Science.gov

Sample records for reversible protein filament

  1. Collaborative protein filaments.

    PubMed

    Ghosal, Debnath; Löwe, Jan

    2015-09-14

    It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.

  2. Surface manipulation of protein filaments

    NASA Astrophysics Data System (ADS)

    Kreplak, Laurent; Staple, Douglas; Loparic, Marko; Kreuzer, Hans-Juergen

    2009-03-01

    Within mammalian tissues, cells move by actively remodeling a dense network of collagen fibrils. In order to study this situation, we analyze the force response of two types of filamentous protein structures, desmin intermediate filaments 12 nm in diameter and collagen fibrils 80 nm in diameter. Both types of filaments were adsorbed at a solid-liquid interface and locally moved with an AFM tip at constant velocity against surface friction in the interfacial plane. In the case of collagen fibrils, that have an extensibility below 30% extension, we observed that microns long fibrils could be moved by the tip and deformed into shapes that could not be explain by the linear elastic theory for a stiff rod. In the case of desmin filaments that can be stretched up to 3.5 times there length, we observed local stretching of the filaments and discreet steps in the torsional force measured with the cantilever. In order to describe both types of filaments' behaviors, we described the protein filaments as a chain of beads of mass m linked together by a mass-less polymer linker. By solving the Newtonian equations of motions for the coupled beads in the presence of a point load and a viscous drag due to the surface-filament interactions we were able to reproduced our experimental data and extract information on friction.

  3. Quantifying protein diffusion and capture on filaments.

    PubMed

    Reithmann, Emanuel; Reese, Louis; Frey, Erwin

    2015-02-17

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together, one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  4. Production of recombinant proteins by filamentous fungi.

    PubMed

    Ward, Owen P

    2012-01-01

    The initial focus of recombinant protein production by filamentous fungi related to exploiting the extraordinary extracellular enzyme synthesis and secretion machinery of industrial strains, including Aspergillus, Trichoderma, Penicillium and Rhizopus species, was to produce single recombinant protein products. An early recognized disadvantage of filamentous fungi as hosts of recombinant proteins was their common ability to produce homologous proteases which could degrade the heterologous protein product and strategies to prevent proteolysis have met with some limited success. It was also recognized that the protein glycosylation patterns in filamentous fungi and in mammals were quite different, such that filamentous fungi are likely not to be the most suitable microbial hosts for production of recombinant human glycoproteins for therapeutic use. By combining the experience gained from production of single recombinant proteins with new scientific information being generated through genomics and proteomics research, biotechnologists are now poised to extend the biomanufacturing capabilities of recombinant filamentous fungi by enabling them to express genes encoding multiple proteins, including, for example, new biosynthetic pathways for production of new primary or secondary metabolites. It is recognized that filamentous fungi, most species of which have not yet been isolated, represent an enormously diverse source of novel biosynthetic pathways, and that the natural fungal host harboring a valuable biosynthesis pathway may often not be the most suitable organism for biomanufacture purposes. Hence it is expected that substantial effort will be directed to transforming other fungal hosts, non-fungal microbial hosts and indeed non microbial hosts to express some of these novel biosynthetic pathways. But future applications of recombinant expression of proteins will not be confined to biomanufacturing. Opportunities to exploit recombinant technology to unravel the

  5. Order and disorder in intermediate filament proteins.

    PubMed

    Kornreich, Micha; Avinery, Ram; Malka-Gibor, Eti; Laser-Azogui, Adi; Beck, Roy

    2015-09-14

    Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.

  6. Heterologous protein production by filamentous fungi.

    PubMed

    Jeenes, D J; Mackenzie, D A; Roberts, I N; Archer, D B

    1991-01-01

    There are clearly many facets to successful production of heterologous proteins from filamentous fungi. The objectives are to exploit the natural ability of some species to secrete high levels of protein. The heterologous target proteins produced in a fungal host must be acceptable to the public and be economic to produce, i.e. the targets must be authentic (in structure and activity) and be produced in high yield to necessary levels of purity. The appearance of heterologous products from fungi on the market is testament to some success but, equally, there are considerable limitations in our ability to produce desired yields of many target proteins. We endorse the view of van den Hondel, Punt and van Gorcom (1991) that for the commercial production of heterologous proteins from filamentous fungi more information is required on transcriptional control, introns, mRNA stability and processing, translational efficiency, protein secretion, glycosylation and proteolysis. In addition, there is scope for yield improvement based on a better understanding of the physiology of growth/product secretion coupled to appropriate bioreactor operation. The authenticity of product is an aspect which will assume increasing importance, particularly for therapeutic proteins. The level at which the structures and functional activity of heterologous proteins are assessed will ultimately be determined by legislation. The analytical methods currently available are not always sufficient, for example, to reveal folded structures, and most proteins are not amenable to analysis by two-dimensional NMR. The authenticity of target heterologous proteins will also need to be assessed in relation to the glycosylation level and pattern. This is not easily done and explains the paucity of detailed information published to date on glycosylation of fungal proteins. Novel engineered proteins are already being produced from filamentous fungi where expression is an aid to investigation of structure

  7. Mechanical properties of intermediate filament proteins

    PubMed Central

    Charrier, Elisabeth E.; Janmey, Paul A.

    2016-01-01

    Purified intermediate filament proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filament form viscoelastic gels. The crosslinks holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking non-linear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large stains resembling those that soft tissues undergo in vivo. Individual Ifs can be stretched to more than 2 or 3 times their resting length without breaking. At least ten different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of IF on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations. PMID:26795466

  8. Reverse Phase Protein Microarrays.

    PubMed

    Baldelli, Elisa; Calvert, Valerie; Hodge, Alex; VanMeter, Amy; Petricoin, Emanuel F; Pierobon, Mariaelena

    2017-01-01

    While genes and RNA encode information about cellular status, proteins are considered the engine of the cellular machine, as they are the effective elements that drive all cellular functions including proliferation, migration, differentiation, and apoptosis. Consequently, investigations of the cellular protein network are considered a fundamental tool for understanding cellular functions.Alteration of the cellular homeostasis driven by elaborate intra- and extracellular interactions has become one of the most studied fields in the era of personalized medicine and targeted therapy. Increasing interest has been focused on developing and improving proteomic technologies that are suitable for analysis of clinical samples. In this context, reverse-phase protein microarrays (RPPA) is a sensitive, quantitative, high-throughput immunoassay for protein analyses of tissue samples, cells, and body fluids.RPPA is well suited for broad proteomic profiling and is capable of capturing protein activation as well as biochemical reactions such as phosphorylation, glycosylation, ubiquitination, protein cleavage, and conformational alterations across hundreds of samples using a limited amount of biological material. For these reasons, RPPA represents a valid tool for protein analyses and generates data that help elucidate the functional signaling architecture through protein-protein interaction and protein activation mapping for the identification of critical nodes for individualized or combinatorial targeted therapy.

  9. Engineering of filamentous bacteriophage for protein sensing

    NASA Astrophysics Data System (ADS)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  10. Molecular phylogeny of metazoan intermediate filament proteins.

    PubMed

    Erber, A; Riemer, D; Bovenschulte, M; Weber, K

    1998-12-01

    We have cloned cytoplasmic intermediate filament (IF) proteins from a large number of invertebrate phyla using cDNA probes, the monoclonal antibody IFA, peptide sequence information, and various RT-PCR procedures. Novel IF protein sequences reported here include the urochordata and nine protostomic phyla, i.e., Annelida, Brachiopoda, Chaetognatha, Echiura, Nematomorpha, Nemertea, Platyhelminthes, Phoronida, and Sipuncula. Taken together with the wealth of data on IF proteins of vertebrates and the results on IF proteins of Cephalochordata, Mollusca, Annelida, and Nematoda, two IF prototypes emerge. The L-type, which includes 35 sequences from 11 protostomic phyla, shares with the nuclear lamins the long version of the coil 1b subdomain and, in most cases, a homology segment of some 120 residues in the carboxyterminal tail domain. The S-type, which includes all four subfamilies (types I to IV) of vertebrate IF proteins, lacks 42 residues in the coil 1b subdomain and the carboxyterminal lamin homology segment. Since IF proteins from all three phyla of the chordates have the 42-residue deletion, this deletion arose in a progenitor prior to the divergence of the chordates into the urochordate, cephalochordate, and vertebrate lineages, possibly already at the origin of the deuterostomic branch. Four phyla recently placed into the protostomia on grounds of their 18S rDNA sequences (Brachiopoda, Nemertea, Phoronida, and Platyhelminthes) show IF proteins of the L-type and fit by sequence identity criteria into the lophotrochozoic branch of the protostomia.

  11. Physical principles of filamentous protein self-assembly kinetics

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  12. Physical principles of filamentous protein self-assembly kinetics.

    PubMed

    Michaels, Thomas; Liu, Xiaoxuan; Meisl, Georg; Knowles, Tuomas P J

    2017-02-07

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer's and Parkinson's diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  13. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers.

    PubMed

    Fujita, H; Ishiwata, S

    1998-09-01

    Skinned skeletal and cardiac muscle fibers exhibits spontaneous oscillatory contraction (SPOC) in the presence of MgATP, MgADP, and inorganic phosphate (Pi)1 but the molecular mechanism underlying this phenomenon is not yet clear. We have investigated the role of regulatory proteins in SPOC using cardiac muscle fibers of which the actin filaments had been reconstituted without tropomyosin and troponin, according to a previously reported method (Fujita et al., 1996. Biophys. J. 71:2307-2318). That is, thin filaments in glycerinated cardiac muscle fibers were selectively removed by treatment with gelsolin. Then, by adding exogenous actin to these thin filament-free cardiac muscle fibers under polymerizing conditions, actin filaments were reconstituted. The actin filament-reconstituted cardiac muscle fibers generated active tension in a Ca(2+)-insensitive manner because of the lack of regulatory proteins. Herein we have developed a new solvent condition under which SPOC occurs, even in actin filament-reconstituted fibers: the coexistence of 2,3-butanedione 2-monoxime (BDM), a reversible inhibitor of actomyosin interactions, with MgATP, MgADP and Pi. The role of BDM in the mechanism of SPOC in the actin filament-reconstituted fibers was analogous to that of the inhibitory function of the tropomyosin-troponin complex (-Ca2+) in the control fibers. The present results suggest that SPOC is a phenomenon that is intrinsic to the actomyosin motor itself.

  14. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers.

    PubMed Central

    Fujita, H; Ishiwata, S

    1998-01-01

    Skinned skeletal and cardiac muscle fibers exhibits spontaneous oscillatory contraction (SPOC) in the presence of MgATP, MgADP, and inorganic phosphate (Pi)1 but the molecular mechanism underlying this phenomenon is not yet clear. We have investigated the role of regulatory proteins in SPOC using cardiac muscle fibers of which the actin filaments had been reconstituted without tropomyosin and troponin, according to a previously reported method (Fujita et al., 1996. Biophys. J. 71:2307-2318). That is, thin filaments in glycerinated cardiac muscle fibers were selectively removed by treatment with gelsolin. Then, by adding exogenous actin to these thin filament-free cardiac muscle fibers under polymerizing conditions, actin filaments were reconstituted. The actin filament-reconstituted cardiac muscle fibers generated active tension in a Ca(2+)-insensitive manner because of the lack of regulatory proteins. Herein we have developed a new solvent condition under which SPOC occurs, even in actin filament-reconstituted fibers: the coexistence of 2,3-butanedione 2-monoxime (BDM), a reversible inhibitor of actomyosin interactions, with MgATP, MgADP and Pi. The role of BDM in the mechanism of SPOC in the actin filament-reconstituted fibers was analogous to that of the inhibitory function of the tropomyosin-troponin complex (-Ca2+) in the control fibers. The present results suggest that SPOC is a phenomenon that is intrinsic to the actomyosin motor itself. PMID:9726945

  15. Mammalian CARMIL Inhibits Actin Filament Capping by Capping Protein

    PubMed Central

    Yang, Changsong; Pring, Martin; Wear, Martin A.; Huang, Minzhou; Cooper, John A.; Svitkina, Tatyana M.; Zigmond, Sally H.

    2009-01-01

    Summary Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers theF-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior. PMID:16054028

  16. Identification of trichoplein, a novel keratin filament-binding protein.

    PubMed

    Nishizawa, Miwako; Izawa, Ichiro; Inoko, Akihito; Hayashi, Yuko; Nagata, Koh-ichi; Yokoyama, Tomoya; Usukura, Jiro; Inagaki, Masaki

    2005-03-01

    Keratins 8 and 18 (K8/18) are major components of the intermediate filaments (IFs) of simple epithelia. We report here the identification of a novel protein termed trichoplein. This protein shows a low degree of sequence similarity to trichohyalin, plectin and myosin heavy chain, and is a K8/18-binding protein. Among interactions between trichoplein and various IF proteins that we tested using two-hybrid methods, trichoplein interacted significantly with K16 and K18, and to some extent with K5, K6a, K8 and K14. In in vitro co-sedimentation assays, trichoplein directly binds to K8/18, but not with vimentin, desmin, actin filaments or microtubules. An antibody raised against trichoplein specifically recognized a polypeptide with a relative molecular mass of 61 kDa in cell lysates. Trichoplein was immunoprecipitated using this antibody in a complex with K8/18 and immunostaining revealed that trichoplein colocalized with K8/18 filaments in HeLa cells. In polarized Caco-2 cells, trichoplein colocalized not only with K8/18 filaments in the apical region but also with desmoplakin, a constituent of desmosomes. In the absorptive cells of the small intestine, trichoplein colocalized with K8/18 filaments at the apical cortical region, and was also concentrated at desmosomes. Taken together, these results suggest that trichoplein is a keratin-binding protein that may be involved in the organization of the apical network of keratin filaments and desmosomes in simple epithelial cells.

  17. Isolation of the intermediate filament protein vimentin by chromatofocusing.

    PubMed

    Bloemendal, H; Willemsen, M; Groenewoud, G; Oomen, P

    1985-01-28

    A novel, simple and relatively rapid method is described for the isolation of the intermediate-sized filament protein vimentin from eye lens tissue. Chromatofocusing is applied as the sole purification step. The apparent isoelectric point of the protein in 6 M urea and at 22 degrees C is 4.9. Electrophoretic mobility on one- and two-dimensional polyacrylamide gels, solubility in 6 M urea and amino acid composition were used for identification.

  18. E93K charge reversal on actin perturbs steric regulation of thin filaments.

    PubMed

    Cammarato, Anthony; Craig, Roger; Sparrow, John C; Lehman, William

    2005-04-15

    Contraction in striated muscles is regulated by Ca2+-dependent movement of tropomyosin-troponin on thin filaments. Interactions of charged amino acid residues between the surfaces of tropomyosin and actin are believed to play an integral role in this steric mechanism by influencing the position of tropomyosin on the filaments. To investigate this possibility further, thin filaments were isolated from troponin-regulated, indirect flight muscles of Drosophila mutants that express actin with an amino acid charge reversal at residue 93 located at the interface between actin subdomains 1 and 2, in which a lysine residue is substituted for a glutamic acid. Electron microscopy and 3D helical reconstruction were employed to evaluate the structural effects of the mutation. In the absence of Ca2+, tropomyosin was in a position that blocked the myosin-binding sites on actin, as previously found with wild-type filaments. However, in the presence of Ca2+, tropomyosin position in the mutant filaments was much more variable than in the wild-type ones. In most cases (approximately 60%), tropomyosin remained in the blocking position despite the presence of Ca2+, failing to undergo a normal Ca2+-induced change in position. Thus, switching of a negative to a positive charge at position 93 on actin may stabilize negatively charged tropomyosin in the Ca2+-free state regardless of Ca2+ levels, an alteration that, in turn, is likely to interfere with steric regulation and consequently muscle activation. These results highlight the importance of actin's surface charges in determining the distribution of tropomyosin positions on thin filaments derived from troponin-regulated striated muscles.

  19. Biochemical and immunological characterization of pea nuclear intermediate filament proteins.

    PubMed

    Blumenthal, Sonal S D; Clark, Gregory B; Roux, Stanley J

    2004-04-01

    In immunoblot assays, at least three putative nuclear intermediate filament (NIF) proteins were detected in nuclear envelope-matrix (NEM) and lamin (L1) fractions of nuclei from plumules of dark-grown pea (Pisum sativum L.) seedlings. These NIF proteins had apparent molecular masses of ca. 65, 60, and 54 kDa (also referred to as p65, p60, and p54), and appeared as multiple isoelectric forms, with pIs ranging from ca. 4.8 to 6.0. Polyclonal and monoclonal antibodies were raised to the 65-kDa NIF protein bands excised from gels after electrophoresis. These anti-pea antibodies were specifically cross-reactive with the pea nuclear p65, p60, and p54 proteins and also with chicken lamins. Sequence alignment of peptide fragments obtained from the 65- and 60-kDa pea NIF proteins showed similarity with animal intermediate filament proteins such as lamins and keratins and with certain plant proteins predicted to have long coiled-coil domains. These pea NIF proteins were further purified and enriched from the NEM fraction using methods similar to those used for isolating animal lamins. When negatively stained and viewed by transmission electron microscopy, the filaments in the pea lamin (L1) fraction appeared to be 6-12 nm in diameter. As assayed by immunofluorescence cytochemistry using a confocal laser-scanning microscope, fixed pea plumule cells displayed uniform as opposed to peripheral nuclear staining by several of the antibody preparations, both polyclonal and monoclonal. This report describes the biochemical and immunological properties of these pea NIF proteins.

  20. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  1. Soluble and filamentous proteins in Arabidopsis sieve elements.

    PubMed

    Batailler, Brigitte; Lemaître, Thomas; Vilaine, Françoise; Sanchez, Christian; Renard, Denis; Cayla, Thibaud; Beneteau, Julie; Dinant, Sylvie

    2012-07-01

    Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins.

  2. Reversible S-glutathionylation of Cys 374 regulates actin filament formation by inducing structural changes in the actin molecule.

    PubMed

    Dalle-Donne, I; Giustarini, D; Rossi, R; Colombo, R; Milzani, A

    2003-01-01

    S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.

  3. Kinetics of fragmentation and dissociation of two-strand protein filaments: Coarse-grained simulations and experiments

    NASA Astrophysics Data System (ADS)

    Zaccone, A.; Terentjev, I.; Herling, T. W.; Knowles, T. P. J.; Aleksandrova, A.; Terentjev, E. M.

    2016-09-01

    While a significant body of investigations have been focused on the process of protein self-assembly, much less is understood about the reverse process of a filament breaking due to thermal motion into smaller fragments, or depolymerization of subunits from the filament ends. Indirect evidence for actin and amyloid filament fragmentation has been reported, although the phenomenon has never been directly observed either experimentally or in simulations. Here we report the direct observation of filament depolymerization and breakup in a minimal, calibrated model of coarse-grained molecular simulation. We quantify the orders of magnitude by which the depolymerization rate from the filament ends koff is larger than fragmentation rate k- and establish the law koff/k- = exp[(ɛ‖ - ɛ⊥)/kBT] = exp[0.5ɛ/kBT], which accounts for the topology and energy of bonds holding the filament together. This mechanism and the order-of-magnitude predictions are well supported by direct experimental measurements of depolymerization of insulin amyloid filaments.

  4. Major coat protein and single-stranded DNA-binding protein of filamentous virus Pf3.

    PubMed Central

    Putterman, D G; Casadevall, A; Boyle, P D; Yang, H L; Frangione, B; Day, L A

    1984-01-01

    The region of the Pf3 virus genome encoding its major coat protein and its single-stranded DNA-binding protein is organized somewhat like the corresponding region of the fd (M13, f1) genome. Nevertheless, the major coat protein is unique among the major coat proteins of fd and the other filamentous phages studied in that it lacks a signal sequence and appears to be a direct translation product and in that it has fewer basic amino acid residues than its equivalent of DNA phosphates in the virion. These features are relevant to considerations of both protein insertion into membranes and DNA structure in filamentous viruses. The single-stranded DNA-binding protein also has a sequence that is different from the sequences of single-stranded DNA-binding proteins from other filamentous viruses. Images PMID:6422463

  5. Functional synergy of actin filament cross-linking proteins.

    PubMed

    Tseng, Yiider; Schafer, Benjamin W; Almo, Steven C; Wirtz, Denis

    2002-07-12

    The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.

  6. Kelch Domain of Gigaxonin Interacts with Intermediate Filament Proteins Affected in Giant Axonal Neuropathy

    PubMed Central

    Johnson-Kerner, Bethany L.; Garcia Diaz, Alejandro; Ekins, Sean; Wichterle, Hynek

    2015-01-01

    Patients with giant axonal neuropathy (GAN) show progressive loss of motor and sensory function starting in childhood and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin (GIG), a ubiquitously-expressed BTB/Kelch cytoplasmic protein believed to be an E3 ligase substrate adaptor. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. To delineate the molecular pathway between GIG deficiency and IF pathology, we undertook a proteomic screen to identify the normal binding partners of GIG. Prominent among them were several classes of IFs, including the neurofilament subunits whose accumulation leads to the axonal swellings for which GAN is named. We showed these interactions were dependent on the Kelch domain of GIG. Furthermore, we identified the E3 ligase MYCBP2 and the heat shock proteins HSP90AA1/AB1 as interactors with the BTB domain that may result in the ubiquitination and subsequent degradation of intermediate filaments. Our open-ended proteomic screen provides support to GIG’s role as an adaptor protein, linking IF proteins through its Kelch domain to the ubiquitin pathway proteins via its BTB domain, and points to future approaches for reversing the phenotype in human patients. PMID:26460568

  7. Unfolded protein response in filamentous fungi-implications in biotechnology.

    PubMed

    Heimel, Kai

    2015-01-01

    The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.

  8. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  9. Two Drosophila melanogaster proteins related to intermediate filament proteins of vertebrate cells

    PubMed Central

    1981-01-01

    Monoclonal antibodies were prepared against a 46,000 mol wt major cytoplasmic protein from Drosophila melanogaster Kc cells. These antibodies reacted with the 46,000 and a 40,000 mol wt protein from Kc cells. Some antibodies showed cross-reaction with 55,000 (vimentin) and 52,000 mol wt (desmin) proteins from baby hamster kidney (BHK) cells that form intermediate sized filaments in vertebrate cells. In indirect immunofluorescence, the group of cross reacting antibodies stained a filamentous meshwork in the cytoplasm of vertebrate cells. In Kc cells the fluorescence seemed to be localized in a filamentous meshwork that became more obvious after the cells had flattened out on a surface. These cytoskeletal structures are heat-labile; the proteins in Kc or BHK cells rearrange after a brief heat shock, forming juxtanuclear cap structures. PMID:6795212

  10. Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis.

    PubMed

    Kakuda, Tsutomu; Sarataphan, Nopporn; Tanaka, Tetsuya; Takai, Shinji

    2006-11-26

    The complete nucleotide sequence of a plasmid, pMBO-1, from Moraxella bovis strain Epp63 was determined. We identified 30 open reading frames (ORFs) encoded by the 44,215bp molecule. Two large ORFs, flpA and flpB, encoding proteins with similarity to Bordetella pertussis filamentous haemagglutinin (FHA), were identified on the same plasmid. The gene for a specific accessory protein (Fap), which may play a role in the secretion of Flp protein, was also identified. Reverse transcriptase PCR analysis of total RNA isolated from M. bovis Epp63 indicated that the flpA, flpB, and fap genes are all transcribed. Southern blot analysis indicated that the flp and fap genes are present in other clinical isolates of geographically diverse M. bovis.

  11. Intermolecular forces between the motor protein and the filament.

    PubMed

    Suda, H; Taylor, T W

    1993-03-07

    Intermolecular forces between motor proteins and filaments were evaluated on the basis of the experimental data of an in vitro motility assay by considering the molecular friction in the movement system. The molecular friction was caused by a different mechanism from that of the hydrodynamic drag. However, the molecular frictional forces apparently gave the same expression as the hydrodynamic frictional forces. The resulting equation was very effective in examining the physical properties of the weak interaction in the dynein-microtubules system from basic experiments carried out by Vale et al. (1989). From careful analysis of their experimental data, it was concluded that the hydrodynamic friction was not dominant, even in the weak binding state. The electrostatic interaction between dynein-heads and microtubules in the weak binding state was analyzed by applying the DLVO (Derjaguin-Landau-Verway-Overbeek) theory in colloid science through the ionic dependence of one-dimensional diffusion. The interacting distance between charges which took part in the weak adhesion was estimated to be 3 nm. In the present study, the molecular mechanism of the sliding velocity was also investigated for the myosin-actin filaments and the kinesin-microtubules systems by fitting the ATP-dependence and the ionic dependence in ATP-driven active sliding.

  12. Cysteine-rich protein 2 accelerates actin filament cluster formation

    PubMed Central

    Shinohara, Satoko; Takaoka, Shunpei; Miyake, Jun

    2017-01-01

    Filamentous actin (F-actin) forms many types of structures and dynamically regulates cell morphology and movement, and plays a mechanosensory role for extracellular stimuli. In this study, we determined that the smooth muscle-related transcription factor, cysteine-rich protein 2 (CRP2), regulates the supramolecular networks of F-actin. The structures of CRP2 and F-actin in solution were analyzed by small-angle X-ray solution scattering (SAXS). The general shape of CRP2 was partially unfolded and relatively ellipsoidal in structure, and the apparent cross sectional radius of gyration (Rc) was about 15.8 Å. The predicted shape, derived by ab initio modeling, consisted of roughly four tandem clusters: LIM domains were likely at both ends with the middle clusters being an unfolded linker region. From the SAXS analysis, the Rc of F-actin was about 26.7 Å, and it was independent of CRP2 addition. On the other hand, in the low angle region of the CRP2-bound F-actin scattering, the intensities showed upward curvature with the addition of CRP2, which indicates increasing branching of F-actin following CRP2 binding. From biochemical analysis, the actin filaments were augmented and clustered by the addition of CRP2. This F-actin clustering activity of CRP2 was cooperative with α-actinin. Thus, binding of CRP2 to F-actin accelerates actin polymerization and F-actin cluster formation. PMID:28813482

  13. The Saccharomyces cerevisiae Fin1 protein forms cell cycle-specific filaments between spindle pole bodies.

    PubMed

    van Hemert, Martijn J; Lamers, Gerda E M; Klein, Dionne C G; Oosterkamp, Tjerk H; Steensma, H Yde; van Heusden, G Paul H

    2002-04-16

    The FIN1 gene from the yeast Saccharomyces cerevisiae encodes a basic protein with putative coiled-coil regions. Here we show that in large-budded cells a green fluorescent protein-Fin1 fusion protein is visible as a filament between the two spindle pole bodies. In resting cells the protein is undetectable, and in small-budded cells it is localized in the nucleus. During late mitosis it localizes on the spindle pole bodies. Filaments of cyano fluorescent protein-tagged Fin1 colocalize with filaments of green fluorescent protein-tagged Tub1 only in large-budded cells. By electron and atomic force microscopy we showed that purified recombinant Fin1p self-assembles into filaments with a diameter of approximately 10 nm. Our results indicate that the Fin1 protein forms a cell cycle-specific filament, additional to the microtubules, between the spindle pole bodies of dividing yeast cells.

  14. The Saccharomyces cerevisiae Fin1 protein forms cell cycle-specific filaments between spindle pole bodies

    PubMed Central

    van Hemert, Martijn J.; Lamers, Gerda E. M.; Klein, Dionne C. G.; Oosterkamp, Tjerk H.; Steensma, H. Yde; van Heusden, G. Paul H.

    2002-01-01

    The FIN1 gene from the yeast Saccharomyces cerevisiae encodes a basic protein with putative coiled-coil regions. Here we show that in large-budded cells a green fluorescent protein-Fin1 fusion protein is visible as a filament between the two spindle pole bodies. In resting cells the protein is undetectable, and in small-budded cells it is localized in the nucleus. During late mitosis it localizes on the spindle pole bodies. Filaments of cyano fluorescent protein-tagged Fin1 colocalize with filaments of green fluorescent protein-tagged Tub1 only in large-budded cells. By electron and atomic force microscopy we showed that purified recombinant Fin1p self-assembles into filaments with a diameter of ≈10 nm. Our results indicate that the Fin1 protein forms a cell cycle-specific filament, additional to the microtubules, between the spindle pole bodies of dividing yeast cells. PMID:11929974

  15. Intermediate filament proteins of digestive organs: physiology and pathophysiology.

    PubMed

    Omary, M Bishr

    2017-06-01

    Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs. Copyright © 2017 the American Physiological Society.

  16. Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1

    PubMed Central

    Xu, Wenjie; Aleynikov, Tatyana; Cullen, Paul J.; Lanni, Frederick; Andes, David R.

    2016-01-01

    Biofilm formation on implanted medical devices is a major source of lethal invasive infection by Candida albicans. Filamentous growth of this fungus is tied to biofilm formation because many filamentation-associated genes are required for surface adherence. Cell cycle or cell growth defects can induce filamentation, but we have limited information about the coupling between filamentation and filamentation-associated gene expression after cell cycle/cell growth inhibition. Here we identified the CDK activating protein kinase Cak1 as a determinant of filamentation and filamentation-associated gene expression through a screen of mutations that diminish expression of protein kinase-related genes implicated in cell cycle/cell growth control. A cak1 diminished expression (DX) strain displays filamentous growth and expresses filamentation-associated genes in the absence of typical inducing signals. In a wild-type background, expression of filamentation-associated genes depends upon the transcription factors Bcr1, Brg1, Efg1, Tec1, and Ume6. In the cak1 DX background, the dependence of filamentation-associated gene expression on each transcription factor is substantially relieved. The unexpected bypass of filamentation-associated gene expression activators has the functional consequence of enabling biofilm formation in the absence of Bcr1, Brg1, Tec1, Ume6, or in the absence of both Brg1 and Ume6. It also enables filamentous cell morphogenesis, though not biofilm formation, in the absence of Efg1. Because these transcription factors are known to have shared target genes, we suggest that cell cycle/cell growth limitation leads to activation of several transcription factors, thus relieving dependence on any one. PMID:27935965

  17. Self-assembly of a filament by curvature-inducing proteins

    NASA Astrophysics Data System (ADS)

    Kwiecinski, James; Chapman, S. Jonathan; Goriely, Alain

    2017-04-01

    We explore a simplified macroscopic model of membrane shaping by means of curvature-sensing BAR proteins. Equations describing the interplay between the shape of a freely floating filament in a fluid and the adhesion kinetics of proteins are derived from mechanical principles. The constant curvature solutions that arise from this system are studied using weakly nonlinear analysis. We show that the stability of the filament's shape is completely characterized by the parameters associated with protein recruitment and establish that in the bistable regime, proteins aggregate on the filament forming regions of high and low curvatures. This pattern formation is then followed by phase-coarsening that resolves on a time-scale dependent on protein diffusion and drift across the filament, which contend to smooth and maintain the pattern respectively. The model is generalized for multiple species of BAR proteins and we show that the stability of the assembled shape is determined by a competition between proteins attaching on opposing sides.

  18. Respiratory Syncytial Virus Assembles into Structured Filamentous Virion Particles Independently of Host Cytoskeleton and Related Proteins

    PubMed Central

    Shaikh, Fyza Y.; Utley, Thomas J.; Craven, Ryan E.; Rogers, Meredith C.; Lapierre, Lynne A.; Goldenring, James R.; Crowe, James E.

    2012-01-01

    Respiratory syncytial virus (RSV) is a single-stranded RNA virus that assembles into viral filaments at the cell surface. Virus assembly often depends on the ability of a virus to use host proteins to accomplish viral tasks. Since the fusion protein cytoplasmic tail (FCT) is critical for viral filamentous assembly, we hypothesized that host proteins important for viral assembly may be recruited by the FCT. Using a yeast two-hybrid screen, we found that filamin A interacted with FCT, and mammalian cell experiments showed it localized to viral filaments but did not affect viral replication. Furthermore, we found that a number of actin-associated proteins also were excluded from viral filaments. Actin or tubulin cytoskeletal rearrangement was not necessary for F trafficking to the cell surface or for viral assembly into filaments, but was necessary for optimal viral replication and may be important for anchoring viral filaments. These findings suggest that RSV assembly into filaments occurs independently of actin polymerization and that viral proteins are the principal drivers for the mechanical tasks involved with formation of complex, structured RSV filaments at the host cell plasma membrane. PMID:22808269

  19. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP

    PubMed Central

    Lin, Ni-Hsuan; Huang, Yu-Shan; Opal, Puneet; Goldman, Robert D.; Messing, Albee; Perng, Ming-Der

    2016-01-01

    Alexander disease (AxD) is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding the intermediate filament (IF) protein GFAP. This disease is characterized by excessive accumulation of GFAP, known as Rosenthal fibers, within astrocytes. Abnormal GFAP aggregation also occurs in giant axon neuropathy (GAN), which is caused by recessive mutations in the gene encoding gigaxonin. Given that one of the functions of gigaxonin is to facilitate proteasomal degradation of several IF proteins, we sought to determine whether gigaxonin is involved in the degradation of GFAP. Using a lentiviral transduction system, we demonstrated that gigaxonin levels influence the degradation of GFAP in primary astrocytes and in cell lines that express this IF protein. Gigaxonin was similarly involved in the degradation of some but not all AxD-associated GFAP mutants. In addition, gigaxonin directly bound to GFAP, and inhibition of proteasome reversed the clearance of GFAP in cells achieved by overexpressing gigaxonin. These studies identify gigaxonin as an important factor that targets GFAP for degradation through the proteasome pathway. Our findings provide a critical foundation for future studies aimed at reducing or reversing pathological accumulation of GFAP as a potential therapeutic strategy for AxD and related diseases. PMID:27798231

  20. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ

    PubMed Central

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-01-01

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654

  1. Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments.

    PubMed

    Qin, Tao; Liu, Xiaomin; Li, Jiejie; Sun, Jingbo; Song, Leina; Mao, Tonglin

    2014-01-01

    The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament-severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca(2+), in vitro. Analysis of a mutant that bears a point mutation at the Ca(2+) binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca(2+) level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament-severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth.

  2. High resolution characterization of myosin IIC protein tailpiece and its effect on filament assembly.

    PubMed

    Rosenberg, Masha M; Ronen, Daniel; Lahav, Noa; Nazirov, Elvira; Ravid, Shoshana; Friedler, Assaf

    2013-04-05

    The motor protein nonmuscle myosin II (NMII) must undergo dynamic oligomerization into filaments to perform its cellular functions. A small nonhelical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. This tailpiece is a key regulatory domain affecting NMII filament assembly properties and is subject to phosphorylation in vivo. We previously demonstrated that the positively charged region of the tailpiece binds to assembly-incompetent NMII-C fragments, inducing filament assembly. In the current study, we investigated the molecular mechanisms by which the tailpiece regulates NMII-C self-assembly. Using alanine scan, we found that specific positive and aromatic residues within the positively charged region of the tailpiece are important for inducing NMII-C filament assembly and for filament elongation. Combining peptide arrays with deletion studies allowed us to identify the tailpiece binding sites in the coiled-coil rod. Elucidation of the mechanism by which the tailpiece induces filament assembly permitted us further investigation into the role of tailpiece phosphorylation. Sedimentation and CD spectroscopy identified that phosphorylation of Thr(1957) or Thr(1960) inhibited the ability of the tailpiece to bind the coiled-coil rod and to induce NMII-C filament formation. This study provides molecular insight into the role of specific residues within the NMII-C tailpiece that are responsible for shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.

  3. Viral infectivity and intracellular distribution of matrix (M) protein of canine distemper virus are affected by actin filaments.

    PubMed

    Klauschies, F; Gützkow, T; Hinkelmann, S; von Messling, V; Vaske, B; Herrler, G; Haas, L

    2010-09-01

    To investigate the role of cytoskeletal components in canine distemper virus (CDV) replication, various agents were used that interfere with turnover of actin filaments and microtubules. Only inhibition of actin filaments significantly reduced viral infectivity. Analysis of the intracellular localization of the viral matrix (M) protein revealed that it aligned along actin filaments. Treatment with actin filament-disrupting drugs led to a marked intracellular redistribution of M protein during infection as well as transfection. In contrast, the localization of the CDV fusion (F) protein was not significantly changed during transfection. Thus, a M protein-actin filament interaction appears to be important for generation of infectious CDV.

  4. Spaceflight results in increase of thick filament but not thin filament proteins in the paramyosin mutant of Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Adachi, R.; Takaya, T.; Kuriyama, K.; Higashibata, A.; Ishioka, N.; Kagawa, H.

    We have investigated the effect of microgravity during spaceflight on body-wall muscle fiber size and muscle proteins in the paramyosin mutant of Caenorhabditis elegans. Both mutant and wild-type strains were subjected to 10 days of microgravity during spaceflight and compared to ground control groups. No significant change in muscle fiber size or quantity of the protein was observed in wild-type worms; where as atrophy of body-wall muscle and an increase in thick filament proteins were observed in the paramyosin mutant unc-15(e73) animals after spaceflight. We conclude that the mutant with abnormal muscle responded to microgravity by increasing the total amount of muscle protein in order to compensate for the loss of muscle function.

  5. Self-assembly enhances the strength of fibers made from vimentin intermediate filament proteins.

    PubMed

    Pinto, Nicole; Yang, Fei-Chi; Negishi, Atsuko; Rheinstädter, Maikel C; Gillis, Todd E; Fudge, Douglas S

    2014-02-10

    Hagfish slime threads were recently established as a promising biomimetic model for efforts to produce ecofriendly alternatives to petroleum polymers. Initial attempts to make fibers from solubilized slime thread proteins fell short of achieving the outstanding mechanics of native slime threads. Here we tested the hypothesis that the high strength and toughness of slime threads arise from the ability of constituent intermediate filaments to undergo a stress-induced α-to-β transition. To do this, we made fibers from human vimentin proteins that were first allowed to self-assemble into 10 nm intermediate filaments. Fibers made from assembled vimentin hydrogels underwent an α-to-β transition when strained and exhibited improved mechanical performance. Our data demonstrate that it is possible to make materials from intermediate filament hydrogels and that mimicking the secondary structure of native hagfish slime threads using intermediate filament self-assembly is a promising strategy for improving the mechanical performance of biomimetic protein materials.

  6. Smooth muscle myosin filament assembly under control of a kinase-related protein (KRP) and caldesmon.

    PubMed

    Kudryashov, Dmitry S; Vorotnikov, Alexander V; Dudnakova, Tatyana V; Stepanova, Olga V; Lukas, Thomas J; Sellers, James R; Watterson, D Martin; Shirinsky, Vladimir P

    2002-01-01

    Kinase-related protein (KRP) and caldesmon are abundant myosin-binding proteins of smooth muscle. KRP induces the assembly of unphosphorylated smooth muscle myosin filaments in the presence of ATP by promoting the unfolded state of myosin. Based upon electron microscopy data, it was suggested that caldesmon also possessed a KRP-like activity (Katayama et al., 1995, J Biol Chem 270: 3919-3925). However, the nature of its activity remains obscure since caldesmon does not affect the equilibrium between the folded and unfolded state of myosin. Therefore, to gain some insight into this problem we compared the effects of KRP and caldesmon, separately, and together on myosin filaments using turbidity measurements, protein sedimentation and electron microscopy. Turbidity assays demonstrated that KRP reduced myosin filament aggregation, while caldesmon had no effect. Additionally, neither caldesmon nor its N-terminal myosin binding domain (N152) induced myosin polymerization at subthreshold Mg2+ concentrations in the presence of ATP, whereas the filament promoting action of KRP was enhanced by Mg2+. Moreover, the amino-terminal myosin binding fragment of caldesmon, like the whole protein, antagonizes Mg(2+)-induced myosin filament formation. In electron microscopy experiments, caldesmon shortened myosin filaments in the presence of Mg2+ and KRP, but N152 failed to change their appearance from control. Therefore, the primary distinction between caldesmon and KRP appears to be that caldesmon interacts with myosin to limit filament extension, while KRP induces filament propagation into defined polymers. Transfection of tagged-KRP into fibroblasts and overlay of fibroblast cytoskeletons with Cy3KRP demonstrated that KRP colocalizes with myosin structures in vivo. We propose a new model that through their independent binding to myosin and differential effects on myosin dynamics, caldesmon and KRP can, in concert, control the length and polymerization state of myosin filaments.

  7. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction.

    PubMed

    Leavis, P C; Gergely, J

    1984-01-01

    Recent developments in the field of myofibrillar proteins will be reviewed. Consideration will be given to the proteins that participate in the contractile process itself as well as to those involved in Ca-dependent regulation of striated (skeletal and cardiac) and smooth muscle. The relation of protein structure to function will be emphasized and the relation of various physiologically and histochemically defined fiber types to the proteins found in them will be discussed.

  8. ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin.

    PubMed

    Nomura, Kazumi; Ono, Shoichiro

    2013-07-15

    CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.

  9. Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation

    PubMed Central

    F.Vellucci, Vincent; Gygax, Scott; Hostetter, Margaret K.

    2007-01-01

    For 50 years, physiologic studies in Candida albicans have associated fermentation with filamentation and respiration with yeast morphology. Analysis of the mitochondrial proteome of a C. albicans NDH51 mutant, known to be defective in filamentation, identified increased expression of several proteins in the respiratory pathway. Most notable was a 15-fold increase in pyruvate dehydrogenase complex protein X (Pdx1), an essential component of the pyruvate dehydrogenase complex. In basal salts medium with 100 mM glucose as carbon source, two independent pdx1 mutants displayed a filamentation defect identical to ndh51; reintegration of one PDX1 allele restored filamentation. Concentrations of glucose ≤100 mM did not correct the filamentation defect. Expanding on previous work, these studies suggest that increased expression of proteins extraneous to the electron transport chain compensates for defects in the respiratory pathway to maintain yeast morphology. Mitochondrial proteomics can aid in the identification of C. albicans genes not previously implicated in filamentation. PMID:17254815

  10. Cdc42p-Interacting Protein Bem4p Regulates the Filamentous-Growth Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Pitoniak, Andrew; Chavel, Colin A.; Chow, Jacky; Smith, Jeremy; Camara, Diawoye; Karunanithi, Sheelarani; Li, Boyang; Wolfe, Kennith H.

