22:6 fatty acids. Similarly, exposure of mouse pulmonary endothelial cells (MLEC) to hyperoxia (95% oxygen; 72 h) resulted in activation of caspase-3 and -7 and significantly decreased the content of CL molecular species containing C18:2 and C20:4 as well as PS molecular species containing C22:5 and C22:6. Oxygenated molecular species were found in the same two anionic phospholipids, CL and PS, in MLEC exposed to hyperoxia. Treatment of MLEC with a mitochondria-targeted radical scavenger, a conjugate of hemi-gramicidin S with nitroxide, XJB-5-131, resulted in significantly lower oxidation of both CL and PS and a decrease in hyperoxia-induced changes in caspase-3 and -7 activation. We speculate that cytochrome c driven oxidation of CL and PS is associated with the signaling

  17. Exposure to Hypoxia at High Altitude (5380 m) for 1 Year Induces Reversible Effects on Semen Quality and Serum Reproductive Hormone Levels in Young Male Adults.

    PubMed

    He, Jiang; Cui, Jianhua; Wang, Rui; Gao, Liang; Gao, Xiaokang; Yang, Liu; Zhang, Qiong; Cao, Jinjun; Yu, Wuzhong

    2015-09-01

    This study investigated the effect of hypoxia at high altitude on the semen quality and the serum reproductive hormone levels in male adults. A total of 52 male soldiers were enrolled in this cohort study. They were exposed to hypoxia at high altitude (5380 m) for 12 months when undergoing a service. After exposure, they were followed up for 6 months. The samples of semen and peripheral blood were collected at 1 month before exposure (M0), 6 months of exposure (M6), 12 months of exposure (M12), and 6 months after exposure (M18). The semen quality was assessed with computer-assisted analysis system, and the serum levels of reproductive hormones, including prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were analyzed by ELISA. Compared with those at M0, total sperm count, sperm density, motility, survival rate, and serum levels of LH, PRL and testosterone were significantly decreased, whereas the liquefaction time was significantly prolonged and serum FSH level was significantly increased at M6 (p<0.05). At M12, total sperm count and sperm density increased, whereas sperm motility, survival rate, and the liquefaction time further decreased. Sperm velocities, progression ratios, and lateral head displacements were also decreased. Serum FSH level decreased while serum LH, PRL, and testosterone levels increased. Compared with those at M6, the changes in these detected parameters of semen and hormone at M12 were significant (p<0.05). At M18, all these detected parameters except testosterone level returned to levels comparable to those before exposure. In conclusion, hypoxia at high altitude causes adverse effects on semen quality and reproductive hormones, and these effects are reversible.

  18. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor

    SciTech Connect

    Nakahashi-Oda, Chigusa; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer CD300a is a new phosphatidylserine receptor expressed on myeloid cells. Black-Right-Pointing-Pointer Phosphatidylserine delivers a signal for recruitment of SHP-1 by CD300a in mast cells. Black-Right-Pointing-Pointer The CD300a/phosphatidylserine interaction is blocked by MFG-E8 or anti-CD300a antibody. -- Abstract: CD300a is a member of CD300 family molecules consisting of seven genes on human chromosome 17 and nine genes in mouse chromosome 11. CD300a has a long cytoplasmic region containing the consensus immunoreceptor tyrosine-based inhibitory motif (ITIM) sequence. Upon crosslinking with antibodies against CD300a, CD300a mediates an inhibitory signal in myeloid cells. However, the ligand for CD300a has not been identified and the physiological role of CD300a remained unclear. Here, we demonstrate that the chimeric fusion protein of CD300a extracellular domain with the Fc portion of human IgG specifically bound phosphatidylserine (PS), which is exposed on the outer leaflet of the plasma membrane of apoptotic cells. PS binding to CD300a induced SHP-1 recruitment by CD300a in mast cells in response to LPS. These results indicated that CD300a is a new PS receptor.

  19. Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia

    PubMed Central

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-01-01

    Summary Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a ‘do-not-eat-me’ signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late post-malarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia. PMID:26867178

  20. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoyer, Friedrich Felix; Paul, Kathrin; Heiermann, Nadine; Becher, Marc Ulrich; Abu Hussein, Nebal; Kebschull, Moritz; Bedorf, Jörg; Franklin, Bernardo S; Latz, Eicke; Nickenig, Georg; Werner, Nikos

    2012-08-01

    Endothelial microparticles (EMP) are released from activated or apoptotic cells, but their effect on target cells and the exact way of incorporation are largely unknown. We sought to determine the uptake mechanism and the biological effect of EMP on endothelial and endothelial-regenerating cells. EMP were generated from starved endothelial cells and isolated by ultracentrifugation. Caspase 3 activity assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that EMP protect target endothelial cells against apoptosis in a dose-dependent manner. Proteomic analysis was performed to identify molecules contained in EMP, which might be involved in EMP uptake. Expression of annexin I in EMP was found and confirmed by Western blot, whereas the corresponding receptor phosphatidylserine receptor was present on endothelial target cells. Silencing either annexin I on EMP or phosphatidylserine receptor on target cells using small interfering RNA showed that the uptake of EMP by human coronary artery endothelial cells is annexin I/phosphatidylserine receptor dependent. Annexin I-downregulated EMP abrogated the EMP-mediated protection against apoptosis of endothelial target cells. p38 activation was found to mediate camptothecin-induced apoptosis. Finally, human coronary artery endothelial cells pretreated with EMP inhibited camptothecin-induced p38 activation. EMP are incorporated by endothelial cells in an annexin I/phosphatidylserine receptor-dependent manner and protect target cells against apoptosis. Inhibition of p38 activity is involved in EMP-mediated protection against apoptosis.

  1. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis

    PubMed Central

    Vandivier, R. William; Fadok, Valerie A.; Hoffmann, Peter R.; Bratton, Donna L.; Penvari, Churee; Brown, Kevin K.; Brain, Joseph D.; Accurso, Frank J.; Henson, Peter M.

    2002-01-01

    Cystic fibrosis is characterized by an early and sustained influx of inflammatory cells into the airways and by release of proteases. Resolution of inflammation is normally associated with the orderly removal of dying apoptotic inflammatory cells through cell recognition receptors, such as the phosphatidylserine receptor, CD36, and αv integrins. Accordingly, removal of apoptotic inflammatory cells may be impaired in persistent inflammatory responses such as that seen in cystic fibrosis airways. Examination of sputa from cystic fibrosis and non–cystic fibrosis bronchiectasis patients demonstrated an abundance of apoptotic cells, in excess of that seen in patients with chronic bronchitis. In vitro, cystic fibrosis and bronchiectasis airway fluid directly inhibited apoptotic cell removal by alveolar macrophages in a neutrophil elastase-dependent manner, suggesting that elastase may impair apoptotic cell clearance in vivo. Flow cytometry demonstrated that neutrophil elastase cleaved the phosphatidylserine receptor, but not CD36 or CD32 (FcγRII). Cleavage of the phosphatidylserine receptor by neutrophil elastase specifically disrupted phagocytosis of apoptotic cells, implying a potential mechanism for delayed apoptotic cell clearance in vivo. Therefore, defective airway clearance of apoptotic cells in cystic fibrosis and bronchiectasis may be due to elastase-mediated cleavage of phosphatidylserine receptor on phagocytes and may contribute to ongoing airway inflammation. PMID:11877474

  2. In vitro uptake of apoptotic body mimicking phosphatidylserine-quantum dot micelles by monocytic cell line

    NASA Astrophysics Data System (ADS)

    Maiseyeu, Andrei; Bagalkot, Vaishali

    2014-04-01

    A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).

  3. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Lancelot, Eric; Ballet, Sébastien; Murariu, Oltea; Rousseaux, Olivier; Port, Marc; Vander Elst, Luce; Corot, Claire; Muller, Robert N

    2009-01-01

    Molecular and cellular imaging of atherosclerosis has garnered more interest at the beginning of the 21st century, with aims to image in vivo biological properties of plaque lesions. Apoptosis seems an attractive target for the diagnosis of vulnerable atherosclerotic plaques prone to a thrombotic event. The aim of the present work was to screen for apoptosis peptide binders by phage display with the final purpose to detect apoptotic cells in atherosclerotic plaques by magnetic resonance imaging (MRI). A phosphatidylserine-specific peptide identified by phage display was thus used to design an MRI contrast agent (CA), which was evaluated as a potential in vivo reporter of apoptotic cells. A library of linear 6-mer random peptides was screened in vitro against immobilized phosphatidylserine. Phage DNA was isolated and sequenced, and the affinity of peptides for phosphatidylserine was evaluated by enzyme-linked immunosorbent assay. The phosphatidylserine-specific peptide and its scrambled homologue were attached to a linker and conjugated to DTPA-isothiocyanate. The products were purified by dialysis and by column chromatography and complexed with gadolinium chloride. After their evaluation using apoptotic cells and a mouse model of liver apoptosis, the phosphatidylserine-targeted CA was used to image atherosclerotic lesions on ApoE(-/-) transgenic mice. Apoptotic cells were detected on liver and aorta specimens by the immunostaining of phosphatidylserine and of active caspase-3. Sequencing of the phage genome highlighted nine different peptides. Their alignment with amino acid sequences of relevant proteins revealed a frequent homology with Ca2+ channels, reminiscent of the function of annexins. Alignment with molecules involved in apoptosis provides a direct correlation between peptide selection and utility. The in vivo MRI studies performed at 4.7 T provide proof of concept that apoptosis-related pathologies could be diagnosed by MRI with a low molecular weight

  4. Chronic cocaine exposure in adolescence: Effects on spatial discrimination reversal, delay discounting, and performance on fixed-ratio schedules in mice.

    PubMed

    Pope, Derek A; Boomhower, Steven R; Hutsell, Blake A; Teixeira, Kathryn M; Newland, M Christopher

    2016-04-01

    Adolescence is marked by the continued development of the neural pathways that support choice and decision-making, particularly those involving dopamine signaling. Cocaine exposure during adolescence may interfere with this development and manifest as increased perseveration and delay discounting in adulthood, behavioral processes that are related to drug addiction. Adolescent mice were exposed to 30mg/kg/day of cocaine (n=11) or saline vehicle (n=10) for 14days and behavior was assessed in adulthood. In Experiment 1, performance on a spatial-discrimination-reversal procedure was evaluated. In the first two sessions following the first reversal, cocaine-exposed mice produced more preservative errors relative to controls. In Experiment 2, cocaine-exposed mice displayed steeper delay discounting than saline-exposed mice, effects that were reversed by acute cocaine administration. Experiment 3 examined responding maintained by a range of fixed-ratio schedules of reinforcement. An analysis based on a theoretical framework called Mathematical Principles of Reinforcement (MPR) was applied to response-rate functions of individual mice. According to MPR, differences in response-rate functions in adulthood were due to a steepening of the delay-of-reinforcement gradient, disrupted motoric capacity (lower maximum response rates), and enhanced reinforcer efficacy for the adolescent cocaine- compared with saline-exposed mice. Overall, these experiments suggest that chronic exposure to cocaine during adolescence may impair different features of 'executive functions' in adulthood, and these may be related to distortions in the impact of reinforcing events. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.

    PubMed Central

    Elabbadi, N; Ancelin, M L; Vial, H J

    1997-01-01

    Erythrocytes infected with Plasmodium falciparum or Plasmodium knowlesi efficiently incorporated radioactive serine into phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho). Serine was also metabolized into ethanolamine (Etn) and phosphorylethanolamine (P-Etn) via direct serine decarboxylation; this is a major phenomenon since together these metabolites represent 60% of total radioactive water-soluble metabolites. They were identified by reverse-phase HPLC and two TLC-type analyses and confirmed by alkaline phosphatase treatment, which depleted the radioactive P-Etn peak completely with a concomitant increase in that of Etn. In the presence of 5 microM labelled serine, radioactivity appeared in Etn and P-Etn after a 25 min lag period, and isotopic equilibrium was reached at 40 and 95 min respectively. There was a similar lag period for PtdEtn formation, which accumulated steadily for at least 180 min. Incorporation of serine into phospholipids and water-soluble metabolites increased in the presence of up to 500 microM external serine. An apparent plateau was then reached for all metabolites except intracellular serine and Etn. Exogenous Etn (at 20 microM) induced a concomitant dramatic decrease in serine incorporation into P-Etn and all phospholipids, but not into Etn. Increasing exogenous serine to 100 microM decreased the incorporation of radioactive Etn into PtdEtn by only 30%, and the PtdCho level was not affected. 2-Hydroxyethylhydrazine significantly decreased serine incorporation into P-Etn and PtdEtn, whereas Etn was accumulated. No concomitant inhibition of PtdSer or PtdCho labelling from serine occurred, even when PtdEtn formation was decreased by 95%. This indicates that the PtdEtn pool derived from direct serine decarboxylation differed from that derived from PtdSer decarboxylation, and the latter appeared to be preferentially used for PtdCho biosynthesis. Hydroxylamine also inhibited phosphorylation of serine

  6. Rat adipose-derived mesenchymal stem cells aging reduction by zinc sulfate under extremely low frequency electromagnetic field exposure is associated with increased telomerase reverse transcriptase gene expression.

    PubMed

    Fathi, Ezzatollah; Farahzadi, Raheleh; Rahbarghazi, Reza; Samadi Kafil, Hossein; Yolmeh, Rahman

    2017-01-01

    Zinc as an essential trace element was reported to be involved in regulation of the growth and aging of cells. In this study, rat adipose-derived mesenchymal stem cells were exposed to extremely low frequency electromagnetic field (ELF-EMF) of 50 Hz and 20 mT to evaluate whether exposure to ELF-EMF in the presence of zinc sulfate (ZnSO4) affects the telomerase reverse transcriptase (TERT) gene expression and aging in mesenchymal stem cells (MSCs). The cell plates were divided into four groups including group I (control without ZnSO4 and ELF-EMF exposure); group II (ELF-EMF-exposure without ZnSO4); group III (ZnSO4 treatment without ELF-EMF exposure) and group ІV (ELF-EMF exposure with ZnSO4). In the presence of different concentrations of ZnSO4, cells viability, TERT gene expression and percentage of senescent cells were evaluated using colorimetric assay, real-time PCR and senescence-associated β-galactosidase activity assay, respectively. In this experiment, cells were exposed to ELF-EMF for 30 min per day for 21 days in the presence and absence of ZnSO4. The results revealed that ELF-EMF leads to a decrease in the expression of TERT gene and increase in the percentage of senescent cells. However, the ZnSO4 could significantly increase the TERT gene expression and decrease the aging of ELF-EMF-exposed MSCs. It seems that ZnSO4 may be a beneficial agent to delay aging of ELF-EMF-exposed MSCs due to the induction of TERT gene expression.

  7. Rat adipose-derived mesenchymal stem cells aging reduction by zinc sulfate under extremely low frequency electromagnetic field exposure is associated with increased telomerase reverse transcriptase gene expression

    PubMed Central

    Fathi, Ezzatollah; Farahzadi, Raheleh; Rahbarghazi, Reza; Samadi Kafil, Hossein; Yolmeh, Rahman

    2017-01-01

    Zinc as an essential trace element was reported to be involved in regulation of the growth and aging of cells. In this study, rat adipose-derived mesenchymal stem cells were exposed to extremely low frequency electromagnetic field (ELF-EMF) of 50 Hz and 20 mT to evaluate whether exposure to ELF-EMF in the presence of zinc sulfate (ZnSO4) affects the telomerase reverse transcriptase (TERT) gene expression and aging in mesenchymal stem cells (MSCs). The cell plates were divided into four groups including group I (control without ZnSO4 and ELF-EMF exposure); group II (ELF-EMF-exposure without ZnSO4); group III (ZnSO4 treatment without ELF-EMF exposure) and group ІV (ELF-EMF exposure with ZnSO4). In the presence of different concentrations of ZnSO4, cells viability, TERT gene expression and percentage of senescent cells were evaluated using colorimetric assay, real-time PCR and senescence-associated β-galactosidase activity assay, respectively. In this experiment, cells were exposed to ELF-EMF for 30 min per day for 21 days in the presence and absence of ZnSO4. The results revealed that ELF-EMF leads to a decrease in the expression of TERT gene and increase in the percentage of senescent cells. However, the ZnSO4 could significantly increase the TERT gene expression and decrease the aging of ELF-EMF-exposed MSCs. It seems that ZnSO4 may be a beneficial agent to delay aging of ELF-EMF-exposed MSCs due to the induction of TERT gene expression. PMID:28785382

  8. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  9. Exposure to an elevated platform increases plasma corticosterone and hippocampal acetylcholine in the rat: reversal by chlordiazepoxide.

    PubMed

    Degroot, Aldemar; Wade, Mark; Salhoff, Craig; Davis, Richard J; Tzavara, Eleni T; Nomikos, George G

    2004-06-16

    There is evidence that the septohippocampal cholinergic system is activated in response to stressful stimuli. In addition, prior studies indicate that stimulating the hippocampal cholinergic neurotransmission increases open arm exploration in the elevated plus-maze. This raises the possibility that exposing the rat to an elevated platform, which would be similar to confining the animal to the open arms of the plus-maze, would alter hippocampal acetylcholine levels. Results from the present study suggest that an elevated platform can be used as an animal model of stress in that exposure to the platform significantly increased plasma corticosterone levels. Importantly, exposure to a platform significantly increased hippocampal acetylcholine efflux. Interestingly, the increase in plasma corticosterone and hippocampal acetylcholine levels upon exposure to an elevated platform could be prevented by chlordiazepoxide at a dose that had no effect on basal hippocampal acetylcholine or plasma corticosterone levels. However, the elevated platform-induced increase in hippocampal acetylcholine could not be blocked by prior administration of buspirone. These results provide direct evidence for the importance of the hippocampal cholinergic system in stress and provide validation for the elevated platform as a model of stress.

  10. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine.

    PubMed

    Araujo, Joseph A; Landsberg, Gary M; Milgram, Norton W; Miolo, Alda

    2008-04-01

    Aged dogs demonstrate cognitive decline that is linked to brain aging. The purpose of the present study was to examine if a commercially available nutraceutical supplement that may be neuroprotective and contains phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine could improve cognitive function in aged beagles. Nine aged beagles were tested on performance on a delayed-non-matching-to-position task, which is a neuropsychological test of short-term visuospatial memory. All subjects were tested on 5 baseline sessions; then, to assess the supplement, a crossover design was used in which 1 group received the supplement and the other a control substance in the 1st phase, with treatment conditions being reversed in the 2nd phase. Performance accuracy was significantly improved in supplemented dogs compared with control dogs and the effect was long lasting. These findings suggest that the nutraceutical supplement can improve memory in aged dogs.

  11. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine

    PubMed Central

    Araujo, Joseph A.; Landsberg, Gary M.; Milgram, Norton W.; Miolo, Alda

    2008-01-01

    Aged dogs demonstrate cognitive decline that is linked to brain aging. The purpose of the present study was to examine if a commercially available nutraceutical supplement that may be neuroprotective and contains phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine could improve cognitive function in aged beagles. Nine aged beagles were tested on performance on a delayed-non-matching-to-position task, which is a neuropsychological test of short-term visuospatial memory. All subjects were tested on 5 baseline sessions; then, to assess the supplement, a crossover design was used in which 1 group received the supplement and the other a control substance in the 1st phase, with treatment conditions being reversed in the 2nd phase. Performance accuracy was significantly improved in supplemented dogs compared with control dogs and the effect was long lasting. These findings suggest that the nutraceutical supplement can improve memory in aged dogs. PMID:18481547

  12. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2013-10-01

    membrane in most normal mammalian cells but becomes exposed on the outer surface of apoptotic cells, where it subverts unwanted immune reactions against...human monoclonal antibody to study brain metastases in mouse models of breast cancer. PS is an integral membrane phospholipid that is maintained on the...inner leaflet of the plasma membrane . It becomes externalized under stressful conditions or when cells under programmed cell death. PS exposure is a

  13. A method for assessment of the genotoxicity of mainstream cigarette-smoke by use of the bacterial reverse-mutation assay and an aerosol-based exposure system.

    PubMed

    Kilford, Joanne; Thorne, David; Payne, Rebecca; Dalrymple, Annette; Clements, Julie; Meredith, Clive; Dillon, Debbie

    2014-07-15

    To date there are no widely accepted methods for the toxicological testing of complex gaseous mixtures and aerosols, such as cigarette smoke, although some modifications to the standard regulatory methods have been developed and used. Historically, routine testing of cigarettes has primarily focused on the particulate fraction of cigarette smoke. However, this fraction may not accurately reflect the full toxicity and mutagenicity of the smoke aerosol as a whole, which contains semi-volatiles and short-lived products of combustion. In this study we have used a modified version of the bacterial reverse-mutation (Ames) assay for the testing of mainstream smoke generated from 3R4F reference cigarettes with a Vitrocell(®) VC 10 exposure system. This method has been evaluated in four strains of Salmonella typhimurium (TA98, TA100, YG1024 and YG1042) and one strain of Escherichia coli (WP2 uvrA pKM101) in the absence and presence of a metabolic activation system. Following exposure at four concentrations of diluted mainstream cigarette-smoke, concentration-related and reproducible increases in the number of revertants were observed in all four Salmonella strains. E. coli strain WP2 uvrA pKM101 was unresponsive at the four concentrations tested. To quantify the exposure dose and to enable biological response to be plotted as a function of deposited mass, quartz-crystal microbalances were included in situ in the smoke-exposure set-up. This methodology was further assessed by comparing the responses of strain YG1042 to mainstream cigarette-smoke on a second VC 10 Smoking Robot. In summary, the Ames assay can be successfully modified to assess the toxicological impact of mainstream cigarette-smoke.

  14. Neonatal Repeated Exposure to Isoflurane not Sevoflurane in Mice Reversibly Impaired Spatial Cognition at Juvenile-Age.

    PubMed

    Liu, Jianhui; Zhao, Yanhong; Yang, Junjun; Zhang, Xiaoqing; Zhang, Wei; Wang, Peijun

    2017-02-01

    Inhalation anesthetics facilitate surgical procedures in millions of children each year. However, animal studies demonstrate that exposure to the inhalation anesthetic isoflurane may cause neuronal cell death in developing brains. The long-term cytotoxic effects of sevoflurane, the most popular pediatric anesthetic, have not been compared with isoflurane. Thus, this study was designed to compare the effects of equipotent doses of these two anesthetics on neonatal long-term neurotoxicity. Postnatal 7-day-old (P7) C57/BL male mice were exposed to 1.5% isoflurane or 2.2% sevoflurane 2 h a day for 3 days. Non-anesthetized mice served as controls. The effects of anesthesia on learning and memory were assessed using the Morris Water Maze (MWM) at Postnatal days 30 (P30) and P60 respectively. The hippocampal content of N-methyl-D-aspartate receptor subunits (NMDA), brain-derived neurotrophic factor (BDNF), and synaptophysin (Syn) were determined by Western Blot. Neuron structure and apoptosis were assessed via Nissl and TUNEL staining, respectively. The isoflurane group exhibited cognitive impairment at P30. Repeated inhalation of isoflurane or sevoflurane caused different degrees of apoptosis and damaged hippocampal neurons in neonatal mice, particularly isoflurane. In neonatal mice, repeated exposure to isoflurane, but not sevoflurane, caused spatial cognitive impairments in juvenile mice. Our findings suggest that isoflurane induces significantly greater neurodegeneration than an equipotent minimum alveolar concentration of sevoflurane.

  15. Activation and Reversal of Lipotoxicity in PC12 and Rat Cortical Cells Following Exposure to Palmitic Acid

    PubMed Central

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; Casiano, Carlos A.; De Leon, Marino

    2009-01-01

    Lipotoxicity involves a series of pathological cellular responses after exposure to elevated levels of fatty acids. This process may be detrimental to normal cellular homeostasis and cell viability. The present study shows that nerve growth factor-differentiated PC12 cells (NGFDPC12) and rat cortical cells (RCC) exposed to high levels of palmitic acid (PA) exhibit significant lipotoxicity and death linked to an “augmented state of cellular oxidative stress” (ASCOS). The ASCOS response includes generation of reactive oxygen species (ROS), alterations in the mitochondrial transmembrane potential, and increase in the mRNA levels of key cell death/survival regulatory genes. The observed cell death was apoptotic based on nuclear morphology, caspase-3 activation, and cleavage of lamin B and PARP. Quantitative real-time PCR measurements showed that cells undergoing lipotoxicity exhibited an increase in the expression of the mRNAs encoding the cell death-associated proteins BNIP3 and FAS receptor. Cotreatment of NGFDPC12 and RCC cells undergoing lipotoxicity with docosahexaenoic acid (DHA) and bovine serum albumin (BSA) significantly reduced cell death within the first 2 hr following the initial exposure to PA. The data suggest that lipotoxicity in NGFDPC12 and cortical neurons triggers a strong cell death apoptotic response. Results with NGFDPC12 cells suggest a linkage between induction of ASCOS and the apoptotic process and exhibit a temporal window that is sensitive to DHA and BSA interventions. PMID:18951473

  16. Gallium arsenide exposure impairs processing of particulate antigen by macrophages: modification of the antigen reverses the functional defect.

    PubMed

    Hartmann, Constance B; McCoy, Kathleen L

    2004-06-11

    Gallium arsenide (GaAs), a semiconductor used in the electronics industry, causes systemic immunosuppression in animals. The chemical's impact on macrophages to process the particulate antigen, sheep red blood cells (SRBC), for a T cell response in culture was examined after in vivo exposure of mice. GaAs-exposed splenic macrophages were defective in activating SRBC-primed lymph node T cells that could not be attributed to impaired phagocytosis. Modified forms of SRBC were generated to examine the compromised function of GaAs-exposed macrophages. SRBC were fixed to maintain their particulate nature and subsequently delipidated with detergent. Delipidation of intact SRBC was insufficient to restore normal antigen processing in GaAs-exposed macrophages. However, chemically exposed cells efficiently processed soluble sheep proteins. These findings suggest that the problem may lie in the release of sequestered sheep protein antigens, which then could be effectively cleaved to peptides. Furthermore, opsonization of SRBC with IgG compensated for the macrophage processing defect. The influence of signal transduction and phagocytosis via Fcgamma receptors on improved antigen processing could be dissociated. Immobilized anti-Fcgamma receptor antibody activated macrophages to secrete a chemokine, but did not enhance processing of unmodified SRBC by GaAs-exposed macrophages. Restoration of normal processing of particulate SRBC by chemically exposed macrophages involved phagocytosis through Fcgamma receptors. Hence, initial immune responses may be very sensitive to GaAs exposure, and the chemical's immunosuppression may be averted by opsonized particulate antigens.

  17. The anti-malaria drug artesunate inhibits cigarette smoke and ovalbumin concurrent exposure-induced airway inflammation and might reverse glucocorticoid insensitivity.

    PubMed

    Luo, Qiongzhen; Lin, Jiangtao; Zhang, Lu; Li, Hong; Pan, Lin

    2015-12-01

    The anti-malaria drug artesunate has been shown to attenuate experimental allergic asthma via inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This study was to further determine the effects of artesunate on cigarette smoke and ovalbumin (OVA) concurrent exposure-induced airway inflammation, the related mechanism, and glucocorticoid insensitivity. In vivo: Female BALB/c mice concurrently exposed to cigarette smoke and OVA developed mixed eosinophilic and neutrophilic airway inflammation. Airway hyper-responsiveness, total and differential cell counts, and pro-inflammatory cytokine levels (interleukin (IL)-4, IL-8, IL-13 and tumor necrosis factor (TNF)-α) in bronchoalveolar lavage fluid (BALF) were measured. Lung tissue sections were stained for histological analysis, and proteins were extracted for Western blotting. Artesunate reduced methacholine-induced airway hyper-responsiveness, suppressed pulmonary inflammation cell recruitment and IL-4, IL-8, IL-13 and TNF-α levels, selectively inhibited PI3Kδ/Akt pathway, and restored HDAC2 activity. In vitro: BEAS-2B cells were exposed to cigarette smoke extract (CSE) for 6h and then stimulated with TNF-α overnight. Glucocorticoid sensitivity was evaluated by the inhibition of TNF-α-induced IL-8 production by dexamethasone. CSE reduced the effects of dexamethasone on TNF-α-induced IL-8 production in BEAS-2B cells, while artesunate reversed CSE-induced glucocorticoid insensitivity and restored HDAC2 deactivation induced by CSE. Artesunate ameliorated cigarette smoke and OVA concurrent exposure-induced airway inflammation, inhibited the PI3Kδ/Akt pathway, restored HDAC2 activity, and reversed CSE-induced glucocorticoid insensitivity in BEAS-2B cells. These findings indicate that artesunate might play a protective role in asthma induced by cigarette smoke and glucocorticoid insensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reversible oligohydramnios in the second trimester of pregnancy in two patients with long-term diclofenac exposure.

    PubMed

    Scherneck, Stephan; Schöpa, Franziska Lilli; Entezami, Michael; Kayser, Angela; Weber-Schoendorfer, Corinna; Schaefer, Christof

    2015-12-01

    The use of non-steroidal anti-inflammatory drugs like diclofenac in the third trimester of pregnancy can cause severe side effects, in particular oligohydramnios, premature closure of ductus arteriosus, and fetal kidney damage. However, the treatment with non-steroidal anti-inflammatory drugs until gestational week 28 is accepted as relatively safe. Here we describe two retrospectively reported cases of early-onset oligohydramnios associated with long-term diclofenac exposure of at least 150mg per day. The pathological findings were detected at gestational weeks 22 and 23, respectively. Amniotic fluid turned to normal after discontinuation of diclofenac in both cases, suggesting causality. Although early-onset oligohydramnios is a rare complication, caution for long-term diclofenac use in high doses is recommended even before gestational week 28. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico

    NASA Astrophysics Data System (ADS)

    Vernier, P. Thomas; Ziegler, Matthew J.; Sun, Yinghua; Gundersen, Martin A.; Tieleman, D. Peter

    2006-12-01

    Nanosecond, megavolt-per-meter pulses—higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells—produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.

  20. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  1. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers.

    PubMed Central

    Goldberg, E M; Lester, D S; Borchardt, D B; Zidovetzki, R

    1994-01-01

    The combined effects of the diacylglycerols (DAGs) with the various acyl chains and Ca2+ on the structure of phosphatidylcholine/phosphatidylserine (4:1 mole/mole) bilayers were studied using 2H- and 31P NMR. The following DAG- and Ca(2+)-induced bilayer perturbations were identified. 1) Increased tendency to form nonbilayer lipid phases was induced by diolein or stearoylarachidonoylglycerol, and was synergistically enhanced by the addition of Ca2+. 2) "Transverse" bilayer perturbation was induced by dioctanoylglycerol. The addition of this DAG caused increased ordering of the phospholipid acyl side chains in the region adjacent to the headgroup, with the concomitant decrease of the order toward the bilayer interior. 3) Separation of the phosphatidylcholine and phosphatidylserine bilayer components was induced by combinations of relatively high (1:5 mole/mole to phosphatidylserine) Ca2+ and 25 mol% (to the phospholipids) of diolein, stearoylarachidonoylglycerol, or oleoylacetylglycerol. 4) Lateral phase separation of the bilayers on the regions of different fluidities was induced by dipalmitin. These physicochemical effects were correlated with the effects of these DAGs and Ca2+ on the activity of protein kinase C. The increased tendency to form nonbilayer lipid phases and the transverse bilayer perturbations correlated with the increased protein kinase C activity, whereas the actual presence of the nonbilayer lipid phases, as well as the separation of the phosphatidylcholine and phosphatidylserine components, was associated with the decrease in the protein kinase C activity. The lateral phase separation of the bilayer on gel-like and liquid crystalline regions did not have an effect on the activity of the enzyme. These results demonstrate the importance of the physicochemical properties of the membranes in the process of activation of protein kinase C. PMID:8161692

  2. Formaldehyde-fixation of platelets for flow cytometric measurement of phosphatidylserine exposure is feasible.

    PubMed

    Rochat, Sophie; Alberio, Lorenzo

    2015-01-01

    Strong platelet activation results in a redistribution of negatively charged phospholipids from the cytosolic to the outer leaflet of the cellular membrane. Annexin V has a high affinity to negatively charged phospholipids and can be used to identify procoagulant platelets. Formaldehyde fixation can cause factitious Annexin V binding. Our aim was to evaluate a method for fixing platelets avoiding additional Annexin V binding. We induced expression of negatively charged phospholipids on the surface of a fraction of platelets by combined activation with convulxin and thrombin in the presence of Annexin V-fluorescein isothiocyanate and calcium. Aliquots of resting and activated platelets were fixed with a low concentration, calcium-free formaldehyde solution. Both native platelets and fixed platelets were analyzed by flow cytometry immediately and after a 24-h storage at 4°C. We observed that the percentage of Annexin V positive resting platelets ranged from 1.5 to 9.3% for the native samples and from 0.4 to 12.8% for the fixed samples (P=0.706, paired t-test). The amount of Annexin V positive convulxin/thrombin activated platelets varied from 12.9 to 35.4% without fixation and from 15.3 to 36.3% after formalin fixation (P=0.450). After a 24-h storage at 4°C, Annexin V positive platelets significantly increased both in the resting and in the convulxin/thrombin activated samples of native platelets (both P<0.001), while results for formalin fixed platelets did not differ from baseline values (P=0.318 for resting fixed platelets; P=0.673 for activated fixed platelets). We conclude that platelet fixation with a low concentration, calcium-free formaldehyde solution does not alter the proportion of Annexin V positive platelets. This method can be used to investigate properties of procoagulant platelets by multicolor flow-cytometric analysis requiring fixation steps.

  3. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif.

    PubMed

    Rosenbaum, Sabrina; Kreft, Sandra; Etich, Julia; Frie, Christian; Stermann, Jacek; Grskovic, Ivan; Frey, Benjamin; Mielenz, Dirk; Pöschl, Ernst; Gaipl, Udo; Paulsson, Mats; Brachvogel, Bent

    2011-02-18

    Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.

  4. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  5. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles*

    PubMed Central

    Martin, Katherine R.; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M.; Witko-Sarsat, Véronique

    2016-01-01

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  7. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    SciTech Connect

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.

  8. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    SciTech Connect

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.

  9. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.

    PubMed

    Rai, Durgesh K; Qian, Shuo; Heller, William T

    2016-11-01

    Membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L=1/500, but membrane thinning results when P/L=1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. The results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    SciTech Connect

    Blanton, M.P.; Wang, H.H. )

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.

  11. BNIP-2 binds phosphatidylserine, localizes to vesicles, and is transported by kinesin-1.

    PubMed

    Akamatsu, Rie; Ishida-Kitagawa, Norihiro; Aoyama, Takane; Oka, Chio; Kawaichi, Masashi

    2015-02-01

    BNIP-2 shows high homology with the Cayman ataxia protein, caytaxin, which functions as a kinesin-1 adapter bridging cargos and kinesin light chains (KLCs). BNIP-2 is known to induce cell shape changes when over-expressed in culture cells, but its physiological functions are mostly unknown. BNIP-2 interacts with KLC through the conserved WED motif in the N-terminal region of BNIP-2. Interaction with KLC and transportation by kinesin-1 are essential for over-expressed BNIP-2 to elongate cells and induce cellular processes. Endogenous BNIP-2 localizes to the Golgi apparatus, early and recycling endosomes and mitochondria, aligned with microtubules, and moves at a speed compatible with kinesin-1 transportation. The CRAL-TRIO domain of BNIP-2 specifically interacts with phosphatidylserine, and the vesicular localization of BNIP-2 requires interaction with this phospholipid. BNIP-2 mutants which do not bind phosphatidylserine do not induce morphological changes in cells. These data show that similar to caytaxin, BNIP-2 is a kinesin-1 adapter involved in vesicular transportation in the cytoplasm and that association with cargos depends on interaction of the CRAL-TRIO domain with membrane phosphatidylserine.

  12. Reversal of Refractory Ulcerative Colitis and Severe Chronic Fatigue Syndrome Symptoms Arising from Immune Disturbance in an HLA-DR/DQ Genetically Susceptible Individual with Multiple Biotoxin Exposures.

    PubMed

    Gunn, Shelly R; Gunn, G Gibson; Mueller, Francis W

    2016-05-11

    Patients with multisymptom chronic conditions, such as refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS), present diagnostic and management challenges for clinicians, as well as the opportunity to recognize and treat emerging disease entities. In the current case we report reversal of co-existing RUC and CFS symptoms arising from biotoxin exposures in a genetically susceptible individual. A 25-year-old previously healthy male with new-onset refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS) tested negative for autoimmune disease biomarkers. However, urine mycotoxin panel testing was positive for trichothecene group and air filter testing from the patient's water-damaged rental house identified the toxic mold Stachybotrys chartarum. HLA-DR/DQ testing revealed a multisusceptible haplotype for development of chronic inflammation, and serum chronic inflammatory response syndrome (CIRS) biomarker testing was positive for highly elevated TGF-beta and a clinically undetectable level of vasoactive intestinal peptide (VIP). Following elimination of biotoxin exposures, VIP replacement therapy, dental extractions, and implementation of a mind body intervention-relaxation response (MBI-RR) program, the patient's symptoms resolved. He is off medications, back to work, and resuming normal exercise. This constellation of RUC and CFS symptoms in an HLA-DR/DQ genetically susceptible individual with biotoxin exposures is consistent with the recently described CIRS disease pathophysiology. Chronic immune disturbance (turbatio immuno) can be identified with clinically available CIRS biomarkers and may represent a treatable underlying disease etiology in a subset of genetically susceptible patients with RUC, CFS, and other immune disorders.

  13. The effect of chemical warfare on respiratory symptoms, pulmonary function tests and their reversibility 23-25 years after exposure.

    PubMed

    Boskabady, Mrteza; Boskabady, Mohammad Hossein; Zabihi, Narges Amel; Boskabady, Marzie

    2015-01-01

    Pulmonary complications due to mustard gas exposure range from no effect to severe bronchial stenosis. Pulmonary function tests (PFTs) and respiratory symptoms in chemical war victims were studied 23-25 years after exposure to sulfur mustard (SM). Respiratory symptoms were evaluated in a sample of 142 chemical war victims and 120 control subjects with similar age from the general population using a questionnaire including questions on respiratory symptoms in the past year. PFT values were also measured in chemical war victims before and 15 min after the inhalation of 200 µg salbutamol and baseline PFT in controls. All chemical war victims (100%) reported respiratory symptoms. Wheezing (66.19%), cough (64.78%), and chest tightness (54.4%) were the most common symptoms and only 15.5% of chemical war victims reported sputum (p < 0.01 for sputum and p < 0.001 for other symptoms compared with control group). In addition, 49.3% of chemical war victims had wheeze in chest examination, which were significantly higher than control group (p < 0.001). The severity of respiratory symptoms was also significantly higher than control subjects (p < 0.05 for sputum and p < 0.001 for other symptoms). All the PFT values were also significantly lower in chemical war victims than that in control subjects (p < 0.001 for all cases). In addition, all the PFT values improved significantly after the inhalation of 200 µg salbutamol (p < 0.05-p < 0.001). These results showed that chemical war victims, 23-25 years after exposure to chemical warfare have higher frequencies and severity of respiratory symptoms. PFT values were also significantly reduced among chemical war victims, which showed reversibility due to the inhalation of 200 µg salbutamol.

  14. Reversal of Refractory Ulcerative Colitis and Severe Chronic Fatigue Syndrome Symptoms Arising from Immune Disturbance in an HLADR/DQ Genetically Susceptible Individual with Multiple Biotoxin Exposures

    PubMed Central

    Gunn, Shelly R.; Gibson Gunn, G.; Mueller, Francis W.

    2016-01-01

    Patient: Male, 25 Final Diagnosis: Ulcerative colitis and chronic fatigue syndrome Symptoms: Colitis • profound fatigue • multi-joint pain • cognitive impairment • corneal keratitis Medication: — Clinical Procedure: VIP replacement therapy Specialty: Family Medicine Objective: Unusual clinical course Background: Patients with multisymptom chronic conditions, such as refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS), present diagnostic and management challenges for clinicians, as well as the opportunity to recognize and treat emerging disease entities. In the current case we report reversal of co-existing RUC and CFS symptoms arising from biotoxin exposures in a genetically susceptible individual. Case Report: A 25-year-old previously healthy male with new-onset refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS) tested negative for autoimmune disease biomarkers. However, urine mycotoxin panel testing was positive for trichothecene group and air filter testing from the patient’s water-damaged rental house identified the toxic mold Stachybotrys chartarum. HLA-DR/DQ testing revealed a multisusceptible haplotype for development of chronic inflammation, and serum chronic inflammatory response syndrome (CIRS) biomarker testing was positive for highly elevated TGF-beta and a clinically undetectable level of vasoactive intestinal peptide (VIP). Following elimination of biotoxin exposures, VIP replacement therapy, dental extractions, and implementation of a mind body intervention-relaxation response (MBI-RR) program, the patient’s symptoms resolved. He is off medications, back to work, and resuming normal exercise. Conclusions: This constellation of RUC and CFS symptoms in an HLA-DR/DQ genetically susceptible individual with biotoxin exposures is consistent with the recently described CIRS disease pathophysiology. Chronic immune disturbance (turbatio immuno) can be identified with clinically available CIRS biomarkers and

  15. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats.

    PubMed

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus

    2010-11-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected.

  16. Reversibility of Glomerular Renal Function Decline in HIV Uninfected Men and Women Discontinuing Emtricitabine-Tenofovir Disoproxil Fumarate Pre-exposure Prophylaxis

    PubMed Central

    Mugwanya, Kenneth K.; Wyatt, Christina; Celum, Connie; Donnell, Deborah; Kiarie, James; Ronald, Allan; Baeten, Jared M.

    2015-01-01

    Background Tenofovir disoproxil fumarate (TDF) pre-exposure prophylaxis (PrEP) use is associated with a small but statistically significant decline in estimated glomerular filtration rate (eGFR). We investigated the reversibility of eGFR decline among HIV-uninfected adults discontinuing PrEP. Methods Data were from the Partners PrEP Study, a randomized trial of daily oral TDF and emtricitabine (FTC)-TDF PrEP among African HIV-uninfected men and women with baseline creatinine clearance ≥60mL/min. Serum creatinine was measured quarterly while on study medication and at month 1 and 2 after discontinuation. eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration Equation. Results A total of 3924 individuals had a post-study drug serum creatinine measurement after the scheduled drug discontinuation (1271 for TDF, 1308 for FTC-TDF, and 1345 for placebo); 65% were male, median age was 35 (range 18–64) years. Median time on study drug was 33 (IQR 25–36) months overall, and 36 months (IQR 30–36) for TDF and FTC-TDF. Mean eGFR at the last on-treatment visit was 129 mL/min/1.73 m2 for TDF and 128 mL/min/1.73 m2 for FTC-TDF versus 131 mL/min/1.73 m2 for placebo (2-3 mL/min/1.73 m2 mean decline for PrEP versus placebo, p ≤0.01) and this difference reversed by 4 weeks after drug discontinuation (mean eGFR at the first post-drug visit: 130 mL/min/1.73 m2 in all groups). More than 96% of participants had a confirmed >75% eGFR rebound to baseline eGFR level by 8 weeks after drug discontinuation, with similar proportions across treatment groups. Conclusions In this large, placebo-controlled study of TDF-based PrEP, the small reduction in mean eGFR associated with PrEP reversed within weeks after discontinuation. PMID:26914909

  17. Reversibility of Glomerular Renal Function Decline in HIV-Uninfected Men and Women Discontinuing Emtricitabine-Tenofovir Disoproxil Fumarate Pre-Exposure Prophylaxis.

    PubMed

    Mugwanya, Kenneth K; Wyatt, Christina; Celum, Connie; Donnell, Deborah; Kiarie, James; Ronald, Allan; Baeten, Jared M

    2016-04-01

    Tenofovir disoproxil fumarate (TDF) pre-exposure prophylaxis (PrEP) use is associated with a small but statistically significant decline in estimated glomerular filtration rate (eGFR). We investigated the reversibility of eGFR decline among HIV-uninfected adults discontinuing PrEP. Data were from the Partners PrEP Study, a randomized trial of daily oral TDF and emtricitabine (FTC)-TDF PrEP among African HIV-uninfected men and women with baseline creatinine clearance ≥60 mL/min. Serum creatinine was measured quarterly while on-study medication and at month 1 and 2 after discontinuation. eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration Equation. A total of 3924 individuals had a poststudy drug serum creatinine measurement after the scheduled drug discontinuation (1271 for TDF, 1308 for FTC-TDF, and 1345 for placebo); 65% were men, median age was 35 (range 18-64) years. Median time on study drug was 33 (interquartile range 25-36) months overall, and 36 months (interquartile range 30-36) for TDF and FTC-TDF. Mean eGFR at the last on-treatment visit was 129 mL·min·1.73 m for TDF and 128 mL·min·1.73 m for FTC-TDF versus 131 mL·min·1.73 m for placebo (2-3 mL·min·1.73 m mean decline for PrEP versus placebo, P ≤ 0.01), and this difference reversed by 4 weeks after drug discontinuation (mean eGFR at the first postdrug visit: 130 mL·min 1.73 m in all groups). More than 96% of participants had a confirmed >75% eGFR rebound to baseline level by 8 weeks after drug discontinuation, with similar proportions across treatment groups. In this large, placebo-controlled study of TDF-based PrEP, the small reduction in mean eGFR associated with PrEP reversed within weeks after discontinuation.

  18. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine.

    PubMed

    Mao, Xiangzhao; Liu, Qianqian; Qiu, Yongqian; Fan, Xiaoqin; Han, Qingqing; Liu, Yanjun; Zhang, Lujia; Xue, Changhu

    2017-03-25

    Phosphatidylserine (PS) and docosahexaenoic acid-phosphatidylserine (DHA-PS) have significant nutritional and biological functions, which are extensively used in functional food industries. Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) or DHA-PC with l-serine, is an effective method for PS and DHA-PS preparation. However, because of the hydrolysis activity of PLD, PC and DHA-PC would be converted to the undesirable byproduct, phosphatidic acid (PA) and DHA-PA. In this study, a novel phospholipase D (PLDa2) was firstly cloned from Acinetobacter radioresistens a2 with high transphosphatidylation activity and no hydrolysis activity. In the PLD-catalyzed synthesis process (12h), both the transphosphatidylation conversion rate and selectivity of PS and DHA-PS were about 100%, which is the only PLD enzyme reported with this superiority up till now. In comparison with the majority of other known PLDs, PLDa2 exerted the highest activity at neutral pH, and it was stable from pH 4.0 to pH 9.0. In addition, PLDa2 had excellent thermal stability, with an optimum reaction temperature of 40°C and keeping more than 80% activity from 20°C to 60°C. The high catalytic selectivity mechanism of PLDa2 was explained by utilizing homology modeling, two-step docking, and binding energy and conformation analysis. PLDa2 ensured a stable supply of the biocatalyst with its most preponderant transphosphatidylation activity and PS selectivity, and had great potential in phospholipids industrial production.

  19. Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice.

    PubMed

    Tanaka, Takeshi; Abe, Hajime; Kimura, Masayuki; Onda, Nobuhiko; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    To determine the developmental exposure effects of T-2 toxin on postnatal hippocampal neurogenesis, pregnant ICR mice were provided a diet containing T-2 toxin at 0, 1, 3, or 9 ppm from gestation day 6 to day 21 on weaning after delivery. Offspring were maintained through postnatal day (PND) 77 without T-2 toxin exposure. In the hippocampal dentate gyrus of male PND 21 offspring, GFAP(+) and BLBP(+) type-1 stem cells and PAX6(+) and TBR2(+) type-2 progenitor cells decreased in the subgranular zone (SGZ) at 9 and ≥3 ppm, respectively, in parallel with increased apoptosis at ≥3 ppm. In the dentate hilus, reelin(+) γ-aminobutyric acid (GABA)-ergic interneurons increased at 9 ppm, suggesting reflection of neuronal mismigration. T-2 toxin decreased transcript levels of cholinergic and glutamate receptor subunits (Chrna4, Chrnb2 and Gria2) and glutamate transporter (Slc17a6) in the dentate gyrus, suggesting decreased cholinergic signals on hilar GABAergic interneurons innervating type-2 cells and decreased glutamatergic signals on type-1 and type-2 cells. T-2 toxin decreased SGZ cells expressing stem cell factor (SCF) and increased cells accumulating malondialdehydes. Neurogenesis-related changes disappeared on PND 77, suggesting that T-2 toxin reversibly affects neurogenesis by inducing apoptosis of type-1 and type-2 cells with different threshold levels. Decreased cholinergic and glutamatergic signals may decrease type-2 cells at ≥3 ppm. Additionally, decreased SCF/c-Kit interactions and increased oxidative stress may decrease type-1 and type-2 cells at 9 ppm. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 1 ppm (0.14-0.49 mg/kg body weight/day).

  20. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients.

    PubMed

    Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming

    2016-06-01

    Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.

  1. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    SciTech Connect

    Yu, Cheng-Chia; Chang, Yu-Chao

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  2. Splenic gene delivery system using self-assembling nano-complex with phosphatidylserine analog.

    PubMed

    Kurosaki, Tomoaki; Nakasone, Chihiro; Kodama, Yukinobu; Egashira, Kanoko; Harasawa, Hitomi; Muro, Takahiro; Nakagawa, Hiroo; Kitahara, Takashi; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    The recognition of phosphatidylserine on the erythrocyte membrane mediates erythrophagocytosis by resident spleen macrophages. The application of phosphatidylserine to a gene vector may be a novel approach for splenic drug delivery. Therefore, we chose 1,2-dioleoyl-sn-glycero-3-phospho-L-serin (DOPS) as an analogue of phosphatidylserine for splenic gene delivery of plasmid DNA (pDNA). In the present study, we successfully prepared a stable pDNA ternary complex using DOPS and polyethyleneimine (PEI) and evaluated its efficacy and safety. The pDNA/PEI complex had a positive charge and showed high transgene efficacy, although it caused cytotoxicity and agglutination. The addition of DOPS changed the ζ-potential of the pDNA/PEI complex to negative. It is known that anionic complexes are not taken up well by cells. Surprisingly, however, the pDNA/PEI/DOPS complex showed relatively high transgene efficacy in vitro. Fluorescence microscope observation revealed that the pDNA/PEI/DOPS complex internalized the cells while maintaining the complex formation. The injection of the pDNA/PEI complex killed most mice within 24 h at high doses, although all mice in the pDNA/PEI/DOPS complex group survived. The ternary complex with DOPS showed markedly better safety compared with the pDNA/PEI complex. The pDNA/PEI/DOPS complex showed high gene expression selectively in the spleen after intravenous injection into mice. Thus the ternary complex with DOPS can be used to deliver pDNA to the spleen, in which immune cells are abundant. It appears to have an excellent safety level, although further study to determine the mechanism of action is necessary.