    2014-01-01

    The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response. PMID:25384973

  11. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments.

    PubMed Central

    Dowling, L M; Crewther, W G; Inglis, A S

    1986-01-01

    Component 8c-1, one of four highly homologous component-8 subunit proteins present in the microfibrils of wool, was isolated as its S-carboxymethyl derivative and its amino acid sequence was determined. Large peptides were isolated after cleaving the protein chemically or enzymically and the sequence of each was determined with an automatic Sequenator. The peptides were ordered by sequence overlaps and, in some instances, by homology with known sequences from other component-8 subunits. The C-terminal residues were identified by three procedures. Full details of the various procedures used have been deposited as Supplementary Publication SUP 50133 (4 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. The result showed that the protein comprises 412 residues and has an Mr, including the N-terminal acetyl group, of 48,300. The sequence of residues 98-200 of component 8c-1 was found to correspond to the partial or complete sequences of four homologous type I helical segments previously isolated from helical fragments recovered from chymotryptic digests of microfibrillar proteins of wool [Crewther & Dowling (1971) Appl. Polym. Symp. 18, 1-20; Crewther, Gough, Inglis & McKern (1978) Text. Res. J. 48, 160-162; Gough, Inglis & Crewther (1978) Biochem. J. 173, 385]. Considered in relation to amino acid sequences of other intermediate-filament proteins, the sequence is in accord with the view that keratin filament proteins are of two types [Hanukoglu & Fuchs (1983) Cell (Cambridge, Mass.) 33, 915-924]. Filament proteins from non-keratinous tissues, such as desmin, vimentin, neurofilament proteins and the glial fibrillary acidic protein, which form monocomponent filaments, constitute a third type. It is suggested that as a whole the proteins from intermediate filaments be classed as filamentins, the three types at present identified forming

  12. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations.

    PubMed

    Wang, Liping; Ridgway, Darin; Gu, Tingyue; Moo-Young, Murray

    2005-03-01

    Filamentous fungi have long been used for the production of metabolites and enzymes. With developments in genetic engineering and molecular biology, filamentous fungi have also achieved increased attention as hosts for recombinant DNA. However, the production levels of non-fungal proteins are usually low. Despite the achievements obtained using molecular tools, the heterologous protein loss caused by extracellular fungal protease degradation persists. This review provides an overview of the potential bioprocessing strategies that can be applied to inhibit protease activity thereby enhancing heterologous protein production.

  13. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    PubMed

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  14. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  15. RecA-ssDNA filaments supercoil in the presence of single-stranded DNA-binding protein

    SciTech Connect

    Shi Weixian; Larson, Ronald G. . E-mail: rlarson@umich.edu

    2007-06-08

    Using atomic force microscopy (AFM), we find that RecA-single-stranded DNA (RecA-ssDNA) filaments, in the presence of single-stranded DNA-binding (SSB) protein, organize into left-handed bundles, which differ from the previously reported disordered aggregates formed when SSB is excluded from the reaction. In addition, we see both left- and right-handedness on bundles of two filaments. These two-filament supercoils, individual filaments, and other smaller bundles further organize into more complicated bundles, showing overall left-handedness which cannot be explained by earlier arguments that presumed supercoiling is absent in RecA-ssDNA filaments. This novel finding and our previous results regarding supercoiling of RecA-double-stranded DNA (RecA-dsDNA) filaments are, however, consistent with each other and can possibly be explained by the intrinsic tendency of RecA-DNA filaments, in their fully coated form, to order themselves into helical bundles, independent of the DNA inside the filaments (ssDNA or dsDNA). RecA-RecA interactions may dominate the bundling process, while the original conformation of DNA inside filaments and other factors (mechanical properties of filaments, concentration of filaments, and Mg{sup 2+} concentration) could contribute to the variation in the appearance and pitch of supercoils. The tendency of RecA-DNA filaments to form ordered supercoils and their presence during strand exchange suggest a possible biological importance of supercoiled filaments.

  16. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein

    PubMed Central

    Brzoska, Anthony J.; Jensen, Slade O.; Barton, Deborah A.; Davies, Danielle S.; Overall, Robyn L.; Skurray, Ronald A.; Firth, Neville

    2016-01-01

    Actin-like proteins (Alps) are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissection of the parMRC operon revealed that all components of the system are essential for the generation of dynamic filaments. PMID:27310470

  17. Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Knowles, Tuomas P. J.

    2015-12-01

    Filamentous protein structures are of high relevance for the normal functioning of the cell, where they provide the structural component for the cytoskeleton, but are also implicated in the pathogenesis of many disease states. The self-assembly of these supra-molecular structures from monomeric proteins has been studied extensively in the past 50 years and much interest has focused on elucidating the microscopic events that drive linear growth phenomena in a biological setting. Master equations have proven to be particularly fruitful in this context, allowing specific assembly mechanisms to be linked directly to experimental observations of filamentous growth. Recently, these approaches have increasingly been applied to aberrant protein polymerization, elucidating potential implications for controlling or combating the formation of pathological filamentous structures. This article reviews recent theoretical advances in the field of filamentous growth phenomena through the use of the master-equation formalism. We use perturbation and self-consistent methods for obtaining analytical solutions to the rate equations describing fibrillar growth and show how the resulting closed-form expressions can be used to shed light on the general physical laws underlying this complex phenomenon. We also present a connection between the underlying ideas of the self-consistent analysis of filamentous growth and the perturbative renormalization group.

  18. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures

    PubMed Central

    1989-01-01

    We have explored the dynamics of intermediate filament assembly and subunit exchange using fluorescently labeled neurofilament proteins and a fluorescence resonance energy transfer assay. Neurofilaments (NFs) are assembled from three highly phosphorylated proteins with molecular masses of 180 (NF-H), 130 (NF-M), and 66 kD (NF-L) of which NF-L forms the structural core. The core component, NF-L, was stoichiometrically labeled at cysteine 321 with fluorescein, coumarin, or biotin-maleimide to produce assembly-competent fluorescent or biotinylated derivatives, respectively. Using coumarin-labeled NF-L as fluorescence donor and fluorescein-labeled NF-L as the fluorescence acceptor, assembly of NF filaments was induced by rapidly raising the NaCl concentration to 170 mM, and the kinetics was followed by the decrease in the donor fluorescence. Assembly of NF-L subunits into filaments does not require nucleotide binding or hydrolysis but is strongly dependent on ionic strength, pH, and temperature. The critical concentration of NF-L, that concentration that remains unassembled at equilibrium with fully formed filaments, is 38 micrograms/ml or 0.6 microM. Under physiological salt conditions NF-L filaments also undergo extensive subunit exchange. Kinetic analysis and evaluation of several possible mechanisms indicate that subunit exchange is preceded by dissociation of subunits from the filament and generation of a kinetically active pool of soluble subunits. Given the concentration of NF-L found in nerve cells and the possibility of regulating this pool, these results provide the first information that intermediate filaments are dynamic structures and that NF-L within the NF complex is in dynamic equilibrium with a small but kinetically active pool of unassembled NF-L units. PMID:2925792

  19. Glial Fibrillary Acidic Protein Filaments Can Tolerate the Incorporation of Assembly-compromised GFAP-δ, but with Consequences for Filament Organization and αB-Crystallin Association

    PubMed Central

    Perng, Ming-Der; Wen, Shu-Fang; Gibbon, Terry; Middeldorp, Jinte; Sluijs, Jacqueline; Hol, Elly M.

    2008-01-01

    The glial fibrillary acidic protein (GFAP) gene is alternatively spliced to give GFAP-α, the most abundant isoform, and seven other differentially expressed transcripts including GFAP-δ. GFAP-δ has an altered C-terminal domain that renders it incapable of self-assembly in vitro. When titrated with GFAP-α, assembly was restored providing GFAP-δ levels were kept low (∼10%). In a range of immortalized and transformed astrocyte derived cell lines and human spinal cord, we show that GFAP-δ is naturally part of the endogenous intermediate filaments, although levels were low (∼10%). This suggests that GFAP filaments can naturally accommodate a small proportion of assembly-compromised partners. Indeed, two other assembly-compromised GFAP constructs, namely enhanced green fluorescent protein (eGFP)-tagged GFAP and the Alexander disease–causing GFAP mutant, R416W GFAP both showed similar in vitro assembly characteristics to GFAP-δ and could also be incorporated into endogenous filament networks in transfected cells, providing expression levels were kept low. Another common feature was the increased association of αB-crystallin with the intermediate filament fraction of transfected cells. These studies suggest that the major physiological role of the assembly-compromised GFAP-δ splice variant is as a modulator of the GFAP filament surface, effecting changes in both protein– and filament–filament associations as well as Jnk phosphorylation. PMID:18685083

  20. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  1. Expression of Cardamom mosaic virus coat protein in Escherichia coli and its assembly into filamentous aggregates.

    PubMed

    Jacob, Thomas; Usha, R

    2002-06-01

    Cardamom mosaic virus (CdMV), a member of the genus Macluravirus of Potyviridae, causes a mosaic disease in cardamom. A polyclonal antiserum was raised against the purified virus and IgG was prepared. Electron microscopic studies on the purified virus showed flexuous filamentous particles of approximately 800 nm in length, typical of members of Potyviridae. The coat protein (CP) encoding sequence of the virus was expressed in Escherichia coli and the protein purified by affinity chromatography under denaturing conditions. The viral nature of the expressed CP was confirmed by positive reaction with anti CdMV IgG in a Western blot. The expressed CP aggregated irreversibly upon renaturation at concentrations above 0.07 mg/ml. The expression of the CP led to the formation of filamentous aggregates in E. coli as observed by immuno-gold electron microscopy. The filamentous aggregates were of 100-150 nm in length. Immuno-capture RT-PCR confirmed the absence of coat protein mRNA in the filamentous aggregates. Deletion mutations, which were expected to inhibit virus assembly, were introduced in the core region of the coat protein. However, these mutations did not improve the solubility of the CP in non-denaturing buffers.

  2. Active force generation in cross-linked filament bundles without motor proteins.

    PubMed

    Walcott, Sam; Sun, Sean X

    2010-11-01

    Cytoskeletal filaments often interact laterally through cross-linking proteins, contributing to passive cellular viscoelasticity and, perhaps surprisingly, active force generation. We present a theory, based on the formation and rupture of cross-linker bonds, that relates molecular properties of those interactions to the macroscale mechanics of filament bundles. Computing the force-velocity relation for such a bundle, we demonstrate significant contractile forces in the absence of molecular motors. This theory provides insight into cytokinesis, cytoskeletal mechanics, and stress-fiber contraction.

  3. Interaction of surfactant protein A with the intermediate filaments desmin and vimentin.

    PubMed

    Garcia-Verdugo, Ignacio; Synguelakis, Monique; Degrouard, Jeril; Franco, Claudio-Areias; Valot, Benoit; Zivy, Michel; Chaby, Richard; Tanfin, Zahra

    2008-05-06

    Surfactant protein A (SP-A), a member of the collectin family that modulates innate immunity, has recently been involved in the physiology of reproduction. Consistent with the activation of ERK-1/2 and COX-2 induced by SP-A in myometrial cells, we reported previously the presence of two major proteins recognized by SP-A in these cells. Here we identify by mass spectrometry one of these SP-A targets as the intermediate filament (IF) desmin. In myometrial preparations derived from desmin-deficient mice, the absence of binding of SP-A to any 50 kDa protein confirmed the identity of this SP-A-binding site as desmin. Our data based on partial chymotrypsin digestion of pure desmin suggested that SP-A recognizes especially its rod domain, which is known to play an important role during the assembly of desmin into filaments. In line with that, electron microscopy experiments showed that SP-A inhibits in vitro the polymerization of desmin filaments. SP-A also recognized in vitro polymerized filaments in a calcium-dependent manner at a physiological ionic strength but not the C1q receptor gC1qR. Furthermore, Texas Red-labeled SP-A colocalized with desmin filaments in myometrial cells. Interestingly, vimentin, the IF characteristic of leukocytes, is one of the major proteins recognized by SP-A in protein extracts of U937 cells after PMA-induced differentiation of this monocytic cell line. Interaction of SP-A with vimentin was further confirmed using recombinant vimentin in solid-phase binding assays. The ability of SP-A to interact with desmin and vimentin, and to prevent polymerization of desmin monomers, shed light on unexpected and wider biological roles of this collectin.

  4. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins.

    PubMed

    Blanchoin, L; Amann, K J; Higgs, H N; Marchand, J B; Kaiser, D A; Pollard, T D

    2000-04-27

    Most nucleated cells crawl about by extending a pseudopod that is driven by the polymerization of actin filaments in the cytoplasm behind the leading edge of the plasma membrane. These actin filaments are linked into a network by Y-branches, with the pointed end of each filament attached to the side of another filament and the rapidly growing barbed end facing forward. Because Arp2/3 complex nucleates actin polymerization and links the pointed end to the side of another filament in vitro, a dendritic nucleation model has been proposed in which Arp2/3 complex initiates filaments from the sides of older filaments. Here we report, by using a light microscopy assay, many new features of the mechanism. Branching occurs during, rather than after, nucleation by Arp2/3 complex activated by the Wiskott-Aldrich syndrome protein (WASP) or Scar protein; capping protein and profilin act synergistically with Arp2/3 complex to favour branched nucleation; phosphate release from aged actin filaments favours dissociation of Arp2/3 complex from the pointed ends of filaments; and branches created by Arp2/3 complex are relatively rigid. These properties result in the automatic assembly of the branched actin network after activation by proteins of the WASP/Scar family and favour the selective disassembly of proximal regions of the network.

  5. MinCD cell division proteins form alternating co-polymeric cytomotive filaments

    PubMed Central

    Ghosal, Debnath; Trambaiolo, Daniel; Amos, Linda A.; Löwe, Jan

    2014-01-01

    Summary During bacterial cell division, filaments of the tubulin-like protein FtsZ assemble at midcell to form the cytokinetic Z-ring. Its positioning is regulated by the oscillation of MinCDE proteins. MinC is activated by MinD through an unknown mechanism and prevents Z-ring assembly anywhere but midcell. Here, using X-ray crystallography, electron microscopy and in vivo analyses we show that MinD activates MinC by forming a new class of alternating copolymeric filaments that show similarity to eukaryotic septin filaments A non-polymerising mutation in MinD causes aberrant cell division in E. coli. MinCD copolymers bind to membrane, interact with FtsZ, and are disassembled by MinE. Imaging a functional msfGFP-MinC fusion protein in MinE deleted cells reveals filamentous structures. EM imaging of our reconstitution of the MinCD-FtsZ interaction on liposome surfaces reveals a plausible mechanism for regulation of FtsZ ring assembly by MinCD copolymers. PMID:25500731

  6. Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C.

    PubMed

    Craig, Roger; Lee, Kyoung Hwan; Mun, Ji Young; Torre, Iratxe; Luther, Pradeep K

    2014-03-01

    Myosin-binding protein-C (MyBP-C) is an accessory protein of the myosin filaments of vertebrate striated muscle. In the heart, it plays a key role in modulating contractility in response to β-adrenergic stimulation. Mutations in the cardiac isoform (cMyBP-C) are a leading cause of inherited hypertrophic cardiomyopathy. Understanding cMyBP-C function and its role in disease requires knowledge of the structure of the molecule, its organization in the sarcomere, and its interactions with other sarcomeric proteins. Here we review the main structural features of this modular, elongated molecule and the properties of some of its key domains. We describe observations suggesting that the bulk of the molecule extends perpendicular to the thick filament, enabling it to reach neighboring thin filaments in the sarcomere. We review structural and functional evidence for interaction of its N-terminal domains with actin and how this may modulate thin filament activation. We also discuss the effects that phosphorylation of cMyBP-C has on some of these structural features and how this might relate to cMyBP-C function in the beating heart.

  7. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein

    PubMed Central

    1983-01-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three- dimensional network resembling the peripheral cytoskeleton of motile cells. PMID:6682423

  8. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    PubMed

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  9. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy.

    PubMed

    Garg, Ankit; O'Rourke, Jason; Long, Chengzu; Doering, Jonathan; Ravenscroft, Gianina; Bezprozvannaya, Svetlana; Nelson, Benjamin R; Beetz, Nadine; Li, Lin; Chen, She; Laing, Nigel G; Grange, Robert W; Bassel-Duby, Rhonda; Olson, Eric N

    2014-08-01

    Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40-/- mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients.

  10. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy

    PubMed Central

    Garg, Ankit; O’Rourke, Jason; Long, Chengzu; Doering, Jonathan; Ravenscroft, Gianina; Bezprozvannaya, Svetlana; Nelson, Benjamin R.; Beetz, Nadine; Li, Lin; Chen, She; Laing, Nigel G.; Grange, Robert W.; Bassel-Duby, Rhonda; Olson, Eric N.

    2014-01-01

    Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40–/– mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients. PMID:24960163

  11. MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA.

    PubMed Central

    Meier, I; Phelan, T; Gruissem, W; Spiker, S; Schneider, D

    1996-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher order chromatin organization and regulation of gene expression. Here, we report a novel nuclear matrix-localized MAR DNA binding protein, designated MAR binding filament-like protein 1 (MFP1), from tomato. In contrast to the few animal MAR DNA binding proteins thus far identified, MFP1 contains a predicted N-terminal transmembrane domain and a long filament-like alpha-helical domain that is similar to diverse nuclear and cytoplasmic filament proteins from animals and yeast. DNA binding assays established that MFP1 can discriminate between animal and plant MAR DNAs and non-MAR DNA fragments of similar size and AT content. Deletion mutants of MFP1 revealed a novel, discrete DNA binding domain near the C terminus of the protein. MFP1 is an in vitro substrate for casein kinase II, a nuclear matrix-associated protein kinase. Its structure, MAR DNA binding activity, and nuclear matrix localization suggest that MFP1 is likely to participate in nuclear architecture by connecting chromatin with the nuclear matrix and potentially with the nuclear envelope. PMID:8953774

  12. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae.

    PubMed

    Yokota, Jun-Ichi; Shiro, Daisuke; Tanaka, Mizuki; Onozaki, Yasumichi; Mizutani, Osamu; Kakizono, Dararat; Ichinose, Sakurako; Shintani, Tomoko; Gomi, Katsuya; Shintani, Takahiro

    2017-03-01

    Filamentous fungi are often used as cell factories for recombinant protein production because of their ability to secrete large quantities of hydrolytic enzymes. However, even using strong transcriptional promoters, yields of nonfungal proteins are generally much lower than those of fungal proteins. Recent analyses revealed that expression of certain nonfungal secretory proteins induced the unfolded protein response (UPR), suggesting that they are recognized as proteins with folding defects in filamentous fungi. More recently, however, even highly expressed endogenous secretory proteins were found to evoke the UPR. These findings raise the question of whether the unfolded or misfolded state of proteins is selectively recognized by quality control mechanisms in filamentous fungi. In this study, a fungal secretory protein (1,2-α-D-mannosidase; MsdS) with a mutation that decreases its thermostability was expressed at different levels in Aspergillus oryzae. We found that, at moderate expression levels, wild-type MsdS was secreted to the medium, while the mutant was not. In the strain with a deletion for the hrdA gene, which is involved in the endoplasmic reticulum-associated degradation pathway, mutant MsdS had specifically increased levels in the intracellular fraction but was not secreted. When overexpressed, the mutant protein was secreted to the medium to a similar extent as the wild-type protein; however, the mutant underwent hyperglycosylation and induced the UPR. Deletion of α-amylase (the most abundant secretory protein in A. oryzae) alleviated the UPR induction by mutant MsdS overexpression. These findings suggest that misfolded MsdS and unfolded species of α-amylase might act synergistically for UPR induction.

  13. Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments.

    PubMed

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André; Thomas, Clément

    2014-08-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments

    PubMed Central

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André

    2014-01-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. PMID:24934443

  15. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  16. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    PubMed Central

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  17. Cyclic AMP-modulated phosphorylation of intermediate filament proteins in cultured avian myogenic cells.

    PubMed Central

    Gard, D L; Lazarides, E

    1982-01-01

    The intermediate filament proteins desmin and vimentin and the muscle tropomyosins were the major protein phosphate acceptors in 8-day-old myotubes incubated for 4 h in medium containing radiolabeled phosphate. The addition of isoproterenol or 8-bromo-cyclic AMP (BrcAMP) resulted in a two- to threefold increase in incorporation of 32PO4 into both desmin and vimentin, whereas no changes in the incorporation of 32PO4 into tropomyosin or other cellular proteins were observed. The BrcAMP- or hormonally induced increase in 32PO4 incorporation into desmin and vimentin was independent of protein synthesis and was not caused by stimulation of protein phosphate turnover. In addition, BrcAMP did not induce significant changes in the specific activity of the cellular ATP pool. These data suggest that the observed increase in 32PO4 incorporation represented an actual increase in phosphorylation of the intermediate filament proteins desmin and vimentin. Two-dimensional tryptic analysis of desmin from 8-day-old myotubes revealed five phosphopeptides of which two showed a 7- to 10-fold increase in 32PO4 incorporation in BrcAMP-treated myotubes. Four of the phosphopeptides identified in desmin labeled in vivo were also observed in desmin phosphorylated in vitro by bovine heart cAMP-dependent protein kinase. Although phosphorylation of desmin and vimentin was apparent in myogenic cells at all stages of differentiation, BrcAMP- and isoproterenol-induced increases in phosphorylation of these proteins were restricted to mature myotubes. These data strongly suggest that in vivo phosphorylation of the intermediate filament proteins desmin and vimentin is catalyzed by the cAMP-dependent protein kinases and that such phosphorylation may be regulated during muscle differentiation. Images PMID:6294504

  18. How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?

    PubMed Central

    Petre, Benjamin; Kamoun, Sophien

    2014-01-01

    Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens. PMID:24586116

  19. Actin-crosslinking protein regulation of filament movement in motility assays: a theoretical model.

    PubMed Central

    Janson, L W; Taylor, D L

    1994-01-01

    The interaction of single actin filaments on a myosin-coated coverslip has been modeled by several authors. One model adds a component of "frictional drag" by myosin heads that oppose movement of the actin filaments. We have extended this concept by including the resistive drag from actin crosslinking proteins to understand better the relationship among crosslinking number, actin-myosin force generation, and motility. The validity of this model is supported by agreement with the experimental results from a previous study in which crosslinking proteins were added with myosin molecules under otherwise standard motility assay conditions. The theoretical relationship provides a means to determine many physical parameters that characterize the interaction between a single actin filament and a single actin-crosslinking molecule (various types). In particular, the force constant of a single filamin molecule is calculated as 1.105 pN, approximately 3 times less than a driving myosin head (3.4 pN). Knowledge of this parameter and others derived from this model allows a better understanding of the interaction between myosin and the actin/actin-binding protein cytoskeleton and the role of actin-binding proteins in the regulation and modulation of motility. PMID:7811954

  20. Making recombinant proteins in filamentous fungi- are we expecting too much?

    PubMed Central

    Nevalainen, Helena; Peterson, Robyn

    2014-01-01

    Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions. Attempts to increase correct folding and thereby the yields of heterologous proteins in fungal hosts by co-expression of cellular chaperones and foldases have resulted in variable success; underlying reasons have been explored mainly at the transcriptional level. The observed physiological changes in fungal strains experiencing increasing stress through protein overexpression under strong gene promoters also reflect the challenge the host organisms are experiencing. It is evident, that as with other eukaryotes, fungal endoplasmic reticulum is a highly dynamic structure. Considering the above, there is an emerging body of work exploring the use of weaker expression promoters to avoid undue stress. Filamentous fungi have been hailed as candidates for the production of pharmaceutically relevant proteins for therapeutic use. One of the biggest challenges in terms of fungally produced heterologous gene products is their mode of glycosylation; fungi lack the functionally important terminal sialylation of the glycans that occurs in mammalian cells. Finally, exploration of the metabolic pathways and fluxes together with the development of sophisticated fermentation protocols may result in new strategies to produce recombinant proteins in filamentous fungi. PMID:24578701

  1. Sedimentation Patterns of Rapidly Reversible Protein Interactions

    PubMed Central

    Schuck, Peter

    2010-01-01

    Abstract The transport behavior of macromolecular mixtures with rapidly reversible complex formation is of great interest in the study of protein interactions by many different methods. Complicated transport patterns arise even for simple bimolecular reactions, when all species exhibit different migration velocities. Although partial differential equations are available to describe the spatial and temporal evolution of the interacting system given particular initial conditions, a general overview of the phase behavior of the systems in parameter space has not yet been reported. In the case of sedimentation of two-component mixtures, this study presents simple analytical solutions that solve the underlying equations in the diffusion-free limit previously subject to Gilbert-Jenkins theory. The new expressions describe, with high precision, the average sedimentation coefficients and composition of each boundary, which allow the examination of features of the whole parameter space at once, and may be used for experimental design and robust analysis of experimental boundary patterns to derive the stoichiometry and affinity of the complex. This study finds previously unrecognized features, including a phase transition between boundary patterns. The model reveals that the time-average velocities of all components in the reaction mixture must match—a condition that suggests an intuitive physical picture of an effective particle of the coupled cosedimentation of an interacting system. Adding to the existing numerical solutions of the relevant partial differential equations, the effective particle model provides physical insights into the relationships of the parameters that govern sedimentation patterns. PMID:20441765

  2. Molecular mechanics of cardiac myosin-binding protein C in native thick filaments.

    PubMed

    Previs, M J; Beck Previs, S; Gulick, J; Robbins, J; Warshaw, D M

    2012-09-07

    The heart's pumping capacity results from highly regulated interactions of actomyosin molecular motors. Mutations in the gene for a potential regulator of these motors, cardiac myosin-binding protein C (cMyBP-C), cause hypertrophic cardiomyopathy. However, cMyBP-C's ability to modulate cardiac contractility is not well understood. Using single-particle fluorescence imaging techniques, transgenic protein expression, proteomics, and modeling, we found that cMyBP-C slowed actomyosin motion generation in native cardiac thick filaments. This mechanical effect was localized to where cMyBP-C resides within the thick filament (i.e., the C-zones) and was modulated by phosphorylation and site-specific proteolytic degradation. These results provide molecular insight into why cMyBP-C should be considered a member of a tripartite complex with actin and myosin that allows fine tuning of cardiac muscle contraction.

  3. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing

    NASA Astrophysics Data System (ADS)

    Lim, Ci Ji; Lee, Sin Yi; Kenney, Linda J.; Yan, Jie

    2012-07-01

    H-NS is an abundant nucleoid-associated protein in bacteria that globally silences genes, including horizontally-acquired genes related to pathogenesis. Although it has been shown that H-NS has multiple modes of DNA-binding, which mode is employed in gene silencing is still unclear. Here, we report that in H-NS mutants that are unable to silence genes, are unable to form a rigid H-NS nucleoprotein filament. These results indicate that the H-NS nucleoprotein filament is crucial for its gene silencing function, and serves as the fundamental structural basis for gene silencing by H-NS and likely other H-NS-like bacterial proteins.

  4. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    PubMed Central

    Joosten, Vivi; Lokman, Christien; van den Hondel, Cees AMJJ; Punt, Peter J

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications of these proteins. Also the coupling of fragments to relevant enzymes or other components will be discussed. As an example of the fusion protein strategy, the 'magic bullet' approach for industrial applications, will be highlighted. PMID:12605725

  5. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi.

    PubMed

    Joosten, Vivi; Lokman, Christien; Van Den Hondel, Cees AMJJ; Punt, Peter J

    2003-01-30

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications of these proteins. Also the coupling of fragments to relevant enzymes or other components will be discussed. As an example of the fusion protein strategy, the 'magic bullet' approach for industrial applications, will be highlighted.

  6. A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau.

    PubMed

    Ishiguro, K; Ihara, Y; Uchida, T; Imahori, K

    1988-09-01

    From rat brain microtubule proteins, we purified a protein kinase that phosphorylated tau, one of microtubule-associated proteins. The electrophoretic mobility of the phosphorylated tau on SDS-polyacrylamide gel decreased. The enzyme was not activated by cyclic nucleotides, calmodulin, or phospholipids, and was inhibited by the calcium ions. The kinase bound to tau. The phosphorylation of tau was stimulated by tubulin under the condition of microtubule formation. From these results we propose an idea that the phosphorylation could occur concomitantly with microtubule formation in the brain. Human tau phosphorylated by the kinase carried an epitope of the paired helical filaments that accumulate in the brain in Alzheimer's disease.

  7. Chemical modification of contractile 3-nm-diameter filaments in Vorticella spasmoneme by diethyl-pyrocarbonate and its reversible renaturation by hydroxylamine.

    PubMed

    Fang, Jie; Zhang, Bei; Asai, Hiroshi

    2003-10-31

    A peritrich ciliate possesses a zooid and a long stalk consisting of a bundle of 3-nm-diameter filaments. Glycerinated stalks can contract in the presence of free Ca(2+) and re-extend in the absence of free Ca(2+). In the present study, we demonstrated that histidine residue(s) played a critical role in spasmoneme contraction by using glycerinated stalk of Vorticella. Concentration-dependent inhibition of spasmoneme contraction was observed in the presence of reversible histidine-modifying reagent named diethyl-pyrocarbonate (DEPC). In addition, the contractility degree of DEPC-modified spasmoneme could be partially restored by hydroxylamine treatment. The 244nm absorption of modified spasmoneme protein(s) increased with rising DEPC concentration and decreased following the addition of hydroxylamine treatment. Adding Ca(2+) before DEPC modification could prevent the spasmoneme contraction from inhibition of DEPC. Those results suggested that histidine residues were actively involved in spasmoneme contraction. Ca(2+)-binding ability of spasmin was not inhibited by DEPC modification, which suggested that the essential histidine residues were not on the calcium-binding site of spasmin.

  8. A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development

    PubMed Central

    1986-01-01

    The antigen recognized by the E/C8-monoclonal antibody is expressed in various avian embryonic cell types known also to express neurofilament (NF) immunoreactivity. To determine whether the E/C8-antigen corresponds to any of the known NF components, we compared their subcellular locations, immunocross-reactivities, and electrophoretic behaviors. We found that the E/C8-antibody binds to NF bundles in electron microscope preparations of neurons, but does not correspond to any of the known NF proteins by immunological or electrophoretic criteria. Immunoadsorption with the monoclonal antibody resulted in co- purification of a 73,000-D protein with one of the known NF proteins in homogenates from 20-d embryonic chick brains, but with vimentin intermediate filament protein in similarly prepared homogenates from 4- d embryonic chicks. We suggest that the E/C8-antigen is an intermediate filament-associated protein that binds to different filament types at different stages of development. We have named it NAPA-73, an acronym for neurofilament-associated protein, avian-specific, 73,000 D, on the basis of its binding specificity in mature neurons. PMID:3510220

  9. A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development.

    PubMed

    Ciment, G; Ressler, A; Letourneau, P C; Weston, J A

    1986-01-01

    The antigen recognized by the E/C8-monoclonal antibody is expressed in various avian embryonic cell types known also to express neurofilament (NF) immunoreactivity. To determine whether the E/C8-antigen corresponds to any of the known NF components, we compared their subcellular locations, immunocross-reactivities, and electrophoretic behaviors. We found that the E/C8-antibody binds to NF bundles in electron microscope preparations of neurons, but does not correspond to any of the known NF proteins by immunological or electrophoretic criteria. Immunoadsorption with the monoclonal antibody resulted in co-purification of a 73,000-D protein with one of the known NF proteins in homogenates from 20-d embryonic chick brains, but with vimentin intermediate filament protein in similarly prepared homogenates from 4-d embryonic chicks. We suggest that the E/C8-antigen is an intermediate filament-associated protein that binds to different filament types at different stages of development. We have named it NAPA-73, an acronym for neurofilament-associated protein, avian-specific, 73,000 D, on the basis of its binding specificity in mature neurons.

  10. Targeting the Reversibly Oxidized Protein Tyrosine Phosphatase Superfamily

    PubMed Central

    Boivin, Benoit; Yang, Ming; Tonks, Nicholas K.

    2010-01-01

    Controlled production of reactive oxygen species leads to reversible oxidation of protein tyrosine phosphatases (PTPs) and has emerged as an important tier of regulation over phosphorylation-dependent signal transduction. We present a modified cysteinyl-labeling assay that detects reversible oxidation of members of each of the different PTP subclasses. Here, we describe the methods for enriching reversibly oxidized PTPs from complex protein extracts, illustrating the procedure in IMR90 fibroblasts. PMID:20807953

  11. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    NASA Astrophysics Data System (ADS)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  12. SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence.

    PubMed

    Ariyachet, Chaiyaboot; Solis, Norma V; Liu, Yaoping; Prasadarao, Nemani V; Filler, Scott G; McBride, Anne E

    2013-04-01

    Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.

  13. Differential effects of thin and thick filament disruption on zebrafish smooth muscle regulatory proteins

    PubMed Central

    Davuluri, G.; Seiler, C.; Abrams, J.; Soriano, A. J.; Pack, M.

    2013-01-01

    Background The smooth muscle actin binding proteins Caldesmon and Tropomyosin (Tm) promote thin filament assembly by stabilizing actin polymerization, however, whether filament assembly affects either the stability or activation of these and other smooth muscle regulatory proteins is not known. Methods Measurement of smooth muscle regulatory protein levels in wild type zebrafish larvae following antisense knockdown of smooth muscle actin (Acta2) and myosin heavy chain (Myh11) proteins, and in colourless mutants that lack enteric nerves. Comparison of intestinal peristalsis in wild type and colourless larvae. Key Results Knockdown of Acta2 led to reduced levels of phospho-Caldesmon and Tm. Total Caldesmon and phospho-myosin light chain (p-Mlc) levels were unaffected. Knockdown of Myh11 had no effect on the levels of either of these proteins. Phospho-Caldesmon and p-Mlc levels were markedly reduced in colourless mutants that have intestinal motility comparable with wild type larvae. Conclusions & Inferences These in vivo findings provide new information regarding the activation and stability of smooth muscle regulatory proteins in zebrafish larvae and their role in intestinal peristalsis in this model organism. PMID:20591105

  14. A new protein complex promoting the assembly of Rad51 filaments

    PubMed Central

    Sasanuma, Hiroyuki; Tawaramoto, Maki S.; Lao, Jessica P.; Hosaka, Harumi; Sanda, Eri; Suzuki, Mamoru; Yamashita, Eiki; Hunter, Neil; Shinohara, Miki; Nakagawa, Atsushi; Shinohara, Akira

    2015-01-01

    During homologous recombination, eukaryotic RecA homologue Rad51 assembles into a nucleoprotein filament on single-stranded DNA to catalyse homologous pairing and DNA-strand exchange with a homologous template. Rad51 nucleoprotein filaments are highly dynamic and regulated via the coordinated actions of various accessory proteins including Rad51 mediators. Here, we identify a new Rad51 mediator complex. The PCSS complex, comprising budding yeast Psy3, Csm2, Shu1 and Shu2 proteins, binds to recombination sites and is required for Rad51 assembly and function during meiosis. Within the heterotetramer, Psy3-Csm2 constitutes a core sub-complex with DNA-binding activity. In vitro, purified Psy3-Csm2 stabilizes the Rad51–single-stranded DNA complex independently of nucleotide cofactor. The mechanism of Rad51 stabilization is inferred by our high-resolution crystal structure, which reveals Psy3-Csm2 to be a structural mimic of the Rad51-dimer, a fundamental unit of the Rad51-filament. Together, these results reveal a novel molecular mechanism for this class of Rad51-mediators, which includes the human Rad51 paralogues. PMID:23575680

  15. Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro.

    PubMed

    Defeu Soufo, Hervé Joël; Reimold, Christian; Breddermann, Hannes; Mannherz, Hans G; Graumann, Peter L

    2015-04-24

    EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein.

  16. The Tumor Inhibitor and Antiangiogenic Agent Withaferin A Targets the Intermediate Filament Protein Vimentin

    PubMed Central

    Bargagna-Mohan, Paola; Hamza, Adel; Kim, Yang-eon; Ho, Yik Khuan (Abby); Mor-Vaknin, Nirit; Wendschlag, Nicole; Liu, Junjun; Evans, Robert M.; Markovitz, David M.; Zhan, Chang-Guo; Kim, Kyung Bo; Mohan, Royce

    2011-01-01

    SUMMARY The natural product withaferin A (WFA) exhibits antitumor and antiangiogenesis activity in vivo, which results from this drug’s potent growth inhibitory activities. Here, we show that WFA binds to the intermediate filament (IF) protein, vimentin, by covalently modifying its cysteine residue, which is present in the highly conserved α-helical coiled coil 2B domain. WFA induces vimentin filaments to aggregate in vitro, an activity manifested in vivo as punctate cytoplasmic aggregates that colocalize vimentin and F-actin. WFA’s potent dominant-negative effect on F-actin requires vimentin expression and induces apoptosis. Finally, we show that WFA-induced inhibition of capillary growth in a mouse model of corneal neovascularization is compromised in vimentin-deficient mice. These findings identify WFA as a chemical genetic probe of IF functions, and illuminate a potential molecular target for withanolide-based therapeutics for treating angioproliferative and malignant diseases. PMID:17584610

  17. Folding and Stabilization of Native-Sequence-Reversed Proteins

    PubMed Central

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844

  18. Folding and Stabilization of Native-Sequence-Reversed Proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong

    2016-04-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.

  19. Inducible alkyltransferase DNA repair proteins in the filamentous fungus Aspergillus nidulans.

    PubMed Central

    Baker, S M; Margison, G P; Strike, P

    1992-01-01

    We have investigated the response of the filamentous fungus Aspergillus nidulans to low, non-killing, doses of the alkylating agent MNNG (N-methyl-N'-nitro-N-nitrosoguanidine). Such treatment causes a substantial induction of DNA alkyltransferase activity, with the specific activity in treated cells increasing up to one hundred-fold. Fluorography reveals the two main inducible species as proteins of 18.5 kDa and 21 kDa, both of which have activity primarily against O6-methylguanine (O6-MeG) lesions. In addition, two other alkyltransferase proteins can also be detected. One, of MW 16 kDa, is expressed in non-treated cells, but is not induced to the same extent as the 18.5 and 21 kDa proteins. The other, a protein of 19.5 kDa, is highly inducible and can only be detected in treated cells. Unlike the other three proteins, it acts primarily against methyl-phosphotriester (Me-PT) lesions. This is the first instance in which an MePT alkyltransferase has been detected in a eukaryotic organism and, coupled with the high level of induction of the O6-MeG alkyltransferase enzymes, this indicates that a control system similar to the bacterial adaptive response may be present in filamentous fungi. Images PMID:1542560

  20. NMR studies of the membrane bound form of filamentous bacteriophage fd and Pfl major coat proteins

    SciTech Connect

    Schiksnis, R.A.; Bogusky, M.J.; Opella, S.J.

    1987-05-01

    The major coat proteins of the fd (M13) and Pf1 filamentous bacteriophage exist as integral membrane proteins during the viral life cycle. These proteins adopt their membrane bound conformations when solubilized by a variety of detergents, and the protein-detergent micelle complexes can be studied using solution NMR techniques. Determination of the structure of the coat proteins in their membrane bound form has been accomplished by qualitative interpretation of 2-dimensional /sup 1/H-/sup 1/H NOE spectra (NOESY). The critical amide proton resonance assignments were made through biosynthetic /sup 15/N labeling and /sup 1/H//sup 15/N heteronuclear chemical shift correlation techniques. The data indicate that both proteins adopt helical conformations within the micelle. The /sup 15/N//sup 1/H heteronuclear NOE has been used to characterize the backbone dynamics of both proteins in micelles. The lipid associated residues of the proteins are rigid on the nanosecond timescale, while the hydrophilic solvent associated N- and C-termini are high mobile. These results complement previously reported protein dynamics studies of membrane bound coat proteins conducted using solid state NMR methods. Solid state NMR studies reported in the literature have also investigated the structure and dynamics of the fd and Pf1 major coat proteins when bound to intact phage. Therefore, structure/dynamics comparisons of the proteins in their structural versus membrane bound forms can be made.

  1. Reversible and irreversible protein glutathionylation: biological and clinical aspects

    PubMed Central

    Cooper, Arthur J L.; Pinto, John T.; Callery, Patrick S.