  3. Dissimilarity of increased phosphatidylserine-positive microparticles and associated coagulation activation in acute coronary syndromes.

    PubMed

    Liu, Yan; He, Zhangxiu; Zhang, Yan; Dong, Zengxiang; Bi, Yayan; Kou, Junjie; Zhou, Jin; Shi, Jialan

    2016-08-01

    We evaluated cellular origin, numbers, and procoagulant activity of phosphatidylserine-positive microparticles (MPs) among subgroups in acute coronary syndromes (ACS). Parameters were measured on admission, days 1 (within 24 h of admission), 2, 3, and 7. All ST-elevated myocardial infarction (STEMI) patients presented more than 3 h from symptom onset and received fibrinolysis treatment; controls included unstable angina and non-STEMI patients as well as healthy controls. Phosphatidylserine-positive MPs were detected by flow cytometry, whereas procoagulant activity was assessed by coagulation time, purified coagulation complex assays, and fibrin formation. MP-induced fibrins were visualized by confocal microscopy. On admission, the total MP count was ∼2.5-fold higher in the ACS groups compared with the healthy controls (P<0.05), primarily originating from platelets and endothelial cells, and there were no significant differences among ACS subgroups. Specifically, leukocyte-derived and erythrocyte-derived MPs were higher in the STEMI group compared with unstable angina and non-STEMI groups (both P<0.05). Further, MPs from the ACS groups reduced coagulation time by 27.5% and induced intrinsic and extrinsic FXase, prothrombinase, and fibrin formation by 2.8-, 2.3-, 2.5-, and 1.7-fold, respectively (P<0.05 for all), whereas blocking phosphatidylserine with lactadherin inhibited ∼70% of procoagulant activity. MP number and concomitant coagulation decreased significantly by day 2 and continued to decrease gradually during the recovery period. This study shows that MP characteristics from circulating blood may be used as prognostic indicators to reflect the origin cell of activation and thrombophilic states found in ACS subgroups.

  4. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  5. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface

    PubMed Central

    Ansari, Shabbir A.; Pendurthi, Usha R.; Sen, Prosenjit; Rao, L. Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  6. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. © 2012 Blackwell Publishing Ltd.

  7. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis.

    PubMed

    Ma, Jin; Cheng, Zhijun; Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.

  8. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

    PubMed Central

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-01-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation. PMID:26906404

  9. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  10. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    PubMed Central

    Letts, V A; Henry, S A

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. As expected, when chol mutants were starved for ethanolamine, the rates of synthesis of the phospholipids phosphatidylethanolamine and PC declined rapidly. Surprisingly, however, coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. The results obtained suggest that the slowing of PC biosynthesis in ethanolamine-starved chol cells leads to a coordinated decrease in the synthesis of all phospholipids. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed. Images PMID:2991194

  11. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia.

    PubMed

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth; Perlson, Eran; Ast, Gil

    2016-12-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.

  12. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia

    PubMed Central

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth

    2016-01-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532

  13. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis

    PubMed Central

    Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components. PMID:27055010

  14. αEnv-decorated phosphatidylserine liposomes trigger phagocytosis of HIV-virus-like particles in macrophages.

    PubMed

    Gramatica, Andrea; Petazzi, Roberto A; Lehmann, Maik J; Ziomkowska, Joanna; Herrmann, Andreas; Chiantia, Salvatore

    2014-07-01

    Macrophages represent an important cellular target of HIV-1. Interestingly, they are also believed to play a potential role counteracting its infection. However, HIV-1 is known to impair macrophage immune functions such as antibody-mediated phagocytosis. Here, we present immunoliposomes that can bind HIV-1 virus-like particles (HIV-VLPs) while being specifically phagocytosed by macrophages, thus allowing the co-internalization of HIV-VLPs. These liposomes are decorated with anti-Env antibodies and contain phosphatidylserine (PS). PS mediates liposome internalization by macrophages via a mechanism not affected by HIV-1. Hence, PS-liposomes mimic apoptotic cells and are internalized into the macrophages due to specific recognition, carrying the previously bound HIV-VLPs. With a combination of flow cytometry, confocal live-cell imaging and electron microscopy we demonstrate that the PS-immunoliposomes presented here are able to elicit efficient HIV-VLPs phagocytosis by macrophages and might represent a new nanotechnological approach to enhance HIV-1 antigen presentation and reduce the ongoing inflammation processes. This team of authors demonstrate that specific phosphatidylserin immunoliposomes are able to elicit efficient phagocytosis of HIV-virus-like particle by macrophages and might represent a new nanomedicine approach to enhance HIV-1 antigen presentation and reduce ongoing inflammation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Effect of steroidal saponins-loaded nano-bioglass/phosphatidylserine/collagen bone substitute on bone healing.

    PubMed

    Yang, Chunrong; Wu, Huazhong; Wang, Jianhua

    2016-11-10

    The objective of this study was to investigate the therapeutic potential of nano-bioglass/phosphatidylserine/collagen (nBG/PS/COL) scaffolds loaded with steroidal saponins as an inducer factor for skeletal defects. The drugs-encapsulated bone substitute was prepared by loading steroidal saponins-collagen microsphere suspension in nano-bioglass and phosphatidylserine (PS) composite. The scaffolds possess an interconnected porous structure with a porosity of about 82.3%. The pore size ranges from several micrometers up to about 400 μm. The drug release assays showed the long-term sustained release of steroidal saponins from the scaffolds with effective and safe bioactivity. Moreover, in vitro and in vivo studies showed that the involvement of steroidal saponins contributed to the secretion of nerve growth factor (NGF) in MC3T3-E1 cells, which may be the possible factor that greatly enhanced bone healing. The results suggest that the bone substitute is an effective implantable drug-delivery system for use in bone repair.

  16. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1.

    PubMed

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-12-09

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling.

  17. Molecular characterization of the PEL1 gene encoding a putative phosphatidylserine synthase.

    PubMed

    Janitor, M; Jarosch, E; Schweyen, R J; Subík, J

    1995-10-01

    In the yeast Saccharomyces cerevisiae the PEL1 gene is essential for the viability of rho-/rhoo petite mutants, and its mutation in respiring cells results in a pleiotropic phenotype. Results of complementation analysis with different subclones of chromosomal DNA and re-sequencing of the YCL4w-YCL3w segment of chromsome III demonstrate that the coding region of the PEL1 gene corresponds to 1467 bp. The size of the PEL1 transcript in Northern blot analysis was estimated to be approximately 1.5 kb. Transcription initiation in wild-type cells was found to occur at the position -9 relative to the ATG. The PEL1 gene was moderately expressed irrespective of the state of the mitochondrial genome and the nature of the carbon sources. Disruption of the PEL1 gene was not lethal and resulted in the same phenotype as observed with the pel1 mutant, i.e. the cells were not able to survive ethidium bromide mutagenesis, were thermosensitive for growth on glucose at 37 degrees C and failed to grow on minimal glycerol medium. Although the Pel1 protein exhibits significant similarity to a family of phosphatidylserine synthases, the disrupted PEL1 gene was not complemented by the multicopy plasmid-borne CHO1 gene encoding an essential yeast phosphatidylserine synthase.

  18. Phosphatidylserine synthase 1 is required for inflorescence meristem and organ development in Arabidopsis.

    PubMed

    Liu, Chengwu; Yin, Hengfu; Gao, Peng; Hu, Xiaohe; Yang, Jun; Liu, Zhongchi; Fu, Xiangdong; Luo, Da

    2013-08-01

    Phosphatidylserine (PS), a quantitatively minor membrane phospholipid, is involved in many biological processes besides its role in membrane structure. One PS synthesis gene, PHOSPHATIDYLSERINE SYNTHASE1 (PSS1), has been discovered to be required for microspore development in Arabidopsis thaliana L. but how PSS1 affects postembryonic development is still largely unknown. Here, we show that PSS1 is also required for inflorescence meristem and organ development in Arabidopsis. Disruption of PSS1 causes severe dwarfism, smaller lateral organs and reduced size of inflorescence meristem. Morphological and molecular studies suggest that both cell division and cell elongation are affected in the pss1-1 mutant. RNA in situ hybridization and promoter GUS analysis show that expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) depend on PSS1. Moreover, the defect in meristem maintenance is recovered and the expression of WUS and CLV3 are restored in the pss1-1 clv1-1 double mutant. Both SHOOTSTEMLESS (STM) and BREVIPEDICELLUS (BP) are upregulated, and auxin distribution is disrupted in rosette leaves of pss1-1. However, expression of BP, which is also a regulator of internode development, is lost in the pss1-1 inflorescence stem. Our data suggest that PSS1 plays essential roles in inflorescence meristem maintenance through the WUS-CLV pathway, and in leaf and internode development by differentially regulating the class I KNOX genes. © 2013 Institute of Botany, Chinese Academy of Sciences.

  19. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  20. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  1. The Ebola virus matrix protein VP40 selectively induces vesiculation from phosphatidylserine-enriched membranes.

    PubMed

    Soni, Smita P; Stahelin, Robert V

    2014-11-28

    Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission.

  2. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    SciTech Connect

    Letts, V.A.; Henry, S.A.

    1985-08-01

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.

  3. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening.

    PubMed

    Choi, Jae-Yeon; Kumar, Vidya; Pachikara, Niseema; Garg, Aprajita; Lawres, Lauren; Toh, Justin Y; Voelker, Dennis R; Ben Mamoun, Choukri

    2016-03-01

    Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity.

  4. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles.

  5. Endocytic Sorting and Recycling Require Membrane Phosphatidylserine Asymmetry Maintained by TAT-1/CHAT-1

    PubMed Central

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-01-01

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling. PMID:21170358

  6. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  7. Sex reversal of brook trout (Salvelinus fontinalis) by 17α-methyltestosterone exposure: A serial experimental approach to determine optimal timing and delivery regimes.

    PubMed

    Fatima, Shafaq; Adams, Mark; Wilkinson, Ryan

    2016-12-01

    Commercial culture of Brook trout (Salvelinus fontinalis) in Tasmania was partly abandoned due to sexual maturation of male fish early on during the estuarine rearing phase. Maturation adversely affects body mass, flesh quality and immunocompetency effectively. Sex reversal techniques such as the in-feed addition of a synthetic androgen have proven difficult to adapt in brook trout. An appropriate timing, duration and delivery vehicle for administration of 17α-methyltestosterone (MT) to produce phenotypic males (neomales) from genotypically female brook trout required further investigation. In this study, groups of brook trout eggs (n=1000) maintained at 9.5±0.15-10±0.14°C, were immersed in MT (400μgL(-1)) for four hours on two alternate days (two immersions/group) staggered over a two week period surrounding the hatch of embryos (control groups excluded). The groups were then split and half received MT-supplemented feed for 60days and the other a standard diet. Following an 11 month on-growing period sex phenotypes were determined by gross & histological gonad morphology. The highest proportion of male phenotypes (75%) was found in fish immersed six and four days pre-hatch and subsequently fed a normal diet. Fish fed a MT supplemented diet and immersed in MT showed significantly higher proportions of sterile fish. These data indicate that a pre-hatch immersion-only regime (4-6days pre-hatch at 9.5°C) should be pursued as a target for optimization studies to further refine the effective concentration and duration of exposure to MT for the successful production of neo-male brook trout.

  8. Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect?

    PubMed

    Saas, P; Angelot, F; Bardiaux, L; Seilles, E; Garnache-Ottou, F; Perruche, S

    2012-06-01

    Labile blood products contain phosphatidylserine-expressing cell dusts, including apoptotic cells and microparticles. These cell by-products are produced during blood product process or storage and derived from the cells of interest that exert a therapeutic effect (red blood cells or platelets). Alternatively, phosphatidylserine-expressing cell dusts may also derived from contaminating cells, such as leukocytes, or may be already present in plasma, such as platelet-derived microparticles. These cell by-products present in labile blood products can be responsible for transfusion-induced immunomodulation leading to either transfusion-related acute lung injury (TRALI) or increased occurrence of post-transfusion infections or cancer relapse. In this review, we report data from the literature and our laboratory dealing with interactions between antigen-presenting cells and phosphatidylserine-expressing cell dusts, including apoptotic leukocytes and blood cell-derived microparticles. Then, we discuss how these phosphatidylserine-expressing cell by-products may influence transfusion. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Oxidative Lipidomics of γ-Radiation-Induced Lung Injury: Mass Spectrometric Characterization of Cardiolipin and Phosphatidylserine Peroxidation

    PubMed Central

    Tyurina, Yulia Y.; Tyurin, Vladimir A.; Kapralova, Valentyna I.; Wasserloos, Karla; Mosher, Mackenzie; Epperly, Michael W.; Greenberger, Joel S.; Pitt, Bruce R.; Kagan, Valerian E.

    2011-01-01

    Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A2 revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury. PMID:21338246

  10. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel.

    PubMed

    Wolfs, Jef L; Wielders, Simone J; Comfurius, Paul; Lindhout, Theo; Giddings, John C; Zwaal, Robert F; Bevers, Edouard M

    2006-10-01

    The platelet procoagulant response requires a sustained elevation of the intracellular Ca2+ concentration, [Ca2+]i, causing exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. An increased [Ca2+]i also activates Ca2+-dependent K+ channels. Here, we investigated the contribution of the efflux of K+ ions on the platelet procoagulant response in collagen-thrombin-activated platelets using selective K+ channel blockers. The Gardos channel blockers clotrimazol, charybdotoxin, and quinine caused a similar decrease in prothrombinase activity as well as in the number of PS-exposing platelets detected by fluorescence-conjugated annexin A5. Apamin and iberiotoxin, inhibitors of other K+ channels, were without effect. Only clotrimazol showed a significant inhibition of the collagen-plus-thrombin-induced intracellular calcium response. Clotrimazol and charybdotoxin did not inhibit aggregation and release under the conditions used. Inhibition by Gardos channel blockers was reversed by valinomycin, a selective K+ ionophore. The impaired procoagulant response of platelets from a patient with Scott syndrome was partially restored by pretreatment with valinomycin, suggesting a possible defect of the Gardos channel in this syndrome. Collectively, these results provide evidence for the involvement of efflux of K+ ions through Ca2+-activated K+ channels in the procoagulant response of platelets, opening potential strategies for therapeutic interventions.

  11. Strategies for Tracking Anastasis, A Cell Survival Phenomenon that Reverses Apoptosis

    PubMed Central

    Tang, Ho Lam; Tang, Ho Man; Hardwick, J. Marie; Fung, Ming Chiu

    2015-01-01

    Anastasis (Greek for “rising to life”) refers to the recovery of dying cells. Before these cells recover, they have passed through important checkpoints of apoptosis, including mitochondrial fragmentation, release of mitochondrial cytochrome c into the cytosol, activation of caspases, chromatin condensation, DNA damage, nuclear fragmentation, plasma membrane blebbing, cell shrinkage, cell surface exposure of phosphatidylserine, and formation of apoptotic bodies. Anastasis can occur when apoptotic stimuli are removed prior to death, thereby allowing dying cells to reverse apoptosis and potentially other death mechanisms. Therefore, anastasis appears to involve physiological healing processes that could also sustain damaged cells inappropriately. The functions and mechanisms of anastasis are still unclear, hampered in part by the limited tools for detecting past events after the recovery of apparently healthy cells. Strategies to detect anastasis will enable studies of the physiological mechanisms, the hazards of undead cells in disease pathology, and potential therapeutics to modulate anastasis. Here, we describe effective strategies using live cell microscopy and a mammalian caspase biosensor for identifying and tracking anastasis in mammalian cells. PMID:25742050

  12. Strategies for tracking anastasis, a cell survival phenomenon that reverses apoptosis.

    PubMed

    Tang, Ho Lam; Tang, Ho Man; Hardwick, J Marie; Fung, Ming Chiu

    2015-02-16

    Anastasis (Greek for "rising to life") refers to the recovery of dying cells. Before these cells recover, they have passed through important checkpoints of apoptosis, including mitochondrial fragmentation, release of mitochondrial cytochrome c into the cytosol, activation of caspases, chromatin condensation, DNA damage, nuclear fragmentation, plasma membrane blebbing, cell shrinkage, cell surface exposure of phosphatidylserine, and formation of apoptotic bodies. Anastasis can occur when apoptotic stimuli are removed prior to death, thereby allowing dying cells to reverse apoptosis and potentially other death mechanisms. Therefore, anastasis appears to involve physiological healing processes that could also sustain damaged cells inappropriately. The functions and mechanisms of anastasis are still unclear, hampered in part by the limited tools for detecting past events after the recovery of apparently healthy cells. Strategies to detect anastasis will enable studies of the physiological mechanisms, the hazards of undead cells in disease pathology, and potential therapeutics to modulate anastasis. Here, we describe effective strategies using live cell microscopy and a mammalian caspase biosensor for identifying and tracking anastasis in mammalian cells.

  13. Respiratory Deficiency Mediates the Regulation of CHO1-encoded Phosphatidylserine Synthase by mRNA Stability in Saccharomyces cerevisiae*

    PubMed Central

    Choi, Hyeon-Son; Carman, George M.

    2007-01-01

    The CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) is one of the most highly regulated phospholipid biosynthetic enzymes in the yeast Saccharomyces cerevisiae. CHO1 expression is regulated by nutrient availability through a regulatory circuit involving a UASINO cis-acting element in the CHO1 promoter, the positive transcription factors Ino2p and Ino4p, and the transcriptional repressor Opi1p. In this work, we examined the posttranscriptional regulation of CHO1 by mRNA stability. CHO1 mRNA was stabilized in mutants defective in deadenylation (ccr4Δ), mRNA decapping (dcp1), and the 5’-3’ exonuclease (xrn1) indicating that the CHO1 transcript is primarily degraded through the general 5’-3’ mRNA decay pathway. In respiratory sufficient cells, the CHO1 transcript was moderately stable with a half-life of 12 min. However, the CHO1 transcript was stabilized to a half-life of greater than 45 min in respiratory deficient (rho− and rho°) cells, the cox4Δ mutant defective in the cytochrome c oxidase, and wild type cells treated with KCN (a cytochorome c oxidase inhibitor). The increased CHO1 mRNA stability in response to respiratory deficiency caused increases in CHO1 mRNA abundance, phosphatidylserine synthase protein and activity, and the synthesis of phosphatidylserine in vivo. Respiratory deficiency also caused increases in the activities of CDP-diacylglycerol synthase, phosphatidylserine decarboxylase, and the phospholipid methyltransferases. Phosphatidylinositol synthase and choline kinase activities were not affected by respiratory deficiency. This work advances our understanding of phosphatidylserine synthase regulation and underscores the importance of mitochondrial respiration to the regulation of phospholipid synthesis in S. cerevisiae. PMID:17761681

  14. Antibodies to phosphatidylserine/prothrombin complex as an additional diagnostic marker of APS?

    PubMed

    Žigon, P; Čučnik, S; Ambrožič, A; Sodin Šemrl, S; Kveder, T; Božič, B

    2012-06-01

    Antiprothrombin antibodies can be measured by ELISA using either a prothrombin/phosphatidylserine complex (aPS/PT) or prothrombin alone (aPT) as antigen. We aimed to compare the clinical features of autoimmune patients with avidity of aPS/PT and determine the diagnostic efficiency of aPS/PT and aPT for assessing antiphospholipid syndrome (APS). aPS/PT were of low (n = 9), heterogeneous (n = 31) and high (n = 8) avidity out of 48 cases. None of the samples with low avidity were positive in aPT ELISA. Among patients with heterogeneous or high avidity aPS/PT, there was a significantly greater number of patients with APS as compared to patients with low avidity (38/39 vs. 7/9; p < 0.05). No SLE patients had high avidity antiprothrombin antibodies.

  15. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime.

    PubMed

    Levine, Zachary A; Vernier, P Thomas

    2012-10-01

    Molecular dynamics simulations of electroporation of homogeneous phospholipid bilayers show that the pore creation time is strongly dependent on the magnitude of the applied electric field. Here, we investigated whether heterogeneous bilayers containing phospholipids with zwitterionic and anionic headgroups exhibit a similar dependence. To facilitate this analysis we divide the life cycle of an electropore into several stages, marking the sequence of steps for pore creation and pore annihilation (restoration of the bilayer after removal of the electric field). We also report simulations of calcium binding isotherms and the effects of calcium ions on the electroporation of heterogeneous lipid bilayers. Calcium binding simulations are consistent with experimental data using a 1:2 Langmuir binding isotherm. We find that calcium ions and phosphatidylserine increase pore creation time and decrease pore annihilation time. For all systems tested, pore creation time was inversely proportional to the bilayer internal electric field.

  16. Leishmania Promastigotes Lack Phosphatidylserine but Bind Annexin V upon Permeabilization or Miltefosine Treatment

    PubMed Central

    Zampieri, Ricardo Andrade; Gonzaga dos Santos, Marcos; Schiller, Jürgen; Pomorski, Thomas Günther

    2012-01-01

    The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS) at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and 31P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining. PMID:22870283

  17. ATP11c is critical for phosphatidylserine internalization and B lymphocyte differentiation

    PubMed Central

    Yabas, Mehmet; Teh, Charis E.; Frankenreiter, Sandra; Lal, Dennis; Roots, Carla M.; Whittle, Belinda; Andrews, Daniel T.; Zhang, Yafei; Teoh, Narci C.; Sprent, Jonathan; Tze, Lina E.; Kucharska, Edyta M.; Kofler, Jennifer; Farell, Geoffrey C.; Bröer, Stefan; Goodnow, Christopher C.; Enders, Anselm

    2011-01-01

    Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses but few genetic tools exist to test their function. Here we describe a new X-linked B cell deficiency syndrome in mice caused by mutations in Atp11c, a member of the P4 ATPase family thought to serve as flippases concentrating aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11c decreased the rate of phosphatidylserine translocation in pro-B cells, greatly reduced pre-B and B cell numbers independent of Bcl2-inhibited apoptosis or immunoglobulin gene rearrangement and abolished pre-B cell expansion in response to an Il7 transgene. The only other abnormalities noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. These results identify an intimate connection between phospholipid transport and B lymphocyte function. PMID:21423173

  18. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

  19. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase.

  20. Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast

    PubMed Central

    Haupt, Armin; Minc, Nicolas

    2017-01-01

    Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge–dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth. PMID:27852900

  1. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo.

    PubMed

    Bondanza, Attilio; Zimmermann, Valérie S; Rovere-Querini, Patrizia; Turnay, Javier; Dumitriu, Ingrid E; Stach, Christian M; Voll, Reinhard E; Gaipl, Udo S; Bertling, Wolf; Pöschl, Ernst; Kalden, Joachim R; Manfredi, Angelo A; Herrmann, Martin

    2004-11-01

    Strategies to enhance the immunogenicity of tumors are urgently needed. Although vaccination with irradiated dying lymphoma cells recruits a tumor-specific immune response, its efficiency as immunogen is poor. Annexin V (AxV) binds with high affinity to phosphatidylserine on the surface of apoptotic and necrotic cells and thereby impairs their uptake by macrophages. Here, we report that AxV preferentially targets irradiated lymphoma cells to CD8+ dendritic cells for in vivo clearance, elicits the release of proinflammatory cytokines and dramatically enhances the protection elicited against the tumor. The response was endowed with both memory, because protected animals rejected living lymphoma cells after 72 d, and specificity, because vaccinated animals failed to reject unrelated neoplasms. Finally, AxV-coupled irradiated cells induced the regression of growing tumors. These data indicate that endogenous adjuvants that bind to dying tumor cells can be exploited to target tumors for immune rejection.

  2. Suppression of atopic dermatitis in mice model by reducing inflammation utilizing phosphatidylserine-coated biodegradable microparticles.

    PubMed

    Kumar, Purnima; Hosain, Md Zahangir; Kang, Jeong-Hun; Takeo, Masafumi; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Controlling inflammatory response is important to avoid chronic inflammation in many diseases including atopic dermatitis (AD). In this research, we tried using a phosphatidylserine (PS)-coated microparticles in the AD mouse model for achieving the modulation of the macrophage phenotype to an anti-inflammatory state. Here, we prepared poly (D,L-lactic acid) microparticle coated with PS on the outside shell. We confirmed the cellular uptake of the PS-coated microparticle, which leads to the significant downregulation of the inflammatory cytokine production. In the mouse model of AD, the PS-coated microparticle was injected subcutaneously for a period of 12 days. The mice showed significant reduction in the development of AD symptoms comparing with the mice treated with the PC-coated microparticle.

  3. Involvement of VAT-1 in Phosphatidylserine Transfer from the Endoplasmic Reticulum to Mitochondria.

    PubMed

    Junker, Mirco; Rapoport, Tom A

    2015-12-01

    Mitochondria receive phosphatidylserine (PS) from the endoplasmic reticulum (ER), but how PS is moved from the ER to mitochondria is unclear. Current models postulate a physical link between the organelles, but no involvement of cytosolic proteins. Here, we have reconstituted PS transport from the ER to mitochondria in vitro using Xenopus egg components. Transport is independent of ER proteins, but is dependent on a cytosolic factor that has a preferential affinity for PS. Crosslinking with a photoactivatable PS analog identified VAT-1 as a candidate for a cytosolic PS transport protein. Recombinant, purified VAT-1 stimulated PS transport into mitochondria and depletion of VAT-1 from Xenopus cytosol with specific antibodies led to a reduction of transport. Our results suggest that cytosolic factors have a role in PS transport from the ER to mitochondria, implicate VAT-1 in the transport process, and indicate that physical contact between the organelles is not essential.