    2011-01-01

    Introduction Depending in part on the glutathione to glutathione disulfide ratio, reversible protein glutathionylation to a mixed disulfide may occur. Reversible glutathionylation is important in protecting proteins against oxidative stress, guiding correct protein folding, regulating protein activity, and modulating proteins critical to redox signaling. The potential also exists for irreversible protein glutathionylation via Michael addition of an -SH group to a dehydroalanyl residue, resulting in formation of a stable, non-reducible thioether linkage. Areas covered This article reviews factors contributing to reversible and irreversible protein glutathionylation and their biomedical implications. It also examines the possibility that certain drugs such as busulfan may be toxic by promoting irreversible glutathionylation. The reader will gain an appreciation of the protective nature and control of function resulting from reversible protein glutathionylation. The reader is also introduced to the recently identified phenomenon of irreversible protein glutathionylation and its possible deleterious effects. Expert opinion The process of reversible protein glutathionylation is now well established but these findings need to be substantiated at the tissue and organ levels, and also with disease state. That being said, irreversible protein glutathionylation can also occur and this has implications in disease and aging. Toxicologists should consider this when evaluating the possible side effects of certain drugs such as busulfan that may generate a glutathionylating species in vivo. PMID:21557709

  2. Modulation of myosin filament organization by C-protein family members.

    PubMed

    Seiler, S H; Fischman, D A; Leinwand, L A

    1996-01-01

    We have analyzed the interactions between two types of sarcomeric proteins: myosin heavy chain (MyHC) and members of an abundant thick filament-associated protein family (myosin-binding protein; MyBP). Previous work has demonstrated that when MyHC is transiently transfected into mammalian nonmuscle COS cells, the expressed protein forms spindle-shaped structures consisting of bundles of myosin thick filaments. Co-expression of MyHC and MyBP-C or -H modulates the MyHC structures, resulting in dramatically longer cables consisting of myosin and MyBP encircling the nucleus. Immunoelectron microscopy indicates that these cable structures are more uniform in diameter than the spindle structures consisting solely of MyHC, and that the myosin filaments are compacted in the presence of MyBP. Deletion analysis of MyBP-H indicates that cable formation is dependent on the carboxy terminal 24 amino acids. Neither the MyHC spindles nor the MyHC/MyBP cables associate with the endogenous actin cytoskeleton of the COS cell. While there is no apparent co-localization between these structures and the microtubule network, colchicine treatment of the cells promotes the formation of longer assemblages, suggesting that cytoskeletal architecture may physically impede or regulate polymer formation/extension. The data presented here contribute to a greater understanding of the interactions between the MyBP family and MyHC, and provide additional evidence for functional homology between MyBP-C and MyBP-H.

  3. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  4. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  5. Protein composition of silk filaments spun under water by caddisfly larvae.

    PubMed

    Yonemura, Naoyuki; Sehnal, Frantisek; Mita, Kazuei; Tamura, Toshiki

    2006-12-01

    Silk fiber produced by the larvae of Trichoptera (caddisflies) and Lepidoptera (moths and butterflies) is composed of two filaments embedded in a layer of glue proteins. In an aerial environment Lepidoptera spin silk filaments assembled from heavy chain fibroin (H-fibroin), light chain fibroin (L-fibroin), and the glycoprotein P25. The silk filament of caddisflies, which is produced and persists in water, contained homologues of H-fibroin (>500 kDa) and L-fibroin (25 kDa) but not of P25. The amphiphilic nature of H-fibroin and its high content of charged amino acids probably facilitate the secretion and storage of a covalently linked L-fibroin/H-fibroin dimer in the absence of P25. Several types of short amino acid motifs were arranged in orderly fashion in the regularly reiterated repeats that made up more than 95% of the length of H-fibroin. The H-fibroins of Hydropsyche angustipennis and Limnephilus decipiens from different caddisfly suborders contained GPXGX, SXSXSXSX, and GGX motifs such as the lepidopteran and spider silks but differed from them by a lack of poly(A) and poly(GA) motifs. H-fibroins of both caddisfly species harbored a conserved repeat of 31 residues but were distinguished by a few species-specific motifs and their organization in higher order repeats. Structural differences may be related to the silk function as a catching net in H. angustipennis and a stitching fiber in L. decipiens.

  6. Protein-Nanocrystal Conjugates Support a Single Filament Polymerization Model in R1 Plasmid Segregation

    SciTech Connect

    Choi, Charina L.; Claridge, Shelley A.; Garner, Ethan C.; Alivisatos, A. Paul; Mullins, R. Dyche

    2008-07-15

    To ensure inheritance by daughter cells, many low-copy number bacterial plasmids, including the R1 drug-resistance plasmid, encode their own DNA segregation systems. The par operon of plasmid R1 directs construction of a simple spindle structure that converts free energy of polymerization of an actin-like protein, ParM, into work required to move sister plasmids to opposite poles of rod-shaped cells. The structures of individual components have been solved, but little is known about the ultrastructure of the R1 spindle. To determine the number of ParM filaments in a minimal R1 spindle, we used DNA-gold nanocrystal conjugates as mimics of the R1 plasmid. Wefound that each end of a single polar ParM filament binds to a single ParR/parC-gold complex, consistent with the idea that ParM filaments bind in the hollow core of the ParR/parC ring complex. Our results further suggest that multifilament spindles observed in vivo are associated with clusters of plasmidssegregating as a unit.

  7. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces

    PubMed Central

    Bagchi, Sonchita; Tomenius, Henrik; Belova, Lyubov M; Ausmees, Nora

    2008-01-01

    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks. PMID:18976278

  8. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization

    PubMed Central

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  9. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization.

    PubMed

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.

  10. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments.

    PubMed

    Clark, Melinda E; Edelmann, Richard E; Duley, Matt L; Wall, Judy D; Fields, Matthew W

    2007-11-01

    Desulfovibrio vulgaris Hildenborough is a Gram-negative sulfate-reducing bacterium (SRB), and the physiology of SRBs can impact many anaerobic environments including radionuclide waste sites, oil reservoirs and metal pipelines. In an attempt to understand D. vulgaris as a population that can adhere to surfaces, D. vulgaris cultures were grown in a defined medium and analysed for carbohydrate production, motility and biofilm formation. Desulfovibrio vulgaris wild-type cells had increasing amounts of carbohydrate into stationary phase and approximately half of the carbohydrate remained internal. In comparison, a mutant that lacked the 200 kb megaplasmid, strain DeltaMP, produced less carbohydrate and the majority of carbohydrate remained internal of the cell proper. To assess the possibility of carbohydrate re-allocation, biofilm formation was investigated. Wild-type cells produced approximately threefold more biofilm on glass slides compared with DeltaMP; however, wild-type biofilm did not contain significant levels of exopolysaccharide. In addition, stains specific for extracellular carbohydrate did not reveal polysaccharide material within the biofilm. Desulfovibrio vulgaris wild-type biofilms contained long filaments as observed with scanning electron microscopy (SEM), and the biofilm-deficient DeltaMP strain was also deficient in motility. Biofilms grown directly on silica oxide transmission electron microscopy (TEM) grids did not contain significant levels of an exopolysaccharide matrix when viewed with TEM and SEM, and samples stained with ammonium molybdate also showed long filaments that resembled flagella. Biofilms subjected to protease treatments were degraded, and different proteases that were added at the time of inoculation inhibited biofilm formation. The data indicated that D. vulgaris did not produce an extensive exopolysaccharide matrix, used protein filaments to form biofilm between cells and silica oxide surfaces, and the filaments appeared to be

  11. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins

    PubMed Central

    2004-01-01

    Formation of the contractile apparatus in muscle cells requires co-ordinated activation of several genes and the proper assembly of their products. To investigate the role of TnT (troponin T) in the mechanisms that control and co-ordinate thin-filament formation, we generated transgenic Drosophila lines that overexpress TnT in their indirect flight muscles. All flies that overexpress TnT were unable to fly, and the loss of thin filaments themselves was coupled with ultrastructural perturbations of the sarcomere. In contrast, thick filaments remained largely unaffected. Biochemical analysis of these lines revealed that the increase in TnT levels could be detected only during the early stages of adult muscle formation and was followed by a profound decrease in the amount of this protein as well as that of other thin-filament proteins such as tropomyosin, troponin I and actin. The decrease in thin-filament proteins is not only due to degradation but also due to a decrease in their synthesis, since accumulation of their mRNA transcripts was also severely diminished. This decrease in expression levels of the distinct thin-filament components led us to postulate that any change in the amount of TnT transcripts might trigger the down-regulation of other co-regulated thin-filament components. Taken together, these results suggest the existence of a mechanism that tightly co-ordinates the expression of thin-filament genes and controls the correct stoichiometry of these proteins. We propose that the high levels of unassembled protein might act as a sensor in this process. PMID:15469415

  12. Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.

    PubMed

    Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro

    2010-07-28

    We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1

  13. Molecular insights into the reversible formation of tau protein fibrils.

    PubMed

    Luo, Yin; Dinkel, Paul; Yu, Xiang; Margittai, Martin; Zheng, Jie; Nussinov, Ruth; Wei, Guanghong; Ma, Buyong

    2013-05-04

    We computationally and experimentally showed that tau protein fibrils can be formed at high temperature. When cooled, the fibrils dissociate back to monomers. Heparin promotes tau fibril formation and prevents its reversion. Our results revealed the physicochemical mechanism of reversible formation of tau fibrils.

  14. Formin and capping protein together embrace the actin filament in a ménage à trois

    PubMed Central

    Shekhar, Shashank; Kerleau, Mikael; Kühn, Sonja; Pernier, Julien; Romet-Lemonne, Guillaume; Jégou, Antoine; Carlier, Marie-France

    2015-01-01

    Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed. PMID:26564775

  15. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments.

    PubMed Central

    Fujinami, R S; Oldstone, M B; Wroblewska, Z; Frankel, M E; Koprowski, H

    1983-01-01

    Using monoclonal antibodies, we demonstrate that the phosphoprotein of measles virus and a protein of herpes simplex virus type 1 crossreact with an intermediate filament protein of human cells. This intermediate filament protein, probably vimentin, has a molecular weight of 52,000, whereas the molecular weights of the measles viral phosphoprotein and the herpes virus protein are 70,000 and 146,000, respectively. Crossreactivity was shown by immunofluorescent staining of infected and uninfected cells and by immunoblotting. The monoclonal antibody against measles virus phosphoprotein did not react with herpes simplex virus protein and vice versa, indicating that these monoclonal antibodies recognize different antigenic determinants on the intermediate filament molecule. The significance of these results in explaining the appearance of autoantibodies during virus infections in humans is discussed. Images PMID:6300911

  16. Restin: a novel intermediate filament-associated protein highly expressed in the Reed-Sternberg cells of Hodgkin's disease.

    PubMed Central

    Bilbe, G; Delabie, J; Brüggen, J; Richener, H; Asselbergs, F A; Cerletti, N; Sorg, C; Odink, K; Tarcsay, L; Wiesendanger, W

    1992-01-01

    We have identified a cDNA coding for a protein of 160 kDa which is expressed in in vitro cultured human peripheral blood monocytes. The predicted amino acid sequence contains an alpha-helical rod domain possessing features characteristic of intermediate filament proteins. However, the immunocytochemical staining pattern, abundance and solubility in Triton X-100/high salt buffers suggest that this protein is probably only associated with the intermediate filament network and represents a new type of intermediate filament associated protein. In a survey of normal, inflammatory and human tumour tissue samples, this protein, which we have named restin, was found to be highly expressed in Reed-Sternberg cells, the tumoral cells diagnostic for Hodgkin's disease. We suggest that restin overexpression may be a contributing factor in the progression of Hodgkin's disease. Images PMID:1600942

  17. Alveolar rhabdomyosarcoma. Demonstration of the muscle type of intermediate filament protein, desmin, as a diagnostic aid.

    PubMed Central

    Miettinen, M.; Lehto, V. P.; Badley, R. A.; Virtanen, I.

    1982-01-01

    Three cases of soft-tissue sarcomas with the characteristic histologic features of alveolar rhabdomyosarcoma, but lacking cytoplasmic cross-striations, were studied ultrastructurally and immunohistochemically to confirm the diagnosis and evaluate the histogenesis. The results showed that it was not possible to judge the skeletal muscle derivation of the cells at the ultrastructural level. However, immunohistochemically, the results of every case were positive for desmin-the muscle type of the intermediate filament protein. The results suggest that demonstration of desmin may be a helpful adjunct tool in the diagnosis of poorly differentiated alveolar rhabdomyosarcomas. Images Figure 4 Figure 5 Figure 1 Figure 2 Figure 3 PMID:6765734

  18. On the Mechanism of Homology Search by RecA Protein Filaments.

    PubMed

    Kochugaeva, Maria P; Shvets, Alexey A; Kolomeisky, Anatoly B

    2017-03-14

    Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a homology search. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. On the Mechanism of Homology Search by RecA Protein Filaments

    NASA Astrophysics Data System (ADS)

    Kochugaeva, Maria P.; Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2017-03-01

    Genetic stability is a key factor in maintaining, survival and reproduction of biological cells. It relies on many processes, but one of the most important is a {\\it homologous recombination}, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a {\\it homology search}. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search.

  20. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  1. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes.

    PubMed

    Santa-Maria, Ismael; Varghese, Merina; Ksiezak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M

    2012-06-08

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology.

  2. Arabidopsis Microtubule-Destabilizing Protein 25 Functions in Pollen Tube Growth by Severing Actin Filaments[W

    PubMed Central

    Qin, Tao; Liu, Xiaomin; Li, Jiejie; Sun, Jingbo; Song, Leina; Mao, Tonglin

    2014-01-01

    The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament–severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca2+, in vitro. Analysis of a mutant that bears a point mutation at the Ca2+ binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca2+ level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament–severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth. PMID:24424096

  3. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus.

    PubMed

    Yang, Shaoqing; Wang, Tao; Bohon, Jen; Gagné, Marie-Ève Laliberté; Bolduc, Marilène; Leclerc, Denis; Li, Huilin

    2012-09-14

    Papaya mosaic virus (PapMV) is a filamentous plant virus that belongs to the Alphaflexiviridae family. Flexible filamentous viruses have defied more than two decades of effort in fiber diffraction, and no high-resolution structure is available for any member of the Alphaflexiviridae family. Here, we report our structural characterization of PapMV by X-ray crystallography and cryo-electron microscopy three-dimensional reconstruction. We found that PapMV is 135Å in diameter with a helical symmetry of ~10 subunits per turn. Crystal structure of the C-terminal truncated PapMV coat protein (CP) reveals a novel all-helix fold with seven α-helices. Thus, the PapMVCP structure is different from the four-helix-bundle fold of tobacco mosaic virus in which helix bundling dominates the subunit interface in tobacco mosaic virus and conveys rigidity to the rod virus. PapMV CP was crystallized as an asymmetrical dimer in which one protein lassoes the other by the N-terminal peptide. Mutation of residues critical to the inter-subunit lasso interaction abolishes CP polymerization. The crystal structure suggests that PapMV may polymerize via the consecutive N-terminal loop lassoing mechanism. The structure of PapMV will be useful for rational design and engineering of the PapMV nanoparticles into innovative vaccines.

  4. Distribution of intermediate filament proteins in normal and diseased human glomeruli.

    PubMed Central

    Stamenkovic, I.; Skalli, O.; Gabbiani, G.

    1986-01-01

    The distribution of intermediate filament proteins (vimentin, desmin, and cytokeratin) was studied by means of immunofluorescence in the normal human and rat glomerulus and in pathologic human glomeruli. Antifibronectin antibodies were used as mesangial markers. In normal human glomeruli, vimentin antibodies stained endothelial cells, podocytes, and mesangial cells; desmin antibodies, surprisingly, stained podocytes. In normal rat glomeruli, the pattern of vimentin staining was the same as in humans, but desmin antibodies stained both mesangial cells and podocytes. In human and rat glomeruli cytokeratin staining was confined to segments of Bowman's capsule. In human pathologic glomeruli, vimentin and desmin antibodies stained the structures that were positive in normal glomeruli, giving a characteristic pattern for each pathologic condition examined. These results are compatible with the mesenchymal origin of podocytes and mesangial cells and suggest that both cells have smooth muscle-like phenotypic features. Mesangial cells may have slightly different differentiation paths in humans and rats, leading to a distinct expression of intermediate filament proteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2432791

  5. Intermediate filament proteins in choroid plexus and ependyma and their tumors.

    PubMed Central

    Miettinen, M.; Clark, R.; Virtanen, I.

    1986-01-01

    The intermediate filament protein types of normal choroid plexus and ependymal tissue and their putative tumors were investigated. In normal human choroid plexus tissue, but not in ependyma, keratin could be demonstrated immunohistochemically. By immunoblotting, keratins 8, 18, and 19 were found, but glial fibrillary acidic protein (GFAP) was absent. In mouse and rat, choroid plexus epithelium and ependymal lining cells were keratin-positive. In addition, many ependymal cells were vimentin-positive. Keratin was immunohistochemically found in three of four choroid plexus papillomas, two of two choroid plexus carcinomas, and the lining cells of three neuroepithelial cysts. GFAP-positive cells were present in some choroid plexus tumors. In contrast, none of the eight ependymomas contained keratin, but all were strongly positive for GFAP. The results show that choroid plexus lining cells and choroid plexus tumors have true epithelial characteristics in their cytoskeleton, in contrast to ependymomas, which do not show keratin positivity but show glial filaments, as would be seen in astrocytic tumors. Images Figure 8 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 PMID:2422943

  6. Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin.

    PubMed

    Chaudhry, Faisal; Breitsprecher, Dennis; Little, Kristin; Sharov, Grigory; Sokolova, Olga; Goode, Bruce L

    2013-01-01

    Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert.

  7. Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos G.; Saldanha, Oliva; Huber, Klaus; Köster, Sarah

    2016-10-01

    Vimentin intermediate filaments (IFs) are part of a family of proteins that constitute one of the three filament systems in the cytoskeleton, a major contributor to cell mechanics. One property that distinguishes IFs from the other cytoskeletal filament types, actin filaments and microtubules, is their highly hierarchical assembly pathway, where a lateral association step is followed by elongation. Here we present an innovative technique to follow the elongation reaction in solution and in situ by time-resolved static and dynamic light scattering, thereby precisely capturing the relevant time and length scales of seconds to minutes and 60-600 nm, respectively. We apply a quantitative model to our data and succeed in consistently describing the entire set of data, including particle mass, radius of gyration, and hydrodynamic radius during longitudinal association.

  8. Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study

    PubMed Central

    Saldanha, Oliva; Huber, Klaus; Köster, Sarah

    2016-01-01

    Vimentin intermediate filaments (IFs) are part of a family of proteins that constitute one of the three filament systems in the cytoskeleton, a major contributor to cell mechanics. One property that distinguishes IFs from the other cytoskeletal filament types, actin filaments and microtubules, is their highly hierarchical assembly pathway, where a lateral association step is followed by elongation. Here we present an innovative technique to follow the elongation reaction in solution and in situ by time-resolved static and dynamic light scattering, thereby precisely capturing the relevant time and length scales of seconds to minutes and 60–600 nm, respectively. We apply a quantitative model to our data and succeed in consistently describing the entire set of data, including particle mass, radius of gyration, and hydrodynamic radius during longitudinal association. PMID:27655889

  9. Gas7b (growth arrest specific protein 7b) regulates neuronal cell morphology by enhancing microtubule and actin filament assembly.

    PubMed

    Gotoh, Aina; Hidaka, Masafumi; Hirose, Keiko; Uchida, Takafumi

    2013-11-29

    Neurons undergo several morphological changes as a part of normal neuron maturation process. Alzheimer disease is associated with increased neuroproliferation and impaired neuronal maturation. In this study, we demonstrated that Gas7b (growth arrest specific protein 7b) expression in a neuronal cell line, Neuro 2A, induces cell maturation by facilitating formation of dendrite-like processes and/or filopodia projections and that Gas7b co-localizes with neurite microtubules. Molecular analysis was performed to evaluate whether Gas7b associates with actin filaments and microtubules, and the data revealed two novel roles of Gas7b in neurite outgrowth: we showed that Gas7b enhances bundling of several microtubule filaments and connects microtubules with actin filaments. These results suggest that Gas7b governs neural cell morphogenesis by enhancing the coordination between actin filaments and microtubules. We conclude that lower neuronal Gas7b levels may impact Alzheimer disease progression.

  10. Cooperative assembly of a protein-DNA filament for nonhomologous end joining.

    PubMed

    Tsai, Chun J; Chu, Gilbert

    2013-06-21

    Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3' overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF into a Ku-XL-XLF-DNA (MEnd ligase-DNA) complex. XLF mutations that disrupted its interactions with XRCC4 or DNA also disrupted complex assembly and end joining. Together with published co-crystal structures of truncated XRCC4 and XLF proteins, our data with full-length Ku, XL, and XLF bound to DNA indicate assembly of a filament containing Ku plus alternating XL and XLF molecules. By contrast, in the absence of XLF, we detected cooperative assembly of up to six molecules each of Ku and XL into a Ku-XL-DNA complex, consistent with a filament containing alternating Ku and XL molecules. Despite a lower molecular mass, MEnd ligase-DNA had a lower electrophoretic mobility than Ku-XL-DNA. The anomalous difference in mobility and difference in XL to Ku molar ratio suggests that MEnd ligase-DNA has a distinct structure that successfully aligns mismatched DNA ends for ligation.

  11. Dimer dynamics and filament organization of the bacterial cell division protein FtsA.

    PubMed

    Hsin, Jen; Fu, Rui; Huang, Kerwyn Casey

    2013-11-15

    FtsA is a bacterial actin homolog and one of the core proteins involved in cell division. While previous studies have demonstrated the capability of FtsA to polymerize, little is known about its polymerization state in vivo or if polymerization is necessary for FtsA function. Given that one function of FtsA is to tether FtsZ filaments to the membrane, in vivo polymerization of FtsA imposes geometric constraints and requires a specific polymer curvature direction. Here, we report a series of molecular dynamics simulations probing the structural dynamics of FtsA as a dimer and as a tetrameric single filament. We found that the FtsA polymer exhibits a preferred bending direction that would allow for its placement parallel with FtsZ polymers underneath the cytoplasmic membrane. We also identified key interfacial amino acids that mediate FtsA-FtsA interaction and propose that some amino acids play more critical roles than others. We performed in silico mutagenesis on FtsA and demonstrated that, while a moderate mutation at the polymerization interface does not significantly affect polymer properties such as bending direction and association strength, more drastic mutations change both features and could lead to non-functional FtsA.

  12. Estimating the bending modulus of a FtsZ bacterial-division protein filament

    NASA Astrophysics Data System (ADS)

    Cytrynbaum, Eric N.; Li, Yongnan Devin; Allard, Jun F.; Mehrabian, Hadi

    2012-01-01

    FtsZ, a cytoskeletal protein homologous to tubulin, is the principle constituent of the division ring in bacterial cells. It is known to have force-generating capacity in vitro and has been conjectured to be the source of the constriction force in vivo. Several models have been proposed to explain the generation of force by the Z ring. Here we re-examine data from in vitro experiments in which Z rings formed and constricted inside tubular liposomes, and we carry out image analysis on previously published data with which to better estimate important model parameters that have proven difficult to measure by direct means. We introduce a membrane-energy-based model for the dynamics of multiple Z rings moving and colliding inside a tubular liposome and a fluid model for the drag of a Z ring as it moves through the tube. Using this model, we estimate an effective membrane bending modulus of 500-700 pNnm. If we assume that FtsZ force generation is driven by hydrolysis into a highly curved conformation, we estimate the FtsZ filament bending modulus to be 310-390 pNnm2. If we assume instead that force is generated by the non-hydrolysis-dependent intermediate curvature conformation, we find that Bf>1400pNnm2. The former value sits at the lower end of the range of previously estimated values and, if correct, may raise challenges for models that rely on filament bending to generate force.

  13. Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining*

    PubMed Central

    Tsai, Chun J.; Chu, Gilbert

    2013-01-01

    Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3′ overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF into a Ku-XL-XLF-DNA (MEnd ligase-DNA) complex. XLF mutations that disrupted its interactions with XRCC4 or DNA also disrupted complex assembly and end joining. Together with published co-crystal structures of truncated XRCC4 and XLF proteins, our data with full-length Ku, XL, and XLF bound to DNA indicate assembly of a filament containing Ku plus alternating XL and XLF molecules. By contrast, in the absence of XLF, we detected cooperative assembly of up to six molecules each of Ku and XL into a Ku-XL-DNA complex, consistent with a filament containing alternating Ku and XL molecules. Despite a lower molecular mass, MEnd ligase-DNA had a lower electrophoretic mobility than Ku-XL-DNA. The anomalous difference in mobility and difference in XL to Ku molar ratio suggests that MEnd ligase-DNA has a distinct structure that successfully aligns mismatched DNA ends for ligation. PMID:23620595

  14. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry.

    PubMed

    Lee, Bruce P; Konst, Shari

    2014-06-04

    A novel hydrogel actuator that combines ionoprinting techniques with reversible catechol-metal ion coordination chemistry found in mussel adhesive proteins is developed. Deposited metal ions increase the local crosslinking density, which induces sharp bending of the hydrogel. Reversibly bound metal ions can be removed and reintroduced in a different pattern so that the hydrogel can be reprogrammed to transform into a different 3-dimentional shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The intermediate filament protein, synemin, is an AKAP in the heart.

    PubMed

    Russell, Mary A; Lund, Linda M; Haber, Roy; McKeegan, Kathleen; Cianciola, Nicholas; Bond, Meredith

    2006-12-15

    Targeting of protein kinase A (PKA) by A-kinase anchoring proteins (AKAPs) contributes to high specificity of PKA signaling pathways. PKA phosphorylation of myofilament and cytoskeletal proteins may regulate myofibrillogenesis and myocyte remodeling during heart disease; however, known cardiac AKAPs do not localize to these regions. To identify novel AKAPs which target PKA to the cytoskeleton or myofilaments, a human heart cDNA library was screened and the intermediate filament (IF) protein, synemin, was identified as a putative RII (PKA regulatory subunit type II) binding protein. A predicted RII binding region was mutated and resulted in loss of RII binding. Furthermore, synemin co-localized with RII in SW13/cl.1-vim+ cells and co-immunoprecipitated with RII from adult rat cardiomyocytes. Synemin was localized at the level of Z-lines with RII and desmin in adult hearts, however, neonatal cardiomyocytes showed differential synemin and desmin localization. Quantitative Western blots also showed significantly more synemin was present in failing human hearts. We propose that synemin provides temporal and spatial targeting of PKA in adult and neonatal cardiac myocytes.

  16. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor

    PubMed Central

    Zhao, Shuangshuang; Jiang, Yuxiang; Zhao, Yang; Huang, Shanjin; Yuan, Ming; Zhao, Yanxiu; Guo, Yan

    2016-01-01

    The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA. Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF. PMID:27268429

  17. Packing of coat protein amphipathic and transmembrane helices in filamentous bacteriophage M13: role of small residues in protein oligomerization.

    PubMed

    Williams, K A; Glibowicka, M; Li, Z; Li, H; Khan, A R; Chen, Y M; Wang, J; Marvin, D A; Deber, C M

    1995-09-08

    Filamentous bacteriophage M13, an important cloning and phage display vector, is encapsulated by ca 2700 copies of its 50-residue major coat protein (gene 8). This protein occurs as a membrane protein while stably inserted into its E. coli host inner membrane, and as a coat protein upon assembly and packing onto phage DNA in the lipid-free virion. To examine the specific protein-protein interactions underlying these processes, we used a combination of randomized and saturation mutagenesis of the entire gene 8 to assess the susceptibility of each position to mutation. In the resulting library of ca 100 viable M13 mutants, "small" residues (Ala,Gly,Ser), which constitute the non-polar face of the N-terminal amphipathic helical segment, and a face of the hydrophobic (effective transmembrane) helical segment, were found to be highly conserved. These results support a model in which coat protein packing is stabilized by the presence within each protein subunit of two "oligomerization segments", i.e. specific helical regions with faces rich in small residues which function to promote the close approach of alpha-helices.

  18. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.

    2012-01-01

    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  19. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3.

    PubMed

    Fujiwara, Ikuko; Remmert, Kirsten; Hammer, John A

    2010-01-22

    Bulk solution assays have shown that the isolated CARMIL homology 3 (CAH3) domain from mouse and Acanthamoeba CARMIL rapidly and potently restores actin polymerization when added to actin filaments previously capped with capping protein (CP). To demonstrate this putative uncapping activity directly, we used total internal reflection microscopy to observe single, CP-capped actin filaments before and after the addition of the CAH3 domain from mouse CARMIL-1 (mCAH3). The addition of mCAH3 rapidly restored the polymerization of individual capped filaments, consistent with uncapping. To verify uncapping, filaments were capped with recombinant mouse CP tagged with monomeric green fluorescent protein (mGFP-CP). Restoration of polymerization upon the addition of mCAH3 was immediately preceded by the complete dissociation of mGFP-CP from the filament end, confirming the CAH3-driven uncapping mechanism. Quantitative analyses showed that the percentage of capped filaments that uncapped increased as the concentration of mCAH3 was increased, reaching a maximum of approximately 90% at approximately 250 nm mCAH3. Moreover, the time interval between mCAH3 addition and uncapping decreased as the concentration of mCAH3 increased, with the half-time of CP at the barbed end decreasing from approximately 30 min without mCAH3 to approximately 10 s with a saturating amount of mCAH3. Finally, using mCAH3 tagged with mGFP, we obtained direct evidence that the complex of CP and mCAH3 has a small but measurable affinity for the barbed end, as inferred from previous studies and kinetic modeling. We conclude that the isolated CAH3 domain of CARMIL (and presumably the intact molecule as well) possesses the ability to uncap CP-capped actin filaments.

  20. Direct Observation of the Uncapping of Capping Protein-capped Actin Filaments by CARMIL Homology Domain 3*

    PubMed Central

    Fujiwara, Ikuko; Remmert, Kirsten; Hammer, John A.

    2010-01-01

    Bulk solution assays have shown that the isolated CARMIL homology 3 (CAH3) domain from mouse and Acanthamoeba CARMIL rapidly and potently restores actin polymerization when added to actin filaments previously capped with capping protein (CP). To demonstrate this putative uncapping activity directly, we used total internal reflection microscopy to observe single, CP-capped actin filaments before and after the addition of the CAH3 domain from mouse CARMIL-1 (mCAH3). The addition of mCAH3 rapidly restored the polymerization of individual capped filaments, consistent with uncapping. To verify uncapping, filaments were capped with recombinant mouse CP tagged with monomeric green fluorescent protein (mGFP-CP). Restoration of polymerization upon the addition of mCAH3 was immediately preceded by the complete dissociation of mGFP-CP from the filament end, confirming the CAH3-driven uncapping mechanism. Quantitative analyses showed that the percentage of capped filaments that uncapped increased as the concentration of mCAH3 was increased, reaching a maximum of ∼90% at ∼250 nm mCAH3. Moreover, the time interval between mCAH3 addition and uncapping decreased as the concentration of mCAH3 increased, with the half-time of CP at the barbed end decreasing from ∼30 min without mCAH3 to ∼10 s with a saturating amount of mCAH3. Finally, using mCAH3 tagged with mGFP, we obtained direct evidence that the complex of CP and mCAH3 has a small but measurable affinity for the barbed end, as inferred from previous studies and kinetic modeling. We conclude that the isolated CAH3 domain of CARMIL (and presumably the intact molecule as well) possesses the ability to uncap CP-capped actin filaments. PMID:19926785

  1. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts.

  2. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-01-01

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  3. Structure and dynamics of the Pf1 filamentous bacteriophage coat protein in micelles

    SciTech Connect

    Schiksnis, R.A.; Bogusky, M.J.; Tsang, P.; Opella, S.J.

    1987-03-10

    The major coat protein of filamentous bacteriophage adopts its membrane-bound conformation in detergent micelles. High-resolution /sup 1/H and /sup 15/N NMR experiments are used to characterize the structure and dynamics of residues 30-40 in the hydrophobic midsection of Pf1 coat protein in sodium dodecyl sulfate micelles. Uniform and specific-site /sup 15/N labels enable the immobile backbone sites to be identified by their /sup 1/H//sup 15/N heteronuclear nuclear Overhauser effect and allow the assignment of /sup 1/H and /sup 15/N resonances. About one-third of the amide N-H protons in the protein undergo very slow exchange with solvent deuterons, which is indicative of sites in highly structured environments. The combination of results from /sup 1/H//sup 15/N heteronuclear correlation, /sup 1/H homonuclear correlation, and /sup 1/H homonuclear Overhauser effect experiments assigns the resonances to specific residues and demonstrates that residues 30-40 of the coat protein have a helical secondary structure.

  4. HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins.

    PubMed

    Puschmann, Till B; Zandén, Carl; Lebkuechner, Isabell; Philippot, Camille; de Pablo, Yolanda; Liu, Johan; Pekny, Milos

    2014-03-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a vascular-derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia-inducible proteins released by astrocytes in CNS injuries. It was suggested that HB-EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB-EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB-EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia-like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT-qPCR analysis demonstrated that HB-EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB-EGF-mediated astrocyte response. HB-EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de-differentiation of astrocytes.

  5. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity.

    PubMed

    Kang, Hyuno; Tian, Le; Son, Young-Jin; Zuo, Yi; Procaccino, Diane; Love, Flora; Hayworth, Christopher; Trachtenberg, Joshua; Mikesh, Michelle; Sutton, Lee; Ponomareva, Olga; Mignone, John; Enikolopov, Grigori; Rimer, Mendell; Thompson, Wesley

    2007-05-30

    The intermediate filament nestin is localized postsynaptically at rodent neuromuscular junctions. The protein forms a filamentous network beneath and between the synaptic gutters, surrounds myofiber nuclei, and is associated with Z-discs adjacent to the junction. In situ hybridization shows that nestin mRNA is synthesized selectively by synaptic myonuclei. Although weak immunoreactivity is present in myelinating Schwann cells that wrap the preterminal axon, nestin is not detected in the terminal Schwann cells (tSCs) that cover the nerve terminal branches. However, after denervation of muscle, nestin is upregulated in tSCs and in SCs within the nerve distal to the lesion site. In contrast, immunoreactivity is strongly downregulated in the muscle fiber. Transgenic mice in which the nestin neural enhancer drives expression of a green fluorescent protein (GFP) reporter show that the regulation in SCs is transcriptional. However, the postsynaptic expression occurs through enhancer elements distinct from those responsible for regulation in SCs. Application of botulinum toxin shows that the upregulation in tSCs and the loss of immunoreactivity in muscle fibers occurs with blockade of transmitter release. Extrinsic stimulation of denervated muscle maintains the postsynaptic expression of nestin but does not affect the upregulation in SCs. Thus, a nestin-containing cytoskeleton is promoted in the postsynaptic muscle fiber by nerve-evoked muscle activity but suppressed in tSCs by transmitter release. Nestin antibodies and GFP driven by nestin promoter elements serve as excellent markers for the reactive state of SCs. Vital imaging of GFP shows that SCs grow a dynamic set of processes after denervation.

  6. Reversals and collisions optimize protein exchange in bacterial swarms

    NASA Astrophysics Data System (ADS)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as a mechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  7. The Amphipathic Helix of Influenza A Virus M2 Protein Is Required for Filamentous Bud Formation and Scission of Filamentous and Spherical Particles

    PubMed Central

    Roberts, Kari L.; Leser, George P.; Ma, Chunlong

    2013-01-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a “beads-on-a-string” morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission. PMID:23843641

  8. The amphipathic helix of influenza A virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles.

    PubMed

    Roberts, Kari L; Leser, George P; Ma, Chunlong; Lamb, Robert A

    2013-09-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a "beads-on-a-string" morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission.

  9. SAS-4 Protein in Trypanosoma brucei Controls Life Cycle Transitions by Modulating the Length of the Flagellum Attachment Zone Filament.

    PubMed

    Hu, Huiqing; Zhou, Qing; Li, Ziyin

    2015-12-18

    The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) filament, a specialized cytoskeletal structure required for flagellum adhesion and cell morphogenesis. TbSAS-4 is concentrated at the distal tip of the FAZ filament, and depletion of TbSAS-4 in the trypomastigote form disrupts the elongation of the new FAZ filament, generating cells with a shorter FAZ associated with a longer unattached flagellum and repositioned kinetoplast and basal body, reminiscent of epimastigote-like morphology. Further, we show that TbSAS-4 associates with six additional FAZ tip proteins, and depletion of TbSAS-4 disrupts the enrichment of these FAZ tip proteins at the new FAZ tip, suggesting a role of TbSAS-4 in maintaining the integrity of this FAZ tip protein complex. Together, these results uncover a novel function of TbSAS-4 in regulating the length of the FAZ filament to control basal body positioning and life cycle transitions in T. brucei.

  10. Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.

    PubMed

    McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C

    2016-08-02

    The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins.

  11. The Role of the Ubiquitin Proteasome Pathway in Keratin Intermediate Filament Protein Degradation

    PubMed Central

    Rogel, Micah R.; Jaitovich, Ariel; Ridge, Karen M.

    2010-01-01

    Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation—causes, mechanisms, and consequences—will allow for a greater understanding of epithelial cell biology and lung pathology alike. PMID:20160151

  12. Stepwise characterization of the thermodynamics of trichocyte intermediate filament protein supramolecular assembly.

    PubMed

    Ishii, Daisuke; Abe, Ryota; Watanabe, Shun-Ichi; Tsuchiya, Masaru; Nöcker, Bernd; Tsumoto, Kouhei

    2011-05-20

    Trichocyte intermediate filament protein (IFP) is a heterodimeric complex that plays a pivotal role in the hair shaft for its mechanical strength, hair shape, and so on. Trichocyte IFP consists of acidic-type IFP and basic-type IFP, and the well-studied supramolecular assembly process of the complex occurs via the following steps: dimer formation, tetramer formation, formation of the lateral 32mer, and the elongation of the 32mer. Among these interactions, only the dimer formation, owing to coiled-coil interaction, has been described in detail; the nature of other interactions remains unspecified. For each assembly step, we report interaction isotherms obtained by means of isothermal titration calorimetry at various urea and NaCl concentrations. Decreasing the urea concentration generally promotes protein refolding, and we therefore expected to observe endothermic interactions owing to the refolding process. However, exothermic interactions were observed at 4 and 2 M urea, along with various characteristic endothermic interactions at the other urea concentrations as well as NaCl titration. The thermal responses described herein enabled us to analyze the protein supramolecular assembly process in a stepwise manner.

  13. Reversible binding of heme to proteins in cellular signal transduction.

    PubMed

    Hou, Shangwei; Reynolds, Mark F; Horrigan, Frank T; Heinemann, Stefan H; Hoshi, Toshinori

    2006-12-01

    Heme plays critical roles in numerous biological phenomena. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. This Account highlights the novel function of heme as an intracellular messenger in the regulation of gene expression and ion channel function.

  14. Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A

    PubMed Central

    Xie, Jinglin L.; O’Meara, Teresa R.; Polvi, Elizabeth J.; Robbins, Nicole

    2017-01-01

    ABSTRACT Protein kinases are key regulators of signal transduction pathways that participate in diverse cellular processes. In fungal pathogens, kinases regulate signaling pathways that govern drug resistance, stress adaptation, and pathogenesis. The impact of kinases on the fungal regulatory circuitry has recently garnered considerable attention in the opportunistic fungal pathogen Candida albicans, which is a leading cause of human morbidity and mortality. Complex regulatory circuitry governs the C. albicans morphogenetic transition between yeast and filamentous growth, which is a key virulence trait. Here, we report that staurosporine, a promiscuous kinase inhibitor that abrogates fungal drug resistance, also influences C. albicans morphogenesis by inducing filamentation in the absence of any other inducing cue. We further establish that staurosporine exerts its effect via the adenylyl cyclase Cyr1 and the cyclic AMP (cAMP)-dependent protein kinase A (PKA). Strikingly, filamentation induced by staurosporine does not require the known upstream regulators of Cyr1, Ras1 or Pkc1, or effectors downstream of PKA, including Efg1. We further demonstrate that Cyr1 is capable of activating PKA to enable filamentation in response to staurosporine through a mechanism that does not require degradation of the transcriptional repressor Nrg1. We establish that staurosporine-induced filamentation is accompanied by a defect in septin ring formation, implicating cell cycle kinases as potential staurosporine targets underpinning this cellular response. Thus, we establish staurosporine as a chemical probe to elucidate the architecture of cellular signaling governing fungal morphogenesis and highlight the existence of novel circuitry through which the Cyr1 and PKA govern a key virulence trait. IMPORTANCE The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream

  15. Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A.