  4. Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases

    PubMed Central

    Naftelberg, Shiran; Ast, Gil; Perlson, Eran

    2017-01-01

    Familial dysautonomia (FD) is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP) protein production. The disease affects mostly the dorsal root ganglion (DRG) and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defects in axonal transport of nerve growth factors and microtubule stability in the DRG. Neurons are highly polarized cells with very long axons. In order to survive and maintain proper function, neurons depend on transport of proteins and other cellular components from the neuronal body along the axons. We further demonstrated that IKAP is necessary for axon maintenance and showed that phosphatidylserine acts as an HDAC6 inhibitor to rescue neuronal function in FD cells. In this review, we will highlight our latest research findings. PMID:28553323

  5. Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases.

    PubMed

    Naftelberg, Shiran; Ast, Gil; Perlson, Eran

    2017-04-01

    Familial dysautonomia (FD) is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP) protein production. The disease affects mostly the dorsal root ganglion (DRG) and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defects in axonal transport of nerve growth factors and microtubule stability in the DRG. Neurons are highly polarized cells with very long axons. In order to survive and maintain proper function, neurons depend on transport of proteins and other cellular components from the neuronal body along the axons. We further demonstrated that IKAP is necessary for axon maintenance and showed that phosphatidylserine acts as an HDAC6 inhibitor to rescue neuronal function in FD cells. In this review, we will highlight our latest research findings.

  6. ATP-Dependent Formation of Phosphatidylserine-Rich Vesicles from the Endoplasmic Reticulum of Leek Cells

    PubMed Central

    Sturbois-Balcerzak, Bénédicte; Vincent, Patrick; Maneta-Peyret, Lilly; Duvert, Michel; Satiat-Jeunemaitre, Béatrice; Cassagne, Claude; Moreau, Patrick

    1999-01-01

    Leek (Allium porrum) plasma membrane is enriched in phosphatidylserine (PS) by the vesicular pathway, in a way similar to that already observed in animal cells (B. Sturbois-Balcerzak, D.J. Morré, O. Loreau, J.P. Noel, P. Moreau, C. Cassagne [1995] Plant Physiol Biochem 33: 625–637). In this paper we document the formation of PS-rich small vesicles from leek endoplasmic reticulum (ER) membranes upon addition of ATP and other factors. The omission of ATP or its replacement by ATPγ-S prevents vesicle formation. These vesicles correspond to small structures (70–80 nm) and their phospholipid composition, characterized by a PS enrichment, is compatible with a role in PS transport. Moreover, the PS enrichment over phosphatidylinositol in the ER-derived vesicles is the first example, to our knowledge, of phospholipid sorting from the ER to ER-derived vesicles in plant cells. PMID:10318702

  7. Phosphatidylserine and caffeine attenuate postexercise mood disturbance and perception of fatigue in humans.

    PubMed

    Wells, Adam J; Hoffman, Jay R; Gonzalez, Adam M; Stout, Jeffrey R; Fragala, Maren S; Mangine, Gerald T; McCormack, William P; Jajtner, Adam R; Townsend, Jeremy R; Robinson, Edward H

    2013-06-01

    Phosphatidylserine (PS) may attenuate the adverse effects of physical fatigue. Therefore, we investigated the effects of a multi-ingredient supplement containing 400 mg/d PS and 100 mg/d caffeine (supplement [SUP]) for 2 weeks on measures of cognitive function (CF), reaction time (RT), and mood (MD) following an acute exercise stress. It is hypothesized that PS will maintain preexercise CF and RT scores, while attenuating postexercise fatigue. Participants completed 2 acute bouts of resistance exercise (T1 and T2) separated by 2-week ingestion of SUP or control (CON). Outcome measures were assessed pre- and postexercise. When collapsed across groups, a significant decrease in RT performance was seen in the 60-second reaction drill from pre- to postexercise at T1. All other RT tests were similar from pre- to postexercise at T1. Reaction time was not significantly changed by PS. When collapsed across groups, a significant increase in performance of the serial subtraction test was seen. A significant increase (8.9% and 7.1%) in the number of correct answers and a significant decrease (8.0% and 7.5%) in time to answer were seen from pre- to postworkout at T1 and T2, respectively. A significant increase in total MD score from pre- to postworkout was observed for CON but not for PS at T2. Phosphatidylserine significantly attenuated pre- to postexercise perception of fatigue compared to CON. Ingestion of SUP for 14 days appears to attenuate postexercise MD scores and perception of fatigue, but does not affect CF or RT, in recreationally trained individuals. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.

    PubMed

    Alvares, Dayane S; Neto, João Ruggiero; Ambroggio, Ernesto E

    2017-03-05

    Polybia-MP1 (IDWKKLLDAAKQIL-NH2) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1.

  9. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade.

    PubMed

    Kelleher, Raymond J; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J; Shenoy, Gautam N; Peng, Peng; Iyer, Vandana; Fathallah, Anas M; Berenson, Charles S; Wallace, Paul K; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B

    2015-11-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients' antitumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T-cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80 nm. The T-cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS-expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle-induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immunosuppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T-cell function represent a potential therapeutic target for patients with ovarian cancer.

  10. Docosahexaenoic acid and phosphatidylserine supplementations improve antioxidant activities and cognitive functions of the developing brain on pentylenetetrazol-induced seizure model.

    PubMed

    Liu, Shyh-Hwa; Chang, Chin-Dong; Chen, Pi-Hang; Su, Jheng-Ren; Chen, Chih-Cheng; Chaung, Hso-Chi

    2012-04-27

    Epilepsy provoked by pentylenetetrazol (PTZ) is caused by an abnormal excitatory postsynaptic potential, which results in increased production of reactive oxygen species, and finally reducing cognitive functions. The objective of this study was to investigate the effects of dietary supplementation with DHA and PS, administered either alone or in combination, on oxidative stress and behavioral and cognitive spatial memory in neonatal rats with PTZ-induced epileptic seizure. In this study, rat pups received repetitive doses of PTZ for induction of epileptic seizure and docosahexaenoic acid (DHA, C22:6, n-3) and phosphatidylserine (PS) were orally administrated alone or together to the PTZ-induced epileptic animals daily for 36 d. The spatial memory, nitric mono-oxide (NO) production, and enzymatic activities of superoxide dismutase (SOD) and catalase in brain and liver tissues were determined. PTZ administration significantly reduced the cell numbers in the hippocampus, shortened the escape latency in the safe target region, decreased activities of SOD and catalase, but increased NO content in both brain and liver tissues, while DHA and PS significantly extended the escape latency, reversed the oxidative parameters observed in the brain, and enhanced SOD activity in the liver. Dietary supplementation with DHA and PS may protect brain tissue from the oxidative stress caused by epileptic seizures and could serve to improve learning and memory ability in vivo.

  11. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2) Cells

    PubMed Central

    Sutton, Dwayne J.; Tchounwou, Paul B.

    2006-01-01

    Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2) cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0.05%, 23.32 ± 0.03%, and 34.51 ± 0.01% for 0, 1, 2, and 3 μg/mL of mercury respectively

  12. Evaluation of Phosphatidylserine-Binding Peptides Radiolabeled with Fluorine 18 for in vivo Imaging of Apoptosis

    NASA Astrophysics Data System (ADS)

    Kapty, Janice Sarah

    We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical

  13. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection

    PubMed Central

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier

    2015-01-01

    ABSTRACT Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a

  14. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields.

    PubMed

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-07-03

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density.

  15. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    SciTech Connect

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-08-14

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  16. Targeting Phosphatidylserine with Calcium-dependent Protein-Drug Conjugates for the Treatment of Cancer.

    PubMed

    Li, Ran; Chiguru, Srinivas; Li, Li; Kim, Dongyoung; Velmurugan, Ramraj; Kim, David; Devanaboyina, Siva Charan; Tian, Hong; Schroit, Alan; Mason, Ralph; Ober, Raimund J; Ward, E Sally

    2017-09-22

    In response to cellular stress, phosphatidylserine (PS) is exposed on the outer membrane leaflet of tumor blood vessels and cancer cells, motivating the development of PS-specific therapies. The generation of drug-conjugated PS-targeting agents represents an unexplored therapeutic approach, for which anti-tumor effects are critically dependent on efficient internalization and lysosomal delivery of the cytotoxic drug. In the current study, we have generated PS-targeting agents by fusing PS-binding domains to a human IgG1-derived Fc fragment. The tumor localization and pharmacokinetics of several PS-specific Fc fusions have been analyzed in mice and demonstrate that Fc-Syt1, a fusion containing the synaptotagmin 1 C2A domain, effectively targets tumor tissue. Conjugation of Fc-Syt1 to the cytotoxic drug, monomethyl auristatin E, results in a protein-drug conjugate (PDC) that is internalized into target cells and, due to the Ca²⁺-dependence of PS binding, dissociates from PS in early endosomes. The released PDC is efficiently delivered to lysosomes and has potent anti-tumor effects in mouse xenograft tumor models. Interestingly, whilst an engineered, tetravalent Fc-Syt1 fusion shows increased binding to target cells, this higher avidity variant demonstrates reduced persistence and therapeutic effects compared with bivalent Fc-Syt1. Collectively, these studies show that finely tuned, Ca²⁺-switched PS-targeting agents can be therapeutically efficacious. Copyright ©2017, American Association for Cancer Research.

  17. Mining of a phospholipase D and its application in enzymatic preparation of phosphatidylserine.

    PubMed

    Zhou, Wen-Bin; Gong, Jin-Song; Hou, Hai-Juan; Li, Heng; Lu, Zhen-Ming; Xu, Hong-Yu; Xu, Zheng-Hong; Shi, Jin-Song

    2017-05-16

    Phosphatidylserine (PS) is useful as the additive in industries for memory improvement, mood enhancement and drug delivery. Conventionally, PS was extracted from soybeans, vegetable oils, egg yolk, and biomass; however, their low availability and high extraction cost were limiting factors. Phospholipase D (PLD) is a promising tool for enzymatic synthesis of PS due to its transphosphatidylation activity. In this contribution, a new and uncharacterized PLD was first obtained from GenBank database via genome mining strategy. The open reading frame consisted of 1614 bp and potentially encoded a protein of 538-amino-acid with a theoretical molecular mass of 60 kDa. The gene was successfully cloned and expressed in Escherichia coli. Its enzymatic properties were experimentally characterized. The temperature and pH optima of PLD were determined to be 60°C and 7.5, respectively. Its hydrolytic activity was improved by addition of Ca(2+) at 5 mM as compared with the control. The enzyme displayed suitable transphosphatidylation activity and PS could be synthesized with L-serine and soybean lecithin as substrates under the catalysis of PLD. This PLD enzyme might be a potential candidate for industrial applications in PS production. To the best of our knowledge, this is the first report on genome mining of PLDs from GenBank database.

  18. Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER.

    PubMed

    Kannan, Muthukumar; Lahiri, Sujoy; Liu, Li-Ka; Choudhary, Vineet; Prinz, William A

    2017-03-01

    Close contacts between organelles, often called membrane contact sites (MCSs), are regions where lipids are exchanged between organelles. Here, we identify a novel mechanism by which cells promote phospholipid exchange at MCSs. Previous studies have shown that phosphatidylserine (PS) synthase activity is highly enriched in portions of the endoplasmic reticulum (ER) in contact with mitochondria. The objective of this study was to determine whether this enrichment promotes PS transport out of the ER. We found that PS transport to mitochondria was more efficient when PS synthase was fused to a protein in the ER at ER-mitochondria contacts than when it was fused to a protein in all portions of the ER. Inefficient PS transport to mitochondria was corrected by increasing tethering between these organelles. PS transport to endosomes was similarly enhanced by PS production in regions of the ER in contact with endosomes. Together, these findings indicate that PS production at MCSs promotes PS transport out of the ER and suggest that phospholipid production at MCSs may be a general mechanism of channeling lipids to specific cellular compartments.

  19. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease.

    PubMed

    Mankelow, Tosti J; Griffiths, Rebecca E; Trompeter, Sara; Flatt, Joanna F; Cogan, Nicola M; Massey, Edwin J; Anstee, David J

    2015-10-08

    During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia. © 2015 by The American Society of Hematology.

  20. Processes involved in assisted reproduction technologies significantly increase sperm DNA fragmentation and phosphatidylserine translocation.

    PubMed

    Balasuriya, A; Serhal, P; Doshi, A; Harper, J C

    2014-03-01

    Sperm preparation techniques in assisted reproduction technologies (ART) are potential generators of exogenous stresses that cause additional DNA damage. DNA fragmentation tests, such as the sperm chromatin structure assay, involve freezing sperm samples in the absence of cryoprotectant. Thermal, oxidative stress (OS) and freezing are detrimental to sperm DNA fragmentation and phosphatidylserine (PS) translocation. The primary aim of this study was to subject mature sperm to environmental insults that normally occur during ART. We tested the hypotheses that OS, thermal stress and freeze-thawing caused sperm nuclear and membrane damage and that a positive correlation exists between PS translocation and DNA fragmentation. Sperm DNA integrity deteriorates in semen samples from men with advancing age and a sperm concentration of <15 m ml(-1) . The significant increase in sperm DNA fragmentation at 37 °C after merely 1 h is important clinically as semen liquefaction and short-term sperm storage in an ART cycle involve incubating samples at this temperature. Freezing without a cryoprotectant significantly increases the level of sperm nuclear damage, so it is important not to freeze neat semen prior to DNA fragmentation testing. This study highlights the importance of minimising the production of exogenous stresses during sperm preparation in ART. © 2012 Blackwell Verlag GmbH.

  1. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer

    PubMed Central

    Birge, R B; Boeltz, S; Kumar, S; Carlson, J; Wanderley, J; Calianese, D; Barcinski, M; Brekken, R A; Huang, X; Hutchins, J T; Freimark, B; Empig, C; Mercer, J; Schroit, A J; Schett, G; Herrmann, M

    2016-01-01

    Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics. PMID:26915293

  2. Calcium transport in vesicles from carrot cells: Stimulation by calmodulin and phosphatidylserine. [Daucus carota cv. Danvers

    SciTech Connect

    Wenling Hsieh; Sze, Heven )

    1991-05-01

    The transport properties of Ca-pumping ATPases from carrot (Daucus carota cv. Danvers) tissue culture cells were studied. ATP dependent Ca transport in vesicles that comigrated with an ER marker, was stimulated 3-4 fold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca-ATPase) partially inhibited oxalate-stimulated Ca transport activity; however, it had little or not effect on calmodulin-stimulated Ca uptake. The results suggested the presence of two types of Ca ATPases, and ER- and a plasma membrane-type. Incubation of membranes with (gamma{sup 32}P)ATP resulted in the formation of a single acyl ({sup 32}P) phosphoprotein of 120 kDa. Formation of this phosphoprotein was dependent on Ca, and enhanced by La {sup 3+}, characteristic of the plasma membrane CaATPase. Acidic phospholipids, like phosphatidylserine, stimulated Ca transport, similar to their effect on the erythrocyte plasma membrane CaATPase. These results would indicate that the calmodulin-stimulated Ca transport originated in large part from a plasma membrane-type Ca pump of 120 kDa.

  3. Phosphorylation of lipid metabolic enzymes by yeast protein kinase C requires phosphatidylserine and diacylglycerol.

    PubMed

    Dey, Prabuddha; Su, Wen-Min; Han, Gil-Soo; Carman, George M

    2017-04-01

    Protein kinase C in Saccharomyces cerevisiae, i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar to its counterparts in higher eukaryotes, but its requirement of phosphatidylserine (PS) and diacylglycerol (DAG) for catalytic activity has been unclear. In this work, we examined the role of these lipids in Pkc1 activity with protein and peptide substrates. In agreement with previous findings, yeast Pkc1 did not require PS and DAG for its activity on the peptide substrates derived from lipid metabolic proteins such as Pah1 [phosphatidate (PA) phosphatase], Nem1 (PA phosphatase phosphatase), and Spo7 (protein phosphatase regulatory subunit). However, the lipids were required for Pkc1 activity on the protein substrates Pah1, Nem1, and Spo7. Compared with DAG, PS had a greater effect on Pkc1 activity, and its dose-dependent interaction with the protein kinase was shown by the liposome binding assay. The Pkc1-mediated degradation of Pah1 was attenuated in the cho1Δ mutant, which is deficient in PS synthase, supporting the notion that the phospholipid regulates Pkc1 activity in vivo. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Mediated trehalose un-loading for reduced erythrocyte osmotic fragility and phosphatidylserine translocation.

    PubMed

    Lynch, A L; Slaater, N K H

    2011-01-01

    Recently, high concentrations of intracellular trehalose (>200mM) were employed to enhance the cryoprotection and desiccation protection of human erythrocytes. However, significant challenges must be overcome if this advancement is to be translated into clinical practice. It is here demonstrated that 247 ± 5 mM intracellular trehalose caused the lysis of 60 ± 2 percent of erythrocytes upon resuspension in PBS of physiological osmolality (300 mOsm) and caused surviving cells to swell up to 140 ± 2 percent of isotonic cell volume. Trehalose loaded cells also exhibited 24 ± 1 percent incidence of phosphatidylserine translocation upon resuspension in 300 mOsm PBS, likely due to loading induced cell swelling. Un-loading of trehalose from erythrocytes using the membrane-permeabilizing biopolymer PP-50 was investigated as a technique to mitigate these damaging effects. After erythrocyte un-loading from 247 ± 5 mM to 39 ± 2 mM intracellular trehalose, cell lysis at 300 mOsm PBS was reduced from 60 ± 2 percent to 17 ± 3 percent. Un-loading also reduced cellular incidence of PS translocation in resuspended cells from 24 ± 1 percent to 13 ± 1 percent.

  5. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes.

    PubMed Central

    Flach, C R; Mendelsohn, R

    1993-01-01

    Fourier transform-infrared (IR) spectroscopic and electron microscopic studies are reported for 1,2-dimyristoylphosphatidylserine (DMPS) and for DMPS/1,2-dimyristoylphosphatidylcholine mixtures in the presence and absence of Ca2+ ion. The frequency of the methyl symmetric deformation mode near 1,378 cm-1, previously assumed insensitive to changes in lipid morphology, has been found to respond to cochleate phase formation by undergoing an approximately 8 cm-1 increase. The new IR spectroscopic marker at 1,386 cm-1 has been used to identify and verify structures suggested from the phase diagram of J. R. Silvius and J. Gagné (1984. Biochemistry. 23:3241-3247) for this system. In addition, the ability of Mg2+ ion to induce cochleate formation has been demonstrated. Higher Mg2+ than Ca2+ levels are required for this process. Finally, IR spectroscopy has been used to monitor dehydration of the lipid surface through changes in the asymmetric PO2- stretching mode. Dehydration precedes cochleate phase formation (i.e., occurs at a lower Ca2+/phosphatidylserine level). Images FIGURE 3 FIGURE 3 PMID:8494975

  6. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate.

    PubMed

    Moser von Filseck, Joachim; Čopič, Alenka; Delfosse, Vanessa; Vanni, Stefano; Jackson, Catherine L; Bourguet, William; Drin, Guillaume

    2015-07-24

    In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.

  7. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow.

    PubMed

    Whyte, Claire S; Swieringa, Frauke; Mastenbroek, Tom G; Lionikiene, Ausra S; Lancé, Marcus D; van der Meijden, Paola E J; Heemskerk, Johan W M; Mutch, Nicola J

    2015-04-16

    The interaction of plasminogen with platelets and their localization during thrombus formation and fibrinolysis under flow are not defined. Using a novel model of whole blood thrombi, formed under flow, we examine dose-dependent fibrinolysis using fluorescence microscopy. Fibrinolysis was dependent upon flow and the balance between fibrin formation and plasminogen activation, with tissue plasminogen activator-mediated lysis being more efficient than urokinase plasminogen activator-mediated lysis. Fluorescently labeled plasminogen radiates from platelet aggregates at the base of thrombi, primarily in association with fibrin. Hirudin attenuates, but does not abolish plasminogen binding, denoting the importance of fibrin. Flow cytometry revealed that stimulation of platelets with thrombin/convulxin significantly increased the plasminogen signal associated with phosphatidylserine (PS)-exposing platelets. Binding was attenuated by tirofiban and Gly-Pro-Arg-Pro amide, confirming a role for fibrin in amplifying plasminogen binding to PS-exposing platelets. Confocal microscopy revealed direct binding of plasminogen and fibrinogen to different platelet subpopulations. Binding of plasminogen and fibrinogen co-localized with PAC-1 in the center of spread platelets. In contrast, PS-exposing platelets were PAC-1 negative, and bound plasminogen and fibrinogen in a protruding "cap." These data show that different subpopulations of platelets harbor plasminogen by diverse mechanisms and provide an essential scaffold for the accumulation of fibrinolytic proteins that mediate fibrinolysis under flow.

  8. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.

    PubMed

    Hankins, Hannah M; Baldridge, Ryan D; Xu, Peng; Graham, Todd R

    2015-01-01

    It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non-vesicular routes, with members of the oxysterol-binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4-ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS-specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.

  9. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    PubMed

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.

  10. Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats.

    PubMed

    Lee, Bombi; Sur, Bong-Jun; Han, Jeong-Jun; Shim, Insop; Her, Song; Lee, Yang-Seok; Lee, Hye-Jung; Hahm, Dae-Hyun

    2015-01-02

    Recently, lecithin-derived phosphatidylserine (PS), which originates from marine life, has received much attention as a viable alternative to bovine cerebral cortex PS. In this study, the use of squid phosphatidylcholine-transphosphatidylated PS (SQ-PS) was evaluated through examination of its ameliorating effects on age-associated learning and memory deficits in rats. Aged rats were orally administered SQ-PS (10, 20, or 50 mg/kg per day) once a day for seven days 30 min prior to behavioral assessment in a Morris water maze. SQ-PS administration produced significant dose-dependent improvements in escape latency for finding the platform in the Morris water maze in the aged rats even though Soy-PS administration also exhibited comparable improvements with SQ-PS. Biochemical alterations in the hippocampal cholinergic system, including changes in choline acetyltransferase and acetylcholinesterase immunoreactivity, were consistent with the behavioral results. In addition, SQ-PS treatment significantly restored age-associated decreases of choline transporter and muscarinic acetylcholine receptor type 1 mRNA expression in the hippocampus. These results demonstrate that orally administered SQ-PS dose-dependently aids in the improvement of memory deficits that occur during normal aging in rats. This suggests that SQ-PS may be a useful therapeutic agent in the treatment of diminished memory function in elderly people.

  11. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    PubMed

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts.

  12. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    PubMed

    Jemielity, Stephanie; Wang, Jinyize J; Chan, Ying Kai; Ahmed, Asim A; Li, Wenhui; Monahan, Sheena; Bu, Xia; Farzan, Michael; Freeman, Gordon J; Umetsu, Dale T; Dekruyff, Rosemarie H; Choe, Hyeryun

    2013-03-01

    Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  13. Anti-phosphatidylserine-prothrombin complex antibodies in patients with localized scleroderma.

    PubMed

    Hasegawa, M; Fujimoto, M; Hayakawa, I; Matsushita, T; Nishijima, C; Yamazaki, M; Takehara, K; Sato, S

    2006-01-01

    Although some antiphospholipid antibodies (Abs) are found in patients with localized scleroderma (LSc), Ab against phosphatidylserine-prothrombin complex (PS/PT) has not been examined. We investigated anti-PS/PT Ab levels in patients with LSc. IgG anti-PS/PT Ab levels in serum samples taken from patients with LSc (n = 42) were measured using ELISA. IgG anti-PS/PT Ab was detected in 17% of the LSc patients, while it was not detected in any normal controls (n = 32) or psoriasis vulgaris (n = 25), and this frequency was similar to that of systemic sclerosis (17%, n = 41). Among 3 LSc subgroups, generalized morphea, the severest form of LSc, had a frequency (27%) comparable with that of systemic lupus erythematosus (32%, n = 25). Among 7 LSc patients with anti-PS/PT Ab, 2 developed symptomatic thromboembolism (A 70-year-old man developed deep vein thrombosis and pulmonary infarction, although he was negative for other antiphospholipid Abs. A 6-year-old boy positive for lupus anticoagulant had cerebral infarction). By contrast, symptomatic thromboembolism was not detected in 35 LSc patients without anti-PS/PT Ab. Patients with LSc, especially generalized morphea, exhibit anti-PS/PT Ab at a frequency comparable with collagen diseases such as systemic sclerosis and systemic lupus erythematosis. Examination of this Ab may be useful to recognize the risk of thromboembolism in patients with LSc.

  14. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model.

    PubMed

    Bochner, Ron; Ziv, Yael; Zeevi, David; Donyo, Maya; Abraham, Lital; Ashery-Padan, Ruth; Ast, Gil

    2013-07-15

    Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.

  15. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor.

    PubMed

    Park, S-Y; Jung, M-Y; Kim, H-J; Lee, S-J; Kim, S-Y; Lee, B-H; Kwon, T-H; Park, R-W; Kim, I-S

    2008-01-01

    Rapid phagocytic clearance of apoptotic cells is crucial for the prevention of both inflammation and autoimmune responses. Phosphatidylserine (PS) at the external surface of the plasma membrane has been proposed to function as a general 'eat me' signal for apoptotic cells. Although several soluble bridging molecules have been suggested for the recognition of PS, the PS-specific membrane receptor that binds directly to the exposed PS and provides a tickling signal has yet to be definitively identified. In this study, we provide evidence that stabilin-2 is a novel PS receptor, which performs a key function in the rapid clearance of cell corpses. It recognizes PS on aged red blood cells and apoptotic cells, and mediates their engulfment. The downregulation of stabilin-2 expression in macrophages significantly inhibits phagocytosis, and anti-stabilin-2 monoclonal antibody provokes the release of the anti-inflammatory cytokine, transforming growth factor-beta. Furthermore, the results of time-lapse video analyses indicate that stabilin-2 performs a crucial function in the rapid clearance of aged and apoptotic cells. These data indicate that stabilin-2 is the first of the membrane PS receptors to provide tethering and tickling signals, and may also be involved in the resolution of inflammation and the prevention of autoimmunity.

  16. Role of phosphatidylserine synthase in shaping the phospholipidome of Candida albicans.

    PubMed

    Cassilly, Chelsi D; Farmer, Abigail T; Montedonico, Anthony E; Smith, Terry K; Campagna, Shawn R; Reynolds, Todd B

    2017-03-01

    Phosphatidylserine (PS) synthase (Cho1p) and the PS decarboxylase enzymes (Psd1p and Psd2p), which synthesize PS and phosphatidylethanolamine (PE), respectively, are crucial for Candida albicans virulence. Mutations that disrupt these enzymes compromise virulence. These enzymes are part of the cytidine diphosphate-diacylglycerol pathway (i.e. de novo pathway) for phospholipid synthesis. Understanding how losses of PS and/or PE synthesis pathways affect the phospholipidome of Candida is important for fully understanding how these enzymes impact virulence. The cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutations cause similar changes in levels of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol and PS. However, only slight changes were seen in PE and phosphatidylcholine (PC). This finding suggests that the alternative mechanism for making PE and PC, the Kennedy pathway, can compensate for loss of the de novo synthesis pathway. Candida albicans Cho1p, the lipid biosynthetic enzyme with the most potential as a drug target, has been biochemically characterized, and analysis of its substrate specificity and kinetics reveal that these are similar to those previously published for Saccharomyces cerevisiae Cho1p. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  18. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs.

    PubMed

    Agarwal, Amit R; Zhao, Liqin; Sancheti, Harsh; Sundar, Isaac K; Rahman, Irfan; Cadenas, Enrique

    2012-11-15

    Cigarette smoking leads to alteration in cellular redox status, a hallmark in the pathogenesis of chronic obstructive pulmonary disease. This study examines the role of cigarette smoke (CS) exposure in the impairment of energy metabolism and, consequently, mitochondrial dysfunction. Male A/J mice were exposed to CS generated by a smoking machine for 4 or 8 wk. A recovery group was exposed to CS for 8 wk and allowed to recover for 2 wk. Acute CS exposure altered lung glucose metabolism, entailing a decrease in the rate of glycolysis and an increase in the pentose phosphate pathway, as evidenced by altered expression and activity of GAPDH and glucose-6-phosphate dehydrogenase, respectively. Impairment of GAPDH was found to be due to glutathionylation of its catalytic site cysteines. Metabolic changes were associated with changes in cellular and mitochondrial redox status, assessed in terms of pyridine nucleotides and glutathione. CS exposure elicited an upregulation of the expression of complexes II, III, IV, and V and of the activity of complexes II, IV, and V. Microarray analysis of gene expression in mouse lungs after exposure to CS for 8 wk revealed upregulation of a group of genes involved in metabolism, electron transfer chain, oxidative phosphorylation, mitochondrial transport and dynamics, and redox regulation. These changes occurred independently of inflammatory responses. These findings have implications for the early onset of alterations in energy and redox metabolism upon acute lung exposure to CS.

  19. Are DNA-damaging effects induced by herbicide formulations (Roundup® and Garlon®) in fish transient and reversible upon cessation of exposure?

    PubMed

    Guilherme, S; Santos, M A; Gaivão, I; Pacheco, M

    2014-10-01

    Owing to the seasonality of crop cultivation and subsequent periodic/seasonal application of herbicides, their input to the aquatic systems is typically intermittent. Consequently, exposure of fish to this type of contaminants can be short and followed by a period of permanence in non-contaminated areas. Thus, the assessment of genotoxic endpoints in fish after removal of the contamination source appears as a crucial step to improve the knowledge on the dynamics of herbicide genotoxicity, as well as to determine the actual magnitude of risk posed by these agrochemicals. Therefore, the present study intended to shed light on the ability of fish to recover from the DNA damage induced by short-term exposures to the herbicide formulations Roundup(®) (glyphosate-based) and Garlon(®) (triclopyr-based) upon the exposure cessation. European eel (Anguilla anguilla) was exposed to the above commercial formulations for 3 days, and allowed to recover for 1, 7 and 14 days (post-exposure period). The comet assay was used to identify the DNA damage in blood cells during both exposure and post-exposure periods. As an attempt to clarify the DNA damaging mechanisms involved, an extra-step including the incubation of the nucleotides with DNA lesion-specific repair enzyme was added to the standard comet. The genotoxic potential of both herbicides was confirmed, concerning the exposure period. In addition, the involvement of oxidative DNA damage on the action of Roundup(®) (pointed out as pyrimidine bases oxidation) was demonstrated, while for Garlon(®) this damaging mechanism was less evident. Fish exposed to Garlon(®), though presenting some evidence towards a tendency of recovery, did not achieve a complete restoration of DNA integrity. In what concerns to Roundup(®), a recovery was evident when considering non-specific DNA damage on day 14 post-exposure. In addition, this herbicide was able to induce a late oxidative DNA damage (day 14). Blood cells of A. anguilla exposed to

  20. Reversible dementias

    PubMed Central

    Tripathi, Manjari; Vibha, Deepti

    2009-01-01

    In recent years, more attention has been given to the early diagnostic evaluation of patients with dementia which is essential to identify patients with cognitive symptoms who may have treatable conditions. Guidelines suggest that all patients presenting with dementia or cognitive symptoms should be evaluated with a range of laboratory tests, and with structural brain imaging with computed tomography (CT) or magnetic resonance imaging (MRI). While many of the disorders reported as ‘reversible dementias’ are conditions that may well be associated with cognitive or behavioral symptoms, these symptoms are not always sufficiently severe to fulfill the clinical criteria for dementia. Thus, while the etiology of a condition may be treatable it should not be assumed that the associated dementia is fully reversible. Potentially reversible dementias should be identified and treatment considered, even if the symptoms are not sufficiently severe to meet the clinical criteria for dementia, and even if partial or full reversal of the cognitive symptoms cannot be guaranteed. In the literature, the most frequently observed potentially reversible conditions identified in patients with cognitive impairment or dementia are depression, adverse effects of drugs, drug or alcohol abuse, space-occupying lesions, normal pressure hydrocephalus, and metabolic conditions land endocrinal conditions like hypothyroidism and nutritional conditions like vitamin B-12 deficiency. Depression is by far the most common of the potentially reversible conditions. The review, hence addresses the common causes of reversible dementia and the studies published so far. PMID:21416018

  1. Enhanced eryptosis following gramicidin exposure.

    PubMed

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-04-23

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD.

  2. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.

    PubMed

    Koty, Patrick P; Tyurina, Yulia Y; Tyurin, Vladimir A; Li, Shang-Xi; Kagan, Valerian E

    2002-01-01

    Oxidant-induced apoptosis involves oxidation of many different and essential molecules including phospholipids. As a result of this non-specific oxidation, any signaling role of a particular phospholipid-class of molecules is difficult to elucidate. To determine whether preferential oxidation of phosphatidylserine (PS) is an early event in apoptotic signaling related to PS externalization and is independent of direct oxidant exposure, we chose a genetic-based induction of apoptosis. Apoptosis was induced in the lung cancer cell line NCI-H226 by decreasing the amount of Bcl-2 protein expression by preventing the translation of bcl-2 mRNA using an antisense bcl-2 oligonucleotide. Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids. We found a decrease in Bcl-2 was associated with a selective oxidation of PS in a sub-population of the cells with externalized PS. No significant difference in oxidation of cis-PnA-labeled phospholipids was observed in cells treated with medium alone or a nonsense oligonucleotide. Treatment with either nonsensc or antisense bcl-2 oligonucleotides was not associated with changes in the pattern of individual phospholipid classes as determined by HPTLC. These metabolic and topographical changes in PS arrangement in plasma membrane appear to be early responses to antisense bcl-2 exposure that trigger a PS-dependent apoptotic signaling pathway. This observed externalization of PS may facilitate the 'labeling' of apoptotic cells for recognition by macrophage scavenger receptors and subsequent phagocytic clearance.

  3. Methyl isobutyl ketone exposure-related increases in specific measures of α2u-globulin (α2u) nephropathy in male rats along with in vitro evidence of reversible protein binding.

    PubMed

    Borghoff, S J; Poet, T S; Green, S; Davis, J; Hughes, B; Mensing, T; Sarang, S S; Lynch, A M; Hard, G C

    2015-07-03

    Chronic exposure to methyl isobutyl ketone (MIBK) resulted in an increase in the incidence of renal tubule adenomas and occurrence of renal tubule carcinomas in male, but not female Fischer 344 rats. Since a number of chemicals have been shown to cause male rat renal tumors through the α2u nephropathy-mediated mode of action, the objective of this study is to evaluate the ability of MIBK to induce measures of α2u nephropathy including renal cell proliferation in male and female F344 rats following exposure to the same inhalation concentrations used in the National Toxicology Program (NTP) cancer bioassay (0, 450, 900, or 1800ppm). Rats were exposed 6h/day for 1 or 4 weeks and kidneys excised approximately 18h post exposure to evaluate hyaline droplet accumulation (HDA), α2u staining of hyaline droplets, renal cell proliferation, and to quantitate renal α2u concentration. There was an exposure-related increase in all measures of α2u nephropathy in male, but not female rat kidneys. The hyaline droplets present in male rat kidney stained positively for α2u. The changes in HDA and α2u concentration were comparable to d-limonene, an acknowledged inducer of α2u nephropathy. In a separate in vitro study using a two-compartment vial equilibration model to assess the interaction between MIBK and α2u, the dissociation constant (Kd) was estimated to be 1.27×10(-5)M. This Kd is within the range of other chemicals known to bind to α2u and cause nephropathy. Together, the exposure-related increase in measures of α2u nephropathy, sustained increase in renal cell proliferation along with an indication of reversible binding of MIBK to α2u, support the inclusion of MIBK in the category of chemicals exerting renal effects through a protein droplet α2u nephropathy-mediated mode of action (MoA).

  4. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  5. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  6. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  7. Anti-phosphatidylserine/prothrombin antibodies: an additional diagnostic marker for APS?

    PubMed

    Pregnolato, Francesca; Chighizola, Cecilia B; Encabo, Susan; Shums, Zakera; Norman, Gary L; Tripodi, Armando; Chantarangkul, Veena; Bertero, Tiziana; De Micheli, Valeria; Borghi, Maria Orietta; Meroni, Pier Luigi

    2013-07-01

    Among the diagnostic assays for anti-phospholipid syndrome (APS), lupus anticoagulant (LA) is the strongest predictor of thrombosis; however, it presents several limitations as interference with anticoagulant therapy and poor inter-laboratory agreement. Two-thirds of LA activity is apparently due to antibodies against prothrombin (PT), usually detectable by ELISA. Binding of PT to phosphatidylserine (PS) has been shown to enhance solid-phase anti-PT assay sensitivity. To determine the prevalence of antibodies against PS/PT (aPS/PT) in APS, we tested the semiquantitative QUANTA Lite(®) aPS/PT ELISA in a cohort of 80 APS patients. The prevalence of aPS/PT was 81.3%, rising to 87.6% when considering LA-positive subjects only. We observed a strong correlation between aPS/PT and LA (p = 0.006). To note, APS patients with thrombotic manifestations displayed significantly higher IgG aPS/PT titers compared to 20 aPL asymptomatic carriers (p = 0.012). To rule out a possible cross-reactivity of anti-β2 glycoprotein I antibodies (aβ2GPI) with PS/PT complex, we tested two monoclonal aβ2GPI antibodies and an affinity-purified (AP) polyclonal aβ2GPI IgG obtained from the serum of a patient reacting against both β2GPI and PS/PT. The two monoclonal antibodies did not show any reactivity against PS/PT complex, similarly the AP IgGs did not react toward PS/PT antigen while preserved their aβ2GPI activity. Our findings suggest that aPS/PT are a definite antibody population in APS. Moreover, the good correlation between aPS/PT ELISA and LA may support its use as a surrogate test for LA, particularly useful to overcome the technical limitations of the functional assay.

  8. Diagnostic value of antibodies to phosphatidylserine/prothrombin complex for antiphospholipid syndrome in Chinese patients.

    PubMed

    Zhu, Lei; Li, Chun; Liu, Na; Yang, Xin; Jia, R L; Mu, Rong; Su, Yin; Li, Z G

    2017-02-01

    To evaluate the diagnosis value of antibodies to phosphatidylserine/prothrombin complex (aPS/PT) in patients with antiphospholipid syndrome (APS) and to determine the clinical features of APS patients with avidity of aPS/PT. Serum samples were collected from 108 APS patients. Sixty patients with pregnancy morbidity, 37 patients with thrombosis without a history of autoimmune diseases, and 89 healthy blood donors were included as the control group. The enzyme-linked immunosorbent assay (ELISA) test was performed to detect the concentration of aPS/PT, including IgG/M, IgG, and IgM forms, in the same serum sample. The chi-square (χ2) test was used to examine the difference of frequencies of antibodies in APS patients and patients with other diseases. Spearman correlation analysis was performed to investigate the relationship between aPS/PT and other clinical/laboratory parameters. aPS/PT was detectable in 68 (63.0%) of the 108 APS patients, 12 (13.2%) of the 91 disease control patients and 1 (1.1%) of the healthy controls. It was strongly correlated with the activity of lupus anticoagulant (LA) (OR 15.952, 95% CI 7.132-35.678; P < 0.001). The frequency of aPS/PT was 56.9% in anti-cardiolipid antibody (aCL)-negative, 60.5% anti-β2 glycoprotein I antibody (aβ2GPI)-negative, and 50.0% in both aCL and aβ2GPI negative APS patients. The IgG aPS/PT was significantly associated with arterial and venous thrombosis. The aPS/PT antibody could play an important role in the diagnosis of APS, especially in patients with negative aCL and aβ2GPI. It was positively related to thrombotic events in APS.

  9. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells

    PubMed Central

    Takada, Naoto; Takatsu, Hiroyuki; Miyano, Rie; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells. PMID:26420878

  10. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells.

    PubMed

    Takada, Naoto; Takatsu, Hiroyuki; Miyano, Rie; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-11-01

    Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    SciTech Connect

    Voelker, D.R. )

    1989-12-01

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with ({sup 3}H)serine, and the synthesis of phosphatidyl({sup 3}H)ethanolamine from phosphatidyl({sup 3}H)serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 {mu}g of saponin per ml, there was no significant turnover of nascent phosphatidyl({sup 3}H)serine to form phosphatidyl({sup 3}H)ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl({sup 3}H)ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl({sup 3}H)serine during a subsequent 2-hr chase. Phosphatidyl({sup 3}H)ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl({sup 3}H)serine to phosphatidyl({sup 3}H)ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5{prime}-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins.

  12. Young steady-state rabbit platelets do not have an enhanced capacity to expose procoagulant phosphatidylserine.

    PubMed

    Reddy, Emily C; Wang, Hong; Bang, K W Annie; Packham, Marian A; Rand, Margaret L

    2017-04-13

    Platelets are recognized to be physiologically and functionally heterogeneous. An example of the diversity in reactivity is the formation of a distinct subpopulation of procoagulant phosphatidylserine (PS)-exposing platelets upon activation. Platelet age has been proposed as a determinant of platelet function, and it has been reported that young platelets are more reactive in exposing PS; using the same methodology of thiazole orange (TO) staining to distinguish young and old platelets, the percentages of procoagulant platelets produced by thrombin plus collagen activation of platelets from healthy controls were examined by flow cytometry. The procoagulant subpopulation formed by TO-positive platelets (with high TO fluorescence), purported to be young reticulated platelets, was observed to be significantly larger than that formed by TO-negative platelets (with low TO fluorescence), purported to be older platelets. However, it was noted that TO fluorescence in the total platelet population was unimodal and increased with platelet size, assessed by forward scatter. This observation raised the concern that TO-positive platelets are not necessarily the youngest platelets in the condition of steady-state platelet production. Thus, to unequivocally determine whether platelet age is a factor in procoagulant platelet formation, a different approach to identify young, steady-state platelets was employed. Rabbits were injected with biotin to label >95% of circulating platelets in vivo; 24 hours post-biotinylation, the non-biotinylated platelets in the circulation, detected flow cytometrically, are the youngest, newly-formed platelets. It was demonstrated that these youngest platelets were not larger in size than older, biotinylated platelets, and that they did not have an enhanced capacity to expose PS.

  13. Involvement of CD300a Phosphatidylserine Immunoreceptor in Aluminum Salt Adjuvant-Induced Th2 Responses.

    PubMed

    Miki, Haruka; Nakahashi-Oda, Chigusa; Sumida, Takayuki; Shibuya, Akira

    2015-06-01

    Aluminum salt (alum) has been widely used for vaccinations as an adjuvant. Alum not only enhances immunogenicity but also induces Th2 cell immune responses. However, the mechanisms of how alum enhances Th2 cell immune responses have been controversial. In an experimental allergic airway inflammation model, in which alum in conjunction with OVA Ag was i.p. injected for immunization, we found that apoptotic cells and inflammatory dendritic cells (iDC) expressing CD300a, an inhibitory immunoreceptor for phosphatidylserine (PS), significantly increased in number in the peritoneal cavity after the immunization. In contrast, apoptotic cells and iDCs were scarcely observed in the peritoneal cavity after injection of OVA alone. In CD300a-deficient mice, eosinophil infiltration in bronchoalveolar lavage fluid, serum IgE levels, and airway hyperreactivity were significantly decreased after immunization with alum plus OVA compared with wild-type mice. In vitro, iDCs purified from CD300a-deficient mice after the immunization induced significantly less IL-4 production from OT-II naive CD4(+) T cells after coculture with OVA Ag. CD300a expressed on iDCs bound PS on apoptotic cells in the peritoneal cavity after injection of OVA plus alum. Blocking CD300a interaction with PS by injection of a neutralizing anti-CD300a Ab resulted in inhibition of the development of allergic airway inflammation. These results suggest that CD300a is involved in alum-induced Th2 skewing. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Effects of diacylglycerols on conformation of phosphatidylcholine headgroups in phosphatidylcholine/phosphatidylserine bilayers.

    PubMed Central

    Goldberg, E M; Lester, D S; Borchardt, D B; Zidovetzki, R

    1995-01-01

    The effects of five diacylglycerols (DAGs), diolein, 1-stearoyl,2-arachidonoyl-sn-glycerol, dioctanoylglycerol, 1-oleoyl,2-sn-acetylglycerol, and dipalmitin (DP), on the structure of lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine (4:1 mol/mol) were examined by 2H nuclear magnetic resonance (NMR). Dipalmitoylphosphatidylcholine deuterated at the alpha- and beta-positions of the choline moiety was used to probe the surface region of the membranes. Addition of each DAG except DP caused a continuous decrease in the beta-deuteron quadrupole splittings and a concomitant increase in the alpha-deuteron splittings indicating that DAGs induce a conformational change in the phosphatidylcholine headgroup. Additional evidence of conformational change was found at high DAG concentrations (> or = 20 mol%) where the alpha-deuteron peaks became doublets indicating that the two alpha-deuterons were not equivalent. The changes induced by DP were consistent with the lateral phase separation of the bilayers into gel-like and fluid-like domains with the phosphatidylcholine headgroups in the latter phase being virtually unaffected by DP. The DAG-induced changes in alpha-deuteron splittings were found to correlate with DAG-enhanced protein kinase C (PK-C) activity, suggesting that the DAG-induced conformational changes of the phosphatidylcholine headgroups are either directly or indirectly related to a mechanism of PK-C activation. 2H NMR relaxation measurements showed significant increase of the spin-lattice relaxation times for the region of the phosphatidylcholine headgroups, induced by all DAGs except DP. However, this effect of DAGs did not correlate with the DAG-induced activation of PK-C. PMID:8519996

  15. Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane.

    PubMed

    Hirama, Takashi; Das, Raibatak; Yang, Yanbo; Ferguson, Charles; Won, Amy; Yip, Christopher M; Kay, Jason G; Grinstein, Sergio; Parton, Robert G; Fairn, Gregory D

    2017-08-25

    Caveolae are bulb-shaped nanodomains of the plasma membrane that are enriched in cholesterol and sphingolipids. They have many physiological functions, including endocytic transport, mechanosensing, and regulation of membrane and lipid transport. Caveola formation relies on integral membrane proteins termed caveolins (Cavs) and the cavin family of peripheral proteins. Both protein families bind anionic phospholipids, but the precise roles of these lipids are unknown. Here, we studied the effects of phosphatidylserine (PtdSer), phosphatidylinositol 4-phosphate (PtdIns4P), and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) on caveolar formation and dynamics. Using live-cell, single-particle tracking of GFP-labeled Cav1 and ultrastructural analyses, we compared the effect of PtdSer disruption or phosphoinositide depletion with caveola disassembly caused by cavin1 loss. We found that PtdSer plays a crucial role in both caveola formation and stability. Sequestration or depletion of PtdSer decreased the number of detectable Cav1-GFP puncta and the number of caveolae visualized by electron microscopy. Under PtdSer-limiting conditions, the co-localization of Cav1 and cavin1 was diminished, and cavin1 degradation was increased. Using rapamycin-recruitable phosphatases, we also found that the acute depletion of PtdIns4P and PtdIns(4,5)P2 has minimal impact on caveola assembly but results in decreased lateral confinement. Finally, we show in a model of phospholipid scrambling, a feature of apoptotic cells, that caveola stability is acutely affected by the scrambling. We conclude that the predominant plasmalemmal anionic lipid PtdSer is essential for proper Cav clustering, caveola formation, and caveola dynamics and that membrane scrambling can perturb caveolar stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations

    PubMed Central

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-01-01

    It is known that phosphatidylserine (PS−) lipids have a very similar affinity for Ca2+ and Mg2+ cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca2+ or Mg2+ induces very different aggregation behavior for PS− liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca2+ or Mg2+ cations. These puzzling results suggest that although these two cations have a similar affinity for PS− lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS− membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca2+ and Mg2+ cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca2+ cations present a peak at a distance ∼2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg2+ cations has two different peaks, located a few angstroms before and after the Ca2+ peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca2+ and Mg2+, respectively. PMID:22824273

  17. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of

  18. Phosphatidylserine and Phosphatidylethanolamine Bind to Protein Z Cooperatively and with Equal Affinity

    PubMed Central

    Sengupta, Tanusree; Manoj, Narayanan

    2016-01-01

    Protein Z (PZ) is an anticoagulant that binds with high affinity to Protein Z-dependent protease inhibitor (ZPI) and accelerates the rate of ZPI-mediated inhibition of factor Xa (fXa) by more than 1000-fold in the presence of Ca2+ and phospholipids. PZ promotion of the ZPI-fXa interaction results from the anchoring of the Gla domain of PZ onto phospholipid surfaces and positioning the bound ZPI in close proximity to the Gla-anchored fXa, forming a ternary complex of PZ/ZPI/fXa. Although interaction of PZ with phospholipid membrane appears to be absolutely crucial for its cofactor activity, little is known about the binding of different phospholipids to PZ. The present study was conceived to understand the interaction of different phospholipids with PZ. Experiments with both soluble lipids and model membranes revealed that PZ binds to phosphatidylserine (PS) and phosphatidylethanolamine (PE) with equal affinity (Kd~48 μM); further, PS and PE bound to PZ synergistically. Equilibrium dialysis experiments revealed two lipid-binding sites for both PS and PE. PZ binds with weaker affinity to other phospholipids, e.g., phosphatidic acid, phosphatidylglycerol, phosphatidylcholine and binding of these lipids is not synergistic with respect to PS. Both PS and PE -containing membranes supported the formation of a fXa-PZ complex. PZ protection of fXa from antithrombin inhibition were also shown to be comparable in presence of both PS: PC and PE: PC membranes. These findings are particularly important and intriguing since they suggest a special affinity of PZ, in vivo, towards activated platelets, the primary membrane involved in blood coagulation process. PMID:27584039

  19. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide.

    PubMed

    Tarafdar, Pradip K; Chakraborty, Hirak; Bruno, Michael J; Lentz, Barry R

    2015-11-03

    Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex's ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex's presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Characterization and localization of phosphatidylglycerophosphate and phosphatidylserine synthases in Rhodobacter sphaeroides.