    PubMed

    Xie, Jinglin L; O'Meara, Teresa R; Polvi, Elizabeth J; Robbins, Nicole; Cowen, Leah E

    2017-01-01

    Protein kinases are key regulators of signal transduction pathways that participate in diverse cellular processes. In fungal pathogens, kinases regulate signaling pathways that govern drug resistance, stress adaptation, and pathogenesis. The impact of kinases on the fungal regulatory circuitry has recently garnered considerable attention in the opportunistic fungal pathogen Candida albicans, which is a leading cause of human morbidity and mortality. Complex regulatory circuitry governs the C. albicans morphogenetic transition between yeast and filamentous growth, which is a key virulence trait. Here, we report that staurosporine, a promiscuous kinase inhibitor that abrogates fungal drug resistance, also influences C. albicans morphogenesis by inducing filamentation in the absence of any other inducing cue. We further establish that staurosporine exerts its effect via the adenylyl cyclase Cyr1 and the cyclic AMP (cAMP)-dependent protein kinase A (PKA). Strikingly, filamentation induced by staurosporine does not require the known upstream regulators of Cyr1, Ras1 or Pkc1, or effectors downstream of PKA, including Efg1. We further demonstrate that Cyr1 is capable of activating PKA to enable filamentation in response to staurosporine through a mechanism that does not require degradation of the transcriptional repressor Nrg1. We establish that staurosporine-induced filamentation is accompanied by a defect in septin ring formation, implicating cell cycle kinases as potential staurosporine targets underpinning this cellular response. Thus, we establish staurosporine as a chemical probe to elucidate the architecture of cellular signaling governing fungal morphogenesis and highlight the existence of novel circuitry through which the Cyr1 and PKA govern a key virulence trait. IMPORTANCE The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream

  16. Estimating the bending modulus of a FtsZ bacterial-division protein filament.

    PubMed

    Cytrynbaum, Eric N; Li, Yongnan Devin; Allard, Jun F; Mehrabian, Hadi

    2012-01-01

    FtsZ, a cytoskeletal protein homologous to tubulin, is the principle constituent of the division ring in bacterial cells. It is known to have force-generating capacity in vitro and has been conjectured to be the source of the constriction force in vivo. Several models have been proposed to explain the generation of force by the Z ring. Here we re-examine data from in vitro experiments in which Z rings formed and constricted inside tubular liposomes, and we carry out image analysis on previously published data with which to better estimate important model parameters that have proven difficult to measure by direct means. We introduce a membrane-energy-based model for the dynamics of multiple Z rings moving and colliding inside a tubular liposome and a fluid model for the drag of a Z ring as it moves through the tube. Using this model, we estimate an effective membrane bending modulus of 500-700 pN nm. If we assume that FtsZ force generation is driven by hydrolysis into a highly curved conformation, we estimate the FtsZ filament bending modulus to be 310-390 pN nm(2). If we assume instead that force is generated by the non-hydrolysis-dependent intermediate curvature conformation, we find that B(f)>1400 pN nm(2). The former value sits at the lower end of the range of previously estimated values and, if correct, may raise challenges for models that rely on filament bending to generate force. © 2012 American Physical Society

  17. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  18. The nucleoid-associated protein Dan organizes chromosomal DNA through rigid nucleoprotein filament formation in E. coli during anoxia

    PubMed Central

    Lim, Ci Ji; Lee, Sin Yi; Teramoto, Jun; Ishihama, Akira; Yan, Jie

    2013-01-01

    Dan is a transcription factor that regulates the ttd operon encoding tartrate dehydratase. During anaerobic conditions, its copy number increases by 100-fold, making Dan an abundant nucleoid-associated protein. However, little is known about the mode of Dan–DNA interaction. To understand its cellular functions, we used single-molecule manipulation and imaging techniques to show that Dan binds cooperatively along DNA, resulting in formation of a rigid periodic nucleoprotein filament that strongly restricts accessibility to DNA. Furthermore, in the presence of physiologic levels of magnesium, these filaments interact with each other to cause global DNA condensation. Overall, these results shed light on the architectural role of Dan in the compaction of Escherichia coli chromosomal DNA under anaerobic conditions. Formation of the nucleoprotein filament provides a basis in understanding how Dan may play roles in both chromosomal DNA protection and gene regulation. PMID:23180762

  19. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi.

    PubMed

    Malavazi, Iran; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2014-11-01

    In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The ALP-Enigma protein ALP-1 functions in actin filament organization to promote muscle structural integrity in Caenorhabditis elegans.

    PubMed

    Han, Hsiao-Fen; Beckerle, Mary C

    2009-05-01

    Mutations that affect the Z-disk-associated ALP-Enigma proteins have been linked to human muscular and cardiac diseases. Despite their clear physiological significance for human health, the mechanism of action of ALP-Enigma proteins is largely unknown. In Caenorhabditis elegans, the ALP-Enigma protein family is encoded by a single gene, alp-1; thus C. elegans provides an excellent model to study ALP-Enigma function. Here we present a molecular and genetic analysis of ALP-Enigma function in C. elegans. We show that ALP-1 and alpha-actinin colocalize at dense bodies where actin filaments are anchored and that the proper localization of ALP-1 at dense bodies is dependent on alpha-actinin. Our analysis of alp-1 mutants demonstrates that ALP-1 functions to maintain actin filament organization and participates in muscle stabilization during contraction. Reducing alpha-actinin activity enhances the actin filament phenotype of the alp-1 mutants, suggesting that ALP-1 and alpha-actinin function in the same cellular process. Like alpha-actinin, alp-1 also interacts genetically with a connectin/titin family member, ketn-1, to provide mechanical stability for supporting body wall muscle contraction. Taken together, our data demonstrate that ALP-1 and alpha-actinin function together to stabilize actin filaments and promote muscle structural integrity.

  1. Fast-folding α-helices as reversible strain absorbers in the muscle protein myomesin

    PubMed Central

    Berkemeier, Felix; Bertz, Morten; Xiao, Senbo; Pinotsis, Nikos; Wilmanns, Matthias; Gräter, Frauke; Rief, Matthias

    2011-01-01

    The highly oriented filamentous protein network of muscle constantly experiences significant mechanical load during muscle operation. The dimeric protein myomesin has been identified as an important M-band component supporting the mechanical integrity of the entire sarcomere. Recent structural studies have revealed a long α-helical linker between the C-terminal immunoglobulin (Ig) domains My12 and My13 of myomesin. In this paper, we have used single-molecule force spectroscopy in combination with molecular dynamics simulations to characterize the mechanics of the myomesin dimer comprising immunoglobulin domains My12–My13. We find that at forces of approximately 30 pN the α-helical linker reversibly elongates allowing the molecule to extend by more than the folded extension of a full domain. High-resolution measurements directly reveal the equilibrium folding/unfolding kinetics of the individual helix. We show that α-helix unfolding mechanically protects the molecule homodimerization from dissociation at physiologically relevant forces. As fast and reversible molecular springs the myomesin α-helical linkers are an essential component for the structural integrity of the M band. PMID:21825161

  2. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    PubMed

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.

  4. A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein

    PubMed Central

    1988-01-01

    Differential screening of a cDNA library from the PC12 rat pheochromocytoma cell line previously revealed a clone, clone 73, whose corresponding mRNA is induced by nerve growth factor (NGF). Induction parallels NGF-stimulated PC12 differentiation from a chromaffinlike phenotype to a sympathetic neuronlike phenotype. We report that DNA sequence analysis reveals that clone 73 mRNA encodes an intermediate filament (IF) protein whose predicted amino acid sequence is distinct from the known sequences of other members of the IF protein family. The sequence has highest homology with desmin and vimentin and includes the highly conserved central alpha-helical rod domain with the characteristic heptad repeat of hydrophobic residues, but has lower homology in the amino-terminal head and carboxyl-terminal tail domains. The head domain contains a large number of serine residues which are potential phosphorylation sites. The expression of clone 73 in vivo in the nervous system of the adult rat was investigated by in situ hybridization of clone 73 probes to tissue sections. The mRNA is expressed at high levels in ganglia of the peripheral nervous system, including the superior cervical ganglion (sympathetic), ciliary ganglion (parasympathetic), and dorsal root ganglion (sensory). In the central nervous system, motor nuclei of cranial nerves III, IV, V, VI, VII, X, and XII as well as ventral horn motor neurons and a restricted set of other central nervous system nuclei express the clone 73 mRNA. Tissues apart from those of the nervous system did not in general express the mRNA, with only very low levels detected in adrenal gland. We discuss the implications of these results for the mechanism of NGF- induced PC12 cell differentiation, the pathways of neuronal development in vivo, and the possible function of the clone 73 IF protein and its relationship to other IF proteins. PMID:3339087

  5. The Respiratory Syncytial Virus Phosphoprotein, Matrix Protein, and Fusion Protein Carboxy-Terminal Domain Drive Efficient Filamentous Virus-Like Particle Formation.

    PubMed

    Meshram, Chetan D; Baviskar, Pradyumna S; Ognibene, Cherie M; Oomens, Antonius G P

    2016-12-01

    Virus-like particles (VLPs) are attractive as a vaccine concept. For human respiratory syncytial virus (hRSV), VLP assembly is poorly understood and appears inefficient. Hence, hRSV antigens are often incorporated into foreign VLP systems to generate anti-RSV vaccine candidates. To better understand the assembly, and ultimately to enable efficient production, of authentic hRSV VLPs, we examined the associated requirements and mechanisms. In a previous analysis in HEp-2 cells, the nucleoprotein (N), phosphoprotein (P), matrix protein (M), and fusion protein (F) were required for formation of filamentous VLPs, which, similar to those of wild-type virus, were associated with the cell surface. Using fluorescence and electron microscopy combined with immunogold labeling, we examined the surfaces of transfected HEp-2 cells and further dissected the process of filamentous VLP formation. Our results show that N is not required. Coexpression of P plus M plus F, but not P plus M, M plus F, or P plus F, induced both viral protein coalescence and formation of filamentous VLPs that resembled wild-type virions. Despite suboptimal coalescence in the absence of P, the M and F proteins, when coexpressed, formed cell surface-associated filaments with abnormal morphology, appearing longer and thinner than wild-type virions. For F, only the carboxy terminus (Fstem) was required, and addition of foreign protein sequences to Fstem allowed incorporation into VLPs. Together, the data show that P, M, and the F carboxy terminus are sufficient for robust viral protein coalescence and filamentous VLP formation and suggest that M-F interaction drives viral filament formation, with P acting as a type of cofactor facilitating the process and exerting control over particle morphology.

  6. Studying protein assembly with reversible Brownian dynamics of patchy particles

    NASA Astrophysics Data System (ADS)

    Klein, Heinrich C. R.; Schwarz, Ulrich S.

    2014-05-01

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  7. Studying protein assembly with reversible Brownian dynamics of patchy particles

    SciTech Connect

    Klein, Heinrich C. R.; Schwarz, Ulrich S.

    2014-05-14

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  8. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein

    SciTech Connect

    Higuchi, Yujiro; Nakahama, Tomoyuki; Shoji, Jun-ya; Arioka, Manabu; Kitamoto, Katsuhiko . E-mail: akitamo@mail.ecc.u-tokyo.ac.jp

    2006-02-17

    Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate the occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner.

  9. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments.

    PubMed

    Kensler, Robert W; Craig, Roger; Moss, Richard L

    2017-02-21

    Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium.

  10. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-07-06

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.

  11. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments

    PubMed Central

    Kensler, Robert W.; Craig, Roger; Moss, Richard L.

    2017-01-01

    Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium. PMID:28167762

  12. Solubilization and refolding of inclusion body proteins in reverse micelles.

    PubMed

    Vinogradov, Alexei A; Kudryashova, Elena V; Levashov, Andrei V; van Dongen, Walter M A M

    2003-09-15

    Today, many valuable proteins can be obtained in sufficient amounts using recombinant DNA techniques. However, frequently the expression of recombinant proteins results in the accumulation of the product in dense amorphous deposits inside the cells, called inclusion bodies. The challenge then is to transform these inactive and misfolded protein aggregates into soluble bioactive forms. Although a number of general guidelines have been proposed, the search for proper reconstitution conditions can be very laborious and time consuming. Here, we suggest a new versatile approach for solubilization and refolding of inclusion body proteins using a water-sodium bis-2-ethylhexyl sulfosuccinate-isooctane reverse micellar system. Instead of amorphous aggregates, a transparent solution is obtained, where refolded protein is entrapped inside the micelles. The entrapped enzyme has native-like secondary structure and catalytic activity. This approach has been implemented with Fusarium galactose oxidase and Stigmatella aurantiaca putative galactose oxidase.

  13. Effect of oxidative stress on the expression of thin filament-associated proteins in gastric smooth muscle cells.

    PubMed

    Al-Shboul, Othman Abdullah; Mustafa, Ayman; Mohammad, Mukhallad; Al-Shehabat, Mustafa; Yousef, Asmaa; Al-Hashimi, Farah

    2014-09-01

    Thin filament-associated proteins such as calponin, caldesmon, and smoothelin are believed to regulate acto-myosin interaction and thus, muscle contraction. Oxidative stress has been found to affect the normal contractile behavior of smooth muscle and is involved in the pathogenesis of a number of human diseases such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the expression of smooth muscle contractile proteins. The aim of the current study is to investigate the effect of oxidative stress on the expression of thin filament-associated proteins in rat gastric smooth muscle. Single smooth muscle cells of the stomach obtained from Sprague-Dawley rats were used. Muscle cells were treated with hydrogen peroxide (H2O2) (500 μM) for 30 min or the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) (1 mM) for 90 min to induce oxidative stress. Calponin, caldesmon, and smoothelin expressions were measured via specifically designed enzyme-linked immunosorbent assay. We found that exposure to exogenous H2O2 or incubation of dispersed gastric muscle cells with SIN-1 significantly increased the expression of calponin, caldesmon, and smoothelin proteins. In conclusion: oxidative stress increases the expression of thin filament-associated proteins in gastric smooth muscle, suggesting an important role in gastrointestinal motility disorders associated with oxidative stress.

  14. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.

    PubMed

    Li, Huawei; Liu, Hong; Balt, Steve; Mann, Sabine; Corrales, C Eduardo; Heller, Stefan

    2004-01-01

    The vertebrate hair cell is named for its stereociliary bundle or hair bundle that protrudes from the cell's apical surface. Hair bundles mediate mechanosensitivity, and their highly organized structure plays a critical role in mechanoelectrical transduction and amplification. The prototypical hair bundle is composed of individual stereocilia, 50-300 in number, depending on the animal species and on the type of hair cell. The assembly of stereocilia, in particular, the formation during development of individual rows of stereocilia with descending length, has been analyzed in great morphological detail. Electron microscopic studies have demonstrated that stereocilia are filled with actin filaments that are rigidly cross-linked. The growth of individual rows of stereocilia is associated with the addition of actin filaments and with progressively increasing numbers of cross-bridges between actin filaments. Recently, a mutation in the actin filament-bundling protein espin has been shown to underlie hair bundle degeneration in the deaf jerker mouse, subsequently leading to deafness. Our study was undertaken to investigate the appearance and developmental expression of espin in chicken inner ear sensory epithelia. We found that the onset of espin expression correlates with the initiation and growth of stereocilia bundles in vestibular and cochlear hair cells. Intense espin immunolabeling of stereocilia was colocalized with actin filament staining in all types of hair cells at all developmental stages and in adult animals. Our analysis of espin as a molecular marker for actin filament cross-links in stereocilia is in full accordance with previous morphological studies and implicates espin as an important structural component of hair bundles from initiation of bundle assembly to mature chicken hair cells.

  15. Quantifying Reversible Oxidation of Protein Thiols in Photosynthetic Organisms

    NASA Astrophysics Data System (ADS)

    Slade, William O.; Werth, Emily G.; McConnell, Evan W.; Alvarez, Sophie; Hicks, Leslie M.

    2015-04-01

    Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches—suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.

  16. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.

    PubMed

    Slade, William O; Werth, Emily G; McConnell, Evan W; Alvarez, Sophie; Hicks, Leslie M

    2015-04-01

    Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches--suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.

  17. Determination of reversible protein equilibrium association coefficients using light scattering

    NASA Astrophysics Data System (ADS)

    Larkin, Michael

    2009-03-01

    The characterization in solution of reversible protein associations as well as associations between proteins and small molecules is essential in many areas of science. Understanding cellular function or developing and formulating pharmaceuticals or other biologically active materials often requires quantitation of such associations. Most pharmaceuticals have functionality due solely to association with molecules within the body, and the discovery and accurate characterization of these associations is a key element for pharmaceutical development. Unfortunately, most methods used to measure associations of proteins require either immobilizing the protein on a surface (e.g. surface plasmon resonance), which potentially alters the protein characteristics, or require considerable time and effort and large quantities of sample (e.g. analytical ultracentrifugation, isothermal titration calorimetry). Light scattering based measurements of reversible association coefficients require much less sample and may be performed much more rapidly than other free solution techniques. In this talk I describe how static and dynamic light scattering may each independently be used to measure equilibrium association coefficients between proteins in free solution, and may also be used to observe and quantitate the association of small molecules with them. I present background theory for both static and dynamic light scattering measurements of equilibrium associations, and examples of measurements made of both model systems and of systems with commercial relevance in the pharmaceutical industry.

  18. Disruption of the keratin filament network during epithelial cell division.

    PubMed Central

    Lane, E B; Goodman, S L; Trejdosiewicz, L K

    1982-01-01

    The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6202508

  19. Chemoenzymatic Reversible Immobilization and Labeling of Proteins without Prior Purification

    PubMed Central

    Rashidian, Mohammad; Song, James M.; Pricer, Rachel E.; Distefano, Mark D.

    2012-01-01

    Site-specific chemical modification of proteins is important for many applications in biology and biotechnology. Recently, our laboratory and others have exploited the high specificity of the enzyme protein farnesyltransferase (PFTase) to site-specifically modify proteins through the use of alternative substrates that incorporate bioorthogonal functionality including azides and alkynes. In this study, we evaluate two aldehyde-containing molecules as substrates for PFTase and as reactants in both oxime and hydrazone formation. Using green fluorescent protein (GFP) as a model system, we demonstrate that the purified protein can be enzymatically modified with either analogue to yield aldehyde-functionalized proteins. Oxime or hydrazone formation was then employed to immobilize, fluorescently label or PEGylate the resulting aldehyde-containing proteins. Immobilization via hydrazone formation was also shown to be reversible via transoximization with a fluorescent alkoxyamine. After characterizing this labeling strategy using pure protein, the specificity of the enzymatic process was used to selectively label GFP present in crude E. coli extract followed by capture of the aldehyde-modified protein using hydrazide-agarose. Subsequent incubation of the immobilized protein using a fluorescently labeled or PEGylated alkoxyamine resulted in the release of pure GFP containing the desired site-specific covalent modifications. This procedure was also employed to produce PEGylated glucose-dependent insulinotropic polypeptide (GIP), a protein with potential therapeutic activity for diabetes. Given the specificity of the PFTase-catalyzed reaction coupled with the ability to introduce a CAAX-box recognition sequence onto almost any protein, this method shows great potential as a general approach for the selective immobilization and labeling of recombinant proteins present in crude cellular extract without prior purification. Beyond generating site-specifically modified proteins

  20. Chemoenzymatic reversible immobilization and labeling of proteins without prior purification.

    PubMed

    Rashidian, Mohammad; Song, James M; Pricer, Rachel E; Distefano, Mark D

    2012-05-23

    Site-specific chemical modification of proteins is important for many applications in biology and biotechnology. Recently, our laboratory and others have exploited the high specificity of the enzyme protein farnesyltransferase (PFTase) to site-specifically modify proteins through the use of alternative substrates that incorporate bioorthogonal functionality including azides and alkynes. In this study, we evaluate two aldehyde-containing molecules as substrates for PFTase and as reactants in both oxime and hydrazone formation. Using green fluorescent protein (GFP) as a model system, we demonstrate that the purified protein can be enzymatically modified with either analogue to yield aldehyde-functionalized proteins. Oxime or hydrazone formation was then employed to immobilize, fluorescently label, or PEGylate the resulting aldehyde-containing proteins. Immobilization via hydrazone formation was also shown to be reversible via transoximization with a fluorescent alkoxyamine. After characterizing this labeling strategy using pure protein, the specificity of the enzymatic process was used to selectively label GFP present in crude E. coli extract followed by capture of the aldehyde-modified protein using hydrazide-agarose. Subsequent incubation of the immobilized protein using a fluorescently labeled or PEGylated alkoxyamine resulted in the release of pure GFP containing the desired site-specific covalent modifications. This procedure was also employed to produce PEGylated glucose-dependent insulinotropic polypeptide (GIP), a protein with potential therapeutic activity for diabetes. Given the specificity of the PFTase-catalyzed reaction coupled with the ability to introduce a CAAX-box recognition sequence onto almost any protein, this method shows great potential as a general approach for selective immobilization and labeling of recombinant proteins present in crude cellular extract without prior purification. Beyond generating site-specifically modified proteins, this

  1. The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways.

    PubMed

    Woods, Kelly; Höfken, Thomas

    2016-02-01

    The transition between a unicellular yeast form to multicellular filaments is crucial for budding yeast foraging and the pathogenesis of many fungal pathogens such as Candida albicans. Here, we examine the role of the related transcription factors Ecm22 and Upc2 in Saccharomyces cerevisiae filamentation. Overexpression of either ECM22 or UPC2 leads to increased filamentation, whereas cells lacking both ECM22 and UPC2 do not exhibit filamentous growth. Ecm22 and Upc2 positively control the expression of FHN1, NPR1, PRR2 and sterol biosynthesis genes. These genes all play a positive role in filamentous growth, and their expression is upregulated during filamentation in an Ecm22/Upc2-dependent manner. Furthermore, ergosterol content increases during filamentous growth. UPC2 expression also increases during filamentation and is inhibited by the transcription factors Sut1 and Sut2. The expression of SUT1 and SUT2 in turn is under negative control of the transcription factor Ste12. We suggest that during filamentation Ste12 becomes activated and reduces SUT1/SUT2 expression levels. This would result in increased UPC2 levels and as a consequence to transcriptional activation of FHN1, NPR1, PRR2 and sterol biosynthesis genes. Higher ergosterol levels in combination with the proteins Fhn1, Npr1 and Prr2 would then mediate the transition to filamentous growth.

  2. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Scheffel, André; Gruska, Manuela; Faivre, Damien; Linaroudis, Alexandros; Plitzko, Jürgen M.; Schüler, Dirk

    2006-03-01

    Magnetotactic bacteria are widespread aquatic microorganisms that use unique intracellular organelles to navigate along the Earth's magnetic field. These organelles, called magnetosomes, consist of membrane-enclosed magnetite crystals that are thought to help to direct bacterial swimming towards growth-favouring microoxic zones at the bottom of natural waters. Questions in the study of magnetosome formation include understanding the factors governing the size and redox-controlled synthesis of the nano-sized magnetosomes and their assembly into a regular chain in order to achieve the maximum possible magnetic moment, against the physical tendency of magnetosome agglomeration. A deeper understanding of these mechanisms is expected from studying the genes present in the identified chromosomal `magnetosome island', for which the connection with magnetosome synthesis has become evident. Here we use gene deletion in Magnetospirillum gryphiswaldense to show that magnetosome alignment is coupled to the presence of the mamJ gene product. MamJ is an acidic protein associated with a novel filamentous structure, as revealed by fluorescence microscopy and cryo-electron tomography. We suggest a mechanism in which MamJ interacts with the magnetosome surface as well as with a cytoskeleton-like structure. According to our hypothesis, magnetosome architecture represents one of the highest structural levels achieved in prokaryotic cells.

  3. Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines

    SciTech Connect

    Kashima, Tsuyoshi; Vinters, H.V.; Campagnoni, A.T.

    1995-01-01

    From a human oligodendroglioma cell line cDNA library, ten intermediate filament (IF) cDNA clones were isolated. Five clones corresponded to vimentin mRNA, two corresponded to cytokeratin K7 mRNA, and two corresponded to cytokeratin K8 mRNA. One clone encoded a novel IF mRNA. The expression of these and other IF protein genes was examined in five cell lines derived from human oligodendroglioma, astrocytoma and neuroblastoma tumors. Vimentin mRNA and K18 mRNA were expressed in all the cell lines. The K7 and K8 genes were expressed only in the oligodendroglioma cell lines. Surprisingly, nestin mRNA was expressed in the astrocytoma lines and the neuroblastoma line, but was not expressed in the oligodendroglioma lines. These results indicate that oligodendroglioma cell lines express Types I and II cytokeratin genes. This pattern of IF gene expression was different from that of the astrocytoma and neuroblastoma cell lines, which expressed IF genes usually associated with the mature cell types or with differentiating fetal neural precursor cells, i.e. GFAP and neurofilament-L. The results also suggest that the oligodendroglioma cell lines are more epithelial in character and do not reflect the gene expression of mature oligodendrocytes. 46 refs., 8 figs., 2 tabs.

  4. Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins

    PubMed Central

    1994-01-01

    Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells. PMID:8051203

  5. Precocious expression of NAPA-73, an intermediate filament-associated protein, during nervous system and heart development in the chicken embryo.

    PubMed

    Ciment, G

    1990-01-01

    A monoclonal antibody was generated, against early neural crest-derived cells, which recognizes an epitope present on a novel intermediate filament-associated protein. This protein has been named NAPA-73 and is expressed by progenitor cells of the nervous system and heart. Biochemical and ultrastructural studies indicate that this protein associates with bundles of intermediate filaments and therefore may play a role in the determination of cell shape.

  6. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    SciTech Connect

    Leite, Wellington C.; Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.; Spies, Maria

    2016-07-22

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. In conclusion, our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  7. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    PubMed Central

    Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  8. Expression of the intermediate filament protein synemin in myofibrillar myopathies and other muscle diseases.

    PubMed

    Olivé, Montse; Goldfarb, Lev; Dagvadorj, Ayush; Sambuughin, Nyamkhishig; Paulin, Denise; Li, Zhenlin; Goudeau, Bertrand; Vicart, Patrick; Ferrer, Isidro

    2003-07-01

    Synemin is a member of the intermediate protein superfamily. Previous studies in avian and rodent skeletal and cardiac muscles have demonstrated that synemin localises at the Z-band, where it associates with desmin and alpha-actinin. In the present study, the distribution of synemin was examined using immunohistochemistry in muscle biopsy specimens from patients suffering from myofibrillar myopathy (MM, n=6), dermatomyositis (DM, n=3), inclusion body myositis (IBM, n=5), oculopharyngeal muscular dystrophy (OPD, n=3) and denervation atrophy (DA, n=3), to investigate the possible participation of this protein in the pathogenesis of various muscular diseases. Of patients affected by MM, two showed the presence of mutations in the desmin gene; none had mutations in the alphaB-crystallin gene; and no mutations were identified in synemin or syncoilin genes of three patients. Synemin immunohistochemistry disclosed a faint staining corresponding to the Z-bands in the cytoplasm of control muscle fibres; in contrast, focal aggregates of synemin were seen in patients with MM. Increased synemin immunoreactivity was identified diffusely or in the subsarcolemmal space of scattered fibres in patients with DM, and in vacuolated fibres of patients with IBM and OPD. Strong synemin immunoreactivity was observed in target formations and atrophic fibres of patients with denervating disorders, as well as in atrophic fibres, regardless of their origin, in all patients studied. Synemin co-localised with desmin, as seen on consecutive serial sections immunostained with anti-synemin or anti-desmin antibodies. These observations demonstrate abnormal accumulations containing both synemin and desmin in muscle fibres in patients with MM, IBM, DM, OPD and DA. Considering the important role of synemin as one of intermediate filaments of skeletal and cardiac muscle, its destruction and accumulation in the intracellular debris suggest that synemin may participate in the pathogenesis of these

  9. Characterization of the Filamentous Hemagglutinin-Like Protein FhaS in Bordetella bronchiseptica

    PubMed Central

    Julio, Steven M.; Cotter, Peggy A.

    2005-01-01

    Filamentous hemagglutinin (FHA) is a large (>200 kDa), rod-shaped protein expressed by bordetellae that is both surface-associated and secreted. FHA mediates bacterial adherence to epithelial cells and macrophages in vitro and is absolutely required for tracheal colonization in vivo. The recently sequenced Bordetella bronchiseptica genome revealed the presence of a gene, fhaS, that is nearly identical to fhaB, the FHA structural gene. We show that although fhaS expression requires the BvgAS virulence control system, it is maximal only under a subset of conditions in which BvgAS is active, suggesting an additional level of regulation. We also show that, like FHA, FhaS undergoes a C-terminal proteolytic processing event and is both surface-associated and secreted and that export across the outer membrane requires the channel-forming protein FhaC. Unlike FHA, however, FhaS was unable to mediate adherence of B. bronchiseptica to epithelial cell lines in vitro and was not required for respiratory tract colonization in vivo. In a coinfection experiment, a ΔfhaS strain was out-competed by wild-type B. bronchiseptica, indicating that fhaS is expressed in vivo and that FhaS contributes to bacterial fitness in a manner revealed when the mutant must compete with wild-type bacteria. These data suggest that FHA and FhaS perform distinct functions during the Bordetella infectious cycle. A survey of various Bordetella strains revealed two distinct fhaS alleles that segregate according to pathogen host range and that B. parapertussishu most likely acquired its fhaS allele from B. pertussis horizontally, suggesting fhaS may contribute to host-species specificity. PMID:16041011

  10. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.

    PubMed

    Boronat, Susanna; Domènech, Alba; Hidalgo, Elena

    2017-03-01

    Reactive oxygen species are produced during normal metabolism in cells, and their excesses have been implicated in protein damage and toxicity, as well as in the activation of signaling events. In particular, hydrogen peroxide participates in the regulation of different physiological processes as well as in the induction of antioxidant cascades, and often the redox molecular events triggering these pathways are based on reversible cysteine (Cys) oxidation. Recent Advances: Increases in peroxides can cause the accumulation of reversible Cys oxidations in proteomes, which may be either protecting thiols from irreversible oxidations or may just be reporters of future toxicity. It is also becoming clear, however, that only a few proteins, such as the bacterial OxyR or peroxidases, can suffer direct oxidation of their Cys residues by hydrogen peroxide and, therefore, may be the only true sensors initiating signaling events. We will in this study describe some of the methodologies used to characterize at the proteome level reversible thiol oxidations, specifically those combining gel-free approaches with mass spectrometry. In the second part of this review, we will summarize some of the electrophoretic and proteomic techniques used to monitor Cys oxidation at the protein level, needed to confirm that a protein contains redox Cys involved in signaling relays, using as examples some of the best characterized redox sensors such as bacterial OxyR or yeast Tpx1/Pap1. While Cys oxidations are often detected in proteomes and in specific proteins, major efforts have to be made to establish that they are physiologically relevant. Antioxid. Redox Signal. 26, 329-344.

  11. Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments

    PubMed Central

    Fink, Gero; Löwe, Jan

    2015-01-01

    Segregation of DNA is a fundamental process during cell division. The mechanism of prokaryotic DNA segregation is largely unknown, but several low-copy-number plasmids encode cytomotive filament systems of the actin type and tubulin type important for plasmid inheritance. Of these cytomotive filaments, only actin-like systems are mechanistically well characterized. In contrast, the mechanism by which filaments of tubulin-like TubZ protein mediate DNA motility is unknown. To understand polymer-driven DNA transport, we reconstituted the filaments of TubZ protein (TubZ filaments) from Bacillus thuringiensis pBtoxis plasmid with their centromeric TubRC complexes containing adaptor protein TubR and tubC DNA. TubZ alone assembled into polar filaments, which annealed laterally and treadmilled. Using single-molecule imaging, we show that TubRC complexes were not pushed by filament polymerization; instead, they processively tracked shrinking, depolymerizing minus ends. Additionally, the TubRC complex nucleated TubZ filaments and allowed for treadmilling. Overall, our results indicate a pulling mechanism for DNA transport by the TubZRC system. The discovered minus end-tracking property of the TubRC complex expands the mechanistic diversity of the prokaryotic cytoskeleton. PMID:25825718

  12. Heme-induced contractile dysfunction in human cardiomyocytes caused by oxidant damage to thick filament proteins.

    PubMed

    Alvarado, Gerardo; Jeney, Viktória; Tóth, Attila; Csősz, Éva; Kalló, Gergő; Huynh, An T; Hajnal, Csaba; Kalász, Judit; Pásztor, Enikő T; Édes, István; Gram, Magnus; Akerström, Bo; Smith, Ann; Eaton, John W; Balla, György; Papp, Zoltán; Balla, József

    2015-12-01

    Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.

  13. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    PubMed

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Targeting Protein Kinases to Reverse Multidrug Resistance in Sarcoma

    PubMed Central

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. PMID:26827688

  15. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures.

    PubMed

    Pang, K M; Lee, E; Knecht, D A

    1998-03-26

    Many important processes in eukaryotic cells involve changes in the quantity, location and the organization of actin filaments [1] [2] [3]. We have been able to visualize these changes in live cells using a fusion protein (GFP-ABD) comprising the green fluorescent protein (GFP) of Aequorea victoria and the 25 kDa highly conserved actin-binding domain (ABD) from the amino terminus of the actin cross-linking protein ABP-120 [4]. In live cells of the soil amoeba Dictyostelium that were expressing GFP-ABD, the three-dimensional architecture of the actin cortex was clearly visualized. The pattern of GFP-ABD fluorescence in these cells coincided with that of rhodamine-phalloidin, indicating that GFP-ABD specifically binds filamentous (F) actin. On the ventral surface of non-polarized vegetative cells, a broad ring of F actin periodically assembled and contracted, whereas in polarized cells there were transient punctate F-actin structures; cells cycled between the polarized and non-polarized morphologies. During the formation of pseudopods, an increase in fluorescence intensity coincided with the initial outward deformation of the membrane. This is consistent with the models of pseudopod extension that predict an increase in the local density of actin filaments. In conclusion, GFP-ABD specifically binds F actin and allows the visualization of F-actin dynamics and cellular behavior simultaneously.

  16. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.

    PubMed Central

    Stout, A. L.; Axelrod, D.

    1994-01-01

    Reversible binding among components of the cellular submembrane cytoskeleton and reversible binding of some of these components with the plasma membrane likely play a role in nonelastic morphological changes and mechanoplastic properties of cells. However, relatively few studies have been devoted to investigating directly the kinetic aspects of the interactions of individual components of the membrane skeleton with the membrane. The experiments described here investigated whether one component of the erythrocyte membrane cytoskeleton, protein 4.1, binds to its sites on the membrane reversibly and if so, whether the different 4.1-binding sites display distinct kinetic behavior. Protein 4.1 is known to stabilize the membrane and to mediate the attachment of spectrin filaments to the membrane. Protein 4.1 previously has been shown to bind to integral membrane proteins band 3, glycophorin C, and to negatively charged phospholipids. To examine the kinetic rates of dissociation of carboxymethyl fluorescein-labeled 4.1 (CF-4.1) to the cytofacial surface of erythrocyte membrane, a special preparation of hemolyzed erythrocyte ghosts was used, in which the ghosts became flattened on a glass surface and exposed their cytofacial surfaces to the solution through a membrane rip in a distinctive characteristic pattern. This preparation was examined by the microscopy technique of total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP). Four different treatments were employed to help identify which membrane binding sites gave rise to the multiplicity of observed kinetic rates. The first treatment, the control, stripped off the native spectrin, actin, 4.1, and ankyrin. About 60% of the CF-4.1 bound to this control binded irreversibly (dissociation time > 20 min), but the remaining approximately 40% binded reversibly with a range of residency times averaging approximately 3 s. The second treatment subjected these stripped membranes to trypsin, which presumably

  17. A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii

    PubMed Central

    Anderson-White, Brooke R.; Ivey, F. Douglas; Cheng, Katherine; Szatanek, Tomasz; Lorestani, Alexander; Beckers, Con J.; Ferguson, David J.P.; Sahoo, Nivedita; Gubbels, Marc-Jan

    2010-01-01

    Summary The intracellular protozoan parasite Toxoplasma gondii divides by a unique process of internal budding that involves the assembly of two daughter cells within the mother. The cytoskeleton of Toxoplasma, which is composed of microtubules associated with an inner membrane complex (IMC), has an important role in this process. The IMC, which is directly under the plasma membrane, contains a set of flattened membranous sacs lined on the cytoplasmic side by a network of filamentous proteins. This network contains a family of intermediate filament-like proteins or IMC proteins. In order to elucidate the division process, we have characterized a 14-member sub-family of Toxoplasma IMC proteins that share a repeat motif found in proteins associated with the cortical alveoli in all alveolates. By creating fluorescent protein fusion reporters for the family members we determined the spatio-temporal patterns of all 14 IMC proteins through tachyzoite development. This revealed several distinct distribution patterns and some provide the basis for novel structural models such as the assembly of certain family members into the basal complex. Furthermore we identified IMC15 as an early marker of budding and, lastly, the dynamic patterns observed throughout cytokinesis provide a timeline for daughter parasite development and division. PMID:20698859

  18. Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy

    PubMed Central

    Zeri, Ana Carolina; Mesleh, Michael F.; Nevzorov, Alexander A.; Opella, Stanley J.

    2003-01-01

    The atomic resolution structure of fd coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles differs from that previously determined by x-ray fiber diffraction. Most notably, the 50-residue protein is not a single curved helix, but rather is a nearly ideal straight helix between residues 7 and 38, where there is a distinct kink, and then a straight helix with a different orientation between residues 39 and 49. Residues 1–5 have been shown to be mobile and unstructured, and proline 6 terminates the helix. The structure of the coat protein in virus particles, in combination with the structure of the membrane-bound form of the same protein in bilayers, also recently determined by solid-state NMR spectroscopy, provides insight into the viral assembly process. In addition to their roles in molecular biology and biotechnology, the filamentous bacteriophages continue to serve as model systems for the development of experimental methods for determining the structures of proteins in biological supramolecular assemblies. New NMR results include the complete sequential assignment of the two-dimensional polarization inversion spin-exchange at the magic angle spectrum of a uniformly 15N-labeled 50-residue protein in a 1.6 × 107 Da particle in solution, and the calculation of the three-dimensional structure of the protein from orientational restraints with an accuracy equivalent to an rms deviation of ≈1Å. PMID:12750469

  19. SEC/reversed-phase separation of E. coli proteins.

    PubMed

    Apffell, Alex

    2010-05-01

    Although many chromatographic modes can be coupled for the multidimensional separation of a complex mixture, a very favorable combination is that of size-exclusion chromatography (SEC) and reversed-phase chromatography. The separation mechanisms are largely orthogonal and the mobile phases are compatible. The use of a retentive second dimension allows trapping of specific fractions from the SEC separation and transferring them to the reversed-phase separation. One of the advantages of multidimensional chromatography is that it is scalable in terms of automation. In a completely manual system, fractions eluting from a first dimension can be manually collected and injected into a second separation dimension. In an automated system, fraction transfer can be accomplished through automated valving. The following protocol illustrates this approach, with both a manual method and an external column switching method integrated into an automated high-performance liquid chromatography (HPLC) method. As an illustration, soluble proteins from Escherichia coli are separated.

  20. Self-Oligomerizing Structure of the Flagellar Cap Protein FliD and Its Implication in Filament Assembly.

    PubMed

    Song, Wan Seok; Cho, So Yeon; Hong, Ho Jeong; Park, Sun Cheol; Yoon, Sung-Il

    2017-03-24

    FliD is a self-oligomerizing structural protein that caps the growing end of the bacterial flagellar filament. FliD also plays a key role in the flagellar system by continuously adding a new flagellin protein to the tip of the filament. To structurally characterize FliD oligomerization and to provide a FliD-mediated flagellin polymerization mechanism, we have determined the crystal structures of FliD proteins from Escherichia coli and Salmonella enterica serovar Typhimurium (ecFliD and stFliD, respectively). ecFliD consists of three domains (D1, D2, and D3) and forms a hexamer plate of the D2 and D3 domains that resembles a six-pointed star with legs consisting of the D1 domain. In contrast, the D2 and D3 domains of stFliD assemble into a pentamer as a five-pointed star plate. Despite their distinct oligomeric states, ecFliD and stFliD engage a common molecular surface for oligomerization. FliD also features interdomain and intersubunit flexibility, suggesting that FliD reorganizes its domains and adjacent subunits depending on the FliD binding partner. The similarity of the FliD shape to flagellin and the structural dynamics of FliD led us to propose a FliD-catalyzed filament elongation mechanism. In this model, FliD occupies a position in place of a nascent flagellin until the flagellin reaches the growing end of the filament, and then, FliD moves aside to repeat the positional replacement.

  1. Protein separation using affinity-based reversed micelles

    PubMed

    Sun; Gu; Tong; Bai; Ichikawa; Furusaki

    1999-05-01

    Reversed micellar two-phase extraction is a developing technique for protein separation. Introduction of an affinity ligand is considered to be an effective approach to increase the selectivity and capacity of reversed micelles. In this article, Cibacron Blue F3G-A (CB) as an affinity ligand was immobilized to reversed micelles composed of soybean lecithin by a two-phase reaction. The affinity partitioning of lysozyme and bovine serum albumin (BSA) to the CB-lecithin micelles was studied. Formation of mixed micelles by additionally introducing a nonionic surfactant, Tween 85, to the CB-lecithin micelles was effective to increase the solubilization of lysozyme due to the increase of W0 (water/surfactant molar ratio)/micellar size. The partitioning isotherms of lysozyme to the CB-lecithin micelles with and without Tween 85 were expressed by the Langmuir equation. The dissociation constants in the Langmuir equation decreased on addition of Tween 85, indicating the increase of the effectiveness of lysozyme binding to the immobilized CB. On addition of 20 g/L Tween 85 to 50 g/L lecithin/hexane micellar phase containing 0.1 mmol/L CB, the extraction capacity for lysozyme could be increased by 42%. Moreover, the CB-lecithin micelles with or without Tween 85 showed significant size exclusion for BSA due to its high molecular weight. Thus, lysozyme and BSA were separated from artificial solutions containing the two proteins. In addition, the affinity-based reversed micellar phase containing Tween 85 was recycled three times for lysozyme purification from crude egg-white solutions. Lysozyme purity increased by 16-18-fold, reaching 60-70% in the recycled use.

  2. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells

    PubMed Central

    2015-01-01

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these “molecular syringes” for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells. PMID:26017572

  3. Toxofilin, a Novel Actin-binding Protein from Toxoplasma gondii, Sequesters Actin Monomers and Caps Actin Filaments

    PubMed Central

    Poupel, Olivier; Boleti, Haralabia; Axisa, Sophie; Couture-Tosi, Evelyne; Tardieux, Isabelle

    2000-01-01

    Toxoplasma gondii relies on its actin cytoskeleton to glide and enter its host cell. However, T. gondii tachyzoites are known to display a strikingly low amount of actin filaments, which suggests that sequestration of actin monomers could play a key role in parasite actin dynamics. We isolated a 27-kDa tachyzoite protein on the basis of its ability to bind muscle G-actin and demonstrated that it interacts with parasite G-actin. Cloning and sequence analysis of the gene coding for this protein, which we named Toxofilin, showed that it is a novel actin-binding protein. In in vitro assays, Toxofilin not only bound to G-actin and inhibited actin polymerization as an actin-sequestering protein but also slowed down F-actin disassembly through a filament end capping activity. In addition, when green fluorescent protein-tagged Toxofilin was overexpressed in mammalian nonmuscle cells, the dynamics of actin stress fibers was drastically impaired, whereas green fluorescent protein-Toxofilin copurified with G-actin. Finally, in motile parasites, during gliding or host cell entry, Toxofilin was localized in the entire cytoplasm, including the rear end of the parasite, whereas in intracellular tachyzoites, especially before they exit from the parasitophorous vacuole of their host cell, Toxofilin was found to be restricted to the apical end. PMID:10637313

  4. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    PubMed

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  5. [Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi].

    PubMed

    García-Rico, Ramón O; Fierro, Francisco

    The phylum Ascomycota comprises about 75% of all the fungal species described, and includes species of medical, phytosanitary, agricultural, and biotechnological importance. The ability to spread, explore, and colonise new substrates is a feature of critical importance for this group of organisms. In this regard, basic processes such as conidial germination, the extension of hyphae and sporulation, make up the backbone of development in most filamentous fungi. These processes require specialised morphogenic machinery, coordinated and regulated by mechanisms that are still being elucidated. In recent years, substantial progress has been made in understanding the role of the signalling pathway mediated by heterotrimericG proteins in basic biological processes of many filamentous fungi. This review focuses on the role of the alpha subunits of heterotrimericG proteins in the morphogenic processes of filamentous Ascomycota. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Solid-state NMR resonance assignments of the filament-forming CARD domain of the innate immunity signaling protein MAVS.

    PubMed

    He, Lichun; Lührs, Thorsten; Ritter, Christiane

    2015-10-01

    The mitochondrial antiviral signalling protein (MAVS) is a central signal transduction hub in the innate immune response against viral infections. Viral RNA present in the cytoplasm is detected by retinoic acid inducible gene I like receptors, which then activate MAVS via heterotypic interactions between their respective caspase activation and recruitment domains (CARD). This leads to the formation of active, high molecular weight MAVS complexes formed by homotypic interactions between the single N-terminal CARDs of MAVS. Filaments formed by the N-terminal MAVS(CARD) alone are sufficient to induce the autocatalytic conversion from a monomeric to an aggregated state in a prion-like manner. Here, we present the nearly complete spectroscopic (13)C and (15)N resonance assignments of human MAVS(CARD) filaments obtained from a single sample by magic angle spinning solid-state NMR spectroscopy. The corresponding secondary chemical shifts suggest that the filamentous form of MAVS(CARD) retains an exclusively alpha-helical fold that is very similar to the X-ray structure determined previously from monomeric MAVS(CARD)-maltose binding protein fusion constructs.

  7. Reversible lysine modification on proteins by using functionalized boronic acids.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Cordeiro, Carlos; Gois, Pedro M P

    2015-05-26

    Iminoboronates have been utilized to successfully install azide and alkyne bioorthogonal functions on proteins, which may then be further reacted with their bioorthogonal counterparts. These constructs were also used to add polyethylene glycol (PEG) to insulin, a modification which has been shown to be reversible in the presence of fructose. Finally, iminoboronates were used to assemble a folic acid/paclitaxel small-molecule/drug conjugate in situ with an IC50  value of 20.7 nM against NCI-H460 cancer cells and negligible cytotoxicity against the CRL-1502 noncancer cells.

  8. Thermostability and reversibility of silver nanoparticle-protein binding.

    PubMed

    Wang, Bo; Seabrook, Shane A; Nedumpully-Govindan, Praveen; Chen, Pengyu; Yin, Hong; Waddington, Lynne; Epa, V Chandana; Winkler, David A; Kirby, Jason K; Ding, Feng; Ke, Pu Chun

    2015-01-21

    The interactions between nanoparticles (NPs) and proteins in living systems are a precursor to the formation of a NP-protein "corona" that underlies cellular and organism responses to nanomaterials. However, the thermodynamic properties and reversibility of NP-protein interactions have rarely been examined. Using an automated, high-throughput and temperature-controlled dynamic light scattering (DLS) technique we observed a distinct hysteresis in the hydrodynamic radius of branched polyethyleneimine (BPEI) coated-silver nanoparticles (bAgNPs) exposed to like-charged lysozyme during the processes of heating and cooling, in contrast to the irreversible interactions between bAgNPs and oppositely charged alpha lactalbumin (ALact). Our discrete molecular dynamics (DMD) simulations offered a new molecular insight into the differential structure, dynamics and thermodynamics of bAgNPs binding with the two protein homologs and further revealed the different roles of the capping agents of citrate and BPEI in NP-protein interactions. This study facilitates our understanding of the transformation of nanomaterials in living systems, whose implications range from the field study of nanotoxicology to nanomaterials synthesis, nanobiotechnology and nanomedicine.

  9. Antibody Fab display and selection through fusion to the pIX coat protein of filamentous phage.

    PubMed

    Tornetta, Mark; Baker, Scott; Whitaker, Brian; Lu, Jin; Chen, Qiang; Pisors, Eileen; Shi, Lei; Luo, Jinquan; Sweet, Raymond; Tsui, Ping

    2010-08-31

    Fab antibody display on filamentous phage is widely applied to de novo antibody discovery and engineering. Here we describe a phagemid system for the efficient display and affinity selection of Fabs through linkage to the minor coat protein pIX. Display was successful by fusion of either Fd or Lc through a short linker to the amino terminus of pIX and co-expression of the counter Lc or Fd as a secreted, soluble fragment. Assembly of functional Fab was confirmed by demonstration of antigen-specific binding using antibodies of known specificity. Phage displaying a Fab specific for RSV-F protein with Fd linked to pIX showed efficient, antigen-specific enrichment when mixed with phage displaying a different specificity. The functionality of this system for antibody engineering was evaluated in an optimization study. A RSV-F protein specific antibody with an affinity of about 2nM was randomized at 4 positions in light chain CDR1. Three rounds of selection with decreasing antigen concentration yielded Fabs with an affinity improvement up to 70-fold and showed a general correlation between enrichment frequency and affinity. We conclude that the pIX coat protein complements other display systems in filamentous phage as an efficient vehicle for low copy display and selection of Fab proteins. 2010 Elsevier B.V. All rights reserved.

  10. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-07-22

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues.

  11. Cartilage matrix protein forms a type II collagen-independent filamentous network: analysis in primary cell cultures with a retrovirus expression system.

    PubMed Central

    Chen, Q; Johnson, D M; Haudenschild, D R; Tondravi, M M; Goetinck, P F

    1995-01-01

    Cartilage matrix protein (CMP) is expressed specifically in mature cartilage and consists of two von Willebrand factor A domains (CMP-A1 and CMP-A2) that are separated by an epidermal growth factor-like domain, and a coiled-coil tail domain at the carboxyl terminal end. We have shown previously that CMP interacts with type II collagen-containing fibrils in cartilage. In this study, we describe a type II collagen-independent CMP filament and we analyze the structural requirement for the formation of this type of filament. Recombinant wild-type CMP and two mutant forms were expressed in chick primary cell cultures using a retrovirus expression system. In chondrocytes, the wild-type virally encoded CMP is able to form disulfide bonded trimers and to assemble into filaments. Filaments also form with CMP whose Cys455 and Cys457 in the tail domain were mutagenized to prevent interchain disulfide bond formation. Therefore, intermolecular disulfide bonds are not necessary for the assembly of CMP into filaments. Both the wild-type and the double cysteine mutant also form filaments in fibroblasts, indicating that chondrocyte-specific factors are not required for filament formation. A truncated form of CMP that consists only of the CMP-A2 domain and the tail domain can form trimers but fails to form filaments, indicating that the deleted CMP-A1 domain and/or the epidermal growth factor domain are necessary for filament assembly but not for trimer formation. Furthermore, the expression of the virally encoded truncated CMP in chondrocyte culture disrupts endogenous CMP filament formation. Together these data suggest a role for CMP in cartilage matrix assembly by forming filamentous networks that require participation and coordination of individual domains of CMP. Images PMID:8590802

  12. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    SciTech Connect

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  13. Viral Macro Domains Reverse Protein ADP-Ribosylation.

    PubMed

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan; Coutard, Bruno; Canard, Bruno

    2016-10-01

    ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD(+) to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular integrity are demodified

  14. Viral Macro Domains Reverse Protein ADP-Ribosylation

    PubMed Central

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD+ to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular

  15. GTPase Activity, Structure, and Mechanical Properties of Filaments Assembled from Bacterial Cytoskeleton Protein MreB

    PubMed Central

    Esue, Osigwe; Wirtz, Denis; Tseng, Yiider

    2006-01-01

    MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells. PMID:16428401

  16. Spatial Normalization of Reverse Phase Protein Array Data

    PubMed Central

    Kaushik, Poorvi; Molinelli, Evan J.; Miller, Martin L.; Wang, Weiqing; Korkut, Anil; Liu, Wenbin; Ju, Zhenlin; Lu, Yiling; Mills, Gordon; Sander, Chris

    2014-01-01

    Reverse phase protein arrays (RPPA) are an efficient, high-throughput, cost-effective method for the quantification of specific proteins in complex biological samples. The quality of RPPA data may be affected by various sources of error. One of these, spatial variation, is caused by uneven exposure of different parts of an RPPA slide to the reagents used in protein detection. We present a method for the determination and correction of systematic spatial variation in RPPA slides using positive control spots printed on each slide. The method uses a simple bi-linear interpolation technique to obtain a surface representing the spatial variation occurring across the dimensions of a slide. This surface is used to calculate correction factors that can normalize the relative protein concentrations of the samples on each slide. The adoption of the method results in increased agreement between technical and biological replicates of various tumor and cell-line derived samples. Further, in data from a study of the melanoma cell-line SKMEL-133, several slides that had previously been rejected because they had a coefficient of variation (CV) greater than 15%, are rescued by reduction of CV below this threshold in each case. The method is implemented in the R statistical programing language. It is compatible with MicroVigene and SuperCurve, packages commonly used in RPPA data analysis. The method is made available, along with suggestions for implementation, at http://bitbucket.org/rppa_preprocess/rppa_preprocess/src. PMID:25501559

  17. Clustering and Network Analysis of Reverse Phase Protein Array Data.

    PubMed

    Byron, Adam

    2017-01-01

    Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.

  18. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor.

    PubMed

    Ono, Shoichiro

    2013-08-01

    Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.

  19. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora

    PubMed Central

    Nowrousian, Minou; Frank, Sandra; Koers, Sandra; Strauch, Peter; Weitner, Thomas; Ringelberg, Carol; Dunlap, Jay C.; Loros, Jennifer J.; Kück, Ulrich

    2013-01-01

    Summary The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41–EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41–EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi. PMID:17501918

  20. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora.

    PubMed

    Nowrousian, Minou; Frank, Sandra; Koers, Sandra; Strauch, Peter; Weitner, Thomas; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2007-05-01

    The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.

  1. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner*

    PubMed Central

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-01-01

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. PMID:26747606

  2. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    PubMed

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation

    PubMed Central

    Ducka, Anna M.; Joel, Peteranne; Popowicz, Grzegorz M.; Trybus, Kathleen M.; Schleicher, Michael; Noegel, Angelika A.; Huber, Robert; Holak, Tad A.; Sitar, Tomasz

    2010-01-01

    Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament. PMID:20538977

  4. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling.

    PubMed

    Zheng, Wenjun

    2017-01-10

    Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.

  5. The Saccharomyces cerevisiae 14-3-3 protein Bmh2 is required for regulation of the phosphorylation status of Fin1, a novel intermediate filament protein.

    PubMed Central

    Mayordomo, Isabel; Sanz, Pascual

    2002-01-01

    In order to identify proteins that interact with Bmh2, a yeast member of the 14-3-3 protein family, we performed a two-hybrid screening using LexA-Bmh2 as bait. We identified Fin1, a novel intermediate filament protein, as the protein that showed the highest degree of interaction. We also identified components of the vesicular transport machinery such as Gic2 and Msb3, proteins involved in transcriptional regulation such as Mbf1, Gcr2 and Reg2, and a variety of other different proteins (Ppt1, Lre1, Rps0A and Ylr177w). We studied the interaction between Bmh2 and Fin1 in more detail and found that Bmh2 only interacted with phosphorylated forms of Fin1. In addition, we showed that Glc7, the catalytic subunit of the protein phosphatase 1 complex, was also able to interact with Fin1. PMID:11931638

  6. Control of protein trafficking by reversible masking of transport signals

    PubMed Central

    Abraham, Omer; Gotliv, Karnit; Parnis, Anna; Boncompain, Gaelle; Perez, Franck; Cassel, Dan

    2016-01-01

    Systems that allow the control of protein traffic between subcellular compartments have been valuable in elucidating trafficking mechanisms. Most current approaches rely on ligand or light-controlled dimerization, which results in either retardation or enhancement of the transport of a reporter. We developed an alternative approach for trafficking regulation that we term “controlled unmasking of targeting elements” (CUTE). Regulated trafficking is achieved by reversible masking of the signal that directs the reporter to its target organelle, relying on the streptavidin–biotin system. The targeting signal is generated within or immediately after a 38–amino acid streptavidin-binding peptide (SBP) that is appended to the reporter. The binding of coexpressed streptavidin to SBP causes signal masking, whereas addition of biotin causes complex dissociation and triggers protein transport to the target organelle. We demonstrate the application of this approach to the control of nuclear and peroxisomal protein import and the generation of biotin-dependent trafficking through the endocytic and COPI systems. By simultaneous masking of COPI and endocytic signals, we were able to generate a synthetic pathway for efficient transport of a reporter from the plasma membrane to the endoplasmic reticulum. PMID:26941332

  7. Mammalian CAP (Cyclase-associated protein) in the world of cell migration: Roles in actin filament dynamics and beyond.

    PubMed

    Zhou, Guo-Lei; Zhang, Haitao; Field, Jeffrey

    2014-01-01

    Cell migration is essential for a variety of fundamental biological processes such as embryonic development, wound healing, and immune response. Aberrant cell migration also underlies pathological conditions such as cancer metastasis, in which morphological transformation promotes spreading of cancer to new sites. Cell migration is driven by actin dynamics, which is the repeated cycling of monomeric actin (G-actin) into and out of filamentous actin (F-actin). CAP (Cyclase-associated protein, also called Srv2) is a conserved actin-regulatory protein, which is implicated in cell motility and the invasiveness of human cancers. It cooperates with another actin regulatory protein, cofilin, to accelerate actin dynamics. Hence, knockdown of CAP1 slows down actin filament turnover, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually led to increased cell motility. The increases in motility are likely through activation of cell adhesion signals through an inside-out signaling. The potential to activate adhesion signaling competes with the negative effect of CAP1 depletion on actin dynamics, which would reduce cell migration. In this commentary, we provide a brief overview of the roles of mammalian CAP1 in cell migration, and highlight a likely mechanism underlying the activation of cell adhesion signaling and elevated motility caused by depletion of CAP1.

  8. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.

  9. Arrangement of RecA protein in its active filament determined by polarized-light spectroscopy

    PubMed Central

    Morimatsu, Katsumi; Takahashi, Masayuki; Nordén, Bengt

    2002-01-01

    Linear dichroism (LD) polarized-light spectroscopy is used to determine the arrangement of RecA in its large filamentous complex with DNA, active in homologous recombination. Angular orientation data for two tryptophan and seven tyrosine residues, deduced from differential LD of wild-type RecA vs. mutants that were engineered to attenuate the UV absorption of selected residues, revealed a rotation by some 40° of the RecA subunits relative to the arrangement in crystal without DNA. In addition, conformational changes are observed for tyrosine residues assigned to be involved in DNA binding and in RecA–RecA contacts, thus potentially related to the global structure of the filament and its biological function. The presented spectroscopic approach, called “Site-Specific Linear Dichroism” (SSLD), may find forceful applications also to other biologically important fibrous complexes not amenable to x-ray crystallographic or NMR structural analysis. PMID:12193645

  10. Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions.

    PubMed

    Handa, Naofumi; Amitani, Ichiro; Gumlaw, Nathan; Sandler, Steven J; Kowalczykowski, Stephen C

    2009-07-10

    Fluorescent fusion proteins are exceedingly useful for monitoring protein localization in situ or visualizing protein behavior at the single molecule level. Unfortunately, some proteins are rendered inactive by the fusion. To circumvent this problem, we fused a hyperactive RecA protein (RecA803 protein) to monomeric red fluorescent protein (mRFP1) to produce a functional protein (RecA-RFP) that is suitable for in vivo and in vitro analysis. In vivo, the RecA-RFP partially restores UV resistance, conjugational recombination, and SOS induction to recA(-) cells. In vitro, the purified RecA-RFP protein forms a nucleoprotein filament whose k(cat) for single-stranded DNA-dependent ATPase activity is reduced approximately 3-fold relative to wild-type protein, and which is largely inhibited by single-stranded DNA-binding protein. However, RecA protein is also a dATPase; dATP supports RecA-RFP nucleoprotein filament formation in the presence of single-stranded DNA-binding protein. Furthermore, as for the wild-type protein, the activities of RecA-RFP are further enhanced by shifting the pH to 6.2. As a consequence, RecA-RFP is proficient for DNA strand exchange with dATP or at lower pH. Finally, using single molecule visualization, RecA-RFP was seen to assemble into a continuous filament on duplex DNA, and to extend the DNA approximately 1.7-fold. Consistent with its attenuated activities, RecA-RFP nucleates onto double-stranded DNA approximately 3-fold more slowly than the wild-type protein, but still requires approximately 3 monomers to form the rate-limited nucleus needed for filament assembly. Thus, RecA-RFP reveals that its attenuated biological functions correlate with a reduced frequency of nucleoprotein filament nucleation at the single molecule level.

  11. Characterization of the DNA binding protein encoded by the N-specific filamentous Escherichia coli phage IKe. Binding properties of the protein and nucleotide sequence of the gene.

    PubMed

    Peeters, B P; Konings, R N; Schoenmakers, J G

    1983-09-05

    A DNA binding protein encoded by the filamentous single-stranded DNA phage IKe has been isolated from IKe-infected Escherichia coli cells. Fluorescence and in vitro binding studies have shown that the protein binds co-operatively and with a high specificity to single-stranded but not to double-stranded DNA. From titration of the protein to poly(dA) it has been calculated that approximately four bases of the DNA are covered by one monomer of protein. These binding characteristics closely resemble those of gene V protein encoded by the F-specific filamentous phages M13 and fd. The nucleotide sequence of the gene specifying the IKe DNA binding protein has been established. When compared to the nucleotide sequence of gene V of phage M13 it shows an homology of 58%, indicating that these two phages are evolutionarily related. The IKe DNA binding protein is 88 amino acids long which is one amino acid residue larger than the gene V protein sequence. When the IKe DNA binding protein sequence is compared with that of gene V protein it was found that 39 amino acid residues have identical positions in both proteins. The positions of all five tyrosine residues, a number of which are known to be involved in DNA binding, are conserved. Secondary structure predictions indicate that the two proteins contain similar structural domains. It is proposed that the tyrosine residues which are involved in DNA binding are the ones in or next to a beta-turn, at positions 26, 41 and 56 in gene V protein and at positions 27, 42 and 57 in the IKe DNA binding protein.

  12. Localizing and extracting filament distributions from microscopy images.

    PubMed

    Basu, S; Liu, C; Rohde, G K

    2015-04-01

    Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Microscopic images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here, we describe a new method for localizing and extracting filament distributions from 2D microscopy images of different modalities. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from confocal microscopy images of actin filaments and atomic force microscopy images of DNA fragments.

  13. The gene for a cytoplasmic intermediate filament (IF) protein of the hemichordate Saccoglossus kowalevskii; definition of the unique features of chordate IF proteins.

    PubMed

    Zimek, Alexander; Weber, Klaus

    2002-04-17

    We have isolated full length cDNAs encoding a cytoplasmic intermediate filament (IF) protein of a priapulid (Priapulus caudatus) and of a hemichordate (Saccoglossus kowalevskii) and determined the organisation of the hemichordate gene. As expected, the priapulid protein shows the long coil 1b subdomain and the lamin tail homology segment already known for cytoplasmic IF proteins from 11 other protostomic phyla. Surprisingly, the hemichordate protein follows in domain organisation much more closely the protostomic IF proteins than the chordate IF proteins. Thus, the lack of a lamin tail homology segment together with a deletion of 42 residues in the coil 1b domain is a molecular feature restricted to the chordates. We propose that the known IF subfamilies I to IV developed by gene duplications and sequence drift after the deletion in coil 1b arose at the base of the chordate branch.

  14. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    PubMed

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

  15. Branching of keratin intermediate filaments.

    PubMed

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays

    PubMed Central

    2012-01-01

    Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite

  17. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system.

    PubMed

    Hol, Elly M; Pekny, Milos

    2015-02-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae.

    PubMed Central

    Mösch, H U; Roberts, R L; Fink, G R

    1996-01-01

    RAS2val19, a dominant activated form of Saccharomyces cerevisiae Ras2, stimulates both filamentous growth and expression of a transcriptional reporter FG(TyA)::lacZ but does not induce the mating pathway reporter FUS1::lacZ. This induction depends upon elements of the conserved mitogen-activated protein kinase (MAPK) pathway that is required for both filamentous growth and mating, two distinct morphogenetic events. Full induction requires Ste20 (homolog of mammalian p65PAK protein kinases), Ste11 [an MEK kinase (MEKK) or MAPK kinase (MEK) kinase], Ste7 (MEK or MAPK kinase), and the transcription factor Ste12. Moreover, the Rho family protein Cdc42, a conserved morphogenetic G protein, is also a potent regulator of filamentous growth and FG(TyA)::lacZ expression in S. cerevisiae. Stimulation of both filamentous growth and FG(TyA)::lacZ by Cdc42 depends upon Ste20. In addition, dominant negative CDC42Ala118 blocks RAS2val19 activation, placing Cdc42 downstream of Ras2. Our results suggest that filamentous growth in budding yeast is regulated by an evolutionarily conserved signaling pathway that controls cell morphology. Images Fig. 1 Fig. 2 Fig. 3 PMID:8643578

  19. Withaferin A Targets Intermediate Filaments Glial Fibrillary Acidic Protein and Vimentin in a Model of Retinal Gliosis*

    PubMed Central

    Bargagna-Mohan, Paola; Paranthan, Riya R.; Hamza, Adel; Dimova, Neviana; Trucchi, Beatrice; Srinivasan, Cidambi; Elliott, Gregory I.; Zhan, Chang-Guo; Lau, Daniel L.; Zhu, Haiyan; Kasahara, Kousuke; Inagaki, Masaki; Cambi, Franca; Mohan, Royce

    2010-01-01

    Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G0/G1 arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies. PMID:20048155

  20. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ

    PubMed Central

    Rudrabhatla,*, Parvathi; Grant,*, Philip; Jaffe, Howard; Strong, Michael J.; Pant, Harish C.

    2010-01-01

    Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.—Rudrabhatla, P., Grant, P., Jaffe, H., Strong, M. J., Pant, H. C. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. PMID:20624930

  1. Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly.

    PubMed

    Freeman, N L; Field, J

    2000-02-01

    Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.

  2. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  3. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  4. Teal fluorescent proteins: characterization of a reversibly photoswitchable variant

    NASA Astrophysics Data System (ADS)

    Ai, Hui-wang; Campbell, Robert E.

    2008-02-01

    Fluorescent proteins (FPs) emerged in the mid 1990s as a powerful tool for life science research. Cyan FPs (CFPs), widely used in multicolor imaging or as a fluorescence resonance energy transfer (FRET) donor to yellow FPs (YFPs), were considerably less optimal than other FPs because of some relatively poor photophysical properties. We recently initiated an effort to create improved or alternate versions of CFPs. To address the limitations of CFPs, an alternative known as monomeric teal FP1 (mTFP1) was engineered from the naturally tetrameric Clavularia CFP, by screening either rationally designed or random libraries of variants. mTFP1 has proven to be a particularly useful new member of the FP 'toolbox' by facilitating multicolor live cell imaging. During the directed evolution process of mTFP1, it was noticed that some earlier variants underwent fast and reversible photoisomerization. Some of the initial characterization of one particular mutant, designated as mTFP0.7, is described in this manuscript.

  5. The Intermediate Filament Protein Peripherin Is the Specific Interaction Partner of Mouse BPAG1-n (Dystonin) in Neurons

    PubMed Central

    Leung, Conrad L.; Sun, Dongming; Liem, Ronald K.H.

    1999-01-01

    The dystonia musculorum (dt) mouse suffers from severe degeneration of primary sensory neurons. The mutated gene product is named dystonin and is identical to the neuronal isoform of bullous pemphigoid antigen 1 (BPAG1-n). BPAG1-n contains an actin-binding domain at its NH2 terminus and a putative intermediate filament-binding domain at its COOH terminus. Because the degenerating sensory neurons of dt mice display abnormal accumulations of intermediate filaments in the axons, BPAG1-n has been postulated to organize the neuronal cytoskeleton by interacting with both the neurofilament triplet proteins (NFTPs) and microfilaments. In this paper we show by a variety of methods that the COOH-terminal tail domain of mouse BPAG1 interacts specifically with peripherin, but in contrast to a previous study (Yang, Y., J. Dowling, Q.C. Yu, P. Kouklis, D.W. Cleveland, and E. Fuchs. 1996. Cell. 86:655–665), mouse BPAG1 fails to associate with full-length NFTPs. The tail domains interfered with the association of the NFTPs with BPAG1. In dt mice, peripherin is present in axonal swellings of degenerating sensory neurons in the dorsal root ganglia and is downregulated even in other neural regions, which have no obvious signs of pathology. Since peripherin and BPAG1-n also display similar expression patterns in the nervous system, we suggest that peripherin is the specific interaction partner of BPAG1-n in vivo. PMID:9971739

  6. A protein-farnesyl transferase inhibitor interferes with the serum-induced conversion of Candida albicans from a cellular yeast form to a filamentous form.

    PubMed

    McGeady, Paul; Logan, David A; Wansley, Daniel L

    2002-07-16

    A commercially available, cell permeable, protein-farnesyl transferase inhibitor interfered with the serum-induced morphological change in Candida albicans from a cellular yeast form to a filamentous form. The inhibitor has a negligible effect on the growth of C. albicans cells in the cellular yeast form, at the levels used to interfere with the morphological change. Conversion of C. albicans from the yeast form to filamentous form is associated with pathogenicity and hence protein-farnesyl transferase inhibitors are potentially of therapeutic value against C. albicans infection.

  7. Identification and Characterization of a Ca2+-Dependent Actin Filament-Severing Protein from Lily Pollen1

    PubMed Central

    Fan, Xiaoxue; Hou, Jian; Chen, Xiaoliang; Chaudhry, Faisal; Staiger, Christopher J.; Ren, Haiyun

    2004-01-01

    It is well known that a tip-focused intracellular Ca2+ gradient and the meshwork of short actin filaments at the tip region are necessary for pollen tube growth. However, little is known about the connections between the two factors. Here, a novel Ca2+-dependent actin-binding protein with molecular mass of 41 kD from lily (Lilium davidii) pollen (LdABP41) was isolated and purified with DNase I chromatography. Our purification procedure yielded about 0.6 mg of LdABP41 with >98% purity from 10 g of lily pollen. At least two isoforms with isoelectric points of 5.8 and 6.0 were detected on two-dimensional gels. The results of N-terminal sequencing and mass-spectrometry analysis of LdABP41 showed that both isoforms shared substantial similarity with trumpet lily (Lilium longiflorum) villin and other members of the gelsolin superfamily. Negative-stained electron microscope images showed that LdABP41 severed in vitro-polymerized lily pollen F-actin into short actin filaments in a Ca2+-sensitive manner. Microinjection of the anti-LdABP41 antibody into germinated lily pollen demonstrated that the protein was required for pollen tube growth. The results of immunolocalization of the protein showed that it existed in the cytoplasm of the pollen tube, especially focused in the tip region. Our results suggest that LdABP41 belongs to the gelsolin superfamily and may play an important role in controlling actin organization in the pollen tube tip by responding to the oscillatory, tip-focused Ca2+ gradient. PMID:15557101

  8. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ

    PubMed Central

    Draper, Olga; Byrne, Meghan E.; Li, Zhuo; Keyhani, Sepehr; Cueto Barrozo, Joyce; Jensen, Grant; Komeili, Arash

    2011-01-01

    SUMMARY Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide-ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane-bound organelles that aid in navigation along the earth’s magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB-1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo. We also uncover two proteins, MamJ and LimJ, which perform a redundant function to promote the dynamic behavior of MamK filaments in wildtype cells. The absence of both MamJ and LimJ leads to static filaments, a disrupted magnetosome chain, and an anomalous build-up of cytoskeletal filaments between magnetosomes. Our results suggest that MamK filaments, like eukaryotic actins, are intrinsically stable and rely on regulators for their dynamic behavior, a feature that stands in contrast to some classes of bacterial actins characterized to date. PMID:21883528

  9. CXCL1 activates TRPV1 via Gi/o protein and actin filaments.

    PubMed

    Deftu, Alexandru Florian; Filippi, Alexandru; Gheorghe, Roxana Olimpia; Ristoiu, Violeta

    2017-09-28

    CXCL1 is a chemokine with pleiotropic effects, including pain and itch. Itch, an unpleasant sensation that elicits the desire or reflex to scratch, it is evoked mainly from the skin and implicates activation of a specific subset of IB4+, C-type primary afferents. In previous studies we showed that acute application of CXCL1 induced a Ca(2+) influx of low amplitude and slow kinetics in a subpopulation of transient receptor potential vanilloid type 1 (TRPV1)+/isolectin B4 (IB4)+dorsal root ganglia neurons which also responded to other itch-inducing agents. In this study we explored the mechanism behind the Ca(2+) influx to better understand how CXCL1 acts on primary sensitive neurons to induce itch. Intracellular Ca(2+) imaging and patch-clamp recordings on dorsal root ganglia neurons primary cultures and HEK293T cell transiently transfected with TRPV1 and CXCR2 plasmids were used to investigate the acute effect (12min application) of 4nM CXCL1. In primary cultures, the focus was on TRPV1+/IB4+ cells to which the itch-sensitive neurons belong. The results showed that the Ca(2+) influx induced by the acute application of CXCL1 is mediated mainly by TRPV1 receptors and depends on extracellular Ca(2+) not on intracellular stores. TRPV1 was activated, not sensitized by CXCL1, in a CXCR2 receptors- and actin filaments-dependent manner, since specific blockers and actin depolymerizing agents disrupted the CXCL1 effect. This study brings additional data about the itch inducing mechanism of CXCL1 chemokine and about a new mechanism of TRPV1 activation via actin filaments. Copyright © 2017. Published by Elsevier Inc.

  10. Reversals.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers nine materials for remediating reversals in handicapped students at the early childhood and elementary levels. Entries are presented in order of NIMIS accession…

  11. Contemporary techniques for detecting and identifying proteins susceptible to reversible thiol oxidation.

    PubMed

    Burgoyne, Joseph R; Eaton, Philip

    2011-10-01

    Elevated protein oxidation is a widely reported hallmark of most major diseases. Historically, this 'oxidative stress' has been considered causatively detrimental, as the protein oxidation events were interpreted simply as damage. However, recent advances have changed this antiquated view; sensitive methodology for detecting and identifying proteins susceptible to oxidation has revealed a fundamental role for this modification in physiological cell signalling during health. Reversible protein oxidation that is dynamically coupled with cellular reducing systems allows oxidative protein modifications to regulate protein function, analogous to phosphoregulation. However, the relatively labile nature of many reversible protein oxidation states hampers the reliable detection and identification of modified proteins. Consequently, specialized methods to stabilize protein oxidation in combination with techniques to detect specific types of modification have been developed. Here, these techniques are discussed, and their sensitivity, selectivity and ability to reliably identify reversibly oxidized proteins are critically assessed.

  12. In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Kozma, Daniel; Nemeth, Andrea; Jankovics, Hajnalka; Kurunczi, Sandor; Horvath, Robert; Vonderviszt, Ferenc; Fried, Miklos; Petrik, Peter

    2011-06-01

    In this study, we have reconstructed the statistical 3D structure of hundreds of nanometers thick surface immobilized flagellar filament protein layers in their native environment, in buffer solution. The protein deposition onto the surface activated Ta 2O 5 film was performed in a flow cell, and the immobilization process was followed by in situ spectroscopic ellipsometry. A multilayer optical model was developed, in that the protein layer was described by five effective medium sublayers. Applying this method, an in-depth analysis of the protein layer formation was performed. Based on the kinetics in the distribution of the surface mass density, the statistical properties of the filamentous film could be determined computationally as a function of the measurement time. It was also demonstrated that the 3D structure of the protein layer can be reconstructed based on the calculated in-depth mass density profile. The computational investigation revealed that the filaments can be classified into two individual groups in approximately equal ratio according to their orientation. In the first group the filaments are close to laying position, whereas in the second group they are in a standing position, resulting in a significantly denser sublayer close to the substrate than at a larger distance.

  13. Peptidyl aldehydes as reversible covalent inhibitors of protein tyrosine phosphatases.

    PubMed

    Fu, Hua; Park, Junguk; Pei, Dehua

    2002-08-27

    Protein tyrosine phosphatases (PTPs) are a large family of enzymes that catalyze the hydrolytic removal of the phosphoryl group from phosphotyrosyl (pY) proteins. PTP inhibitors provide potential treatment of human diseases/conditions such as diabetes and obesity as well as useful tools for studying the function of PTPs in signaling pathways. In this work, we have shown that certain aryl-substituted aldehydes act as reversible, slow-binding inhibitors of modest potency against PTP1B, SHP-1, and a dual-specificity phosphatase, VHR. Attachment of the tripeptide Gly-Glu-Glu to the para position of cinnamaldehyde resulted in an inhibitor (Cinn-GEE) of substantially increased potency against all three enzymes (e.g., K(I) = 5.4 microM against PTP1B). The mechanism of inhibition was investigated using Cinn-GEE specifically labeled with (13)C at the aldehyde carbon and (1)H-(13)C heteronuclear single-quantum coherence spectroscopy. While Cinn-GEE alone showed a single cross-peak at delta 9.64 ((1)H) and delta 201 ((13)C), the PTP1B/Cinn-GEE complex showed three distinct cross-peaks at delta 7.6-7.8 ((1)H) and 130-137 ((13)C). Mutation of the catalytic cysteine (Cys-215 in PTP1B) into alanine had no effect on the cross-peaks, whereas mutation of a conserved active-site arginine (Arg-221 in PTP1B) to alanine abolished all three cross-peaks. Similar experiments with Cinn-GEE that had been labeled with (13)C at the benzylic position revealed a change in the hybridization state (from sp(2) to sp(3)) for the benzylic carbon as a result of binding to PTP1B. These results rule out the possibility of a free aldehyde, aldehyde hydrate, or hemithioacetal as the enzyme-bound inhibitor form. Instead, the data are consistent with the formation of an enamine between the aldehyde group of the inhibitor and the guanidine group of Arg-221 in the PTP1B active site. These aldehydes may provide a general core structure that can be further developed into highly potent and specific PTP

  14. Chaperonin filaments: The archael cytoskeleton

    SciTech Connect

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  15. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium

    PubMed Central

    Sun, Ning; Shibata, Brad; Hess, John F.

    2016-01-01

    Purpose The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. Methods Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. Results CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely

  16. Functional Analysis of DNA Replication Fork Reversal Catalyzed by Mycobacterium tuberculosis RuvAB Proteins*

    PubMed Central

    Khanduja, Jasbeer Singh; Muniyappa, K.

    2012-01-01

    Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins. PMID:22094465

  17. The intermediate filament network protein, vimentin, is required for parvoviral infection

    SciTech Connect

    Fay, Nikta; Panté, Nelly

    2013-09-15

    Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network was genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM. - Highlights: • MVM infection changes the distribution of the vimentin network to perinuclear regions. • Disrupting the vimentin network with acrylamide decreases MVM replication. • MVM replication is significantly reduced in vimentin-null cells. • Distribution of MVM-containing vesicles is affected in MVM infected vimentin-null cells.

  18. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence

    PubMed Central

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R.; Kehn-Hall, Kylene; Omichinski, James G.

    2015-01-01

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  19. Caenorhabditis elegans Kettin, a Large Immunoglobulin-like Repeat Protein, Binds to Filamentous Actin and Provides Mechanical Stability to the Contractile Apparatuses in Body Wall Muscle

    PubMed Central

    Ono, Kanako; Yu, Robinson; Mohri, Kurato

    2006-01-01

    Kettin is a large actin-binding protein with immunoglobulin-like (Ig) repeats, which is associated with the thin filaments in arthropod muscles. Here, we report identification and functional characterization of kettin in the nematode Caenorhabditis elegans. We found that one of the monoclonal antibodies that were raised against C. elegans muscle proteins specifically reacts with kettin (Ce-kettin). We determined the entire cDNA sequence of Ce-kettin that encodes a protein of 472 kDa with 31 Ig repeats. Arthropod kettins are splice variants of much larger connectin/titin-related proteins. However, the gene for Ce-kettin is independent of other connectin/titin-related genes. Ce-kettin localizes to the thin filaments near the dense bodies in both striated and nonstriated muscles. The C-terminal four Ig repeats and the adjacent non-Ig region synergistically bind to actin filaments in vitro. RNA interference of Ce-kettin caused weak disorganization of the actin filaments in body wall muscle. This phenotype was suppressed by inhibiting muscle contraction by a myosin mutation, but it was enhanced by tetramisole-induced hypercontraction. Furthermore, Ce-kettin was involved in organizing the cytoplasmic portion of the dense bodies in cooperation with α-actinin. These results suggest that kettin is an important regulator of myofibrillar organization and provides mechanical stability to the myofibrils during contraction. PMID:16597697

  20. Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins.

    PubMed

    Kollmar, Martin

    2015-05-29

    The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.

  1. AglZ Is a Filament-Forming Coiled-Coil Protein Required for Adventurous Gliding Motility of Myxococcus xanthus

    PubMed Central

    Yang, Ruifeng; Bartle, Sarah; Otto, Rebecca; Stassinopoulos, Angela; Rogers, Matthew; Plamann, Lynda; Hartzell, Patricia

    2004-01-01

    The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro. PMID:15342587

  2. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus.

    PubMed

    Yang, Ruifeng; Bartle, Sarah; Otto, Rebecca; Stassinopoulos, Angela; Rogers, Matthew; Plamann, Lynda; Hartzell, Patricia

    2004-09-01

    The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro.

  3. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations

    PubMed Central

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. PMID:28757797

  4. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  5. X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization

    PubMed Central

    He, Shaoda; Savva, Christos G.

    2016-01-01

    Magnetotactic bacteria produce iron-rich magnetic nanoparticles that are enclosed by membrane invaginations to form magnetosomes so they are able to sense and act upon Earth’s magnetic field. In Magnetospirillum and other magnetotactic bacteria, to combine their magnetic moments, magnetosomes align along filaments formed by a bacterial actin homolog, MamK. Here, we present the crystal structure of a nonpolymerizing mutant of MamK from Magnetospirillum magneticum AMB-1 at 1.8-Å resolution, revealing its close similarity to actin and MreB. The crystals contain AMPPNP-bound monomeric MamK in two different conformations. To investigate conformational changes associated with polymerization, we used unmodified MamK protein and cryo-EM with helical 3D reconstruction in RELION to obtain a density map and a fully refined atomic model of MamK in filamentous form at 3.6-Å resolution. The filament is parallel (polar) double-helical, with a rise of 52.2 Å and a twist of 23.8°. As shown previously and unusually for actin-like filaments, the MamK subunits from each of the two strands are juxtaposed, creating an additional twofold axis along the filament. Compared with monomeric MamK, ADP-bound MamK in the filament undergoes a conformational change, rotating domains I and II against each other to further close the interdomain cleft between subdomains IB and IIB. The domain movement causes several loops to close around the nucleotide-binding pocket. Glu-143, a key residue for catalysis coordinating the magnesium ion, moves closer, presumably switching nucleotide hydrolysis upon polymerization—one of the hallmarks of cytomotive filaments of the actin type. PMID:27821762

  6. X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization.

    PubMed

    Löwe, Jan; He, Shaoda; Scheres, Sjors H W; Savva, Christos G

    2016-11-22

    Magnetotactic bacteria produce iron-rich magnetic nanoparticles that are enclosed by membrane invaginations to form magnetosomes so they are able to sense and act upon Earth's magnetic field. In Magnetospirillum and other magnetotactic bacteria, to combine their magnetic moments, magnetosomes align along filaments formed by a bacterial actin homolog, MamK. Here, we present the crystal structure of a nonpolymerizing mutant of MamK from Magnetospirillum magneticum AMB-1 at 1.8-Å resolution, revealing its close similarity to actin and MreB. The crystals contain AMPPNP-bound monomeric MamK in two different conformations. To investigate conformational changes associated with polymerization, we used unmodified MamK protein and cryo-EM with helical 3D reconstruction in RELION to obtain a density map and a fully refined atomic model of MamK in filamentous form at 3.6-Å resolution. The filament is parallel (polar) double-helical, with a rise of 52.2 Å and a twist of 23.8°. As shown previously and unusually for actin-like filaments, the MamK subunits from each of the two strands are juxtaposed, creating an additional twofold axis along the filament. Compared with monomeric MamK, ADP-bound MamK in the filament undergoes a conformational change, rotating domains I and II against each other to further close the interdomain cleft between subdomains IB and IIB. The domain movement causes several loops to close around the nucleotide-binding pocket. Glu-143, a key residue for catalysis coordinating the magnesium ion, moves closer, presumably switching nucleotide hydrolysis upon polymerization-one of the hallmarks of cytomotive filaments of the actin type.