    PubMed

    Radcliffe, C W; Steiner, F X; Carman, G M; Niederman, R A

    1989-01-01

    Catalytic properties and membrane associations of the phosphatidylglycerophosphate (PGP) and phosphatidylserine (PS) synthases of Rhodobacter sphaeroides were examined to further characterize sites of phospholipid biosynthesis. In preparations of cytoplasmic membrane (CM) enriched in these activities, apparent Km values of PGP synthase were 90 microM for sn-glycerol-3-phosphate and 60 microM for CDP-diacylglycerol; the apparent Km of PS synthase for L-serine was near 165 microM. Both enzymes required Triton X-100 with optimal PS synthase activity at a detergent/CDP-diacylglycerol (mol/mol) ratio of 7.5:1.0, while for optimal PGP synthase, a range of 10-50:1.0 was observed. Unlike the enzyme in Escherichia coli and several other Gram-negative bacteria, the PS synthase activity had a specific requirement for magnesium and was tightly associated with membranes rather than ribosomes in crude cell extracts. Sedimentation studies suggested that the PGP synthase was distributed uniformly over the CM in both chemoheterotrophically and photoheterotrophically grown cells, while the PS synthase was confined mainly to a vesicular CM fraction. Solubilized PGP synthase activity migrated as a single band with a pI value near 5.5 in a chromato-focusing column and 5.8 on isoelectric focusing; in the latter procedure, the pI was shifted to 5.3 in the presence of CDP-diacylglycerol. The PGP synthase activity gave rise to a single polypeptide band in lithium dodecyl sulfate-polyacrylamide gel electrophoresis at 4 degrees C.

  1. Apoptosis mediated by phosphatidylserine externalization in the elimination of aneuploid germ cells during human spermatogenesis.

    PubMed

    Garcia-Quevedo, L; Blanco, J; Sarrate, Z; Vidal, F

    2014-11-01

    It has been described that aneuploidies trigger cell cycle checkpoints leading to apoptosis. The aim of this study was to assess the relationship between the presence of chromosomal abnormalities and apoptosis in germ cells and in Sertoli cells. Fourteen diagnostic testicular biopsies from infertile patients were processed following a sequential methodology, which included enzymatic disaggregation, apoptotic staining, cell sorting, cell fixation, and fluorescent in situ hybridization analysis. The chromosome constitution of germ cells (interphase pre-meiotic germ cells, meiotic figures, post-reductional germ cells, and spermatozoa) and Sertoli cells was evaluated in non-sorted and flow-sorted cell populations (apoptotic and viable). The mean percentage of aneuploidy was compared between the three fractions in each cell type using a Kruskal-Wallis test. If significant results were obtained, a two-by-two Chi-squared test was performed. There were significant differences between the apoptotic fraction and the viable and non-sorted fractions in the pre-meiotic germ cells (p < 0.01). In the remaining cell types, no association between the presence of aneuploidy and apoptotic processes was observed, even in the case of post-reductional germ cells in which we detected the highest rates of aneuploidy regardless of the fraction analyzed. From our data, it can be inferred that most of the aneuploid post-reductional germ cells are efficiently removed from the testicular epithelium without differentiating into spermatozoa. Our results suggest that the elimination of aneuploid testicular epithelial cells is triggered by different mechanisms. Accordingly, the cellular elimination of aneuploid germ cells beyond the blood-testis barrier does not involve phosphatidylserine externalization. © 2014 American Society of Andrology and European Academy of Andrology.

  2. Phosphatidylserine Translocation after Radiosurgery in an Animal Model of Arteriovenous Malformation.

    PubMed

    Raoufi Rad, Newsha; McRobb, Lucinda S; Zhao, Zhenjun; Lee, Vivienne S; Patel, Nirav J; Qureshi, Anas Sarwar; Grace, Michael; McHattan, Joshua J; Amal Raj, Jude V; Duong, Hong; Kashba, Saleh R; Stoodley, Marcus A

    2017-06-01

    Phosphatidylserine (PS) is asymmetrically distributed across the plasma membrane, located predominantly on the inner leaflet in healthy cells. Translocation of PS to the outer leaflet makes it available as a target for biological therapies. We examined PS translocation after radiosurgery in an animal model of brain arteriovenous malformation (AVM). An arteriovenous fistula was created by end-to-side anastomosis of the left external jugular vein to the common carotid artery in 6-week-old, male Sprague Dawley rats. Six weeks after AVM creation, 15 rats underwent Gamma Knife stereotactic radiosurgery receiving a single 15 Gy dose to the margin of the fistula; 15 rats received sham treatment. Externalization of PS was examined by intravenous injection of a PS-specific near-infrared probe, PSVue-794, and in vivo fluorescence optical imaging at 1, 7, 21, 42, 63 and 84 days postirradiation. Fluorescent signaling indicative of PS translocation to the luminal cell surface accumulated in the AVM region, in both irradiated and nonirradiated animals, at all time points. Fluorescence was localized specifically to the AVM region and was not present in any other anatomical sites. Translocated PS increased over time in irradiated rats (P < 0.001) but not in sham-irradiated rats and this difference reached statistical significance at day 84 (P < 0.05). In summary, vessels within the mature rat AVM demonstrate elevated PS externalization compared to normal vessels. A single dose of ionizing radiation can increase PS externalization in a time-dependent manner. Strict localization of PS externalization within the AVM region suggests that stereotactic radiosurgery can serve as an effective priming agent and PS may be a suitable candidate for vascular-targeting approaches to AVM treatment.

  3. Distinct patterns of phosphatidylserine localization within the Rab11a-containing recycling system.

    PubMed

    Baetz, Nicholas W; Goldenring, James R

    2014-01-01

    The Rab11 GTPases and Rab11 family-interacting proteins (Rab11-FIPs) define integrated yet distinct compartments within the slow recycling pathway. The lipid content of these compartments is less well understood, although past studies have indicated phosphatidylserine (PS) is an integral component of recycling membranes. We sought to identify key differences in the presence of PS within Rab and Rab11-FIP containing membranes. We used live cell fluorescence microscopy and structured illumination microscopy to determine whether the previously published LactC2 probe for PS displays differential patterns of overlap with various Rab GTPases and Rab11-FIPs. Selective overlap was observed between the LactC2 probe and Rab GTPases when co-expressed in HeLa cells. Rab11-FIP1 proteins consistently overlapped with LactC2 along peripheral and pericentriolar compartments. The specificity of Rab11-FIP1 association with LactC2 was further confirmed by demonstrating that additional Rab11-FIPs (FIP2, FIP3, and FIP5) exhibited selective association with LactC2 containing compartments. Live cell dual expression studies of Rab11-FIPs with LactC2 indicated that PS is enriched along tubular compartments of the Rab11a-dependent recycling system. Additionally, we found that the removal of C2 domains from the Rab11-FIPs induced an accumulation of LactC2 probe in the pericentriolar region, suggesting that inhibition of trafficking through the recycling system can influence the distribution of PS within cells. Finally, we confirmed these findings using structured illumination microscopy suggesting that the overlapping fluorescent signals were on the same membranes. These results suggest distinct associations of Rab GTPases and Rab11-FIPs with PS-containing recycling system membrane domains.

  4. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes.

    PubMed

    Wu, Licia N Y; Genge, Brian R; Wuthier, Roy E

    2009-07-01

    Mg(2+) and Zn(2+) are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca(2+)-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg(2+) and Zn(2+) on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg(2+) and Zn(2+) had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg(2+) and Zn(2+) caused similar reductions in the rate and length of rapid mineral formation, but Zn(2+) was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg(2+) and Zn(2+) caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg(2+) altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn(2+) caused significantly less effect, low (<20 microM) levels causing almost no inhibition. Levels of Zn(2+) present in MVs do not appear to inhibit their nucleational activity.

  5. Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations.

    PubMed

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-05-02

    It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2

  6. High molecular weight kininogen binds phosphatidylserine and opsonizes urokinase plasminogen activator receptor-mediated efferocytosis

    PubMed Central

    Yang, Aizhen; Dai, Jihong; Xie, Zhanli; Colman, Robert W.; Wu, Qingyu; Birge, Raymond B.; Wu, Yi

    2014-01-01

    Summary Phagocytosis of apoptotic cells (efferocytosis) is essential for regulation of immune responses and tissue homeostasis, and is mediated by phagocytic receptors. In this study we found that urokinase plasminogen activator receptor (uPAR) plays an important role in internalization of apoptotic cells, and also characterized the underlying mechanisms. In a flow cytometry-based phagocytic assay, uPAR-deficient (uPAR−/−) macrophages displayed significant defect in internalization but not tethering of apoptotic cells. When uPAR−/− mice were challenged with apoptotic cells, they exhibited pronounced splenomegaly resulting from accumulation of abundant apoptotic cells in spleen. Overexpression of uPAR in HEK-293 cells enhanced efferocytosis, which was inhibited by annexin V and phosphatidylserine (PS) liposome, suggesting that uPAR-mediated efferocytosis is dependent on PS. In serum lacking high-molecular-weight kininogen (HK), a uPAR ligand, uPAR-mediated efferocytosis was significantly attenuated, which was rescued by replenishment of HK. As detected by flow cytometry, HK selectively bound to apoptotic cells, but not viable cells. In purified systems, HK was specifically associated with PS liposome. HK binding to apoptotic cells induced its rapid cleavage to two-chain HKa and bradykinin. Both heavy chain and light chain of HKa were associated with PS liposome and apoptotic cells. HKa has higher binding affinity than HK to uPAR. Overexpression of Rac1/N17 cDNA inhibited uPAR-mediated efferocytosis. HK plus PS liposome stimulated a complex formation of CrkII with p130Cas and Dock-180, and Rac1 activation in uPAR-293 cells, but not in control HEK-293 cells. Thus, uPAR mediates efferocytosis through HK interaction with PS on apoptotic cells and activation of Rac1 pathway. PMID:24688027

  7. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins

    SciTech Connect

    Schroit, A.J.; Madsen, J.; Ruoho, A.E.

    1987-04-07

    An isotopically labeled cross-linking reagent, succinimido 3-(3-(/sup 125/I)iodo-4-azidophenyl)propionate, has been synthesized and coupled to 1-acyl-2-(aminocaproyl)phosphatidylcholine according to previously described procedures. /sup 125/I- and N/sub 3/-labeled phosphatidylserine (/sup 125/I-N/sub 3/-PS) was produced from the phosphatidylcholine (PC) analog by phospholipase D catalyzed base exchange in the presence of L-serine. These phospholipid analogues are photoactivatable, are labeled with /sup 125/I at high specific activity, completely incorporate into synthetic vesicles, and spontaneously transfer between membranes. When an excess of acceptor vesicles or red blood cells (RBC) was mixed with a population of donor vesicles containing the /sup 125/I-N/sub 3/-phospholipids, approximately 40% of the analogues transferred to the acceptor population. After transfer in the dark to RBC, all of the /sup 125/I-N/sub 3/-PC incorporated into the cells could be removed by washing with serum, whereas the /sup 125/I-N/sub 3/-PS could not. After photolabeling of intact RBC, approx.50% of the PC and 20% of the PS cross-linked to membrane proteins as determined by their insolubility in CHCl/sub 3//MeOH. Analysis of probe distribution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that /sup 125/I-N/sub 3/-PS preferentially labeled a M/sub r/ 30,000 peptide which contained approx.30% of the protein-bound label.

  8. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane

    PubMed Central

    Cho, Kwang-jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  9. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-11-16

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.

  10. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis

    PubMed Central

    Flannagan, Ronald S.; Canton, Johnathan; Furuya, Wendy; Glogauer, Michael; Grinstein, Sergio

    2014-01-01

    T-cell immunoglobulin mucin protein 4 (TIM4), a phosphatidylserine (PtdSer)-binding receptor, mediates the phagocytosis of apoptotic cells. How TIM4 exerts its function is unclear, and conflicting data have emerged. To define the mode of action of TIM4, we used two distinct but complementary approaches: 1) we compared bone marrow–derived macrophages from wild-type and TIM4−/− mice, and 2) we heterologously expressed TIM4 in epithelioid AD293 cells, which rendered them competent for engulfment of PtdSer-bearing targets. Using these systems, we demonstrate that rather than serving merely as a tether, as proposed earlier by others, TIM4 is an active participant in the phagocytic process. Furthermore, we find that TIM4 operates independently of lactadherin, which had been proposed to act as a bridging molecule. Of interest, TIM4-driven phagocytosis depends on the activation of integrins and involves stimulation of Src-family kinases and focal adhesion kinase, as well as the localized accumulation of phosphatidylinositol 3,4,5-trisphosphate. These mediators promote recruitment of the nucleotide-exchange factor Vav3, which in turn activates small Rho-family GTPases. Gene silencing or ablation experiments demonstrated that RhoA, Rac1, and Rac2 act synergistically to drive the remodeling of actin that underlies phagocytosis. Single-particle detection experiments demonstrated that TIM4 and β1 integrins associate upon receptor clustering. These findings support a model in which TIM4 engages integrins as coreceptors to evoke the signal transduction needed to internalize PtdSer-bearing targets such as apoptotic cells. PMID:24623723

  11. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase.

    PubMed Central

    Huang, J; Swanson, J E; Dibble, A R; Hinderliter, A K; Feigenson, G W

    1993-01-01

    The mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) in fluid bilayer model membranes was studied by measuring binding of aqueous Ca2+ ions. The measured [Ca2+]aq was used to derive the activity coefficient for PS, gamma PS, in the lipid mixture. For (16:0, 18:1) PS in binary mixtures with either (16:0, 18:1)PC, (14:1, 14:1)PC, or (18:1, 18:1)PC, gamma PS > 1; i.e., mixing is nonideal, with PS and PC clustered rather than randomly distributed, despite the electrostatic repulsion between PS headgroups. To understand better this mixing behavior, Monte Carlo simulations of the PS/PC distributions were performed, using Kawasaki relaxation. The excess energy was divided into an electrostatic term Uel and one adjustable term including all other nonideal energy contributions, delta Em. Uel was calculated using a discrete charge theory. Kirkwood's coupling parameter method was used to calculate the excess free energy of mixing, delta GEmix, hence In gamma PS,calc. The values of In gamma PS,calc were equalized by adjusting delta Em in order to find the simulated PS/PC distribution that corresponded to the experimental results. We were thus able to compare the smeared charge calculation of [Ca2+]surf with a calculation ("masked evaluation method") that recognized clustering of the negatively charged PS: clustering was found to have a modest effect on [Ca2+]surf, relative to the smeared charge model. Even though both PS and PC tend to cluster, the long-range nature of the electrostatic repulsion reduces the extent of PS clustering at low PS mole fraction compared to PC clustering at an equivalent low PC mole fraction. PMID:8457667

  12. The Effects of Phosphatidylserine and Omega-3 Fatty Acid-Containing Supplement on Late Life Depression

    PubMed Central

    Komori, Teruhisa

    2015-01-01

    Late life depression is often associated with a poor response to antidepressants; therefore an alternative strategy for therapy is required. Although several studies have reported that phosphatidylserine (PS) may be effective for late life depression and that omega-3 fatty acids DHA and EPA have also proven beneficial for many higher mental functions, including depression, no concrete conclusion has been reached. This study was performed to clarify the effect of PS and omega-3 fatty acid-containing supplement for late life depression by not only clinical evaluation but also salivary cortisol levels. Eighteen elderly subjects with major depression were selected for the study. In all, insufficient improvement had been obtained by antidepressant therapy for at least 6 months. The exclusion criteria from prior brain magnetic resonance images (MRI) included the presence of structural MRI findings compatible with stroke or other gross brain lesions or malformations, but not white matter hypersensitivities. They took a supplement containing PS 100 mg, DHA 119 mg and EPA 70 mg three times a day for 12 weeks. The effects of the supplement were assessed using the 17-item Hamilton depression scale (HAM-D17) and the basal levels and circadian rhythm of salivary cortisol. The study adopted them as indices because: salivary cortisol levels are high in patients with depression, their circadian rhythm related to salivary cortisol is often irregular, and these symptoms are alleviated as depression improves. The mean HAM-D17 in all subjects taking the supplement was significantly improved after 12 weeks of taking the supplement. These subjects were divided into 10 non-responders and 8 responders. The basal levels and circadian rhythm of salivary cortisol were normalized in the responders while not in non-responders. PS and omega-3 fatty acids, or other elements of the supplement, may be effective for late life depression, associated with the correction of basal levels and circadian

  13. Determination of phosphatidylserine in milk-based nutritional products using online derivatization high-performance liquid chromatography.

    PubMed

    Lin, Qi; Zhang, Jie; Pei, Weijie; Zhang, Chunyan; Yew, Jia Le

    2015-02-13

    Phosphatidylserine (PS) has received interest for its ability to improve cognitive abilities and behaviors. A new method for determining PS in milk-based nutritional products has been developed. The method includes a quick and simple sample preparation procedure, followed by high-performance liquid chromatography (HPLC) fluorescence detection (FLD) with an on-line 9-fluorenylmethyloxycarbonyl (FMOC) derivatization. The method allows PS to be determined in raw materials, milk powder and liquid milk products. The day-to-day (n=3 days) average recovery of over spike-in (at 100% PS content level) was 100%, and the method quantification limit is 53 mg per kg milk powder.

  14. Inhibition of Binding of β2-Glycoprotein 1 to Phosphatidylserine by Polymyxin B, a Lupus-Like Anticoagulant.

    PubMed

    Uchman, Boguslaw; Triplett, Douglas A

    2015-09-01

    Polymyxin B is a cationic peptide that inhibits phospholipid-dependent coagulation tests including activated partial thromboplastin time and to a lesser degree prothrombin time. Thrombin clotting time is insensitive to polymyxin B. β2-glycoprotein 1 (β2GP1) is a cofactor of antiphospholipid antibodies. Antiphospholipid autoantibodies also poses lupus anticoagulant activity through interactions with β2GP1. Using affinity chromatography, polymyxin B can effectively decrease the binding of β2GP1 to immobilize phosphatidylserine. Since then, anticoagulant effect of polymyxin B is most likely due to the binding to negatively charged phospholipids, preventing formation of coagulation complexes.

  15. Increased excitability of medium-sized dorsal root ganglion neurons by prolonged interleukin-1β exposure is K+ channel dependent and reversible

    PubMed Central

    Stemkowski, Patrick L; Noh, Myung-chul; Chen, Yishen; Smith, Peter A

    2015-01-01

    Chronic constriction injury of rat sciatic nerve promotes signs of neuropathic pain. This is associated with an increase in the level of interleukin 1β (IL-1β) in primary afferents that peaks at 7 days. This initial cytokine exposure has been proposed to trigger an enduring alteration in neuronal phenotype that underlies chronic hyper-excitability in sensory nerves, which initiates and maintains chronic neuropathic pain. We have shown previously that 5–6 days of exposure of rat dorsal root ganglia (DRGs) to 100 pm IL-1β increases the excitability of medium-sized neurons. We have now found using whole-cell recording that this increased excitability reverts to control levels within 3–4 days of cytokine removal. The effects of IL-1β were dominated by changes in K+ currents. Thus, the amplitudes of A-current, delayed rectifier and Ca2+-sensitive K+ currents were reduced by ∼68%, ∼64% and ∼36%, respectively. Effects of IL-1β on other cation currents were modest by comparison. There was thus a slight decrease in availability of high voltage-activated Ca2+ channel current, a small increase in rates of activation of hyperpolarization-activated cyclic nucleotide-gated channel current (IH), and a shift in the voltage dependence of activation of tetrodotoxin-sensitive sodium current (TTX-S INa) to more negative potentials. It is unlikely, therefore, that direct interaction of IL-1β with DRG neurons initiates an enduring phenotypic shift in their electrophysiological properties following sciatic nerve injury. Persistent increases in primary afferent excitability following nerve injury may instead depend on altered K+ channel function and on the continued presence of slightly elevated levels IL-1β and other cytokines. PMID:26110238

  16. Reversible Computing

    DTIC Science & Technology

    1980-02-01

    will have been introduced. 9. Reversible celular autemata We shall assume the reader to have some familiarity with the concept of cel- lular...10003 Mr. Kin B. Thcmpson 1 copy Technical Director Information Systems Divisia.i Naval Research Laboratory (OP-91T) Technical Information Division

  17. Reverse mortgages.

    PubMed

    Farnesi, D

    1995-09-01

    Elders and their families are often caught in a financial bind when it comes to paying for much-needed home care services. Reverse mortgages may offer a solution to elderly home care clients who own their homes but have a limited income with which to maintain their independence.

  18. REVERSE OSMOSIS,

    DTIC Science & Technology

    acetate membranes. Mechanisms of the process and porous cellulose acetate membrane technology are briefly reviewed. Based on a general capillary...The reverse osmosis process is discussed with particular reference to systems involving aqueous solutions and Loeb-Sourirajan-type porous cellulose

  19. Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure.

    PubMed

    Rogers, L J; Sink, H S

    1988-01-01

    Asymmetry in the visual pathways from the rostral thalamus to the hyperstriatum of the chicken has been found after injecting the retrograde tracer, True Blue (TB), into either the left or right hyperstriatum on day 2 or 12, post-hatching. There are ipsilateral connections from the ventromedial region of the left dorsolateral thalamus, lateral part (DLL) to the left hyperstriatum, and contralateral connections from the left dorsolateral thalamus, rostrolateral part (DLAlr) and the dorsolateral thalamus, dorsal part (DLLd) to the right hyperstriatum. On the right side of the thalamus, the ipsilateral connections from DLL to the right hyperstriatum are present, but there are only very few contralateral connections to the left hyperstriatum. No asymmetry in these pathways is seen in animals injected with TB on day 21. By this age the contralateral connections from the right thalamus to the left hyperstriatum have developed. Thus, the structural asymmetry in these visual pathways is transient, a finding which explains a controversy between two papers published recently in this journal, and which adds considerably to our understanding of the behavioural asymmetries known to occur in the chicken's response to stimuli presented to either the left or right eye. The direction of the asymmetry in visual pathways depends on asymmetrical light input to the eyes of the embryo. Normally the head of the embryo is oriented such that the left eye is occluded. If the head is withdrawn from the egg so that the right eye can be occluded and the left eye exposed to light, the direction of asymmetry in the thalamo-hyperstriatal pathways is reversed.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. In vivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of α4β2 nicotinic receptors in cortex and thalamus.

    PubMed

    Fasoli, F; Moretti, M; Zoli, M; Pistillo, F; Crespi, A; Clementi, F; Mc Clure-Begley, T; Marks, M J; Gotti, C

    2016-09-01

    Studies with heterologous expression systems have shown that the α4β2 nicotinic acetylcholine receptor (nAChR) subtype can exist in two stoichiometries (with two [(α4)2(β2)3] or three [(α4)3(β2)2] copies of the α subunit in the receptor pentamer) which have different pharmacological and functional properties and are differently regulated by chronic nicotine treatment. However, the effects of nicotine treatment in vivo on native α4β2 nAChR stoichiometry are not well known. We investigated in C57BL/6 mice the in vivo effect of 14-day chronic nicotine treatment and subsequent withdrawal, on the subunit expression and β2/α4 subunit ratio of (3)H-epibatidine labeled α4β2*-nAChR in total homogenates of cortex and thalamus. We found that in basal conditions the ratio of the β2/α4 subunit in the cortex and thalamus is different indicating a higher proportion in receptors with (α4)2(β2)3 subunit stoichiometry in the thalamus. For cortex exposure to chronic nicotine elicited an increase in receptor density measured by (3)H-epibatidine binding, an increase in the α4 and β2 protein levels, and an increase in β2/α4 subunit ratio, that indicates an increased proportion of receptors with the (α4)2(β2)3 stoichiometry. For thalamus we did not find a significant increase in receptor density, α4 and β2 protein levels, or changes in β2/α4 subunit ratio. All the changes elicited by chronic nicotine in cortex were transient and returned to basal levels with an average half-life of 2.8 days following nicotine withdrawal. These data suggest that chronic nicotine exposure in vivo favors increased assembly of α4β2 nAChR containing three β2 subunits. A greater change in stoichiometry was observed for cortex (which has relatively low basal expression of (α4)2(β2)3 nAChR) than in thalamus (which has a relatively high basal expression of (α4)2(β2)3 nAChR).

  1. Vascular Imaging of Solid Tumors in Rats with a Radioactive Arsenic-Labeled Antibody that Binds Exposed Phosphatidylserine

    PubMed Central

    Jennewein, Marc; Lewis, Matthew A.; Zhao, Dawen; Tsyganov, Edward; Slavine, Nikolai; He, Jin; Watkins, Linda; Kodibagkar, Vikram D.; O'Kelly, Sean; Kulkarni, Padmakar; Antich, Peter P.; Hermanne, Alex; Roösch, Frank; Mason, Ralph P.; Thorpe, Philip E.

    2012-01-01

    Purpose We recently reported that anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of vascular endothelial cells in tumors, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we tested the hypothesis that a chimeric monoclonal antibody that binds phosphatidylserine could be labeled with radioactive arsenic isotopes and used for molecular imaging of solid tumors in rats. Experimental Design Bavituximab was labeled with 74As (β+,T1/2 17.8 days) or 77As (β−,T1/2 1.6 days) using a novel procedure. The radionuclides of arsenic were selected because their long half-lives are consistent with the long biological half lives of antibodies in vivo and because their chemistry permits stable attachment to antibodies. The radiolabeled antibodies were tested for the ability to image subcutaneous Dunning prostate R3227-AT1 tumors in rats. Results Clear images of the tumors were obtained using planar γ-scintigraphy and positron emission tomography. Biodistribution studies confirmed the specific localization of bavituximab to the tumors. The tumor-to-liver ratio 72 h after injection was 22 for bavituximab compared with 1.5 for an isotype-matched control chimeric antibody of irrelevant specificity. Immunohistochemical studies showed that the bavituximab was labeling the tumor vascular endothelium. Conclusions These results show that radioarsenic-labeled bavituximab has potential as a new tool for imaging the vasculature of solid tumors. PMID:18316558

  2. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures.