  7. Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein.

    PubMed

    Ventura, Judy; Eron, Scott J; González-Toro, Daniella C; Raghupathi, Kishore; Wang, Feng; Hardy, Jeanne A; Thayumanavan, S

    2015-10-12

    Conjugation of biologically active proteins to polymeric materials is of great interest in the treatment of cancer and other diseases of protein deficiency. The conjugation of such biomacromolecules is challenging both due to their hydrophilicity and propensity to denature under non-native conditions. We describe a novel reactive self-assembly approach to "wrap" a protein with polymers, simultaneously protecting its delicate folded state and silencing its enzymatic activity. This approach has been demonstrated using caspase-3, an apoptosis-inducing protein, as the first case study. The protein-polymer conjugation is designed to be reversed under the native conditions for caspase-3, that is, the reducing environment found in the cytosol. The current strategy allowed release and recovery of up to 86% of caspase activity and nanogel-caspase-3 conjugates induced 70-80% apoptotic cell death shortly thereafter. This approach is widely generalizable and should be applicable to the intracellular delivery of a wide range of therapeutic proteins for treatment of complex and genetic diseases.

  8. Virulent Rough Filaments of Listeria monocytogenes from Clinical and Food Samples Secreting Wild-Type Levels of Cell-Free p60 Protein

    PubMed Central

    Rowan, Neil J.; Candlish, Alan A. G.; Bubert, Andreas; Anderson, John G.; Kramer, Karl; McLauchlin, Jim

    2000-01-01

    Atypical rough cell filaments of Listeria monocytogenes (designated FR variants), isolated from clinical and food samples, form long filaments up to 96 μm in length and demonstrated wild-type levels of adherence, invasion, and cytotoxicity to human epithelial HEp-2, Caco-2, and HeLa cells. Unlike previously described avirulent rough mutants of L. monocytogenes that secrete diminished levels of the major extracellular protein p60 and that form long chains that consist of multiple cells of similar size (designated MCR variants), FR variants secreted wild-type or greater levels of p60. This study shows that virulent filamentous forms of L. monocytogenes occur in clinical and food environments and have atypical morphological characteristics compared to those of the wild-type form. PMID:10878057

  9. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    SciTech Connect

    Sugimoto, Yasunobu Takezawa, Yasunori; Matsuo, Tatsuhito; Ueno, Yutaka; Minakata, Shiho; Tanaka, Hidehiro; Wakabayashi, Katsuzo

    2008-04-25

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by {approx}0.1% upon activation relative to the relaxing state and increased by {approx}0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca{sup 2+}-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca{sup 2+}-binding and the second induced by actomyosin interaction.

  10. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament

    PubMed Central

    Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C.

    2017-01-01

    Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. PMID:27903895

  11. A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA.

    PubMed

    Lyonnais, Sébastien; Gorelick, Robert J; Heniche-Boukhalfa, Fatima; Bouaziz, Serge; Parissi, Vincent; Mouscadet, Jean-François; Restle, Tobias; Gatell, Jose Maria; Le Cam, Eric; Mirambeau, Gilles

    2013-02-01

    HIV-1 reverse transcription is achieved in the newly infected cell before viral DNA (vDNA) nuclear import. Reverse transcriptase (RT) has previously been shown to function as a molecular motor, dismantling the nucleocapsid complex that binds the viral genome as soon as plus-strand DNA synthesis initiates. We first propose a detailed model of this dismantling in close relationship with the sequential conversion from RNA to double-stranded (ds) DNA, focusing on the nucleocapsid protein (NCp7). The HIV-1 DNA-containing pre-integration complex (PIC) resulting from completion of reverse transcription is translocated through the nuclear pore. The PIC nucleoprotein architecture is poorly understood but contains at least two HIV-1 proteins initially from the virion core, namely integrase (IN) and the viral protein r (Vpr). We next present a set of electron micrographs supporting that Vpr behaves as a DNA architectural protein, initiating multiple DNA bridges over more than 500 base pairs (bp). These complexes are shown to interact with NCp7 bound to single-stranded nucleic acid regions that are thought to maintain IN binding during dsDNA synthesis, concurrently with nucleocapsid complex dismantling. This unexpected binding of Vpr conveniently leads to a compacted but filamentous folding of the vDNA that should favor its nuclear import. Finally, nucleocapsid-like aggregates engaged in dsDNA synthesis appear to efficiently bind to F-actin filaments, a property that may be involved in targeting complexes to the nuclear envelope. More generally, this article highlights unique possibilities offered by in vitro reconstitution approaches combined with macromolecular imaging to gain insights into the mechanisms that alter the nucleoprotein architecture of the HIV-1 genome, ultimately enabling its insertion into the nuclear chromatin.

  12. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  13. Cooperation of Cdc42 small G protein-activating and actin filament-binding activities of frabin in microspike formation.

    PubMed

    Ikeda, W; Nakanishi, H; Tanaka, Y; Tachibana, K; Takai, Y

    2001-06-14

    Frabin is a GDP/GTP exchange protein for Cdc42 with actin filament (F-actin)-binding activity. Cdc42 is a small GTP-binding protein that forms filopodia-like microspikes in a variety of cells. Expression of frabin indeed forms microspikes through at least activation of Cdc42 in MDCK cells and fibroblasts such as COS7, L, and NIH3T3 cells. However, the role of the F-actin-binding activity of frabin in the microspike formation remains unknown. We have examined here this role of frabin by expressing various frabin mutants, which have lost Cdc42-activating or F-actin-binding activity, with or without a dominant active mutant of Cdc42 in MDCK and COS7 cells. We show here that for the microspike formation, either of the Cdc42-activating and F- actin-binding activities of frabin alone is not sufficient and both the activities are necessary and that both the activities play a cooperative role in the microspike formation. The present results, together with the earlier finding that Cdc42 reorganizes the actin cytoskeleton at least through the N-WASP-Arp2/3 complex, suggest that frabin directly and indirectly reorganizes the actin cytoskeleton through its F-actin-binding and Cdc42-activating activities, respectively, in a cooperative manner, eventually leading to microspike formation.

  14. Unexpected homology between inducible cell wall protein QID74 of filamentous fungi and BR3 salivary protein of the insect Chironomus

    PubMed Central

    Rey, Manuel; Ohno, Susumu; Pintor-Toro, Jose A.; Llobell, Antonio; Benitez, Tahia

    1998-01-01

    A gene, qid74, of mycoparasitic filamentous fungus Trichoderma harzianum and its allies encodes a cell wall protein that is induced by replacing glucose in the culture medium with chitin (simulated mycoparasitism conditions). Because no trace of this gene can be detected in related species such as Gibberella fujikuroi and Saccharomyces cerevisiae, the qid74 gene appears to have arisen de novo within the genus Trichoderma. Qid74 protein, 687 residues long, is now seen as highly conserved tandem repeats of the 59-residue-long unit. This unit itself, however, may have arisen as tandem repeats of the shorter 13-residue-long basic unit. Within the genus Trichoderma, the amino acid sequence of Qid74 proteins has been conserved in toto. The most striking is the fact that Qid74 shares 25.3% sequence identity with the carboxyl-terminal half of the 1,572-residue-long BR3 protein of the dipteran insect Chironomus tentans. BR3 protein is secreted by the salivary gland of each aquatic larva of Chironomus to form a tube to house itself. Furthermore, the consensus sequence derived from these 59-residue-long repeating units resembles those of epidermal growth factor-like domains found in divergent invertebrate and vertebrate proteins as to the positions of critical cysteine residues and homology of residues surrounding these cysteines. PMID:9600944

  15. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  16. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    SciTech Connect

    Kumeta, Masahiro; Hirai, Yuya; Yoshimura, Shige H.; Horigome, Tsuneyoshi; Takeyasu, Kunio

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.

  17. The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation.

    PubMed

    Buell, Alexander K; Dobson, Christopher M; Knowles, Tuomas P J

    2014-01-01

    In this chapter, we present an overview of the kinetics and thermodynamics of protein aggregation into amyloid fibrils. The perspective we adopt is largely experimental, but we also discuss recent developments in data analysis and we show that only a combination of well-designed experiments with appropriate theoretical modelling is able to provide detailed mechanistic insight into the complex pathways of amyloid formation. In the first part of the chapter, we describe measurements of the thermodynamic stability of the amyloid state with respect to the soluble state of proteins, as well as the magnitude and origin of this stability. In the second part, we discuss in detail the kinetics of the individual molecular steps in the overall mechanism of the conversion of soluble protein into amyloid fibrils. Finally, we highlight the effects of external factors, such as salt type and concentration, chemical denaturants and molecular chaperones on the kinetics of aggregation.

  18. Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞

    PubMed Central

    Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.

    2003-01-01

    Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042

  19. Force Relaxation and Thin Filament Protein Phosphorylation during Acute Myocardial Ischemia

    PubMed Central

    Han, Young Soo; Ogut, Ozgur

    2010-01-01

    Ischemia impairs myocardial function and may contribute to the progression of heart failure. In this study, rats subjected to acute ischemia demonstrated reduced Ca2+ activated force as well as a decrease in myosin binding protein-C, titin and Ser23/24 phosphorylation of troponin I (TnI). All three proteins have been demonstrated to be downstream targets of β-adrenergic receptor activation (β-AR), leading to the hypothesis that decreased β-AR during ischemia leads to reduced protein phosphorylation and reduced rate constants of force relaxation. To test this hypothesis, force relaxation transients were recorded from permeabilized perfused and ischemic rat heart fibers following photolysis of the caged chelator diazo-2. Relaxation transients were best fit by double exponential functions whereby the majority (>70%) of the force decline was described by the fast rate constant, which was ~5 times faster than the slow rate constant. However, rate constants of relaxation between perfused and ischemic fibers were not different, despite significant decreases in sarcomeric protein phosphorylation in ischemic fibers. Treatment of perfused fibers with a cAMP analog increased Ser23/24 phosphorylation of TnI, yet the rate constants of relaxation remained unchanged. Interestingly, similar treatment of ischemic fibers did not impact TnI phosphorylation or force relaxation transients. Therefore, acute ischemia does not influence the rate constants of relaxation of permeabilized fibers. These results also suggest that the physiological level of sarcomeric protein phosphorylation is unlikely to be the primary driver of relaxation kinetics in permeabilized cardiac muscle fibers. PMID:20925105

  20. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ.

    PubMed

    Rudrabhatla, Parvathi; Grant, Philip; Jaffe, Howard; Strong, Michael J; Pant, Harish C

    2010-11-01

    Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.

  1. The formation of fibrils by intertwining of filaments: model and application to amyloid Abeta protein.

    PubMed

    van Gestel, Jeroen; de Leeuw, Simon W

    2007-02-15

    We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Abeta protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils.

  2. The Formation of Fibrils by Intertwining of Filaments: Model and Application to Amyloid Aβ Protein

    PubMed Central

    van Gestel, Jeroen; de Leeuw, Simon W.

    2007-01-01

    We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Aβ protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils. PMID:17114229

  3. Hydrodynamic behavior of shaking flasks used for producing a recombinant protein by filamentous bacteria

    NASA Astrophysics Data System (ADS)

    Cordova Aguilar, Maria Soledad; Garcia, Monica; Trujillo-Roldan, Mauricio Alberto; Ascanio, Gabriel; Zenit, Roberto; Soto, Enrique

    2012-11-01

    Shake flasks are widely used for culture research. The agitation rate is one of the factors that determines the mass transfer. However, it has not been studied in detail. In this work, a comparison of the hydrodynamic performance for conventional, baffled and coiled spring Erlenmeyer flasks is presented. The velocity fields for a horizontal plane were measured by means of a Particle Image Velocimetry (PIV) technique and high speed videos were recorded to observe the behavior of the interface as a function of the agitation rate. It was observed not only that there is a strong dependence between the geometry and the hydrodynamics, but also there is a good agreement with the results obtained previously by Gamboa et al., in 2011, with the evaluation of the influence of culture conditions of S. lividans on protein O-glycosylation. The turbulence intensity increases with shaken rate. However, for the baffled geometry, it was observed a decrease for a critical speed, which is related with the in-phase and out-phase regions. These results can be an explanation for the variations in protein productivity as a function of the flask geometry and the differences in aggregation morphology and the pattern of O-glycosylation of the recombinant protein.

  4. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module

    PubMed Central

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R.; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Do Heo, Won; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named ‘exosomes for protein loading via optically reversible protein–protein interactions' (EXPLORs). By integrating a reversible protein–protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  5. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity

    PubMed Central

    Sun, Yuan-Yuan; Chi, Heng; Sun, Li

    2016-01-01

    Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity. PMID:27602029

  6. Isolation and chemical characterization of Alzheimer's disease paired helical filament cytoskeletons: differentiation from amyloid plaque core protein

    PubMed Central

    1988-01-01

    The paired helical filaments (PHFs) of Alzheimer's disease were purified by a strategy in which the neurons and amyloid plaque cores of protein (APCP) were initially isolated. This was achieved by several steps of isocratic sucrose centrifugations of increasing molarity and a discontinuous isotonic Percoll density gradient. After collagenase elimination of contaminating blood vessels, lysis of neurons was produced by SDS treatment. The released PHF cytoskeletons were separated from contaminating APCP and lipofuscin by sucrose density gradient. A final step consisted in the chemical purification of highly enriched PHFs and APCP components via a formic acid to guanidine hydrochloride transition. PHFs and APCPs were fractionated by size exclusion HPLC and further characterized and quantitated by automatic amino acid analysis. We also present some of the morphological and immunochemical characteristics of PHF polypeptides and APCP. Our studies indicate that apart from differences in localization and morphology, PHF and APCP significantly differ in (a) chemical structure (peptide and amino acid composition); (b) epitope specificity (antiubiquitin, antitau, antineurofilament); (c) physicochemical properties (structural conformation in guanidine hydrochloride); and (d) thioflavine T fluorescence emission. These parameters strongly suggest important differences in the composition and, probably, in the etiopathology of PHF and APCP of Alzheimer's disease. PMID:3060472

  7. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity.

    PubMed

    Sun, Yuan-Yuan; Chi, Heng; Sun, Li

    2016-01-01

    Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  8. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments.

    PubMed

    Reithmann, Emanuel; Reese, Louis; Frey, Erwin

    2016-08-12

    Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.

  9. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments

    NASA Astrophysics Data System (ADS)

    Reithmann, Emanuel; Reese, Louis; Frey, Erwin

    2016-08-01

    Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.

  10. CARMIL is a potent capping protein antagonist: identification of a conserved CARMIL domain that inhibits the activity of capping protein and uncaps capped actin filaments.

    PubMed

    Uruno, Takehito; Remmert, Kirsten; Hammer, John A

    2006-04-14

    Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly.

  11. The respiratory syncytial virus fusion protein targets to the perimeter of inclusion bodies and facilitates filament formation by a cytoplasmic tail-dependent mechanism.

    PubMed

    Baviskar, Pradyumna S; Hotard, Anne L; Moore, Martin L; Oomens, Antonius G P

    2013-10-01

    The human respiratory syncytial virus (HRSV) fusion (F) protein cytoplasmic tail (CT) and matrix (M) protein are key mediators of viral assembly, but the underlying mechanisms are poorly understood. A complementation assay was developed to systematically examine the role of the F protein CT in infectious virus production. The ability of F mutants with alanine substitutions in the CT to complement an F-null virus in generating infectious progeny was quantitated by flow cytometry. Two CT regions with impact on infectious progeny production were identified: residues 557 to 566 (CT-R1) and 569 to 572 (CT-R2). Substitutions in CT-R1 decreased infectivity by 40 to 85% and increased the level of F-induced cell-cell fusion but had little impact on assembly of viral surface filaments, which are believed to be virions. Substitutions in CT-R2, as well as deletion of the entire CT, abrogated infectious progeny production and impaired viral filament formation. However, CT-R2 mutations did not block but rather delayed the formation of viral filaments, which continued to form at a low rate and contained the viral M protein and nucleoprotein (N). Microscopy analysis revealed that substitutions in CT-R2 but not CT-R1 led to accumulation of M and F proteins within and at the perimeter of viral inclusion bodies (IBs), respectively. The accumulation of M and F at IBs and coincident strong decrease in filament formation and infectivity upon CT-R2 mutations suggest that F interaction with IBs is an important step in the virion assembly process and that CT residues 569 to 572 act to facilitate release of M-ribonucleoprotein complexes from IBs.

  12. Filament Breakaway

    NASA Image and Video Library

    2017-04-18

    A dark, elongated filament rose up and broke to the lower left and out from the sun seen by NASA Solar Dynamics Observatory, Apr.9-10, 2017. Filaments are cooler clouds of plasma tethered above the sun surface by magnetic forces. They are notoriously unstable and tend not to last more than a few days before they collapse into the sun or break away into space. A video, taken in extreme ultraviolet light, covers about nine hours of activity. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA21592

  13. Redox regulation by reversible protein S-thiolation in bacteria

    PubMed Central

    Loi, Vu Van; Rossius, Martina; Antelmann, Haike

    2015-01-01

    Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria. PMID:25852656

  14. The tobamovirus Turnip Vein Clearing Virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection.

    PubMed

    Levy, Amit; Zheng, Judy Y; Lazarowitz, Sondra G

    2013-06-01

    Plant viruses overcome the barrier of the plant cell wall by encoding cell-to-cell movement proteins (MPs), which direct newly replicated viral genomes to, and across, the wall. The paradigm for how a single MP regulates and coordinates these activities is the Tobacco mosaic virus (TMV) 30-kDa protein (MP(TMV)). Detailed studies demonstrate that TMV multiplies exclusively in the cytoplasm and have documented associations of MP(TMV) with endoplasmic reticulum (ER) membrane, microtubules, and plasmodesmata throughout the course of infection. As TMV poorly infects Arabidopsis thaliana, Turnip vein clearing virus (TVCV) is the tobamovirus of choice for studies in this model plant. A key problem, which has contributed to confusion in the field, is the unproven assumption that the TVCV and TMV life cycles are identical. We engineered an infectious TVCV replicon that expressed a functional fluorescence-tagged MP(TVCV) and report here the unexpected discovery that MP(TVCV), beyond localizing to ER membrane and plasmodesmata, targeted to the nucleus in a nuclear localization signal (NLS)-dependent manner, where it localized to novel F-actin-containing filaments that associated with chromatin. The MP(TVCV) NLS appeared to be conserved in the subgroup 3 tobamoviruses, and our mutational analyses showed that nuclear localization of MP(TVCV) was necessary for efficient TVCV cell-to-cell movement and systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. Our studies identify a novel nuclear stage in TVCV infection and suggest that nuclear MP encoded by TVCV and other subgroup 3 tobamoviruses interacts with F-actin and chromatin to modulate host defenses or cellular physiology to favor virus movement and infection.

  15. Quantum Dots-based Reverse Phase Protein Microarray

    SciTech Connect

    Shingyoji, Masato; Gerion, Daniele; Pinkel, Dan; Gray, Joe W.; Chen, Fanqing

    2005-07-15

    CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-detection. In this study, we established a novel Qdot-based technology platform that can perform accurate and reproducible quantification of protein concentration in a crude cell lysate background. Protein lysates have been spiked with a target protein, and a dilution series of the cell lysate with a dynamic range of three orders of magnitude has been used for this proof-of-concept study. The dilution series has been spotted in microarray format, and protein detection has been achieved with a sensitivity that is at least comparable to standard commercial assays, which are based on horseradish peroxidase (HRP) catalyzed diaminobenzidine (DAB) chromogenesis. The data obtained through the Qdot method has shown a close linear correlation between relative fluorescence unit and relative protein concentration. The Qdot results are in almost complete agreement with data we obtained with the well-established HRP-DAB colorimetric array (R{sup 2} = 0.986). This suggests that Qdots can be used for protein quantification in microarray format, using the platform presented here.

  16. Ion-specific modulation of protein interactions: Anion-induced, reversible oligomerization of a fusion protein

    PubMed Central

    Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Cao, Shawn; Dankberg, Jane; Goetze, Andrew; Remmele, Richard L; Narhi, Linda O; Brems, David N

    2009-01-01

    Ions can significantly modulate the solution interactions of proteins. We aim to demonstrate that the salt-dependent reversible heptamerization of a fusion protein called peptibody A or PbA is governed by anion-specific interactions with key arginyl and lysyl residues on its peptide arms. Peptibody A, an E. coli expressed, basic (pI = 8.8), homodimer (65.2 kDa), consisted of an IgG1-Fc with two, C-terminal peptide arms linked via penta-glycine linkers. Each peptide arm was composed of two, tandem, active sequences (SEYQGLPPQGWK) separated by a spacer (GSGSATGGSGGGASSGSGSATG). PbA was monomeric in 10 mM acetate, pH 5.0 but exhibited reversible self-association upon salt addition. The sedimentation coefficient (sw) and hydrodynamic diameter (DH) versus PbA concentration isotherms in the presence of 140 mM NaCl (A5N) displayed sharp increases in sw and DH, reaching plateau values of 9 s and 16 nm by 10 mg/mL PbA. The DH and sedimentation equilibrium data in the plateau region (>12 mg/mL) indicated the oligomeric ensemble to be monodisperse (PdI = 0.05) with a z-average molecular weight (Mz) of 433 kDa (stoichiometry = 7). There was no evidence of reversible self-association for an IgG1-Fc molecule in A5N by itself or in a mixture containing fluorescently labeled IgG1-Fc and PbA, indicative of PbA self-assembly being mediated through its peptide arms. Self-association increased with pH, NaCl concentration, and anion size (I− > Br− > Cl− > F−) but could be inhibited using soluble Trp-, Phe-, and Leu-amide salts (Trp > Phe > Leu). We propose that in the presence of salt (i) anion binding renders PbA self-association competent by neutralizing the peptidyl arginyl and lysyl amines, (ii) self-association occurs via aromatic and hydrophobic interactions between the..xx..xxx..xx.. motifs, and (iii) at >10 mg/mL, PbA predominantly exists as heptameric clusters. PMID:19177361

  17. An approach for protein to be completely reversible to thermal denaturation even at autoclave temperatures.

    PubMed

    Iwakura, M; Nakamura, D; Takenawa, T; Mitsuishi, Y

    2001-08-01

    Reversibility of protein denaturation is a prerequisite for all applications that depend on reliable enzyme catalysis, particularly, for using steam to sterilize enzyme reactors or enzyme sensor tips, and for developing protein-based devices that perform on-off switching of the protein function such as enzymatic activity, ligand binding and so on. In this study, we have successfully constructed an immobilized protein that retains full enzymatic activity even after thermal treatments as high as 120 degrees C. The key for the complete reversibility was the development of a new reaction that allowed a protein to be covalently attached to a surface through its C-terminus and the protein engineering approach that was used to make the protein compatible with the new attachment chemistry.

  18. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    PubMed

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  19. Mixed-mode reversed phase/positively charged repulsion chromatography for intact protein separation.

    PubMed

    Ding, Ling; Guo, Zhimou; Hu, Zhuo; Liang, Xinmiao

    2017-05-10

    A mixed-mode reversed phase/positively charged repulsion stationary phase C8PN composed of octyl and amino group has been developed for separation of intact protein. Before the separation of proteins, a set of probe compounds were employed to evaluate the chromatographic properties of C8PN, demonstrating typical reversed phase/positively charged repulsion interaction on this stationary phase as estimated. Then the new C8PN stationary phase was used to separate a standard protein mixture on the reversed phase mode. Compared with a commercial C4 stationary phase, it showed different selectivity for some proteins. In order to better understand the properties of C8PN, the effect of acetonitrile content was investigated based on retention equation. Higher values of the equation parameters on C8PN demonstrated that the protein retentions were more sensitive to the change of acetonitrile content. Besides, the influences of buffer salt additives on the protein retentions were also studied. The retention factors of the proteins got larger with the increase of buffer salt concentration, which confirmed the positively charged repulsion interaction on the column. Finally, the C8PN was further applied to separate oxidized- and reduced- forms of Recombinant Human Growth Hormone. Our study indicated the advantages and application potential of mixed-mode reversed phase/positively charged repulsion stationary phase for intact protein separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Study of the factors affecting the extraction of soybean protein by reverse micelles.

    PubMed

    Zhao, Xihong; Li, Yanmei; He, Xiaowei; Zhong, Nanjing; Xu, Zhenbo; Yang, Liansheng

    2010-02-01

    In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l(-1), aqueous pH 5.5 and KCl concentration 0.8 mol l(-1). The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.

  1. Residue 41 of the Eurasian Avian-Like Swine Influenza A Virus Matrix Protein Modulates Virion Filament Length and Efficiency of Contact Transmission

    PubMed Central

    Campbell, Patricia J.; Kyriakis, Constantinos S.; Marshall, Nicolle; Suppiah, Suganthi; Seladi-Schulman, Jill; Danzy, Shamika; Lowen, Anice C.

    2014-01-01

    ABSTRACT Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw

  2. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells.

    PubMed

    Laine, R O; Phaneuf, K L; Cunningham, C C; Kwiatkowski, D; Azuma, T; Southwick, F S

    1998-08-01

    The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed

  3. Gelsolin, a Protein That Caps the Barbed Ends and Severs Actin Filaments, Enhances the Actin-Based Motility of Listeria monocytogenes in Host Cells

    PubMed Central

    Laine, Roney O.; Phaneuf, Katherine L.; Cunningham, Casey C.; Kwiatkowski, David; Azuma, Toshi; Southwick, Frederick S.

    1998-01-01

    The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean ± standard error of the mean, 0.09 ± 0.003 μm/s [n = 176] versus 0.05 ± 0.003 μm/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed

  4. Interactions with Actin Monomers, Actin Filaments, and Arp2/3 Complex Define the Roles of WASP Family Proteins and Cortactin in Coordinately Regulating Branched Actin Networks*

    PubMed Central

    Helgeson, Luke A.; Prendergast, Julianna G.; Wagner, Andrew R.; Rodnick-Smith, Max; Nolen, Brad J.

    2014-01-01

    Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks. PMID:25160634

  5. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit

    SciTech Connect

    Jaru-Ampornpan, Peera; Shen, Kuang; Lam, Vinh Q.; Ali, Mona; Doniach, Sebastian; Jia, Tony Z.; Shan, Shu-ou

    2010-07-23

    Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and they require chaperones to keep them soluble and translocation competent. Here we show that a novel targeting factor in the chloroplast signal recognition particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to 'ATPases associated with various cellular activities' (AAA{sup +}) chaperones, cpSRP43 uses specific binding interactions with its substrate to mediate its 'disaggregase' activity. This disaggregase capability can allow targeting machineries to more effectively capture their protein substrates and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example to our knowledge of an ATP-independent disaggregase and shows that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate.

  6. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  7. Reverse transcriptase-related proteins in telomeres and in certain chromosomal loci of Rhynchosciara (Diptera: Sciaridae).

    PubMed

    Gorab, Eduardo

    2003-04-01

    The localization of reverse transcriptase-related proteins in polytene chromosomes of dipterans was investigated using previously characterized antibodies to a recombinant polypeptide containing conserved motifs of insect reverse transcriptases. The immunoreactions were carried out with polytene chromosome squashes of eight sciarids, one chironomid and three Drosophila species. Telomeric staining was regularly observed on chromosomes of the sciarid Rhynchosciara americana under normal growth conditions. Five of eight chromosomal tips were labelled except for the heterochromatic ends that are occasionally found associated forming a chromocentre in the salivary gland. Reverse transcriptase-related proteins were detected at chromosomal tips of young larvae and remained bound to the telomeres throughout larval development. As in salivary gland chromosomes, five non-telocentric ends of the chromosomes from Malpighian tubules of R. americana appeared clearly stained with anti-reverse transcriptase. The occurrence of telomeric reverse transcriptase in R. americana correlates with the presence of RNA in addition to an unusual enrichment with homopolymeric dA/dT DNA associated with the telomeric heterochromatin. The antibodies also reacted with a few interstitial sites in chromosomes of four Rhynchosciara species, one band overlapping the histone gene locus of three species in the americana -like group. The results provide evidence for a reverse transcriptase-related protein as a constitutive component in telomeres of R. americana and also in certain interstitial loci of Rhynchosciara species in which RNA was immunologically detected in the form of RNA:DNA hybrids.

  8. Protein-like fully reversible tetramerisation and super-association of an aminocellulose.

    PubMed

    Nikolajski, Melanie; Adams, Gary G; Gillis, Richard B; Besong, David Tabot; Rowe, Arthur J; Heinze, Thomas; Harding, Stephen E

    2014-01-24

    Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered "protein-like" and what might be considered as "carbohydrate-like" behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.

  9. Protein-like fully reversible tetramerisation and super-association of an aminocellulose

    NASA Astrophysics Data System (ADS)

    Nikolajski, Melanie; Adams, Gary G.; Gillis, Richard B.; Besong, David Tabot; Rowe, Arthur J.; Heinze, Thomas; Harding, Stephen E.

    2014-01-01

    Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered ``protein-like'' and what might be considered as ``carbohydrate-like'' behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.

  10. Reverse micelles in protein separation: the use of silica for the back-transfer process.

    PubMed

    Leser, M E; Mrkoci, K; Luisi, P L

    1993-02-20

    In order to use reverse micellar solutions successfully for the separation of proteins, good methods are needed to recover the biomolecules into an aqueous environment after solubilization into organic micellar media. Usually the recovery is accomplished by equilibrating the protein-loaded reverse micellar solution with a water phase containing an appropriate salt (back-transfer). In this article we describe an alternative "back extraction" procedure which is based on the addition of silica to the protein-containing reverse micellar solution. In this way, the water is stripped from the reverse micellar solution. [i.e., bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane/water] and the proteins adsorb to the silica particles. The adsorption process is shown to be practically quantitative. The subsequent recovery of the proteins form the silica into an aqueous solution turns out to be most efficient at alkaline pH (pH 8); 60-80 of the total protein (alpha-chymotrypsin or trypsin) could be recovered. The specific enzyme activity at the end of the whole cycle can be as high as 80-100%. The procedure is applied also for the back extraction from micellar solutions in which, instead of AOT, a biocompatible surfactant such as a synthetic short-chain lecithin was used. It is shown that the recovery of a alpha-chymotrypsin and trypsin is also achievable under these conditions in quite good yield and under good maintenance of the enzyme's catalytic activity.

  11. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.

    PubMed

    Boronat, S; García-Santamarina, S; Hidalgo, E

    2015-05-01

    Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also mediate the toxicity of oxidants. Among the reversible modifications, the most relevant ones are those arising from cysteine oxidation. Thus, formation of sulfenic acid or disulfide bonds is known to occur in many enzymes as part of their catalytic cycles, and it also participates in the activation of signaling cascades. Furthermore, these reversible modifications have been usually attributed with a protective role, since they may prevent the formation of irreversible damage by scavenging reactive oxygen species. Among irreversible modifications, protein carbonyl formation has been linked to damage and death, since it cannot be repaired and can lead to protein loss-of-function and to the formation of protein aggregates. This review is aimed at researchers interested on the biological consequences of oxidative stress, both at the level of signaling and toxicity. Here we are providing a concise overview on current mass-spectrometry-based methodologies to detect reversible cysteine oxidation and irreversible protein carbonyl formation in proteomes. We do not pretend to impose any of the different methodologies, but rather to provide an objective catwalk on published gel-free approaches to detect those two types of modifications, from a biologist's point of view.

  12. HIV-1 protease inhibits its homologous reverse transcriptase by protein-protein interaction.

    PubMed Central

    Böttcher, M; Grosse, F

    1997-01-01

    The reading frame of the HIV-1 pol gene, encoding protease (PR) and reverse transcriptase (RT), including RNase H as well as integrase, was fused to the bacterialbeta-galactosidase gene and overexpressed in Escherichia coli cells. The resulting fusion protein was cleaved autocatalytically leading to PR, RT and integrase. Immunoprecipitations of bacterial crude extracts with anti-RT antibodies precipitated both RT and PR. Co-precipitation of PR and RT was also observed with anti-PR antibodies, strongly suggesting a physical interaction between fully processed RT and PR within the bacterial cell. Physical interactions were confirmed with purified components by means of an ELISA assay. Furthermore, purified PR inhibited the DNA synthesis activity of purified RT, while its RNase H activity remained unaffected. The type of inhibition was uncompetitive with respect to poly(rA).oligo(dT); the inhibition constant was 50-100 nM. A possible physiological significance of this type of interaction is discussed. PMID:9108151

  13. AXOPLASMIC PROTEINS OF THE SQUID GIANT NERVE FIBER WITH PARTICULAR REFERENCE TO THE FIBROUS PROTEIN

    PubMed Central

    Maxfield, Myles

    1953-01-01

    1. Axoplasm of squid giant nerve fibers is examined with the ultracentrifuge and electrophoresis apparatus and several distinct components demonstrated. 2. One of these components, a protein called axon filaments, is isolated by fractional extraction followed by differential ultracentrifugation and redissolving in glycine solution. Axon filaments are monodisperse by ultracentrifugation. Their physical chemical properties have been studied. 3. The existence of a reversible transformation of axon filaments into a particle of lower molecular weight and lower asymmetry has been demonstrated. PMID:13109156

  14. Modulation of thin filament activation of myosin ATP hydrolysis by N-terminal domains of cardiac myosin binding protein-C.

    PubMed

    Belknap, Betty; Harris, Samantha P; White, Howard D

    2014-10-28

    We have used enzyme kinetics to investigate the molecular mechanism by which the N-terminal domains of human and mouse cardiac MyBP-C (C0C1, C1C2, and C0C2) affect the activation of myosin ATP hydrolysis by F-actin and by native porcine thin filaments. N-Terminal domains of cMyBP-C inhibit the activation of myosin-S1 ATPase by F-actin. However, mouse and human C1C2 and C0C2 produce biphasic activating and inhibitory effects on the activation of myosin ATP hydrolysis by native cardiac thin filaments. Low ratios of MyBP-C N-terminal domains to thin filaments activate myosin-S1 ATP hydrolysis, but higher ratios inhibit ATP hydrolysis, as is observed with F-actin alone. These data suggest that low concentrations of C1C2 and C0C2 activate thin filaments by a mechanism similar to that of rigor myosin-S1, whereas higher concentrations inhibit the ATPase rate by competing with myosin-S1-ADP-Pi for binding to actin and thin filaments. In contrast to C0C2 and C1C2, the activating effects of the C0C1 domain are species-dependent: human C0C1 activates actomyosin-S1 ATPase rates, but mouse C0C1 does not produce significant activation or inhibition. Phosphorylation of serine residues in the m-linker between the C1 and C2 domains by protein kinase-A decreases the activation of thin filaments by huC0C2 at pCa > 8 but has little effect on the activation mechanism at pCa = 4. In sarcomeres, the low ratio of cMyBP-C to actin is expected to favor the activating effects of cMyBP-C while minimizing inhibition produced by competition with myosin heads.

  15. Tunable and reversible drug control of protein production via a self-excising degron

    PubMed Central

    Chung, Hokyung K.; Jacobs, Conor L.; Huo, Yunwen; Yang, Jin; Krumm, Stefanie A.; Plemper, Richard K.; Tsien, Roger Y.; Lin, Michael Z.

    2015-01-01

    An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe Small Molecule-Assisted Shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, leaving untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing rapid degradation of subsequently synthesized protein copies. SMASh allows reversible and dose-dependent shutoff of various proteins in multiple mammalian cell types and in yeast. We also used SMASh to confer drug responsiveness onto a RNA virus for which no licensed inhibitors exist. As SMASh does not require permanent fusion of a large domain, it should be useful when control over protein production with minimal structural modification is desired. Furthermore, as SMASh only involves a single genetic modification and does not rely on modulating protein-protein interactions, it should be easy to generalize to multiple biological contexts. PMID:26214256

  16. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    SciTech Connect

    Ozaki, Hana; Katoh, Tsuyoshi; Nakagawa, Ryoko; Ishihara, Yasuhiro; Sueyoshi, Noriyuki; Kameshita, Isamu; Taniguchi, Takanobu; Hirano, Tetsuo; Yamazaki, Takeshi; Ishida, Atsuhiko

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  17. Image reversal for direct electron beam patterning of protein coated surfaces.

    PubMed

    Pesen, Devrim; Erlandsson, Anna; Ulfendahl, Mats; Haviland, David B

    2007-11-01

    Electron beam lithography (EBL) is used to create surfaces with protein patterns, which are characterized by immunofluorescence and atomic force microscopies. Both negative and positive image processes are realized by electron beam irradiation of proteins absorbed on a silicon surface, where image reversal is achieved by selectively binding a second species of protein to the electron beam exposed areas on the first protein layer. Biofunctionality at the cellular level was established by culturing cortical cells on patterned lines of fibronectin adsorbed on a bovine serum albumin background for 7 days in culture.

  18. Identification of inflammatory bowel disease-related proteins using a reverse k-nearest neighbor search.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2014-08-01

    Inflammatory bowel disease (IBD) is a chronic disease whose incidence and prevalence increase every year; however, the pathogenesis of IBD is still unclear. Thus, identifying IBD-related proteins is important for understanding its complex disease mechanism. Here, we propose a new and simple network-based approach using a reverse k-nearest neighbor ( R k NN ) search to identify novel IBD-related proteins. Protein-protein interactions (PPI) and Genome-Wide Association Studies (GWAS) were used in this study. After constructing the PPI network, the R k NN search was applied to all of the proteins to identify sets of influenced proteins among their k-nearest neighbors ( R k NNs ). An observed protein whose influenced proteins were mostly known IBD-related proteins was statistically identified as a novel IBD-related protein. Our method outperformed a random aspect, k NN search, and centrality measures based on the network topology. A total of 39 proteins were identified as IBD-related proteins. Of these proteins, 71% were reported at least once in the literature as related to IBD. Additionally, these proteins were found over-represented in the IBD pathway and enriched in importantly functional pathways in IBD. In conclusion, the R k NN search with the statistical enrichment test is a great tool to identify IBD-related proteins to better understand its complex disease mechanism.

  19. Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein

    PubMed Central

    Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.

    2016-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  20. Fast and Reversible Photoswitching of the Fluorescent Protein Dronpa as Evidenced by Fluorescence Correlation Spectroscopy

    PubMed Central

    Dedecker, Peter; Hotta, Jun-ichi; Ando, Ryoko; Miyawaki, Atsushi; Engelborghs, Yves; Hofkens, Johan

    2006-01-01

    Controlling molecular properties through photoirradiation holds great promise for its potential for noninvasive and selective manipulation of matter. Photochromism has been observed for several different molecules, including green fluorescent proteins, and recently the discovery of a novel photoswitchable green fluorescent protein called Dronpa was reported. Dronpa displays reversible and highly efficient on/off photoswitching of its fluorescence emission, and reversible switching of immobilized single molecules of Dronpa with response times faster than 20 ms was demonstrated. In this Letter, we expand these observations to freely diffusing molecules by using fluorescence correlation spectroscopy with simultaneous excitation at 488 and 405 nm. By varying the intensity of irradiation at 405 nm, we demonstrate the reversible photoswitching of Dronpa under these conditions, and from the obtained autocorrelation functions we conclude that this photoswitching can occur within tens of microseconds. PMID:16798811

  1. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching.

    PubMed

    Brakemann, Tanja; Stiel, Andre C; Weber, Gert; Andresen, Martin; Testa, Ilaria; Grotjohann, Tim; Leutenegger, Marcel; Plessmann, Uwe; Urlaub, Henning; Eggeling, Christian; Wahl, Markus C; Hell, Stefan W; Jakobs, Stefan

    2011-09-11

    Photoswitchable fluorescent proteins have enabled new approaches for imaging cells, but their utility has been limited either because they cannot be switched repeatedly or because the wavelengths for switching and fluorescence imaging are strictly coupled. We report a bright, monomeric, reversibly photoswitchable variant of GFP, Dreiklang, whose fluorescence excitation spectrum is decoupled from that for optical switching. Reversible on-and-off switching in living cells is accomplished at illumination wavelengths of ∼365 nm and ∼405 nm, respectively, whereas fluorescence is elicited at ∼515 nm. Mass spectrometry and high-resolution crystallographic analysis of the same protein crystal in the photoswitched on- and off-states demonstrate that switching is based on a reversible hydration/dehydration reaction that modifies the chromophore. The switching properties of Dreiklang enable far-field fluorescence nanoscopy in living mammalian cells using both a coordinate-targeted and a stochastic single molecule switching approach.

  2. Structural feature extraction protocol for classifying reversible membrane binding protein domains.

    PubMed

    Källberg, Morten; Lu, Hui

    2009-01-01

    Machine learning based classification protocols for automated function annotation of protein structures have in many instances proven superior to simpler sequence based procedures. Here we present an automated method for extracting features from protein structures by construction of surface patches to be used in such protocols. The utility of the developed patch-growing procedure is exemplified by its ability to identify reversible membrane binding domains from the C1, C2, and PH families.

  3. Design of a reversible biotin analog and applications in protein labeling, detection, and isolation.

    PubMed

    Ying, Lai-Qiang; Branchaud, Bruce P

    2011-08-14

    To expand the applicability of the biotin-(strept)avidin system, a biotin analog with reversible binding under non-denaturing conditions has been designed, and its applications in protein labeling, detection, and isolation have been evaluated. This journal is © The Royal Society of Chemistry 2011

  4. Filament turbulence

    NASA Astrophysics Data System (ADS)

    Davidsen, Joern

    2010-03-01

    How much information do you need to distinguish between different mechanisms for spatiotemporal chaos in three-dimensions? In this talk, I will show that the observation of the dynamics on the surface of a medium can be sufficient. Studying mechanisms for filament turbulence in the context of reaction-diffusion media, we found numerically that two major classes of instabilities leave a very different signature on what can be observed on the surface of a three-dimensional medium. These results are of direct relevance in the context of ventricular fibrillation - a turbulent electrical wave activity that destroys the coherent contraction of the ventricular muscle and its main pumping function leading to sudden cardiac death. While it has been proposed that the three-dimensional structure of the heart plays an important role in this type of filament turbulence, only the surface of the heart is currently accessible to experimental observation preventing the study of the full dynamics. Our results suggest that such observations might be sufficient.

  5. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support.

    PubMed

    Di Bartolo, Natalie; Compton, Emma L R; Warne, Tony; Edwards, Patricia C; Tate, Christopher G; Schertler, Gebhard F X; Booth, Paula J

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40-70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes.

  6. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair

    PubMed Central

    Mahaney, Brandi L.; Hammel, Michal; Meek, Katheryn; Tainer, John A.; Lees-Miller, Susan P.

    2013-01-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the non-homologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long complementary DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  7. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Frey, Stefan; Lahmann, Yasmine; Hartmann, Thomas; Seiler, Stephan; Pöggeler, Stefanie

    2015-08-01

    The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility. © 2015 John Wiley & Sons Ltd.

  8. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    SciTech Connect

    Bavand, M.R.; Laub, O. )

    1988-02-01

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as {approximately}90- and {approximately}70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein.

  9. Phosphoprotein Stability in Clinical Tissue and Its Relevance for Reverse Phase Protein Microarray Technology

    PubMed Central

    Espina, Virginia; Mueller, Claudius; Liotta, Lance A.

    2013-01-01

    Phosphorylated proteins reflect the activity of specific cell signaling nodes in biological kinase protein networks. Cell signaling pathways can be either activated or deactivated depending on the phosphorylation state of the constituent proteins. The state of these kinase pathways reflects the in vivo activity of the cells and tissue at any given point in time. As such, cell signaling pathway information can be extrapolated to infer which phosphorylated proteins/pathways are driving an individual tumor’s growth. Reverse Phase Protein Microarrays (RPMA) are a sensitive and precise platform that can be applied to the quantitative measurement of hundreds of phosphorylated signal proteins from a small sample of tissue. Pre-analytical variability originating from tissue procurement and preservation may cause significant variability and bias in downstream molecular analysis. Depending on the ex vivo delay time in tissue processing, and the manner of tissue handling, protein biomarkers such as signal pathway phosphoproteins will be elevated or suppressed in a manner that does not represent the biomarker levels at the time of excision. Consequently, assessment of the state of these kinase networks requires stabilization, or preservation, of the phosphoproteins immediately post tissue procurement. We have employed reverse phase protein microarray analysis of phosphoproteins to study the factors influencing stability of phosphoproteins in tissue following procurement. Based on this analysis we have established tissue procurement guidelines for clinical research with an emphasis on quantifying phosphoproteins by RPMA. PMID:21901591

  10. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry.

    PubMed Central

    Ducret, A.; Van Oostveen, I.; Eng, J. K.; Yates, J. R.; Aebersold, R.

    1998-01-01

    We describe an integrated workstation for the automated, high-throughput, and conclusive identification of proteins by reverse-phase chromatography electrospray ionization tandem mass spectrometry. The instrumentation consists of a refrigerated autosampler, a submicrobore reverse-phase liquid chromatograph, and an electrospray triple quadrupole mass spectrometer. For protein identification, enzymatic digests of either homogeneous polypeptides or simple protein mixtures were generated and loaded into the autosampler. Samples were sequentially injected every 32 min. Ions of eluting peptides were automatically selected by the mass spectrometer and subjected to collision-induced dissociation. Following each run, the resulting tandem mass spectra were automatically analyzed by SEQUEST, a program that correlates uninterpreted peptide fragmentation patterns with amino acid sequences contained in databases. Protein identification was established by SEQUEST_SUMMARY a program that combines the SEQUEST scores of peptides originating from the same protein and ranks the cumulative results in a short summary. The workstation's performance was demonstrated by the unattended identification of 90 proteins from the yeast Saccharomyces cerevisiae, which were separated by high-resolution two-dimensional PAGE. The system was found to be very robust and identification was reliably and conclusively established for proteins if quantities exceeding 1-5 pmol were applied to the gel. The level of automation, the throughput, and the reliability of the results suggest that this system will be useful for the many projects that require the characterization of large numbers of proteins. PMID:9541403

  11. Regulation of protein phosphorylation of the intermediate-sized filament vimentin in the ciliary epithelium of the mammalian eye

    SciTech Connect

    Coca-Prados, M.

    1985-08-25

    The intermediate-sized filaments of vimentin-type (Mr = 57,000) have been identified biochemically and immunochemically as a major cytoskeleton component in the ciliary epithelium of the mammalian eye. When human or rabbit ciliary processes, or cultured ciliary epithelial-derived cells were incubated in serum-free medium containing (TSP)orthophosphate and any of the following agents: 1) beta-adrenergic agonists (isoproterenol or epinephrine), 2) direct activators of adenylate cyclase (cholera toxin or forskolin), 3) analogs of cyclic AMP (8-Br-cAMP), or 4) prostaglandin E1, the phosphorylation of vimentin was significantly enhanced. The maximal enhancement ranged, in vivo and in vitro, from about 3-fold in human to 5-fold in rabbit, with either 1 mM 8-Br-cAMP or 0.1 microM forskolin. Indirect immunofluorescence microscopy using a monoclonal antibody, anti-vimentin, allowed the localization of vimentin filaments in cultured ciliary epithelial cells. Treatment of these cells in culture with the catecholamine hormone, isoproterenol (1 microM), resulted in a profound reorganization of vimentin filaments. This may be correlated with the enhanced levels of phosphorylated vimentin observed upon increasing cellular cyclic AMP.

  12. Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling?

    PubMed Central

    Randall, Matthew J.; Hristova, Milena; van der Vliet, Albert

    2013-01-01

    Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4-8 hrs by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein-acrolein adduction. Our findings indicate that acrolein-induced protein alkylation is not necessarily a feature of irreversible protein damage, but may reflect a reversible signaling mechanism that is regulated by GSH and Trx1. PMID:24157358

  13. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein

    PubMed Central

    2014-01-01

    Background Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. Results In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. Conclusion Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of

  14. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays | Office of Cancer Genomics

    Cancer.gov

    Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data.

  15. Actin filament curvature biases branching direction

    PubMed Central

    Risca, Viviana I.; Wang, Evan B.; Chaudhuri, Ovijit; Chia, Jia Jun; Geissler, Phillip L.; Fletcher, Daniel A.

    2012-01-01

    Mechanical cues affect many important biological processes in metazoan cells, such as migration, proliferation, and differentiation. Such cues are thought to be detected by specialized mechanosensing molecules linked to the cytoskeleton, an intracellular network of protein filaments that provide mechanical rigidity to the cell and drive cellular shape change. The most abundant such filament, actin, forms branched networks nucleated by the actin-related protein (Arp) 2/3 complex that support or induce membrane protrusions and display adaptive behavior in response to compressive forces. Here we show that filamentous actin serves in a mechanosensitive capacity itself, by biasing the location of actin branch nucleation in response to filament bending. Using an in vitro assay to measure branching from curved sections of immobilized actin filaments, we observed preferential branch formation by the Arp2/3 complex on the convex face of the curved filament. To explain this behavior, we propose a fluctuation gating model in which filament binding or branch nucleation by Arp2/3 occur only when a sufficiently large, transient, local curvature fluctuation causes a favorable conformational change in the filament, and we show with Monte Carlo simulations that this model can quantitatively account for our experimental data. We also show how the branching bias can reinforce actin networks in response to compressive forces. These results demonstrate how filament curvature can alter the interaction of cytoskeletal filaments with regulatory proteins, suggesting that direct mechanotransduction by actin may serve as a general mechanism for organizing the cytoskeleton in response to force. PMID:22308368

  16. A 295-kDA intermediate filament-associated protein in radial glia and developing muscle cells in vivo and in vitro.

    PubMed

    Chanas-Sacré, G; Thiry, M; Pirard, S; Rogister, B; Moonen, G; Mbebi, C; Verdière-Sahuqué, M; Leprince, P

    2000-12-01

    The RC2 antibody is frequently used to label mouse radial glial cells in all parts of the nervous system where neuronal migration occurs during embryonic and early postnatal life. The antigen recognized by this antibody still needs to be identified. We have characterized further its localization in vivo, its expression and subcellular localization in vitro, as well as its molecular nature. Histologic investigations of whole mouse embryos reveal an equally intense expression of RC2 immunostaining in radial glial cells in brain and spinal cord and in skeletal muscle. In glial cells cultures, the RC2 antibody recognizes an epitope located on the glial cytoskeleton and identified as an intermediate filament associated protein (IFAP) at the ultrastructural level. RC2 immunostaining in those cells is strongly dependent on the presence of a serum-derived activity. Serum-removal causes a decrease of the staining while adding serum back to the cells induces reexpression of RC2 immunoreactivity. By Western blotting, we find that in intermediate filament (IF) preparations obtained from cultured cerebellar glia, the RC2 antibody recognizes a 295-kDa protein whose expression is also dependent on the presence of serum in culture medium. In developing muscle cells, RC2 immunostaining is observed from the myoblast stage and disappears after complete myotube fusion. Both in vivo and in vitro, staining is first seen as a loose capping around myoblasts nuclei and progressively concentrates into Z-disks in association with the muscle IF protein desmin. The RC2 antibody also recognizes a 295-kDa protein band in muscle tissue protein extracts. Thus, the RC2 antibody recognizes a developmentally regulated cytoskeletal protein that is expressed, like other previously identified IFAPs, by cells of the glial and myogenic lineages and whose expression in vitro seems to be controlled by a signaling mechanism known to modulate astroglial morphology. Copyright 2000 Wiley-Liss, Inc.

  17. Coevolutionary Analysis Identifies Protein–Protein Interaction Sites between HIV-1 Reverse Transcriptase and Integrase

    PubMed Central

    Hetti Arachchilage, Madara; Piontkivska, Helen

    2016-01-01

    The replication of human immunodeficiency virus-1 (HIV-1) requires reverse transcription of the viral RNA genome and integration of newly synthesized pro-viral DNA into the host genome. This is mediated by the viral proteins reverse transcriptase (RT) and integrase (IN). The formation and stabilization of the pre-integration complex (PIC), which is an essential step for reverse transcription, nuclear import, chromatin targeting, and subsequent integration, involves direct and indirect modes of interaction between RT and IN proteins. While epitope-based treatments targeting IN–viral DNA and IN–RT complexes appear to be a promising combination for an anti-HIV treatment, the mechanisms of IN-RT interactions within the PIC are not well understood due to the transient nature of the protein complex and the intrinsic flexibility of its components. Here, we identify potentially interacting regions between the IN and RT proteins within the PIC through the coevolutionary analysis of amino acid sequences of the two proteins. Our results show that specific regions in the two proteins have strong coevolutionary signatures, suggesting that these regions either experience direct and prolonged interactions between them that require high affinity and/or specificity or that the regions are involved in interactions mediated by dynamic conformational changes and, hence, may involve both direct and indirect interactions. Other regions were found to exhibit weak, but positive correlations, implying interactions that are likely transient and/or have low affinity. We identified a series of specific regions of potential interactions between the IN and RT proteins (e.g., specific peptide regions within the C-terminal domain of IN were identified as potentially interacting with the Connection domain of RT). Coevolutionary analysis can serve as an important step in predicting potential interactions, thus informing experimental studies. These studies can be integrated with structural data

  18. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins.

    PubMed

    Alibardi, Lorenzo

    2013-02-01

    The isolation of genes for alpha-keratins and keratin-associated beta-proteins (formerly beta-keratins) has allowed the production of epitope-specific antibodies for localizing these proteins during the process of cornification epidermis of reptilian sauropsids. The antibodies are directed toward proteins in the alpha-keratin range (40-70 kDa) or beta-protein range (10-30 kDa) of most reptilian sauropsids. The ultrastructural immunogold study shows the localization of acidic alpha-proteins in suprabasal and precorneous epidermal layers in lizard, snake, tuatara, crocodile, and turtle while keratin-associated beta-proteins are localized in precorneous and corneous layers. This late activation of the synthesis of keratin-associated beta-proteins is typical for keratin-associated and corneous proteins in mammalian epidermis (involucrin, filaggrin, loricrin) or hair (tyrosine-rich or sulfur-rich proteins). In turtles and crocodilians epidermis, keratin-associated beta-proteins are synthesized in upper spinosus and precorneous layers and accumulate in the corneous layer. The complex stratification of lepidosaurian epidermis derives from the deposition of specific glycine-rich versus cysteine-glycine-rich keratin-associated beta-proteins in cells sequentially produced from the basal layer and not from the alternation of beta- with alpha-keratins. The process gives rise to Oberhäutchen, beta-, mesos-, and alpha-layers during the shedding cycle of lizards and snakes. Differently from fish, amphibian, and mammalian keratin-associated proteins (KAPs) of the epidermis, the keratin-associated beta-proteins of sauropsids are capable to form filaments of 3-4 nm which give rise to an X-ray beta-pattern as a consequence of the presence of a beta-pleated central region of high homology, which seems to be absent in KAPs of the other vertebrates. Copyright © 2012 Wiley Periodicals, Inc.

  19. Recovery of proteins and amino acids from reverse micelles by dehydration with molecular sieves.

    PubMed

    Gupta, R B; Han, C J; Johnston, K P

    1994-09-20

    A new method is presented to precipitate proteins and amino acids from reverse micelles by dehydrating the micelles with molecular sieves. Nearly complete precipitation is demonstrated for alpha-chymotrypsin, cytochromec, and trytophan from 2-ethylhexyl sodium sulfosuccinate (AOT)/isooctane/water reverse micelle solutions. The products precipitate as a solid powder, which is relatively free of surfactant. The method does not require any manipulation of pH, ionic strength, temperature, pressure, or solvent composition, and is applicable over a broad range of these properties. This general approach is compared with other techniques. This general approach is compared with other techniques for the recovery of biomolecules from reverse micelles. (c) 1994 John Wiley & Sons, Inc.

  20. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains.

    PubMed

    Sawa, S; Watanabe, K; Goto, K; Liu, Y G; Shibata, D; Kanaya, E; Morita, E H; Okada, K

    1999-05-01

    Distinctive from that of the animal system, the basic plan of the plant body is the continuous formation of a structural unit, composed of a stem with a meristem at the top and lateral organs continuously forming at the meristem. Therefore, mechanisms controlling the formation, maintenance, and development of a meristem will be a key to understanding the body plan of higher plants. Genetic analyses of filamentous flower (fil) mutants have indicated that FIL is required for the maintenance and growth of inflorescence and floral meristems, and of floral organs of Arabidopsis thaliana. FIL encodes a protein carrying a zinc finger and a HMG box-like domain, which is known to work as a transcription regulator. As expected, the FIL protein was shown to have a nuclear location. In situ hybridization clearly demonstrated that FIL is expressed only at the abaxial side of primordia of leaves and floral organs. Transgenic plants, ectopically expressing FIL, formed filament-like leaves with randomly arranged cells at the leaf margin. Our results indicate that cells at the abaxial side of the lateral organs are responsible for the normal development of the organs as well as for maintaining the activity of meristems.

  1. Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins.

    PubMed

    Romero-Romero, Sergio; Costas, Miguel; Rodríguez-Romero, Adela; Alejandro Fernández-Velasco, D

    2015-08-28

    Temperature is one of the main variables that modulate protein function and stability. Thermodynamic studies of oligomeric proteins, the dominant protein natural form, have been often hampered because irreversible aggregation and/or slow reactions are common. There are no reports on the reversible equilibrium thermal unfolding of proteins composed of (β/α)8 barrel subunits, albeit this "TIM barrel" topology is one of the most abundant and versatile in nature. We studied the eponymous TIM barrel, triosephosphate isomerase (TIM), belonging to five species of different bacterial taxa. All of them were found to be catalytically efficient dimers. The three-dimensional structure of four enzymes was solved at high/medium resolution. Irreversibility and kinetic control were observed in the thermal unfolding of two TIMs, while for the other three the thermal unfolding was found to follow a two-state equilibrium reversible process. Shifts in the global stability curves of these three proteins are related to the organismal temperature range of optimal growth and modulated by variations in maximum stability temperature and in the enthalpy change at that temperature. Reversibility appears to correlate with the low isoelectric point, the absence of a residual structure in the unfolded state, small cavity volume in the native state, low conformational stability and a low melting temperature. Furthermore, the strong coupling between dimer dissociation and monomer unfolding may reduce aggregation and favour reversibility. It is therefore very thought-provoking to find that a common topological ensemble, such as the TIM barrel, can unfold/refold in the Anfinsen way, i.e. without the help of the cellular machinery.

  2. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo.

    PubMed

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun; Shucun, Qin

    2016-07-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with (3)H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of (3)H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed (3)H-cholesterol of plasma was decreased by 68% for male and 62% for female, and (3)H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and (3)H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, (3)H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0-24 h period, but there was no significant difference during 24-48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  3. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo

    PubMed Central

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun

    2016-01-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo. After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with 3H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of 3H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed 3H-cholesterol of plasma was decreased by 68% for male and 62% for female, and 3H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and 3H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, 3H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0–24 h period, but there was no significant difference during 24–48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  4. CacyBP/SIP as a novel modulator of the thin filament.

    PubMed

    Jurewicz, Ewelina; Ostrowska, Zofia; Jozwiak, Jolanta; Redowicz, Maria Jolanta; Lesniak, Wieslawa; Moraczewska, Joanna; Filipek, Anna

    2013-03-01

    The CacyBP/SIP protein interacts with several targets, including actin. Since the majority of actin filaments are associated with tropomyosin, in this work we characterized binding of CacyBP/SIP to the actin-tropomyosin complex and examined the effects of CacyBP/SIP on actin filament functions. By using reconstituted filaments composed of actin and AEDANS-labeled tropomyosin, we observed that binding of CacyBP/SIP caused an increase in tropomyosin fluorescence intensity indicating the occurrence of conformational changes within the filament. We also found that CacyBP/SIP bound directly to tropomyosin and that these proteins did not compete with each other for binding to actin. Electron microscopy showed that in the absence of tropomyosin CacyBP/SIP destabilized actin filaments, but tropomyosin reversed this effect. Actin-activated myosin S1 ATPase activity assays, performed using a colorimetric method, indicated that CacyBP/SIP reduced ATPase activity and that the presence of tropomyosin enhanced this inhibitory effect. Thus, our results suggest that CacyBP/SIP, through its interaction with both actin and tropomyosin, regulates the organization and functional properties of the thin filament.

  5. Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Knowles, Tuomas P. J.

    2014-06-01

    The formation of nanoscale protein filaments from soluble precursor molecules through nucleated polymerization is a common form of supra-molecular assembly phenomenon. This process underlies the generation of a range of both functional and pathological structures in nature. Filament breakage has emerged as a key process controlling the kinetics of the growth reaction since it increases the number of filament ends in the system that can act as growth sites. In order to ensure microscopic reversibility, however, the inverse process of fragmentation, end-to-end annealing of filaments, is a necessary component of a consistent description of such systems. Here, we combine Smoluchowski kinetics with nucleated polymerization models to generate a master equation description of protein fibrillization, where filamentous structures can undergo end-to-end association, in addition to elongation, fragmentation, and nucleation processes. We obtain self-consistent closed-form expressions for the growth kinetics and discuss the key physics that emerges from considering filament fusion relative to current fragmentation only models. Furthermore, we study the key time scales that describe relaxation to equilibrium.

  6. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays.

    PubMed

    Li, Jun; Zhao, Wei; Akbani, Rehan; Liu, Wenbin; Ju, Zhenlin; Ling, Shiyun; Vellano, Christopher P; Roebuck, Paul; Yu, Qinghua; Eterovic, A Karina; Byers, Lauren A; Davies, Michael A; Deng, Wanleng; Gopal, Y N Vashisht; Chen, Guo; von Euw, Erika M; Slamon, Dennis; Conklin, Dylan; Heymach, John V; Gazdar, Adi F; Minna, John D; Myers, Jeffrey N; Lu, Yiling; Mills, Gordon B; Liang, Han

    2017-02-13

    Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data. Our dataset recapitulates the effects of mutated pathways on protein expression observed in patient samples, and demonstrates that proteins and particularly phosphoproteins provide information for predicting drug sensitivity that is not available from the corresponding mRNAs. We also developed a user-friendly bioinformatic resource, MCLP, to help serve the biomedical research community. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chaperonin filaments: The archaeal cytoskeleton?

    PubMed Central

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  8. The cytokeratin filament-aggregating protein filaggrin is the target of the so-called "antikeratin antibodies," autoantibodies specific for rheumatoid arthritis.

    PubMed Central

    Simon, M; Girbal, E; Sebbag, M; Gomès-Daudrix, V; Vincent, C; Salama, G; Serre, G

    1993-01-01

    In rheumatoid arthritis (RA), the high diagnostic value of serum antibodies to the stratum corneum of rat esophagus epithelium has been widely reported. These so-called "antikeratin antibodies," detected by indirect immunofluorescence, were found to be autoantibodies since they also labeled human epidermis. Despite their name, the actual target of these autoantibodies was not known. In this study, a 40-kD protein (designated as 40K), extracted from human epidermis and specifically immunodetected by 75% of RA sera, was purified and identified as a neutral/acidic isoform of basic filaggrin, a cytokeratin filament-aggregating protein, by peptide mapping studies and by the following evidences: (a) mAbs specific for filaggrin reacted with the 40K protein; (b) the autoantibodies, affinity-purified from RA sera on the 40K protein, immunodetected purified filaggrin; (c) the reactivity of RA sera to the 40K protein was abolished after immunoadsorption with purified filaggrin; (d) the 40K protein and filaggrin had similar amino acid compositions. Furthermore, autoantibodies against the 40K protein and the so-called "antikeratin antibodies" were shown, by immunoadsorption experiments, to be largely the same. The identification of filaggrin as a RA-specific autoantigen could contribute to the understanding of the pathogenesis of this disease and, ultimately, to the development of methods for preventing the autoimmune response. Images PMID:7690781

  9. Reversible stress softening of actin networks

    PubMed Central

    Chaudhuri, Ovijit; Parekh, Sapun H.; Fletcher, Daniel A.

    2011-01-01

    The mechanical properties of cells play an essential role in numerous physiological processes. Organized networks of semiflexible actin filaments determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes1–3. Although numerous actin-binding proteins have been identified that organize networks, the mechanical properties of actin networks with physiological architectures and concentrations have been difficult to measure quantitatively. Studies of mechanical properties in vitro have found that crosslinked networks of actin filaments formed in solution exhibit stress stiffening arising from the entropic elasticity of individual filaments or crosslinkers resisting extension4–8. Here we report reversible stress-softening behaviour in actin networks reconstituted in vitro that suggests a critical role for filaments resisting compression. Using a modified atomic force microscope to probe dendritic actin networks (like those formed in the lamellipodia of motile cells), we observe stress stiffening followed by a regime of reversible stress softening at higher loads. This softening behaviour can be explained by elastic buckling of individual filaments under compression that avoids catastrophic fracture of the network. The observation of both stress stiffening and softening suggests a complex interplay between entropic and enthalpic elasticity in determining the mechanical properties of actin networks. PMID:17230186

  10. Reversible stress softening of actin networks

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Parekh, Sapun H.; Fletcher, Daniel A.

    2007-01-01

    The mechanical properties of cells play an essential role in numerous physiological processes. Organized networks of semiflexible actin filaments determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes. Although numerous actin-binding proteins have been identified that organize networks, the mechanical properties of actin networks with physiological architectures and concentrations have been difficult to measure quantitatively. Studies of mechanical properties in vitro have found that crosslinked networks of actin filaments formed in solution exhibit stress stiffening arising from the entropic elasticity of individual filaments or crosslinkers resisting extension. Here we report reversible stress-softening behaviour in actin networks reconstituted in vitro that suggests a critical role for filaments resisting compression. Using a modified atomic force microscope to probe dendritic actin networks (like those formed in the lamellipodia of motile cells), we observe stress stiffening followed by a regime of reversible stress softening at higher loads. This softening behaviour can be explained by elastic buckling of individual filaments under compression that avoids catastrophic fracture of the network. The observation of both stress stiffening and softening suggests a complex interplay between entropic and enthalpic elasticity in determining the mechanical properties of actin networks.

  11. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable.

    PubMed

    Bizzarri, Ranieri; Serresi, Michela; Cardarelli, Francesco; Abbruzzetti, Stefania; Campanini, Barbara; Viappiani, Cristiano; Beltram, Fabio

    2010-01-13

    Reversibly photoswitchable (i.e., photochromic) fluorescent proteins open the way to a number of advanced bioimaging techniques applicable to living-cell studies such as sequential photolabeling of distinct cellular regions, innovative FRET schemes, or nanoscopy. Owing to the relevance of fluorescent proteins from Aequorea victoria (AFPs) for cell biology, a photochromic "toolbox" constituted by several AFPs is highly desirable. Here we introduce four new photochromic AFPs whose reversible photoswitching occurs between the native bright and a dark state at low illumination power, on account of a very efficient cis-trans photoisomerization. Most remarkably, the optical bistability of these AFPs derives from the single E222Q mutation in the primary sequence. Apparently, the E222Q substitution can restore the intrinsic photochromic behavior of the isolated chromophore. The significance of these mutants for high-resolution in vivo cell imaging is shown by means of photochromic FRET experiments.

  12. Filamentous Fungi.

    PubMed

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  13. Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation.

    PubMed

    Boeckstaens, Mélanie; André, Bruno; Marini, Anna Maria

    2008-08-01

    Ammonium transport proteins of the Mep/Amt/Rh family include microbial and plant Mep/Amt members, crucial for ammonium scavenging, and animal Rhesus factors likely involved in ammonium disposal. Recent structural information on two bacterial Mep/Amt proteins has revealed the presence, in the hydrophobic conducting pore, of a pair of preserved histidines proposed to play an important role in substrate conductance, by participating either in NH(4)(+) deprotonation or in shaping the pore. Here we highlight the existence of two functional Mep/Amt subfamilies distinguishable according to whether the first of these histidines is conserved, as in yeast ScMep2, or replaced by glutamate, as in ScMep1. Replacement of the native histidine of ScMep2 with glutamate leads to conversion from ScMep2 to ScMep1-like properties. This includes a two-unit upshift of the optimal pH for transport and an increase of the transport rate, consistent with alleviation of an energy-limiting step. Similar effects are observed when the same substitution is introduced into the Escherichia coli AmtB protein. In contrast to ScMep1, ScMep2 is proposed to play an additional signaling role in the induction of filamentous growth, a dimorphic change often associated with virulence in pathogenic fungi. We show here that the histidine to glutamate substitution in ScMep2 leads to uncoupling of the transport and sensor functions, suggesting that a ScMep2-specific transport mechanism might be responsible for filamentation. Our overall data suggest the existence of two functional groups of Mep/Amt-type proteins with different transport mechanisms and distinct impacts on cell physiology and signaling.

  14. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society.

    PubMed

    Akbani, Rehan; Becker, Karl-Friedrich; Carragher, Neil; Goldstein, Ted; de Koning, Leanne; Korf, Ulrike; Liotta, Lance; Mills, Gordon B; Nishizuka, Satoshi S; Pawlak, Michael; Petricoin, Emanuel F; Pollard, Harvey B; Serrels, Bryan; Zhu, Jingchun

    2014-07-01

    Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and

  15. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch

    PubMed Central

    Berbasova, Tetyana; Santos, Elizabeth M.; Nosrati, Meisam; Vasileiou, Chrysoula; Geiger, James H.; Borhan, Babak

    2016-01-01

    Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa, leading to protonation of the imine and subsequent “turn-on” of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa, leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance. PMID:26684483

  16. Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1

    PubMed Central

    1991-01-01

    During meiotic maturation, the cortical cytokeratin filament system of the Xenopus oocyte disappears (Klymkowsky, M. W., and L. A. Maynell. 1989. Dev. Biol. 134:479). Here we demonstrate that this disappearance results from the severing of cytokeratin filaments into a heterogenous population of oligomers, with S- values ranging from 12S and greater. Cytokeratin filament severing correlates with the hyperphosphorylation of the type II cytokeratin of the oocyte. Both the severing of cytokeratin filaments and cytokeratin hyperphosphorylation are reversed by treatment with cycloheximide. These data suggest that fragmentation of cytokeratin filaments is controlled, at least in part, by the phosphorylation of the type II cytokeratin, and that the cytokeratin kinase activity responsible is biosynthetically labile. Cytokeratin filaments have been suggested to anchor the maternal mRNA Vg1 to the vegetal cortex of the oocyte (Pondel, M., and M. L. King. 1988. Proc. Natl. Acad. Sci. USA. 85:7216). By injecting fractions containing active maturation promoting factor or a purified, mutant cyclin protein, we find that the bulk of the Vg1 mRNA in the oocyte can be solubilized under conditions that block the fragmentation of cytokeratin filaments, and that the fragmentation of cytokeratin filaments itself leads to the solubilization of only a minor fraction of the Vg1 mRNA. Thus, at best, cytokeratin filaments directly anchor only a minor fraction of the Vg1 mRNA in the oocyte. Moreover, factors distinct from maturation promoting factor appear to be required for the complete solubilization of Vg1 mRNA during oocyte maturation. PMID:1714462

  17. Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

    PubMed Central

    de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.

    2016-01-01

    Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222

  18. Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland

    PubMed Central

    Cunnick, Jess M; Kim, Stephanie; Hadsell, James; Collins, Stephen; Cerra, Carmine; Reiser, Patti; Flynn, Daniel C; Cho, Youngjin

    2014-01-01

    Actin filament-associated protein 1 (AFAP1) is an adaptor protein of cSrc that binds to filamentous actin and regulates the activity of this tyrosine kinase to affect changes to the organization of the actin cytoskeleton. In breast and prostate cancer cells, AFAP1 has been shown to regulate cellular responses requiring actin cytoskeletal changes such as adhesion, invadopodia formation and invasion. However, a normal physiological role for AFAP1 has remained elusive. In this study, we generated an AFAP1 knockout mouse model that establishes a novel physiological role for AFAP1 in lactation. Specifically, these animals displayed a defect in lactation that resulted in an inability to efficiently nurse. Histologically, the mammary glands of the lactating knockout mice were distinguished by the accumulation of large cytoplasmic lipid droplets in the alveolar epithelial cells. There was a reduction in lipid synthesis and the expression of lipogenic genes without a corresponding reduction in the production of beta-casein, a milk protein. Furthermore, these defects were associated with histological and biochemical signs of precocious involution. This study also demonstrated that AFAP1 responds to prolactin, a lactogenic hormone, by forming a complex with cSrc and becoming tyrosine phosphorylated. Together, these observations pointed to a defect in secretory activation. Certain characteristics of this phenotype mirrored the defect in secretory activation in the cSrc knockout mouse, but most importantly, the activity of cSrc in the mammary gland was reduced during early lactation in the AFAP1 null mouse and the localization of active cSrc at the apical surface of luminal epithelial cells during lactation was selectively lost in the absence of AFAP1. These data define, for the first time, the requirement of AFAP1 for the spatial and temporal regulation of cSrc activity in the normal breast, specifically for milk production. PMID:25043309

  19. Differential influence of dynamic processes on forward and reverse electron transfer across a protein-protein interface

    PubMed Central

    Hoffman, Brian M.; Celis, Laura M.; Cull, Deborah A.; Patel, Ami D.; Seifert, Jennifer L.; Wheeler, Korin E.; Wang, Jingyun; Yao, Jiang; Kurnikov, Igor V.; Nocek, Judith M.

    2005-01-01

    We propose that the forward and reverse halves of a flash-induced protein-protein electron transfer (ET) photocycle should exhibit differential responses to dynamic interconversion of configurations when the most stable configuration is not the most reactive, because the reactants exist in different initial configurations: the flash-photoinitiated forward ET process begins with the protein partners in an equilibrium ensemble of configurations, many of which have little or no reactivity, whereas the reactant of the thermal back ET (the charge-separated intermediate) is formed in a nonequilibrium, “activated” protein configuration. We report evidence for this proposal in measurements on (i) mixed-metal hemoglobin hybrids, (ii) the complex between cytochrome c peroxidase and cytochrome c, and (iii and iv) the complexes of myoglobin and isolated hemoglobin α-chains with cytochrome b5. For all three systems, forward and reverse ET does respond differently to modulation of dynamic processes; further, the response to changes in viscosity is different for each system. PMID:15738411

  20. The Peptidoglycan-Binding Protein SjcF1 Influences Septal Junction Function and Channel Formation in the Filamentous Cyanobacterium Anabaena.

    PubMed

    Rudolf, Mareike; Tetik, Nalan; Ramos-León, Félix; Flinner, Nadine; Ngo, Giang; Stevanovic, Mara; Burnat, Mireia; Pernil, Rafael; Flores, Enrique; Schleiff, Enrico

    2015-06-30

    Filamentous, heterocyst-forming cyanobacteria exchange nutrients and regulators between cells for diazotrophic growth. Two alternative modes of exchange have been discussed involving transport either through the periplasm or through septal junctions linking adjacent cells. Septal junctions and channels in the septal peptidoglycan are likely filled with septal junction complexes. While possible proteinaceous factors involved in septal junction formation, SepJ (FraG), FraC, and FraD, have been identified, little is known about peptidoglycan channel formation and septal junction complex anchoring to the peptidoglycan. We describe a factor, SjcF1, involved in regulation of septal junction channel formation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. SjcF1 interacts with the peptidoglycan layer through two peptidoglycan-binding domains and is localized throughout the cell periphery but at higher levels in the intercellular septa. A strain with an insertion in sjcF1 was not affected in peptidoglycan synthesis but showed an altered morphology of the septal peptidoglycan channels, which were significantly wider in the mutant than in the wild type. The mutant was impaired in intercellular exchange of a fluorescent probe to a similar extent as a sepJ deletion mutant. SjcF1 additionally bears an SH3 domain for protein-protein interactions. SH3 binding domains were identified in SepJ and FraC, and evidence for interaction of SjcF1 with both SepJ and FraC was obtained. SjcF1 represents a novel protein involved in structuring the peptidoglycan layer, which links peptidoglycan channel formation to septal junction complex function in multicellular cyanobacteria. Nonetheless, based on its subcellular distribution, this might not be the only function of SjcF1. Cell-cell communication is central not only for eukaryotic but also for multicellular prokaryotic systems. Principles of intercellular communication are well established for eukaryotes, but the

  1. Classifying Ten Types of Major Cancers Based on Reverse Phase Protein Array Profiles

    PubMed Central

    Zhang, Pei-Wei; Chen, Lei; Huang, Tao; Zhang, Ning; Kong, Xiang-Yin; Cai, Yu-Dong

    2015-01-01

    Gathering vast data sets of cancer genomes requires more efficient and autonomous procedures to classify cancer types and to discover a few essential genes to distinguish different cancers. Because protein expression is more stable than gene expression, we chose reverse phase protein array (RPPA) data, a powerful and robust antibody-based high-throughput approach for targeted proteomics, to perform our research. In this study, we proposed a computational framework to classify the patient samples into ten major cancer types based on the RPPA data using the SMO (Sequential minimal optimization) method. A careful feature selection procedure was employed to select 23 important proteins from the total of 187 proteins by mRMR (minimum Redundancy Maximum Relevance Feature Selection) and IFS (Incremental Feature Selection) on the training set. By using the 23 proteins, we successfully classified the ten cancer types with an MCC (Matthews Correlation Coefficient) of 0.904 on the training set, evaluated by 10-fold cross-validation, and an MCC of 0.936 on an independent test set. Further analysis of these 23 proteins was performed. Most of these proteins can present the hallmarks of cancer; Chk2, for example, plays an important role in the proliferation of cancer cells. Our analysis of these 23 proteins lends credence to the importance of these genes as indicators of cancer classification. We also believe our methods and findings may shed light on the discoveries of specific biomarkers of different types of cancers. PMID:25822500

  2. Self-association of the spindle pole body-related intermediate filament protein Fin1p and its phosphorylation-dependent interaction with 14-3-3 proteins in yeast.

    PubMed

    van Hemert, Martijn J; Deelder, André M; Molenaar, Chris; Steensma, H Yde; van Heusden, G Paul H

    2003-04-25

    The Fin1 protein of the yeast Saccharomyces cerevisiae forms filaments between the spindle pole bodies of dividing cells. In the two-hybrid system it binds to 14-3-3 proteins, which are highly conserved proteins involved in many cellular processes and which are capable of binding to more than 120 different proteins. Here, we describe the interaction of the Fin1 protein with the 14-3-3 proteins Bmh1p and Bmh2p in more detail. Purified Fin1p interacts with recombinant yeast 14-3-3 proteins. This interaction is strongly reduced after dephosphorylation of Fin1p. Surface plasmon resonance analysis showed that Fin1p has a higher affinity for Bmh2p than for Bmh1p (K(D) 289 versus 585 nm). Sequences in both the central and C-terminal part of Fin1p are required for the interaction with Bmh2p in the two-hybrid system. In yeast strains lacking 14-3-3 proteins Fin1 filament formation was observed, indicating that the 14-3-3 proteins are not required for this process. Fin1 also interacts with itself in the two-hybrid system. For this interaction sequences at the C terminus, containing one of two putative coiled-coil regions, are sufficient. Fin1p-Fin1p interactions were demonstrated in vivo by fluorescent resonance energy transfer between cyan fluorescent protein-labeled Fin1p and yellow fluorescent protein-labeled Fin1p.

  3. Pseudoelastic behaviour of a natural material is achieved via reversible changes in protein backbone conformation

    PubMed Central

    Harrington, Matthew J.; Wasko, S. Scott; Masic, Admir; Fischer, F. Dieter; Gupta, Himadri S.; Fratzl, Peter

    2012-01-01

    The egg capsules of marine prosobranch gastropods, commonly know as whelks, function as a protective encapsulant for whelk embryos in wave-swept marine environments. The proteinaceous sheets comprising the wall of whelk egg capsules (WEC) exhibit long-range reversible extensibility with a hysteresis of up to 50 per cent, previously suggested to result from reversible changes in the structure of the constituent protein building blocks. Here, we further investigate the structural changes of the WEC biopolymer at various hierarchical levels using several different time-resolved in situ approaches. We find strong evidence in these biological polymers for a strain-induced reversible transition from an ordered conformational phase to a largely disordered one that leads to the characteristic reversible hysteretic behaviour, which is reminiscent of the pseudoelastic behaviour in some metallic alloys. On the basis of these results, we generate a simple numerical model incorporating a worm-like chain equation to explain the phase transition behaviour of the WEC at the molecular level. PMID:22696489

  4. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  5. Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts.

    PubMed

    Ariza, R R; Keyse, S M; Moggs, J G; Wood, R D

    1996-02-01

    Nucleotide excision repair of DNA in mammalian cells uses more than 20 polypeptides to remove DNA lesions caused by UV light and other mutagens. To investigate whether reversible protein phosphorylation can significantly modulate this repair mechanism we studied the effect of specific inhibitors of Ser/Thr protein phosphatases. The ability of HeLa cell extracts to carry out nucleotide excision repair in vitro was highly sensitive to three toxins (okadaic acid, microcystin-LR and tautomycin), which block PP1- and PP2A-type phosphatases. Repair was more sensitive to okadaic acid than to tautomycin, suggesting the involvement of a PP2A-type enzyme, and was insensitive to inhibitor-2, which exclusively inhibits PP1-type enzymes. In a repair synthesis assay the toxins gave 70% inhibition of activity. Full activity could be restored to toxin-inhibited extracts by addition of purified PP2A, but not PP1. The p34 subunit of replication protein A was hyperphosphorylated in cell extracts in the presence of phosphatase inhibitors, but we found no evidence that this affected repair. In a coupled incision/synthesis repair assay okadaic acid decreased the production of incision intermediates in the repair reaction. The formation of 25-30mer oligonucleotides by dual incision during repair was also inhibited by okadaic acid and inhibition could be reversed with PP2A. Thus Ser/Thr- specific protein phosphorylation plays an important role in the modulation of nucleotide excision repair in vitro.

  6. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.

    PubMed

    Stiel, Andre C; Andresen, Martin; Bock, Hannes; Hilbert, Michael; Schilde, Jessica; Schönle, Andreas; Eggeling, Christian; Egner, Alexander; Hell, Stefan W; Jakobs, Stefan

    2008-09-15

    Reversibly switchable fluorescent proteins (RSFPs) are GFP-like proteins that may be repeatedly switched by irradiation with light from a fluorescent to a nonfluorescent state, and vice versa. They can be utilized as genetically encodable probes and bear large potential for a wide array of applications, in particular for new protein tracking schemes and subdiffraction resolution microscopy. However, the currently described monomeric RSFPs emit only blue-green or green fluorescence; the spectral window for their use is thus rather limited. Using a semirational engineering approach based on the crystal structure of the monomeric nonswitchable red fluorescent protein mCherry, we generated rsCherry and rsCherryRev. These two novel red fluorescent RSFPs exhibit fluorescence emission maxima at approximately 610 nm. They display antagonistic switching modes, i.e., in rsCherry irradiation with yellow light induces the off-to-on transition and blue light the on-to-off transition, whereas in rsCherryRev the effects of the switching wavelengths are reversed. We demonstrate time-lapse live-cell subdiffraction microscopy by imaging rsCherryRev targeted to the endoplasmic reticulum utilizing the switching and localization of single molecules.