  3. Silicon Reverses Lipid Peroxidation but not Acetylcholinesterase Activity Induced by Long-Term Exposure to Low Aluminum Levels in Rat Brain Regions.

    PubMed

    Noremberg, Simone; Bohrer, Denise; Schetinger, Maria R C; Bairros, André V; Gutierres, Jessié; Gonçalves, Jamile F; Veiga, Marlei; Santos, Francielli W

    2016-01-01

    Aluminum (Al) is the most widely distributed metal in the environment and is extensively used in daily life leading to easy exposure to human beings. Besides not having a recognized physiological role, Al may produce adverse effects through the interaction with the cholinergic system contributing to oxidative stress. The present study evaluated, in similar conditions of parenteral nutrition, whether the reaction of silicon (SiO2) with Al(3+) to form hydroxyaluminosilicates (HAS) reduces its bioavailability and toxicity through intraperitoneal administrations of 0.5 mg Al/kg/day and/or 2 mg Si/kg/day in Wistar rats. Al and Si concentrations were determined in rat brain tissue and serum. Acetylcholinesterase (AChE) activity and lipid peroxidation (LPO) were analyzed in the cerebellum, cortex, hippocampus, striatum, hypothalamus, and blood. An increase in the Al concentration was verified in the Al + Si group in the brain. All the groups demonstrated enhanced Si compared to the control animals. Al(3+) increased LPO measured by thiobarbituric acid reactive substances (TBARS) in cerebellum and hippocampus, whereas SiO2 reduced it when compared with the control group. An increase of AChE activity was observed in the Al-treated group in the cerebellum whereas a decrease of this enzyme activity was observed in the cortex and hippocampus in the Al and Al + Si groups. Al and Si concentrations increased in rat serum; however, no effect was observed in blood TBARS levels and AChE activity. SiO2 showed a protective effect in the hippocampus and cerebellum against cellular damage caused by Al(3+)-induced lipid peroxidation. Thus, SiO2 may be considered an important protector in LPO induced by Al(3+).

  4. Reversible Chemochromic Hydrogen Detectors

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Florida Solar Energy Center (FSEC), affiliated with the University of Central Florida, has invented a reversible pigment that changes from light beige to blue when exposed to hydrogen and back to light beige when exposed to atmospheric oxygen. In laboratory and environmental studies, the FSEC pigment in its tape form failed to change color adequately when exposed to hydrogen after one day of exposure at Kennedy Space Center's Beach Corrosion Test Facility. The reversible hydrogen-detecting tape also lost its ability to change color after being placed in an environmental chamber at 45 C for one day. The first attempts at extruding the reversible pigment into various polymers were unsuccessful because of the pigment's poor thermal stability. The goal of this project was to formulate a pigment with improved thermal and environmental stability for extrusion into a variety of appropriate polymer matrices. The formulation of the reversible hydrogen-detecting pigment was modified by removing one reagent and chemically modifying the hydrogen sensitive ingredient. This was intended to improve the hydrophobicity of the pigment and alter the thermal degradation mechanism.

  5. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    SciTech Connect

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.

  6. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    SciTech Connect

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.

  7. Multiple stimulus reversible hydrogels

    DOEpatents

    Gutowska, Anna; Krzyminski, Karol J.

    2003-12-09

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  8. Multiple stimulus reversible hydrogels

    DOEpatents

    Gutowska, Anna; Krzyminski, Karol J.

    2006-04-25

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  9. Identification of cell-specific patterns of reference gene stability in quantitative reverse-transcriptase polymerase chain reaction studies of embryonic, placental and neural stem models of prenatal ethanol exposure.

    PubMed

    Carnahan, Mindy N; Veazey, Kylee J; Muller, Daria; Tingling, Joseph D; Miranda, Rajesh C; Golding, Michael C

    2013-03-01

    Identification of the transcriptional networks disrupted by prenatal ethanol exposure remains a core requirement to better understanding the molecular mechanisms of alcohol-induced teratogenesis. In this regard, quantitative reverse-transcriptase polymerase chain reaction (qPCR) has emerged as an essential technique in our efforts to characterize alterations in gene expression brought on by exposure to alcohol. However, many publications continue to report the utilization of inappropriate methods of qPCR normalization, and for many in vitro models, no consistent set of empirically tested normalization controls have been identified. In the present study, we sought to identify a group of candidate reference genes for use within studies of alcohol exposed embryonic, placental, and neurosphere stem cells under both conditions maintaining stemness as well as throughout in vitro differentiation. To this end, we surveyed the recent literature and compiled a short list of fourteen candidate genes commonly used as normalization controls in qPCR studies of gene expression. This list included: Actb, B2m, Gapdh, Gusb, H2afz, Hk2, Hmbs, Hprt, Mrpl1, Pgk1, Ppia, Sdha, Tbp, and Ywhaz. From these studies, we find no single candidate gene was consistently refractory to the influence of alcohol nor completely stable throughout in vitro differentiation. Accordingly, we propose normalizing qPCR measurements to the geometric mean C(T) values obtained for three independent reference mRNAs as a reliable method to accurately interpret qPCR data and assess alterations in gene expression within alcohol treated cultures. Highlighting the importance of careful and empirical reference gene selection, the commonly used reference gene Actb was often amongst the least stable candidate genes tested. In fact, it would not serve as a valid normalization control in many cases. Data presented here will aid in the design of future experiments using stem cells to study the transcriptional processes

  10. New tests to detect antiphospholipid antibodies: antiprothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies.

    PubMed

    Sciascia, Savino; Khamashta, Munther A; Bertolaccini, Maria Laura

    2014-05-01

    Antiprothrombin antibodies have been proposed as potential new biomarkers for thrombosis and/or pregnancy morbidity in the setting of the antiphospholipid syndrome (APS). Antiprothrombin antibodies are commonly detected by ELISA, using prothrombin coated onto irradiated plates (aPT), or prothrombin in complex with phosphatidylserine (aPS/PT), as antigen. Although these antibodies can co-exist in the same patient, aPT and aPS/PT seem to belong to different populations of autoantibodies. Early research explored the role of antibodies to prothrombin as potential antigenic targets for the lupus anticoagulant (LA). To date their clinical significance is being investigated and their potential role in identifying patients at higher risk of developing thrombotic events or pregnancy morbidity is being probed.

  11. Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells

    PubMed Central

    Castaño, E; Dalmau, M; Barragán, M; Pueyo, G; Bartrons, R; Gil, J

    1999-01-01

    The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaign PMID:10496355

  12. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Joshi, R. P.; Schoenbach, K. H.

    2005-09-01

    A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV/cm) , ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns . These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier.

  13. 31P and 19F NMR studies of glycophorin-reconstituted membranes: preferential interaction of glycophorin with phosphatidylserine

    SciTech Connect

    Ong, R.L.

    1984-01-01

    Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including 31P and 19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin. 31P and 19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.

  14. Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain.

    PubMed

    Chaung, Hso-Chi; Chang, Chin-Dong; Chen, Pi-Hang; Chang, Chia-Jung; Liu, Shyh-Hwa; Chen, Chih-Cheng

    2013-05-01

    Fish oil during early postnatal period may modulate the impact of oxidative stress in the developing brain and thus improve memory and cognitive behaviour. This study investigated the impacts of docosahexaenoic acid (DHA, C22:6, n-3) and/or phosphatidylserine (PS) on antioxidant activities in vitro, and the beneficial effects of feeding with DHA and/or PS on antioxidant activities in brain and liver tissues and on the cognitive functions of the developing brain. Results indicated that DHA and/or PS significantly enhanced antioxidant activities and increased cell viabilities in vitro. Feeding with DHA and/or PS supplementation not only significantly improved escape latency of animals, but it also improved the oxidative parameters in the brain, enhanced glutathione peroxidase activity as well as reduced nitric mono-oxide levels in the liver. DHA and PS may serve to protect cells from oxidative stress and further improve learning and memory ability in vivo.

  15. Surface dipole potential at the interface between water and self-assembled monolayers of phosphatidylserine and phosphatidic acid.

    PubMed Central

    Moncelli, M R; Becucci, L; Buoninsegni, F T; Guidelli, R

    1998-01-01

    The nature and magnitude of the surface dipole potential chi at a membrane/water interface still remain open to discussion. By combining measurements of differential capacity C and charge density sigma at the interface between self-assembled monolayers of phosphatidylserine and phosphatidic acid supported by mercury and aqueous electrolytes of different concentration and pH, a sigmoidal dependence of chi upon sigma is revealed, with the inflection at sigma = 0. This behavior is strongly reminiscent of the surface dipole potential due to reorientation of adsorbed water molecules at electrified interfaces. The small increase in C with a decrease in the frequency of the AC signal below approximately 80 Hz, as observed with phospholipid monolayers with partially protonated polar groups, is explained either by a sluggish collective reorientation of some polar groups of the lipid or by a sluggish movement of protons across the polar head region. PMID:9591665

  16. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    PubMed Central

    Epand, Richard M; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule. PMID:12324423

  17. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    SciTech Connect

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The results are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.

  19. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    PubMed

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  20. Possible involvement of aiPLA2 in the phosphatidylserine-containing liposomes induced production of PGE2 and PGD2 in microglia.

    PubMed

    Takayama, Fumiko; Wu, Zhou; Ma, Hong Mei; Okada, Ryo; Hayashi, Yoshinori; Nakanishi, Hiroshi

    2013-09-15

    Liposomes containing phosphatidylserine (PSL) produce PGE2 after being phagocytosed by microglia, but the precise underlying mechanism behind it still remains unclear. Here, we showed that liposomes consisting of phosphatidylserine and lysophosphatidylcholine, a lipolysis product of phosphatidylcholine by PLA2, were phagocytosed by microglia, but failed to induce secretion of PGE2. Furthermore, PSL-induced PGE2 secretion was significantly inhibited by MJ33, an aiPLA2 inhibitor, but not by AACOCF3, a cPLA2 inhibitor. PSL also produced PGD2 and 15d-PGJ2 in microglia. We thus hypothesize that free arachidonic acid is supplied through aiPLA2-mediated lipolysis of phagocytosed phosphatidylcholine, leading to the production of PGH2 and its downstream metabolites.

  1. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    SciTech Connect

    Smith, Bradley D.; Lambert, Timothy N.; Lakshmi, C.; Hanshaw, Roger, G.

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  2. Elevated levels of antibodies against phosphatidylserine/prothrombin complex and/or cardiolipin associated with infection and recurrent purpura in a child: a forme fruste of antiphospholipid syndrome?

    PubMed

    Kinoshita, Yuri; Mayumi, Nobuko; Inaba, Motoyuki; Igarashi, Touru; Katagiri, Ichigen; Kawana, Seiji

    2015-07-15

    Antiphospholipid syndrome is an autoimmune disorder characterized by the occurrence of venous and arterial thrombosis, as well as morbidity in pregnancy, in the presence of anti-phospholipid antibodies. The diagnosis of antiphospholipid syndrome is usually established based on clinical and laboratory findings by strictly following the 2006 Sapporo classification. However, the diagnosis remains challenging owing to the ongoing debates on the serological criteria. We report a case we describe as forme fruste antiphospholipid syndrome in which these criteria were not fulfilled. Purpura appeared repeatedly in a female infant starting from the age of 6 months and following episodes of upper respiratory infections and vaccinations. The levels of anti-cardiolipin IgG antibodies and anti-phosphatidylserine/prothrombin complex antibodies were elevated in accordance with these events. Histopathological evaluation revealed multiple small vessel thrombi in the dermis and adipose tissue. After 2 weeks of treatment with aspirin and heparin, the cutaneous symptoms subsided. Infection has long been associated with antiphospholipid syndrome, and anti-phosphatidylserine/prothrombin antibodies are considered a new marker for the diagnosis of antiphospholipid syndrome. Forme fruste antiphospholipid syndrome should be considered even if the antiphospholipid syndrome diagnostic criteria are not completely fulfilled, especially in the presence of elevated levels of anti-phosphatidylserine/prothrombin antibodies and known preceding infections.

  3. Reversible Photoswitching of Carbon Dots

    PubMed Central

    Khan, Syamantak; Verma, Navneet Chandra; Gupta, Abhishek; Nandi, Chayan Kanti

    2015-01-01

    We present a method of reversible photoswitching in carbon nanodots with red emission. A mechanism of electron transfer is proposed. The cationic dark state, formed by the exposure of red light, is revived back to the bright state with the very short exposure of blue light. Additionally, the natural on-off state of carbon dot fluorescence was tuned using an electron acceptor molecule. Our observation can make the carbon dots as an excellent candidate for the super-resolution imaging of nanoscale biomolecules within the cell. PMID:26078266

  4. Reversible cerebral vasoconstriction syndrome.

    PubMed

    Ducros, Anne

    2012-10-01

    Recurrent thunderclap headaches, seizures, strokes, and non-aneurysmal subarachnoid haemorrhage can all reveal reversible cerebral vasoconstriction syndrome. This increasingly recognised syndrome is characterised by severe headaches, with or without other symptoms, and segmental constriction of cerebral arteries that resolves within 3 months. Reversible cerebral vasoconstriction syndrome is supposedly due to a transient disturbance in the control of cerebrovascular tone. More than half the cases occur post partum or after exposure to adrenergic or serotonergic drugs. Manifestations have a uniphasic course, and vary from pure cephalalgic forms to rare catastrophic forms associated with several haemorrhagic and ischaemic strokes, brain oedema, and death. Diagnosis can be hampered by the dynamic nature of clinicoradiological features. Stroke can occur a few days after initial normal imaging, and cerebral vasoconstriction is at a maximum on angiograms 2-3 weeks after clinical onset. The calcium channel blocker nimodipine seems to reduce thunderclap headaches within 48 h of administration, but has no proven effect on haemorrhagic and ischaemic complications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong

    2016-12-01

    Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography in vivo. When compared to saline control, the doxorubicin treated group showed a significant increase in uptake of ICG-PS monoclonal antibody in triple negative breast tumor xenografted in NCr nude female mice. Day 5 posttreatment had the highest optoacoustic signal in the tumor region, indicating maximum apoptosis and the tumor subsequently shrank. Since multispectral optoacoustic imaging does not involve the use of radioactivity, the longer the circulatory time of the PS antibody can be exploited to monitor apoptosis over a period of time without multiple injections of commonly used imaging probes such as Tc-99m Annexin V or F-18 ML10. The proposed apoptosis imaging technique involving multispectral optoacoustic tomography, monoclonal antibody, and near-infrared absorbing fluorescent marker can be an effective tool for imaging apoptosis and treatment planning.

  6. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    PubMed Central

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C.; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis. PMID:24477292

  7. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance.

    PubMed

    Nguyen, Tammy T; Lewandowska, Agnieszka; Choi, Jae-Yeon; Markgraf, Daniel F; Junker, Mirco; Bilgin, Mesut; Ejsing, Christer S; Voelker, Dennis R; Rapoport, Tom A; Shaw, Janet M

    2012-06-01

    In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology.

  8. Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody.

    PubMed

    Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong

    2016-12-01

    Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography

  9. One of the origins of plasma membrane phosphatidylserine in plant cells is a local synthesis by a serine exchange activity.

    PubMed

    Vincent, P; Maneta-Peyret, L; Sturbois-Balcerzak, B; Duvert, M; Cassagne, C; Moreau, P

    1999-12-24

    In plant cells, as in animal cells, the endoplasmic reticulum (ER) is considered to be the major site of phospholipid synthesis, and it has been shown that phosphatidylserine (PS) reaches the plasma membrane via the vesicular ER-Golgi-plasma membrane pathway in leek cells. However, it has never been determined whether the plasma membrane of leek cells is able to synthesize PS. We have analyzed the distribution of PS synthesizing enzymes along the vesicular pathway. In ER, Golgi and plasma membrane fractions isolated from leek cells, we have measured the activity of the two biosynthetic pathways leading to the synthesis of PS, i.e. serine exchange and CTP cytidylyltransferase plus PS synthase. We have found a high serine exchange activity in the plasma membrane fraction, and then determined that this membrane is able to synthesize both long chain fatty acid- and very long chain fatty acid-containing PS. Therefore, the PS in the plasma membrane of leek cells has two different origins: the intracellular vesicular pathway from the ER and a local synthesis in the plasma membrane.

  10. A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine.

    PubMed

    Andersen, John F; Ribeiro, José M C

    2006-05-02

    Type II inositol polyphosphate 5-phosphatases (IPPs) act on both soluble inositol phosphate and phosphoinositide substrates. In many cases, these enzymes occur as multidomain proteins in which the IPP domain is linked to lipid-binding or additional catalytic domains. Rhodnius prolixus IPPRp exists as an isolated IPP domain which is secreted into the saliva of this blood-feeding insect. It shows selectivity for soluble and lipid substrates having a 1,4,5-trisphosphate substitution pattern while only poorly hydrolyzing substrates containing a D3 phosphate. With soluble diC8 PI(4,5)P(2) as a substrate, sigmoidal kinetics were observed, suggesting the presence of allosteric activation sites. Surprisingly, IPPRp-mediated hydrolysis of PI(4,5)P(2) and PI(3,4,5)P(3) was also stimulated up to 100-fold by diC8 PI(4)P and diC8 phosphatidylserine (PS). The activation kinetics were again sigmoidal, demonstrating that the allosteric sites recognize nonsubstrate phospholipids. Activation was positively cooperative, and analysis by the Hill equation suggests that at least three to four allosteric sites are present. In a vesicular system, hydrolysis of PI(4,5)P(2) followed a surface dilution kinetic model, and as expected, PS was found to be strongly stimulatory. If allosteric activation of type II IPPs by PI(4)P and PS is a widespread feature of the group, it may represent a novel regulatory mechanism for these important enzymes.

  11. Time-controlled phagocytosis of asymmetric liposomes: Application to phosphatidylserine immunoliposomes binding HIV-1 virus-like particles.

    PubMed

    Petazzi, Roberto Arturo; Gramatica, Andrea; Herrmann, Andreas; Chiantia, Salvatore

    2015-11-01

    Macrophage immune functions such as antibody-mediated phagocytosis are strongly impaired in individuals affected by HIV-1. Nevertheless, infected macrophages are still able to phagocytose apoptotic cells. For this reason, we recently developed antibody-decorated phosphatidylserine (PS)-containing liposomes that bind HIV-1 virus-like particles and, by mimicking apoptotic cells, are efficiently internalized by macrophages. In the context of an in vivo application, it would be extremely important to initially protect immunoliposomes from macrophages, in order to provide enough time to redistribute through the body and achieve maximum virus binding. To this end, we have designed asymmetric immunoliposomes in which the PS is initially confined to the inner leaflet and thus cannot be recognized by macrophages. Spontaneous PS flip-flop to the outer surface leads to a time-delay in internalization by macrophages in vitro. Such a delay can be fine-tuned by altering the molecular composition of the immunoliposomes. In the fight against HIV-1, macrophage plays an important role. Ironically, the phagocytic functions of these cells are often impaired by HIV-1. In this interesting article, the authors described the development of asymmetric liposomes, which would bind HIV-1 with prolonged systemic circulation, such that the clearance of virus by macrophages is enhanced. This system represents a promising effective approach to utilize the phagocytic capability of macrophages. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine.

    PubMed

    Stafford, Jason H; Hao, Guiyang; Best, Anne M; Sun, Xiankai; Thorpe, Philip E

    2013-01-01

    Phosphatidylserine (PS) is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab')2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab')2 was labeled with the positron-emitting isotope iodine-124 ((124)I) and the resulting probe was injected into nude mice bearing subcutaneous or orthotopic human PC3 prostate tumors. Biodistribution studies showed that (124)I-PGN635 F(ab')2 localized with remarkable specificity to the tumors with little uptake in other organs, including the liver and kidneys. Clear delineation of the tumors was achieved by PET 48 hours after injection. Radiation of the tumors with 15 Gy or systemic treatment of the mice with 10 mg/kg docetaxel increased localization in the tumors. Tumor-to-normal (T/N) ratios were inversely correlated with tumor growth measured over 28 days. These data indicate that (124)I-PGN635 F(ab')2 is a promising new imaging agent for predicting tumor response to therapy.

  13. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1.

    PubMed

    Desai, Tanvi J; Toombs, Jason E; Minna, John D; Brekken, Rolf A; Udugamasooriya, Damith Gomika

    2016-05-24

    Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents.

  14. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  15. Deoxygenation-induced and Ca(2+) dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients.

    PubMed

    Weiss, Erwin; Cytlak, Urszula M; Rees, David C; Osei, Anna; Gibson, John S

    2012-01-01

    Phosphatidylserine (PS) is usually confined to the inner leaflet of the red blood cell (RBC) membrane. It may become externalised in various conditions, however, notably in RBCs from patients with sickle cell disease (SCD) where exposed PS may contribute to anaemic and ischaemic complications. PS externalisation requires both inhibition of the aminophospholipid translocase (or flippase) and activation of the scramblase. Both may follow from elevation of intracellular Ca(2+). Flippase inhibition occurs at low [Ca(2+)](i), about 1μM, but [Ca(2+)](i) required for scrambling is reported to be much higher (around 100μM). In this work, FITC-labelled lactadherin and FACS were used to measure externalised PS, with [Ca(2+)](i) altered using bromo-A23187 and EGTA/Ca(2+) mixtures. Two components of Ca(2+)-induced scrambling were apparent, of high (EC(50) 1.8±0.3μM) and low (306±123μM) affinity, in RBCs from normal individuals and the commonest SCD genotypes, HbSS and HbSC. The high affinity component was lost in the presence of unphysiologically high [Mg(2+)] but was unaffected by high K(+) (90mM) or vanadate (1mM). The high affinity component accounted for PS scrambling in ≥2/3rd RBCs. It is likely to be most significant in vivo and may be involved in the pathophysiology of SCD or other conditions involving eryptosis.

  16. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice.

    PubMed

    Ding, Lin; Wang, Dan; Zhou, Miaomiao; Du, Lei; Xu, Jie; Xue, Changhu; Wang, Yuming

    2016-07-01

    Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p < 0.05). Notably, the proportion of DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism.

  17. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal

    PubMed Central

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-01-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2-deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an “eat-me” signal, we propose that PS-Stab2 binding is required for sensing of a “fuse-me” signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304] PMID:27174501

  18. Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages.

    PubMed

    Wong, Kit; Valdez, Patricia A; Tan, Christine; Yeh, Sherry; Hongo, Jo-Anne; Ouyang, Wenjun

    2010-05-11

    Tim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear. In this study, we show that Tim-4 quickly forms punctate caps on contact with apoptotic cells, in contrast to its normal diffused expression on the surface of phagocytes. Despite its expression in marginal zone and tingible body macrophages, Tim-4 deficiency only minimally affects outcomes of several acute immune challenges, including the trapping of apoptotic cells in the marginal zone, the clearance apoptotic cells by tingible body macrophages, and the formation of germinal centers and elicitation of antibody responses against sheep red blood cells (SRBCs). In addition, Tim-4(-/-) resident peritoneal macrophages (rPMs) phagocytose necrotic cells and other opsonized targets normally. However, their ability to bind and engulf apoptotic cells is significantly compromised both in vitro and in vivo. Most importantly, Tim-4 deficiency results in increased cellularity in the peritoneum. Resting rPMs produce higher TNF-alpha in culture. Their response to LPS, on the contrary, is dampened. Our data support an indispensible role of Tim-4 in maintaining the homeostasis of rPMs.

  19. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa.

    PubMed

    Wang, Che; Chen, Yin-Wang; Zhang, Liang; Gong, Xian-Ge; Zhou, Yang; Shang, De-Jing

    2016-01-01

    We have previously reported that temporin-1CEa, a cationic antimicrobial peptide, exerts preferential cytotoxicity toward cancer cells. However, the exact molecular mechanism for this cancer-selectivity is still largely unknown. Here, we found that the negatively charged phosphatidylserine (PS) expressed on cancer cell surface serves as a target for temporin-1CEa. Our results indicate that human A375 melanoma cells express 50-fold more PS than non-cancerous HaCaT cells. The expression of cell surface PS in various cancer cell lines closely correlated with their ability to be recognized, bound and killed by temporin-1CEa. Additionally, the cytotoxicity of temporin-1CEa against A375 cells can be ameliorated by annexin V, which binds to cell surface PS with high affinity. Moreover, the data of isothermal titration calorimetry assay further confirmed a direct binding of temporin-1CEa to PS, at a ratio of 1:5 (temporin-1CEa:PS). Interestingly, the circular dichroism spectra analysis using artificial biomembrane revealed that PS not only provides electrostatic attractive sites for temporin-1CEa but also confers the membrane-bound temporin-1CEa to form α-helical structure, therefore, enhances the affinity and membrane disrupting ability of temporin-1CEa. In summary, these findings suggested that the melanoma cells expressed PS may serve as a promising target for temporin-1CEa or other cationic anticancer peptides.

  20. Antibody-Mediated Phosphatidylserine Blockade Enhances the Antitumor Responses to CTLA-4 and PD-1 Antibodies in Melanoma.

    PubMed

    Freimark, Bruce D; Gong, Jian; Ye, Dan; Gray, Michael J; Nguyen, Van; Yin, Shen; Hatch, Michaela M S; Hughes, Christopher C W; Schroit, Alan J; Hutchins, Jeff T; Brekken, Rolf A; Huang, Xianming

    2016-06-01

    In tumor-bearing animals, the membrane phospholipid phosphatidylserine (PS) suppresses immune responses, suggesting that PS signaling could counteract the antitumor effect of antibody-driven immune checkpoint blockade. Here, we show that treating melanoma-bearing mice with a PS-targeting antibody enhances the antitumor activity of downstream checkpoint inhibition. Combining PS-targeting antibodies with CTLA-4 or PD-1 blockade resulted in significantly greater inhibition of tumor growth than did single-agent therapy. Moreover, combination therapy enhanced CD4(+) and CD8(+) tumor-infiltrating lymphocyte numbers; elevated the fraction of cells expressing the proinflammatory cytokines IL2, IFNγ, and TNFα; and increased the ratio of CD8 T cells to myeloid-derived suppressor cells and regulatory T cells in tumors. Similar changes in immune cell profiles were observed in splenocytes. Taken together, these data show that antibody-mediated PS blockade enhances the antitumor efficacy of immune checkpoint inhibition. Cancer Immunol Res; 4(6); 531-40. ©2016 AACR.

  1. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    PubMed

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; Holčapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts.

  2. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal.

    PubMed

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-06-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2- deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an "eat-me" signal, we propose that PS-Stab2 binding is required for sensing of a "fuse-me" signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304].

  3. Activation of protein kinase C by phorbol ester increases red blood cell scramblase activity and external phosphatidylserine.

    PubMed

    Barber, Latorya A; Palascak, Mary B; Qi, Xiaoyang; Joiner, Clinton H; Franco, Robert S

    2015-11-01

    Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.

  4. Detection of phosphatidylserine with a modified polar head group in human keratinocytes exposed to the radical generator AAPH.

    PubMed

    Maciel, Elisabete; Neves, Bruno M; Santinha, Deolinda; Reis, Ana; Domingues, Pedro; Teresa Cruz, M; Pitt, Andrew R; Spickett, Corinne M; Domingues, M Rosário M

    2014-04-15

    Phosphatidylserine (PS) is preferentially located in the inner leaflet of the cell membrane, and translocation of PS oxidized in fatty acyl chains to the outside of membrane has been reported as signaling to macrophage receptors to clear apoptotic cells. It was recently shown that PS can be oxidized in serine moiety of polar head-group. In the present work, a targeted lipidomic approach was applied to detecting OxPS modified at the polar head-group in keratinocytes that were exposed to the radical generator AAPH. Glycerophosphoacetic acid derivatives (GPAA) were found to be the major oxidation products of OxPS modified at the polar head-group during oxidation induced by AAPH-generated radicals, similarly to previous observations for the oxidation induced by OH radical. The neutral loss scan of 58Da and a novel precursor ion scan of m/z 137.1 (HOPO3CH2COOH) allowed the recognition of GPAA derivatives in the total lipid extracts obtained from HaCaT cells treated with AAPH. The positive identification of serine head group oxidation products in cells under controlled oxidative conditions opens new perspectives and justifies further studies in other cellular environments in order to understand fully the role of PS polar head-group oxidation in cell homeostasis and disease.

  5. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1

    PubMed Central

    Desai, Tanvi J.; Toombs, Jason E.; Minna, John D.; Brekken, Rolf A.; Udugamasooriya, Damith Gomika

    2016-01-01

    Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents. PMID:27120792

  6. Advantages of the Phosphatidylserine-Recognizing Peptide PSP1 for Molecular Imaging of Tumor Apoptosis Compared with Annexin V

    PubMed Central

    Kim, Soyoun; Bae, Sang Mun; Seo, Junyoung; Cha, Kiweon; Piao, Meilan; Kim, Sun-Ji; Son, Hye-Nam; Park, Rang-Woon; Lee, Byung-Heon; Kim, In-San

    2015-01-01

    A number of peptide-based indicators have been identified and reported as potential apoptosis probes, offering great promise for early assessment of therapeutic efficacy in several types of cancer. Direct comparison of the newly developed probes with previously used ones would be an important step in assessing possible applications. Here, we compared the newly identified peptide-based phosphatidylserine (PS) indicator PSP1 (CLSYYPSYC) with annexin V, a common probe for molecular imaging of apoptotic cells, with respect to PS binding kinetics, apoptotic cell-targeting ability, and the efficacy of homing to apoptotic tumor cells in a mouse model after treatment with the anticancer agent camptothecin. Our results indicate that PSP1 efficiently targeted apoptotic cells and generated apoptosis/tumor-specific signals after cancer treatment in the animal model, whereas a similar dose of annexin V showed weak signals. The formation of a stable complex of PSP1 with PS might be one reason for the efficient in vivo targeting. We suggest that PSP1 has potential advantages for in vivo apoptotic cell imaging and could serve as a platform for the development of de novo peptide-based probes for apoptosis. PMID:25803297

  7. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    PubMed Central

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  8. Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak(1)-1 and A-498 cells.

    PubMed

    Lock, Edward A; Reed, Celia J; Kinsey, Gilbert R; Schnellmann, Rick G

    2007-01-05

    Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Cak(i)-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Cak(i)-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A(2) inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Cak(i)-1 renal cancer cells primarily through a caspase-dependent mechanism and that

  9. Reversible surface aggregation in pore formation by pardaxin.

    PubMed

    Rapaport, D; Peled, R; Nir, S; Shai, Y

    1996-06-01

    The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin.

  10. Role of the lysine-rich cluster of the C2 domain in the phosphatidylserine-dependent activation of PKCalpha.

    PubMed

    Rodríguez-Alfaro, Jose A; Gomez-Fernandez, Juan C; Corbalan-Garcia, Senena

    2004-01-23

    The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.

  11. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    PubMed

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Apoptotic mimicry: phosphatidylserine liposomes reduce inflammation through activation of peroxisome proliferator-activated receptors (PPARs) in vivo

    PubMed Central

    Ramos, G C; Fernandes, D; Charão, C T; Souza, D G; Teixeira, M M; Assreuy, J

    2007-01-01

    Background and purpose: Recently, there has been much attention paid to understanding the molecular mechanisms underlying apoptosis and the functional consequences of apoptotic body clearance by phagocytes. In an attempt to investigate this latter aspect, the present study evaluated the anti-inflammatory effects of in vivo administration of phosphatidylserine (PS) liposomes, a well-characterised membrane component expressed during apoptosis. The participation of peroxisome proliferator-activated receptors (PPARs) in PS-mediated effects was also investigated. Experimental approach: The anti-inflammatory effect of PS liposomes on the delayed phase of carrageenan mouse paw oedema was studied. PS liposomes were injected at different doses and times, after carrageenan. Hind paws were collected for evaluation of interleukin-1β (IL-1β) levels, myeloperoxidase (MPO) and N-acetyl-glucosaminidase (NAG) activities and Evans blue dye leakage. Participation of PPAR pathways was explored by using PPAR antagonists (BADGE and GW9662). Key results: Administration of PS, but not phosphatidylcholine (PC), liposomes (20–200 mg kg−1, i.p., 8 h after carrageenan) reduced the paw oedema in a dose-dependent manner. PS liposomes were effective even when administered 24 and 48 h after carrageenan, a time at which indomethacin (1 mg kg−1, i.p.) had no significant effects. Carrageenan-induced Evans blue leakage and IL-1β production was decreased in PS-treated paws. The PPAR antagonists (BADGE and GW9662) partially prevented the anti-inflammatory effects of PS administration. Conclusions and implications: PS liposomes have anti-inflammatory effects in vivo that are at least partly dependent on PPAR activation. Therapeutic strategies mimicking apoptosis may be useful for the treatment of inflammatory disorders. PMID:17533418

  13. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  14. Presence of anti-phosphatidylserine-prothrombin complex antibodies and anti-moesin antibodies in patients with polyarteritis nodosa.

    PubMed

    Okano, Tatsuro; Takeuchi, Sora; Soma, Yoshinao; Suzuki, Koya; Tsukita, Sachiko; Ishizu, Akihiro; Suzuki, Kazuo; Kawakami, Tamihiro

    2017-01-01

    We measured both serum anti-phosphatidylserine-prothrombin complex (anti-PSPT) antibodies and anti-moesin antibodies, as well as various cytokines (interleukin [IL]-2, IL-4, IL-5, IL-10, IL-13, IL-17, granulocyte macrophage colony-stimulating factor, γ-interferon, tumor necrosis factor-α) levels in polyarteritis nodosa (PAN) patients with cutaneous manifestations. All patients showed the presence of a histological necrotizing vasculitis in the skin specimen. They were treated with i.v. cyclophosphamide pulse therapy (IV-CY) and prednisolone therapy or steroid pulse therapy. The immunological assessments were performed on sera collected prior to and after treatment with IV-CY or steroid pulse therapy. We found a significant positive correlation between serum anti-moesin antibodies and both clinical Birmingham Vasculitis Activity Scores and Vasculitis Damage Index. Anti-PSPT antibody and IL-2 levels after treatment in PAN patients were significantly lower than before treatment. In contrast, anti-moesin antibody levels were higher following IV-CY or steroid pulse therapy compared with the pretreatment levels. In the treatment-resistant PAN patients (n = 8), anti-PSPT antibody levels after treatment were significantly lower than before treatment. In contrast, anti-moesin antibody levels after treatment in the patients were significantly higher compared with the pretreatment levels. Immunohistochemical staining revealed moesin overexpression in mainly fibrinoid necrosis of the affected arteries in the PAN patients. We suggest that measurement of serum anti-PSPT antibody levels could serve as a marker for PAN and aid in earlier diagnosis of PAN. We also propose that elevated serum anti-moesin antibodies could play some role of the exacerbation in patients with PAN. © 2016 Japanese Dermatological Association.

  15. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity.

  16. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    SciTech Connect

    Raetz, C.R.H.; Carman, G.M.; Dowhan, W.; Jiang, R.T.; Waszkuc, W.; Loffredo, W.; Tsai, M.D.

    1987-06-30

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-(/sup 17/O, /sup 18/O)phosphoethanolamine ((/sup 17/O, /sup 18/O)DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-(/sup 16/O, /sup 17/O, /sup 18/O)DPPA), respectively, by incubating with phospholipase D. Condensation of (/sup 16/O, /sup 17/O, /sup 18/O)DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, (/sup 17/O, /sup 18/O)cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ((/sup 17/O,/sup 18/O)CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of (/sup 17/O, /sup 18/O)CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of (/sup 17/O, /sup 18/O) CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave (/sup 17/O, /sup 18/O)DPPE. The configuration and isotopic enrichments of the starting (/sup 17/O, /sup 18/O)DPPE and the product were analyzed by /sup 31/P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments.

  17. Evaluation of phosphatidylserine-dependent antiprothrombin antibody testing for the diagnosis of antiphospholipid syndrome: results of an international multicentre study.

    PubMed

    Amengual, O; Forastiero, R; Sugiura-Ogasawara, M; Otomo, K; Oku, K; Favas, C; Delgado Alves, J; Žigon, P; Ambrožič, A; Tomšič, M; Ruiz-Arruza, I; Ruiz-Irastorza, G; Bertolaccini, M L; Norman, G L; Shums, Z; Arai, J; Murashima, A; Tebo, A E; Gerosa, M; Meroni, P L; Rodriguez-Pintó, I; Cervera, R; Swadzba, J; Musial, J; Atsumi, T

    2017-03-01

    Objective A task force of scientists at the International Congress on Antiphospholipid Antibodies recognized that phosphatidylserine-dependent antiprothrombin antibodies (aPS/PT) might contribute to a better identification of antiphospholipid syndrome (APS). Accordingly, initial and replication retrospective, cross-sectional multicentre studies were conducted to ascertain the value of aPS/PT for APS diagnosis. Methods In the initial study (eight centres, seven countries), clinical/laboratory data were retrospectively collected. Serum/plasma samples were tested for IgG aPS/PT at Inova Diagnostics (Inova) using two ELISA kits. A replication study (five centres, five countries) was carried out afterwards. Results In the initial study ( n = 247), a moderate agreement between the IgG aPS/PT Inova and MBL ELISA kits was observed ( k = 0.598). IgG aPS/PT were more prevalent in APS patients (51%) than in those without (9%), OR 10.8, 95% CI (4.0-29.3), p < 0.0001. Sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratio of IgG aPS/PT for APS diagnosis were 51%, 91%, 5.9 and 0.5, respectively. In the replication study ( n = 214), a moderate/substantial agreement between the IgG aPS/PT results obtained with both ELISA kits was observed ( k = 0.630). IgG aPS/PT were more prevalent in APS patients (47%) than in those without (12%), OR 6.4, 95% CI (2.6-16), p < 0.0001. Sensitivity, specificity, LR + and LR- for APS diagnosis were 47%, 88%, 3.9 and 0.6, respectively. Conclusions IgG aPS/PT detection is an easily performed laboratory parameter that might contribute to a better and more complete identification of patients with APS.

  18. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    PubMed

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  19. Copper-induced peroxidation of phosphatidylserine-containing liposomes is inhibited by nanomolar concentrations of specific antioxidants.

    PubMed

    Gal, S; Lichtenberg, D; Bor, A; Pinchuk, I

    2007-12-01

    Copper-induced peroxidation of liposomal palmitoyllinoleoyl-phosphatidylcholine (PLPC) is inhibited by alpha-tocopherol at micromolar concentrations. In our previous study we found that when the liposomes contain phosphatidylserine (PS), nanomolar concentrations of Toc were sufficient to inhibit peroxidation. In an attempt to gain understanding of the origin of this extreme antioxidative potency, we tested the antioxidative potency of 36 additional antioxidants and the dependence of their potency on the presence of PS in the liposomes. The results of these studies reveal that only 11 of the tested antioxidants possess similar antioxidative potency to that of Toc. These include trolox, butylated hydroxytoluene (BHT), curcumin, nordihydroguaiaretic acid (NDGA), diethylstilbestrol (DES), 2 of the 13 tested flavonoids (luteolin and 7,3',4'-trihydroxyflavone; T-414), alpha-naphthol, 1,5-, 1,6- and 1,7-dihydroxynaphthalenes (DHNs). Propyl gallate (PG), methyl syringate, rosmarinic acid, resveratrol, other flavonoids, as well as beta-naphthol, 1,2-, 1,3-, 1,4-, 2,3-, 2,6-, and 2,7-DHNs were either moderately antioxidative or pro-oxidative. For liposomes made of PLPC (250 microM) and PS (25 microM) the "lag" preceding copper-induced peroxidation (5 microM copper) was doubled upon addition of 30-130nM of the "super-active" antioxidants. We propose that the mechanism responsible for the extreme antioxidative potency against copper-induced peroxidation in PS-containing liposomes involves replenishment of the antioxidant in a ternary PS-copper-antioxidant complex. Based on structure-activity relationship of the 37 tested antioxidants, the "super-antioxidative potency" is attributed to the recycling of relatively stable semiquinone or semiquinone-like radicals.

  20. Quantification of phosphatidylserine, phosphatidic acid and free fatty acids in an ultrasound contrast agent by normal-phase high-performance liquid chromatography with evaporative light scattering detection.

    PubMed

    Hvattum, Erlend; Uran, Steinar; Sandbaek, Anne Gunvor; Karlsson, Anders A; Skotland, Tore

    2006-10-11

    Sonazoid is a new contrast agent for ultrasound imaging. The product is an aqueous suspension of perfluorobutane microbubbles coated with phospholipids obtained from hydrogenated egg phosphatidylserine (H-EPS). A normal-phase high-performance liquid chromatographic (HPLC) method with evaporative light scattering detection was developed for quantification of free fatty acids, phosphatidylserine and phosphatidic acid in H-EPS and Sonazoid. Separation of the lipids was carried out on an HPLC diol column and a gradient of chloroform and methanol with 0.2% formic acid titrated to pH 7.5 with ammonia. The calibration standards contained stearic acid, distearoyl-phosphatidic acid (DSPA) and distearoyl-phosphatidylserine (DSPS) in the concentration range of 0.016-1.0mg/ml (0.4-25microg injected). The method was validated with a limit of quantification of the three lipids set to 0.4microg (approximately 20-60microM). The best fit of the three calibration curves were obtained when the logarithmic transformed theoretical lipid concentration was plotted against the logarithmic transformed area under the peak and fitted to a second order polynomial equation. Stearic acid, DSPA and DSPS were analysed with an intermediate precision ranging from 4.4% to 5.3% R.S.D. and they were extracted from an aqueous suspension with a recovery ranging from 103.3% to 113.3%. The sum of total phospholipid concentration determined in H-EPS ranged from 96.4% to 103.2% of the theoretical values. The lipids in the ultrasound product were quantitated with a repeatability ranging from 6.2% to 11.7% R.S.D.

  1. Specific detection and quantification of palmitoyl-stearoyl-phosphatidylserine in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry.

    PubMed

    Hvattum, E; Larsen, A; Uran, S; Michelsen, P M; Skotland, T

    1998-09-25

    A narrow-bore normal-phase high-performance liquid chromatography (HPLC) method was developed for separation of phospholipid classes using an HPLC diol column and a gradient of chloroform and methanol with 0.2% formic acid titrated to pH 5.3 with ammonia. The HPLC system was coupled on-line with an electrospray mass spectrometry (ES-MS) or electrospray tandem mass spectrometry (ES-MS-MS) system and the separation of several major phospholipid classes was shown. The molecular species of some phospholipid classes in human blood were qualitatively determined. A method was further developed for specific determination of a molecular species from phosphatidylserine, palmitoyl-stearoyl-phosphatidylserine (PSPS), in human blood using HPLC-ES-MS. The analyses were performed by single ion monitoring of the [M-H]- molecular ions of PSPS and an internal standard, dipalmitoyl-phosphatidylserine. The limit of quantification of the method was 1.2 ng of PSPS. The calibration curve ranged from 0.12 to 5.81 microg/ml of PSPS dissolved in the mobile phase. The curve was fitted to a second-order polynomial equation and found to be highly reproducible. Analysis of control samples was found to be reproducible with a between-series precision below 9.2% R.S.D. The amount of endogenous PSPS in human blood was determined in 13 subjects and found to range from 1.73 to 3.09 microg/ml. The identity of endogenous PSPS was confirmed by HPLC-ES-MS-MS.

  2. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  3. Reversible cerebral vasoconstriction syndrome.

    PubMed

    Ducros, Anne

    2014-01-01

    Reversible cerebral vasoconstriction syndrome is characterized by severe headaches with or without focal neurologic deficits and/or seizures, and segmental constriction of cerebral arteries that resolves within 3 months. This increasingly recognized syndrome is supposedly due to a transient disturbance in the control of cerebral vascular tone with sympathetic overactivity. It can cause stroke in the young. It affects mainly middle-aged women. More than half the cases occur after exposure to vasoactive substances or during postpartum. The manifestations have a monophasic course, without new clinical symptom after 4 weeks, and range from pure cephalalgic forms with recurrent thunderclap headaches over 1-2 weeks to rare catastrophic forms with multiple hemorrhagic and ischemic strokes, brain edema and death. Diagnosis may be hampered by the dynamic nature of clinicoradiological features. Convexity subarachnoid hemorrhage or stroke may occur a few days after initial normal imaging, and cerebral vasoconstriction is maximal on angiography 2-3 weeks after clinical onset. Symptomatic treatment includes rest and removal of vasoactive substances. Nimodipine has been proposed to reduce thunderclap headaches within 48 hours, but has no proven effect on the hemorrhagic and ischemic complications. © 2014 Elsevier B.V. All rights reserved.

  4. Enhanced Eryptosis Following Exposure to Dolutegravir.

    PubMed

    Al Mamun Bhuyan, Abdulla; Signoretto, Elena; Bissinger, Rosi; Lang, Florian

    2016-01-01

    The viral integrase enzyme inhibitor dolutegravir is utilized for the treatment of immunodeficiency virus (HIV) infection. Knowledge on cytotoxicity of dolutegravir is limited. The present study thus explored, whether dolutegravir is able to trigger suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, and activation of protein kinase C, p38 kinase, casein kinase, and caspases. The present study explored, whether Dolutegravir induces eryptosis and, if so, to gain insight into cellular mechanisms involved. Utilizing flow cytometry, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from haemoglobin concentration in the supernatant. A 48 hours exposure of human erythrocytes to dolutegravir significantly increased the percentage of annexin-V-binding cells (≥ 4.8 µM), significantly increased hemolysis (19.1 µM), but did not significantly modify forward scatter. Dolutegravir significantly increased Fluo3-fluorescence (≥ 4.8 µM), DCFDA fluorescence (19.1 µM) and ceramide abundance (19.1 µM). The effect of dolutegravir on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, but was not significantly modified by protein kinase C inhibitor staurosporine (1 µM), p38 kinase inhibitor SB203580 (2 µM), casein kinase inhibitor D4476 (10 µM) or pancaspase inhibitor zVAD (10 µM). Dolutegravir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, ceramide formation and oxidative

  5. Tubal Ligation Reversal

    MedlinePlus

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. In ... electrocautery). Some types of sterilization, such as the Essure system, are not considered reversible. Even if tubal ...

  6. Reversible tuning of photonic crystal cavities using photochromic thin films

    NASA Astrophysics Data System (ADS)

    Sridharan, Deepak; Waks, Edo; Solomon, Glenn; Fourkas, John T.

    2010-04-01

    We demonstrate reversible tuning of a photonic crystal cavity resonance using a thin photochromic film composed of spiropyran and polymethylmethacrylate that serves as a photosensitive cladding layer. Exposure of spiropyran to ultraviolet light results in smooth redshift of the cavity resonance that can be reversed by exposure to visible wavelength light. We achieve a reversible resonance shift of up to 2.7 nm, which can be performed locally on individual cavities. The resonance shift over multiple successive UV and visible light exposures is studied to determine the repeatability of the photochromic film.

  7. Vasectomy and its reversal.

    PubMed

    Belker, A M

    1985-12-01

    Techniques, results, complications, and medicolegal aspects of vasectomy are discussed in this article. Emphasis is placed on techniques that prevent spontaneous recanalization of the ends of the vas deferens after vasectomy. Factors that affect the reversibility of vasectomy are discussed. New microsurgical techniques of vasectomy reversal are described, and results of these new techniques are compared with results of nonmicrosurgical techniques of vasectomy reversal. Indications for bypass vasoepididymostomy during vasectomy reversal procedures, as well as techniques for performing vasoepididymostomy, are discussed.

  8. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  9. Murine phosphatidylserine-specific phospholipase A1 (Ps-pla1) maps to chromosome 16 but is distinct from the lpd (lipid defect) locus.

    PubMed

    Wen, X Y; Stewart, A K; Skaug, J; Wei, E; Tsui, L C

    2001-02-01

    We have previously generated a mouse transgenic line with an insertional mutation designated lpd that demonstrates a phenotype of hypertriglyceridemia and fatty liver. Since the recently identified phosphatidylserine-specific phospholipase A1 (PS-PLA1) demonstrates significant homology to triglyceride lipases, we reasoned that the mouse Ps-plaI gene may be the disrupted gene within the lpd locus. Using a rat PS-PLA1 cDNA sequence to search the EST database, we identified a mouse EST homolog AA839424. Sequencing analysis of AA839424 revealed a putative Ps-pla1 protein of 456 amino acids with extensive overall structural conservation with human and rat PS-PLA1 and with triglyceride lipases. Conserved sequences in Ps-pla1 include a lipase consensus sequences GxSxG, a catalytic triad, and eight of the ten conserved cysteine residues that are required for tertiary structure. Mouse Ps-plal carries a phosphatidylserine-binding motif that is absent in all triglyceride lipases. Using a mouse whole-genome radiation hybrid (WG-RH) mapping panel (T31), we mapped mouse Ps-pla1 to Chromosome (Chr) 16 between genetic markers D16Mit194 and D16Mit38, which is 17.1 cM centromeric to the lpd locus. On the basis of chromosome location, we conclude that Ps-pla1 and lpd are distinct genes in lipid metabolism.

  10. Interaction of caldesmon with endoplasmic reticulum membrane: effects on the mobility of phospholipids in the membrane and on the phosphatidylserine base-exchange reaction.

    PubMed Central

    Makowski, P; Makuch, R; Sikorski, A F; Jezierski, A; Pikula, S; Dabrowska, R

    1997-01-01

    We have previously demonstrated by tryptophan fluorescence the interaction of caldesmon with anionic phospholipid vesicles [Czurylo, Zborowski and Dabrowska (1993) Biochem. J. 291, 403-408]. In the present work we investigated the interaction of caldesmon with natural-membrane (rat liver endoplasmic reticulum) phospholipids by co-sedimentation assay. The results indicate that 1 mol of caldesmon binds approx. 170 mol of membrane phospholipids with a binding affinity constant of 7.3 x 10(6) M-1. The caldesmon-membrane phospholipid complex dissociates with increasing salt concentration and in the presence of Ca2+/calmodulin. As indicated by EPR measurements of membrane lipids labelled with 5-doxyl stearate and TEMPO-phosphatidylethanolamine, binding of caldesmon results in an increase in mobility of the acyl chains (in the region of carbon 5) and a decrease in polar headgroup mobility of phospholipids. Interaction of caldesmon with phospholipids is accompanied by inhibition of phosphatidylethanolamine synthesis via a phospholipid base-exchange re