  7. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition

    PubMed Central

    Azmi, Asfar S.; Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Senapedis, William; Baloglu, Erkan; Bollig-Fischer, Aliccia; Dyson, Gregory; Kauffman, Michael; Landesman, Yosef; Shacham, Sharon; Philip, Philip A.; Mohammad, Ramzi M.

    2015-01-01

    Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (–ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore. PMID:26536918

  8. Muscle myosin filaments: cores, crowns and couplings.

    PubMed

    Squire, John M

    2009-09-01

    Myosin filaments in muscle, carrying the ATPase myosin heads that interact with actin filaments to produce force and movement, come in multiple varieties depending on species and functional need, but most are based on a common structural theme. The now successful journeys to solve the ultrastructures of many of these myosin filaments, at least at modest resolution, have not been without their false starts and erroneous sidetracks, but the picture now emerging is of both diversity in the rotational symmetries of different filaments and a degree of commonality in the way the myosin heads are organised in resting muscle. Some of the remaining differences may be associated with how the muscle is regulated. Several proteins in cardiac muscle myosin filaments can carry mutations associated with heart disease, so the elucidation of myosin filament structure to understand the effects of these mutations has a clear and topical clinical relevance.

  9. Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical

    PubMed Central

    Berry, Bruce W.; Martínez-Rivera, Melissa C.; Tommos, Cecilia

    2012-01-01

    Reversible voltammograms and a voltammetry half-wave potential versus solution pH diagram are described for a protein tyrosine radical. This work required a de novo designed tyrosine-radical protein displaying a unique combination of structural and electrochemical properties. The α3Y protein is structurally stable across a broad pH range. The redox-active tyrosine Y32 resides in a desolvated and well-structured environment. Y32 gives rise to reversible square-wave and differential pulse voltammograms at alkaline pH. The formal potential of the Y32-O•/Y32-OH redox couple is determined to 918 ± 2 mV versus the normal hydrogen electrode at pH 8.40 ± 0.01. The observation that Y32 gives rise to fully reversible voltammograms translates into an estimated lifetime of ≥30 ms for the Y32-O• state. This illustrates the range of tyrosine-radical stabilization that a structured protein can offer. Y32 gives rise to quasireversible square-wave and differential pulse voltammograms at acidic pH. These voltammograms represent the Y32 species at the upper edge of the quasirevesible range. The square-wave net potential closely approximates the formal potential of the Y32-O•/Y32-OH redox couple to 1,070 ± 1 mV versus the normal hydrogen electrode at pH 5.52 ± 0.01. The differential pulse voltammetry half-wave potential of the Y32-O•/Y32-OH redox pair is measured between pH 4.7 and 9.0. These results are described and analyzed. PMID:22675121

  10. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies.

    PubMed

    Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel

    2016-01-01

    The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.

  11. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies

    PubMed Central

    Rickert, Keith W.; Grinberg, Luba; Woods, Robert M.; Wilson, Susan; Bowen, Michael A.; Baca, Manuel

    2016-01-01

    ABSTRACT The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material. PMID:26852694

  12. The Regulation of Filamentous Growth in Yeast

    PubMed Central

    Cullen, Paul J.; Sprague, George F.

    2012-01-01

    Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host–cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways—rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)—also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior. PMID:22219507

  13. Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions.

    PubMed

    Yang, Guang; Zhang, Xiang; Kochovski, Zdravko; Zhang, Yufei; Dai, Bin; Sakai, Fuji; Jiang, Lin; Lu, Yan; Ballauff, Matthias; Li, Xueming; Liu, Cong; Chen, Guosong; Jiang, Ming

    2016-02-17

    Protein microtubule is a significant self-assembled architecture found in nature with crucial biological functions. However, mimicking protein microtubules with precise structure and controllable self-assembly behavior remains highly challenging. In this work, we demonstrate that by using dual supramolecular interactions from a series of well-designed ligands, i.e., protein-sugar interaction and π-π stacking, highly homogeneous protein microtubes were achieved from tetrameric soybean agglutinin without any chemical or biological modification. Using combined cryo-EM single-particle reconstruction and computational modeling, the accurate structure of protein microtube was determined. The helical protein microtube is consisted of three protofilaments, each of which features an array of soybean agglutinin tetramer linked by the designed ligands. Notably, the microtubes resemble the natural microtubules in their structural and dynamic features such as the shape and diameter and the controllable and reversible assembly behavior, among others. Furthermore, the protein microtubes showed an ability to enhance immune response, demonstrating its great potential for biological applications.

  14. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics.

    PubMed

    Xiu, Lichen; Valeja, Santosh G; Alpert, Andrew J; Jin, Song; Ge, Ying

    2014-08-05

    One of the challenges in proteomics is the proteome's complexity, which necessitates the fractionation of proteins prior to the mass spectrometry (MS) analysis. Despite recent advances in top-down proteomics, separation of intact proteins remains challenging. Hydrophobic interaction chromatography (HIC) appears to be a promising method that provides high-resolution separation of intact proteins, but unfortunately the salts conventionally used for HIC are incompatible with MS. In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable separation performance as the conventionally used ammonium sulfate. Furthermore, we found that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that of reverse phase chromatography (RPC). By coupling HIC and RPC as a novel two-dimensional chromatographic method, we have achieved effective high-resolution intact protein separation as demonstrated with standard protein mixtures and a complex cell lysate. Subsequently, the separated intact proteins were identified by high-resolution top-down MS. For the first time, these results have shown the high potential of HIC as a high-resolution protein separation method for top-down proteomics.

  15. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    PubMed

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-12-16

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses.

  16. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

    PubMed Central

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies – a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. DOI: http://dx.doi.org/10.7554/eLife.11795.001 PMID:26673077

  17. Occurrence of autoantibodies to intermediate filament proteins in human visceral leishmaniasis and their induction by experimental polyclonal B-cell activation.

    PubMed Central

    Böhme, M W; Evans, D A; Miles, M A; Holborow, E J

    1986-01-01

    Fifteen sera of patients with visceral leishmaniasis were investigated for the occurrence of autoantibodies. They were found in high incidence and titre, and with specificity to the intermediate filament (INFIL) proteins vimentin (12 out of 15 with a titre higher than 1:10) and keratin (9 out of 15 with a titre higher than 1:10) as well as to speckled anti-nuclear antigens (ANA). Additionally, supernatants of Leishmania major and Leishmania donovani cultures containing soluble parasite-derived antigens were mitogenic to cultures of mononuclear cells (MNC) obtained from healthy donors without specific antibodies to leishmanial antigens. The activation of MNC resulted in significant immunoglobulin production, some of which demonstrated autoantibody specificity to INFIL. The co-operation of monocytes, T cells and B cells was required in order to obtain maximal stimulation. The importance of polyclonal B-cell activation for the genesis and occurrence of autoantibodies in visceral leishmaniasis is discussed. PMID:3492440

  18. An improved reversibly dimerizing mutant of the FK506-binding protein FKBP

    PubMed Central

    Barrero, Juan J.; Papanikou, Effrosyni; Casler, Jason C.; Day, Kasey J.; Glick, Benjamin S.

    2016-01-01

    ABSTRACT FK506-binding protein (FKBP) is a monomer that binds to FK506, rapamycin, and related ligands. The F36M substitution, in which Phe36 in the ligand-binding pocket is changed to Met, leads to formation of antiparallel FKBP dimers, which can be dissociated into monomers by ligand binding. This FKBP(M) mutant has been employed in the mammalian secretory pathway to generate aggregates that can be dissolved by ligand addition to create cargo waves. However, when testing this approach in yeast, we found that dissolution of FKBP(M) aggregates was inefficient. An improved reversibly dimerizing FKBP formed aggregates that dissolved more readily. This FKBP(L,V) mutant carries the F36L mutation, which increases the affinity of ligand binding, and the I90V mutation, which accelerates ligand-induced dissociation of the dimers. The FKBP(L,V) mutant expands the utility of reversibly dimerizing FKBP. PMID:27738551

  19. Structural basis for reversible photobleaching of a green fluorescent protein homologue

    PubMed Central

    Henderson, J. Nathan; Ai, Hui-wang; Campbell, Robert E.; Remington, S. James

    2007-01-01

    Fluorescent protein (FP) variants that can be reversibly converted between fluorescent and nonfluorescent states have proven to be a catalyst for innovation in the field of fluorescence microscopy. However, the structural basis of the process remains poorly understood. High-resolution structures of a FP derived from Clavularia in both the fluorescent and the light-induced nonfluorescent states reveal that the rapid and complete loss of fluorescence observed upon illumination with 450-nm light results from cis–trans isomerization of the chromophore. The photoinduced change in configuration from the well ordered cis isomer to the highly nonplanar and disordered trans isomer is accompanied by a dramatic rearrangement of internal side chains. Taken together, the structures provide an explanation for the loss of fluorescence upon illumination, the slow light-independent recovery, and the rapid light-induced recovery of fluorescence. The fundamental mechanism appears to be common to all of the photoactivatable and reversibly photoswitchable FPs reported to date. PMID:17420458

  20. Structural basis for reversible photobleaching of a green fluorescent protein homologue.

    PubMed

    Henderson, J Nathan; Ai, Hui-Wang; Campbell, Robert E; Remington, S James

    2007-04-17

    Fluorescent protein (FP) variants that can be reversibly converted between fluorescent and nonfluorescent states have proven to be a catalyst for innovation in the field of fluorescence microscopy. However, the structural basis of the process remains poorly understood. High-resolution structures of a FP derived from Clavularia in both the fluorescent and the light-induced nonfluorescent states reveal that the rapid and complete loss of fluorescence observed upon illumination with 450-nm light results from cis-trans isomerization of the chromophore. The photoinduced change in configuration from the well ordered cis isomer to the highly nonplanar and disordered trans isomer is accompanied by a dramatic rearrangement of internal side chains. Taken together, the structures provide an explanation for the loss of fluorescence upon illumination, the slow light-independent recovery, and the rapid light-induced recovery of fluorescence. The fundamental mechanism appears to be common to all of the photoactivatable and reversibly photoswitchable FPs reported to date.

  1. Structural basis for reversible photobleaching of a green fluorescent protein homologue

    SciTech Connect

    Henderson, J. Nathan; Ai, Hui-wang; Campbell, Robert E.; Remington, S. James

    2008-09-03

    Fluorescent protein (FP) variants that can be reversibly converted between fluorescent and nonfluorescent states have proven to be a catalyst for innovation in the field of fluorescence microscopy. However, the structural basis of the process remains poorly understood. High-resolution structures of a FP derived from Clavularia in both the fluorescent and the light-induced nonfluorescent states reveal that the rapid and complete loss of fluorescence observed upon illumination with 450-nm light results from cis-trans isomerization of the chromophore. The photoinduced change in configuration from the well ordered cis isomer to the highly nonplanar and disordered trans isomer is accompanied by a dramatic rearrangement of internal side chains. Taken together, the structures provide an explanation for the loss of fluorescence upon illumination, the slow light-independent recovery, and the rapid light-induced recovery of fluorescence. The fundamental mechanism appears to be common to all of the photoactivatable and reversibly photoswitchable FPs reported to date.

  2. Primary Role of the Chromophore Bond Length Alternation in Reversible Photoconversion of Red Fluorescence Proteins

    PubMed Central

    Drobizhev, Mikhail; Hughes, Thomas E.; Stepanenko, Yuriy; Wnuk, Pawel; O'Donnell, Kieran; Scott, J. Nathan; Callis, Patrik R.; Mikhaylov, Alexander; Dokken, Leslie; Rebane, Aleksander

    2012-01-01

    Rapid photobleaching of fluorescent proteins can limit their use in imaging applications. The underlying kinetics is multi-exponential and strongly depends on the local chromophore environment. The first, reversible, step may be attributed to a rotation around one of the two exocyclic C-C bonds bridging phenol and imidazolinone groups in the chromophore. However it is not clear how the protein environment controls this motion - either by steric hindrances or by modulating the electronic structure of the chromophore through electrostatic interactions. Here we study the first step of the photobleaching kinetics in 13 red fluorescent proteins (RFPs) with different chromophore environment and show that the associated rate strongly correlates with the bond length alternation (BLA) of the two bridge bonds. The sign of the BLA appears to determine which rotation is activated. Our results present experimental evidence for the dominance of electronic effects in the conformational dynamics of the RFP chromophore. PMID:23008753

  3. Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds.

    PubMed

    Ugolini, Luisa; De Nicola, Gina; Palmieri, Sandro

    2008-03-12

    Cruciferous oilseeds are important sources of oil, proteins, and glucosinolates (GLs), potentially available when biorefinery processes are used. The proposed extraction technology is based on the use of reverse micelles (RMs) made with cetyltrimethylammonium bromide (CTAB) dispersed in organic solvent. The physicochemical properties of this extraction system and the good water solubility of many high value compounds, such as GLs and some proteins, permit the simultaneous extraction of oil, and these products from cruciferous oilseed meals. This procedure is based on three main steps: (i) seed conditioning; (ii) solid-liquid extraction by RM solution; and (iii) back-transfer of the RM solution for recovery of the extracted compounds. The method makes it possible to simultaneously extract almost the same amount of oil as with pure organic solvents used in the current extraction plants and more than 90% of soluble proteins and GLs. It is a promising biorefinery technology alternative to traditional oil extraction processes.

  4. Heterologous expression of surface-active proteins from barley and filamentous fungi in Pichia pastoris and characterization of their contribution to beer gushing.

    PubMed

    Lutterschmid, Georg; Muranyi, Monika; Stübner, Matthias; Vogel, Rudi F; Niessen, Ludwig

    2011-05-14

    The spontaneous over-foaming of beer upon opening, i.e. beer gushing, is an unwanted phenomenon for the brewing industry. Currently, surface-active proteins from filamentous fungi and non-specific lipid transfer proteins (nsLTP1) from barley are discussed as gushing inducers. In our study the class I hydrophobin FcHyd3p from Fusarium culmorum, the class II hydrophobin Hfb2 from Trichoderma reesei, the alkaline foam protein A (AfpA) from F. graminearum and nsLTP1 from Hordeum vulgare cv. Marnie (barley) were heterologously expressed in Pichia pastoris and used in gushing tests. The class I hydrophobin FcHyd3p was unable to induce gushing in beer. The class II hydrophobin Hfb2 was able to induce gushing in beer, but proved to be inhibited by heat treatment as well as by the presence of enriched hop compounds. Both resulted in a reduced gushing potential. AfpA and nsLTP1 exhibited no gushing-inducing potential at the amounts added to beer. Addition of these proteins to beer or carbonated water previously treated with class II hydrophobins revealed a gushing reducing character. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Photomechanical Wave-Driven Delivery of siRNAs Targeting Intermediate Filament Proteins Promotes Functional Recovery after Spinal Cord Injury in Rats

    PubMed Central

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2012-01-01

    The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue. PMID:23272155

  6. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

    PubMed

    Quentin, Michaël; Baurès, Isabelle; Hoefle, Caroline; Caillaud, Marie-Cécile; Allasia, Valérie; Panabières, Franck; Abad, Pierre; Hückelhoven, Ralph; Keller, Harald; Favery, Bruno

    2016-03-01

    The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection.

  7. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.

    PubMed

    Bahn, Y S; Sundstrom, P

    2001-05-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.

  8. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.

    PubMed

    Schatten, H; Walter, M; Mazia, D; Biessmann, H; Paweletz, N; Coffe, G; Schatten, G

    1987-12-01

    A mouse monoclonal antibody generated against Drosophila intermediate filament proteins (designated Ah6/5/9 and referred to herein as Ah6) is found to cross-react specifically with centrosomes in sea urchin eggs and with a 68-kDa antigen in eggs and isolated mitotic apparatus. When preparations stained with Ah6 are counterstained with a human autoimmune serum whose anti-centrosome activity has been established, the immunofluorescence images superimpose exactly. A more severe test of the specificity of the antibody demands that it display all of the stages of the centrosome cycle in the cell cycle: the flattening and spreading of the compact centrosomes followed by their division and the establishment of two compact poles. The test was made by an experimental design that uses a period of exposure of the eggs to 2-mercaptoethanol. This treatment allows observation of the stages of the centrosome cycle--separation, division, and bipolarization--while the chromosomes are arrested in metaphase. Mitosis is arrested in the presence of 0.1 M 2-mercaptoethanol. Chromosomes remain in a metaphase configuration while the centrosomes divide, producing four poles perpendicular to the original spindle axis. Microtubules are still present in the mitotic apparatus, as indicated by immunofluorescence and transmission electron microscopy. When 2-mercaptoethanol is removed, the chromosomes reorient to the poles of a tetrapolar (sometimes tripolar) mitotic apparatus. During the following cycle, the blastomeres form a monopolar mitotic apparatus. The observations of the centrosome cycle with the Ah6 antibody display very clearly all the stages that have been seen or deduced from work with other probes. The 68-kDa antigen that reacts with the Ah6 monoclonal antibody to Drosophila intermediate filament proteins must be a constant component of sea urchin centrosomes because it is present at all stages of the centrosome cycle.

  9. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.

    PubMed Central

    Schatten, H; Walter, M; Mazia, D; Biessmann, H; Paweletz, N; Coffe, G; Schatten, G

    1987-01-01

    A mouse monoclonal antibody generated against Drosophila intermediate filament proteins (designated Ah6/5/9 and referred to herein as Ah6) is found to cross-react specifically with centrosomes in sea urchin eggs and with a 68-kDa antigen in eggs and isolated mitotic apparatus. When preparations stained with Ah6 are counterstained with a human autoimmune serum whose anti-centrosome activity has been established, the immunofluorescence images superimpose exactly. A more severe test of the specificity of the antibody demands that it display all of the stages of the centrosome cycle in the cell cycle: the flattening and spreading of the compact centrosomes followed by their division and the establishment of two compact poles. The test was made by an experimental design that uses a period of exposure of the eggs to 2-mercaptoethanol. This treatment allows observation of the stages of the centrosome cycle--separation, division, and bipolarization--while the chromosomes are arrested in metaphase. Mitosis is arrested in the presence of 0.1 M 2-mercaptoethanol. Chromosomes remain in a metaphase configuration while the centrosomes divide, producing four poles perpendicular to the original spindle axis. Microtubules are still present in the mitotic apparatus, as indicated by immunofluorescence and transmission electron microscopy. When 2-mercaptoethanol is removed, the chromosomes reorient to the poles of a tetrapolar (sometimes tripolar) mitotic apparatus. During the following cycle, the blastomeres form a monopolar mitotic apparatus. The observations of the centrosome cycle with the Ah6 antibody display very clearly all the stages that have been seen or deduced from work with other probes. The 68-kDa antigen that reacts with the Ah6 monoclonal antibody to Drosophila intermediate filament proteins must be a constant component of sea urchin centrosomes because it is present at all stages of the centrosome cycle. Images PMID:3120191

  10. CAP1, an Adenylate Cyclase-Associated Protein Gene, Regulates Bud-Hypha Transitions, Filamentous Growth, and Cyclic AMP Levels and Is Required for Virulence of Candida albicans

    PubMed Central

    Bahn, Yong-Sun; Sundstrom, Paula

    2001-01-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis. PMID:11325951

  11. Mutations in Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Zinc Fingers Cause Premature Reverse Transcription ▿

    PubMed Central

    Thomas, James A.; Bosche, William J.; Shatzer, Teresa L.; Johnson, Donald G.; Gorelick, Robert J.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP(−) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55Gag processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1. PMID:18667500

  12. Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription.

    PubMed

    Thomas, James A; Bosche, William J; Shatzer, Teresa L; Johnson, Donald G; Gorelick, Robert J

    2008-10-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP((-)) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55(Gag) processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1.

  13. A novel Bacillus thuringiensis Cry-like protein from a rare filamentous strain promotes crystal localization within the exosporium.

    PubMed

    Ammons, David R; Reyna, Antonio; Granados, Jose C; Ventura-Suárez, Antonio; Rojas-Avelizapa, Luz I; Short, John D; Rampersad, Joanne N

    2013-09-01

    Mutation of a novel cry-like gene (cry256) from Bacillus thuringiensis resulted in a protein crystal, normally located within the spore's exosporium, being found predominately outside the exosporium. The cry256 gene codes for a 3-domain Cry-like protein that does not correspond to any of the known Cry protein holotypes.

  14. The Alexander Disease–Causing Glial Fibrillary Acidic Protein Mutant, R416W, Accumulates into Rosenthal Fibers by a Pathway That Involves Filament Aggregation and the Association of αB-Crystallin and HSP27

    PubMed Central

    Perng, Ming Der; Su, Mu; Wen, Shu Fang; Li, Rong; Gibbon, Terry; Prescott, Alan R.; Brenner, Michael; Quinlan, Roy A.

    2006-01-01

    Here, we describe the early events in the disease pathogenesis of Alexander disease. This is a rare and usually fatal neurodegenerative disorder whose pathological hallmark is the abundance of protein aggregates in astrocytes. These aggregates, termed “Rosenthal fibers,” contain the protein chaperones αB-crystallin and HSP27 as well as glial fibrillary acidic protein (GFAP), an intermediate filament (IF) protein found almost exclusively in astrocytes. Heterozygous, missense GFAP mutations that usually arise spontaneously during spermatogenesis have recently been found in the majority of patients with Alexander disease. In this study, we show that one of the more frequently observed mutations, R416W, significantly perturbs in vitro filament assembly. The filamentous structures formed resemble assembly intermediates but aggregate more strongly. Consistent with the heterozygosity of the mutation, this effect is dominant over wild-type GFAP in coassembly experiments. Transient transfection studies demonstrate that R416W GFAP induces the formation of GFAP-containing cytoplasmic aggregates in a wide range of different cell types, including astrocytes. The aggregates have several important features in common with Rosenthal fibers, including the association of αB-crystallin and HSP27. This association occurs simultaneously with the formation of protein aggregates containing R416W GFAP and is also specific, since HSP70 does not partition with them. Monoclonal antibodies specific for R416W GFAP reveal, for the first time for any IF-based disease, the presence of the mutant protein in the characteristic histopathological feature of the disease, namely Rosenthal fibers. Collectively, these data confirm that the effects of the R416W GFAP are dominant, changing the assembly process in a way that encourages aberrant filament-filament interactions that then lead to protein aggregation and chaperone sequestration as early events in Alexander disease. PMID:16826512

  15. A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence.

    PubMed

    Gottig, Natalia; Garavaglia, Betiana S; Garofalo, Cecilia G; Orellano, Elena G; Ottado, Jorgelina

    2009-01-01

    Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides.

  16. Protein polymer hydrogels by in situ, rapid and reversible self-gelation

    PubMed Central

    Asai, Daisuke; Xu, Donghua; Liu, Wenge; Quiroz, Felipe Garcia; Callahan, Daniel J.; Zalutsky, Michael R.; Craig, Stephen L.; Chilkoti, Ashutosh

    2013-01-01

    Protein-based biomaterials are an important class of materials for applications in biotechnology and medicine. The exquisite control of their composition, stereochemistry, and chain length offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here, we report the synthesis of a thermally responsive peptide polymer-based hydrogel composed of a recombinant elastin-like polypeptide (ELP) that rapidly forms a reversibly cross-linked hydrogel by the formation of intermolecular disulfide cross-links. To do so, we designed and synthesized ELPs that incorporate periodic cysteine residues (cELPs), and show that cELPs are thermally responsive protein polymers that display rapid gelation under physiologically relevant, mild oxidative conditions. Gelation of cELPs, at concentrations as low as 2.5 wt%, occurs in ~2.5 min upon addition a low concentration of hydrogen peroxide (0.3 wt%). We show the utility of these hydrogels for the sustained release of a model protein in vitro, and demonstrate the ability of this injectable biomaterial to pervade tumors to maximize tumor coverage and retention time upon intratumoral injection. cELPs represent a new class of injectable reversibly cross-linked hydrogels with properties intermediate between ELP coacervates and chemically cross-linked ELP hydrogels that will find useful applications in drug delivery and tissue engineering. PMID:22538198

  17. Protein polymer hydrogels by in situ, rapid and reversible self-gelation.

    PubMed

    Asai, Daisuke; Xu, Donghua; Liu, Wenge; Garcia Quiroz, Felipe; Callahan, Daniel J; Zalutsky, Michael R; Craig, Stephen L; Chilkoti, Ashutosh

    2012-07-01

    Protein-based biomaterials are an important class of materials for applications in biotechnology and medicine. The exquisite control of their composition, stereochemistry, and chain length offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here, we report the synthesis of a thermally responsive peptide polymer-based hydrogel composed of a recombinant elastin-like polypeptide (ELP) that rapidly forms a reversibly cross-linked hydrogel by the formation of intermolecular disulfide cross-links. To do so, we designed and synthesized ELPs that incorporate periodic cysteine residues (cELPs), and show that cELPs are thermally responsive protein polymers that display rapid gelation under physiologically relevant, mild oxidative conditions. Gelation of cELPs, at concentrations as low as 2.5 wt%, occurs in ≈ 2.5 min upon addition a low concentration of hydrogen peroxide (0.3 wt%). We show the utility of these hydrogels for the sustained release of a model protein in vitro, and demonstrate the ability of this injectable biomaterial to pervade tumors to maximize tumor coverage and retention time upon intratumoral injection. cELPs represent a new class of injectable reversibly cross-linked hydrogels with properties intermediate between ELP coacervates and chemically cross-linked ELP hydrogels that will find useful applications in drug delivery and tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Reversible and irreversible modifications of skeletal muscle proteins in a rat model of acute oxidative stress.

    PubMed

    Fedorova, Maria; Kuleva, Nadezhda; Hoffmann, Ralf

    2009-12-01

    Oxidative stress caused by an imbalance of the production of "reactive oxygen species" (ROS) and cellular scavenging systems is known to a play a key role in the development of various diseases and aging processes. Such elevated ROS levels can damage all components of cells, including proteins, lipids and DNA. Here, we study the influence of highly reactive ROS species on skeletal muscle proteins in a rat model of acute oxidative stress caused by X-ray irradiation at different time points. Protein preparations depleted for functional actin by polymerization were separated by gel electrophoresis in two dimensions by applying first non-reductive and then reductive conditions in SDS-PAGE. This diagonal redox SDS-PAGE revealed significant alterations to intra- and inter-molecular disulfide bridges for several proteins, but especially actin, creatine kinase and different isoforms of the myosin light chain. Though the levels of these reversible modifications were increased by oxidative stress, all proteins followed different kinetics. Moreover, a significant degree of protein was irreversibly oxidized (carbonylated), as revealed by western blot analyses performed at different time points.

  19. Conformational transition and mass transfer in extraction of proteins by AOT--alcohol--isooctane reverse micellar systems.

    PubMed

    Hong, D P; Lee, S S; Kuboi, R

    2000-06-23

    We examined quantitatively the effect of alcohols on protein and reverse micellar structure. We used circular dichroism (CD) to compare the effects of various alcohols on the protein structure, and percolation phenomena to evaluate the effects of various alcohols on reverse micellar structure. Upon the addition of alcohols to the bulk aqueous phase, proteins were denatured significantly, depending on the alcohol species and concentration, suggesting that use of alcohol directly to the stripping solution is not effective in back-extraction processes of proteins. In the present study, a new method, a small amount of alcohol is added to the surfactant-organic solution to improve the back-extraction behaviors of proteins. Practically, in the back-extraction process, the alcohols suppressing the cluster formation of reverse micelles (high value of beta1), remarkably improved the back-extraction behavior of proteins. In addition, the same alcohol molecules showed a positive effect on the rate and fraction of protein back-extraction. From a result of the CD measurement of the back-extracted proteins, it was known that the alcohols added to reverse micellar solution allowed the proteins to back-extract safely without causing structural changes. These results show that the values of beta(t), defined by the variation of percolation processes, and the back-extraction behaviors of proteins have a good relationship, suggesting that the back-extraction processes were controlled by the micellar-micellar and protein-micellar interactions.

  20. The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase.

    PubMed

    He, Tao; Stepulak, Andrzej; Holmström, Tim H; Omary, M Bishr; Eriksson, John E

    2002-03-29

    Keratins 8 (K8) and 18 are the primary intermediate filaments of simple epithelia. Phosphorylation of keratins at specific sites affects their organization, assembly dynamics, and their interaction with signaling molecules. A number of keratin in vitro and in vivo phosphorylation sites have been identified. One example is K8 Ser-73, which has been implicated as an important phosphorylation site during mitosis, cell stress, and apoptosis. We show that K8 is strongly phosphorylated on Ser-73 upon stimulation of the pro-apoptotic cytokine receptor Fas/CD95/Apo-1 in HT-29 cells. Kinase assays showed that c-Jun N-terminal kinase (JNK) was also activated with activation kinetics corresponding to that of K8 phosphorylation. Furthermore, K8 was also phosphorylated on Ser-73 by JNK in vitro, yielding similar phosphopeptide maps as the in vivo phosphorylated material. In addition, co-immunoprecipitation studies revealed that part of JNK is associated with K8 in vivo, correlating with decreased ability of JNK to phosphorylate the endogenous c-Jun. Taken together, K8 is a new cytoplasmic target for JNK in Fas receptor-mediated signaling. The functional significance of this phosphorylation could relate to regulation of JNK signaling and/or regulation of keratin dynamics.

  1. Effect of high pressure and reversed micelles on the fluorescent proteins.

    PubMed

    Verkhusha, Vladislav V; Pozhitkov, Alexander E; Smirnov, Sergey A; Borst, Jan Willem; van Hoek, Arie; Klyachko, Natalya L; Levashov, Andrey V; Visser, Antonie J W G

    2003-08-22

    Two physico-chemical perturbations were applied to ECFP, EGFP, EYFP and DsRed fluorescent proteins: high hydrostatic pressure and encapsulation in reversed micelles. The observed fluorescence changes were described by two-state model and quantified by thermodynamic formalism. ECFP, EYFP and DsRed exhibited similar reaction volumes under pressure. The changes of the chemical potentials of the chromophore in bis(2-ethylhexyl)sulfosuccinate (AOT) micelles caused apparent chromophore protonation changes resulting in a fluorescence decrease of ECFP and EYFP. In contrast to the remarkable stability of DsRed, the highest sensitivity of EYFP fluorescence under pressure and in micelles is attributed to its chromophore structure.

  2. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch.

    PubMed

    Berbasova, Tetyana; Santos, Elizabeth M; Nosrati, Meisam; Vasileiou, Chrysoula; Geiger, James H; Borhan, Babak

    2016-03-02

    Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa , leading to protonation of the imine and subsequent "turn-on" of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa , leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance.

  3. Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?

    PubMed Central

    Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander

    2013-01-01

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660

  4. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    NASA Technical Reports Server (NTRS)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  5. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    NASA Technical Reports Server (NTRS)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  6. Mutations in proteins of the Conserved Oligomeric Golgi Complex affect polarity, cell wall structure, and glycosylation in the filamentous fungus Aspergillus nidulans.

    PubMed

    Gremillion, S K; Harris, S D; Jackson-Hayes, L; Kaminskyj, S G W; Loprete, D M; Gauthier, A C; Mercer, S; Ravita, A J; Hill, T W

    2014-12-01

    We have described two Aspergillus nidulans gene mutations, designated podB1 (polarity defective) and swoP1 (swollen cell), which cause temperature-sensitive defects during polarization. Mutant strains also displayed unevenness and abnormal thickness of cell walls. Un-polarized or poorly-polarized mutant cells were capable of establishing normal polarity after a shift to a permissive temperature, and mutant hyphae shifted from permissive to restrictive temperature show wall and polarity abnormalities in subsequent growth. The mutated genes (podB=AN8226.3; swoP=AN7462.3) were identified as homologues of COG2 and COG4, respectively, each predicted to encode a subunit of the multi-protein COG (Conserved Oligomeric Golgi) Complex involved in retrograde vesicle trafficking in the Golgi apparatus. Down-regulation of COG2 or COG4 resulted in abnormal polarization and cell wall staining. The GFP-tagged COG2 and COG4 homologues displayed punctate, Golgi-like localization. Lectin-blotting indicated that protein glycosylation was altered in the mutant strains compared to the wild type. A multicopy expression experiment showed evidence for functional interactions between the homologues COG2 and COG4 as well as between COG2 and COG3. To date, this work is the first regarding a functional role of the COG proteins in the development of a filamentous fungus.

  7. Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments.

    PubMed

    Goebeler, M; Roth, J; van den Bos, C; Ader, G; Sorg, C

    1995-07-15

    Migration inhibitory factor-related protein 8 (MRP8) and MRP14, two S-100-like Ca(2+)-binding proteins, have been described in cells of the epithelial lineage where they are either expressed constitutively (e.g. by mucosal squamous epithelium) or induced during disease (e.g. in keratinocytes during the course of psoriasis). Their biological function, however, is not yet clear. Recent studies have provided evidence that S-100-like proteins may interact with cytoskeletal components; we have therefore studied the biochemical properties and subcellular distribution of MRP8 and MRP14 in epithelial cells. TR146 human squamous carcinoma cells, which were found to express MRP8 and MRP14 in Northern and Western blot studies, were chosen for analysis. Cross-linking experiments using bis(sulphosuccinimidyl)suberate followed by SDS/PAGE and Western blot analysis revealed formation of heteromeric MRP8-MRP14 complexes. On subjecting TR146 cell lysates to two-dimensional gel electrophoresis and Western blotting, four distinct MRP14 isoforms could be identified resembling those described earlier in macrophages. A differential centrifugation technique revealed a Ca(2+)-dependent translocation of MRP8-MRP14 from the cytoplasm to the membrane and the Nonidet P40-insoluble cytoskeletal fraction. Double-label immunofluorescence microscopy of Ca2+ ionophore A23187-stimulated TR146 cells and cytochalasin B and demecolcine cytoskeleton disruption studies identified these structures as keratin intermediate filaments. Ca(2+)-dependent binding of MRP8-MRP14 to keratin filaments was additionally confirmed by an in vitro binding assay. In conclusion, our data suggest that MRP8 and MRP14 may be involved in Ca(2+)-dependent reorganization of cytoskeletal filaments in epithelial cells, which could be of importance for events associated with differentiation and inflammatory activation.

  8. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.

    PubMed

    Zhang, Xi; Zhang, Mingshu; Li, Dong; He, Wenting; Peng, Jianxin; Betzig, Eric; Xu, Pingyong

    2016-09-13

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent "on" to "off" state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm(2)) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view.

  9. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  10. Reversion by hypotonic medium of the shutoff of protein synthesis induced by encephalomyocarditis virus.

    PubMed Central

    Alonso, M A; Carrasco, L

    1981-01-01

    Infection of human HeLa cells by picornaviruses produces a drastic inhibition of host protein synthesis. Treatment of encephalomyocarditis virus-infected HeLa cells with hypotonic medium reversed this inhibition; no viral protein synthesis was detected. The blockade of viral translation by hypotonic conditions was observed for a wide range of multiplicities of infection. However, only with low virus-to-cell ratios did cellular protein synthesis resume. The ratio of cellular to viral mRNA translation was strongly influenced by the concentration of monovalent ions present in the culture medium: a high concentration of NaCl or KCl favored the translation of viral mRNA and strongly inhibited cellular protein synthesis, whereas the opposite was true when NaCl was omitted from the culture medium. Once viral protein synthesis had been blocked by hypotonic medium treatment, it resumed when the infected cells were placed in a normal or hypertonic medium, indicating that the viral components synthesized in the infected cells were not destroyed by this treatment. These observations reinforced the idea that ions play a role in discriminating between viral and cellular mRNA translation in virus-infected animal cells. Images PMID:6261005

  11. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils?

    PubMed

    Kurouski, Dmitry; Lu, Xuefang; Popova, Ludmila; Wan, William; Shanmugasundaram, Maruda; Stubbs, Gerald; Dukor, Rina K; Lednev, Igor K; Nafie, Laurence A

    2014-02-12

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for "normal" left-hand-helical filaments and below pH 2 for "reversed" right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218-289) prion, and a short polypeptide fragment of transthyretin, TTR (105-115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases.

  12. Filamentation in Laser Wakefields

    NASA Astrophysics Data System (ADS)

    Los, Eva; Trines, Raoul; Silva, Luis; Bingham, Robert

    2016-10-01

    Laser filamentation instability is observed in plasma wakefields with sub-critical densities, and in high density inertial fusion plasmas. This leads to non-uniform acceleration or compression respectively. Here, we present simulation results on laser filamentation in plasma wakefields. The 2-D simulations are carried out using the particle-in-cell code Osiris. The filament intensity was found to increase exponentially before saturating. The maximum amplitude to which the highest intensity filament grew for a specific set of parameters was also recorded, and plotted against a corresponding parameter value. Clear, positively correlated linear trends were established between plasma density, transverse wavenumber k, laser pulse amplitude and maximum filament amplitude. Plasma density and maximum filament amplitude also showed a positive correlation, which saturated after a certain plasma density. Pulse duration and interaction length did not affect either filament intensity or transverse k value in a predictable manner. There was no discernible trend between pulse amplitude and filament width.

  13. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    SciTech Connect

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-04-29

    We determined that the Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  14. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    SciTech Connect

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-02-08

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  15. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    DOE PAGES

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; ...

    2016-02-08

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT musclesmore » displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.« less

  16. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins.

    PubMed

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P; Kumar, Mohit; Greaser, Marion L; Irving, Thomas C; de Tombe, Pieter P

    2016-02-23

    The Frank-Starling mechanism of the heart is due, in part, to modulation of myofilament Ca(2+) sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank-Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  17. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    PubMed Central

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-01-01

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA. PMID:26858417

  18. Solubilization and fractionation of paired helical filaments.

    PubMed

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  19. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    PubMed Central

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-01-01

    Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773

  20. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  1. A 45,000-mol-wt protein from unfertilized sea urchin eggs severs actin filaments in a calcium-dependent manner and increases the steady-state concentration of nonfilamentous actin

    PubMed Central

    1984-01-01

    A 45,000-mol-wt protein has been purified from unfertilized sea urchin (Strongylocentrotus purpuratus) eggs. The isolation scheme includes DEAE cellulose ion-exchange chromatography, gel filtration, and hydroxylapatite chromatography. The homogeneity of the isolated protein is greater than 90% by SDS PAGE. The 45,000-mol-wt protein reduces the viscosity of actin filaments in a Ca2+-dependent manner. The free calcium concentration required for the activity of this protein is in the micromolar range. Electron microscopic studies reveal that the formation of short filaments parallels the decrease in viscosity. Energy transfer and sedimentation experiments indicate a net disassembly of actin filaments and an increase in the steady-state nonfilamentous actin concentration in the presence of Ca2+ ions and the 45,000-mol-wt protein. The increase in the steady-state nonfilamentous actin concentration is proportional to the amount of 45,000-mol-wt protein added. The actin molecules disassembled by the addition of the 45,000-mol-wt protein are capable of polymerization. PMID:6540784

  2. Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA.

    PubMed

    Karlsson, Oskar; Berg, Anna-Lena; Hanrieder, Jörg; Arnerup, Gunnel; Lindström, Anna-Karin; Brittebo, Eva B

    2015-03-01

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9-10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3-6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo.

  3. Clinical utility of reverse phase protein array for molecular classification of breast cancer.

    PubMed

    Negm, Ola H; Muftah, Abir A; Aleskandarany, Mohammed A; Hamed, Mohamed R; Ahmad, Dena A J; Nolan, Christopher C; Diez-Rodriguez, Maria; Tighe, Patrick J; Ellis, Ian O; Rakha, Emad A; Green, Andrew R

    2016-01-01

    Reverse Phase Protein Array (RPPA) represents a sensitive and high-throughput technique allowing simultaneous quantitation of protein expression levels in biological samples. This study aimed to confirm the ability of RPPA to classify archival formalin-fixed paraffin-embedded (FFPE) breast cancer tissues into molecular classes used in the Nottingham prognostic index plus (NPI+) determined by immunohistochemistry (IHC). Proteins were extracted from FFPE breast cancer tissues using three extraction protocols: the Q-proteome FFPE Tissue Kit (Qiagen, Hilden, Germany) and two in-house methods using Laemmli buffer with either incubation for 20 min or 2 h at 105 °C. Two preparation methods, full-face sections and macrodissection, were used to assess the yield and quality of protein extracts. Ten biomarkers used for the NPI+ (ER, PgR, HER2, Cytokeratins 5/6 and 7/8, EGFR, HER3, HER4, p53 and Mucin 1) were quantified using RPPA and compared to results determined by IHC. The Q-proteome FFPE Tissue Kit produced significantly higher protein concentration and signal intensities. The intra- and inter-array reproducibility assessment indicated that RPPA using FFPE lysates was a highly reproducible and robust technique. Expression of the biomarkers individually and in combination using RPPA was highly consistent with IHC results. Macrodissection of the invasive tumour component gave more reliable results with the majority of biomarkers determined by IHC, (80 % concordance) compared with full-face sections (60 % concordance). Our results provide evidence for the technical feasibility of RPPA for high-throughput protein expression profiling of FFPE breast cancer tissues. The sensitivity of the technique is related to the quality of extracted protein and purity of tumour tissue. RPPA could provide a quantitative technique alternative to IHC for the biomarkers used in the NPI+.

  4. Structure and dynamics of the membrane-bound form of the filamentous bacteriophage coat proteins by NMR spectroscopy

    SciTech Connect

    Bogusky, M.J.

    1987-01-01

    The structure and dynamics of the Pf1 and fd bacteriophage coat proteins in detergent micelles are characterized in solution by nuclear magnetic resonance spectroscopy. The coat proteins are found to exist within the bacterial inner cell membrane during viral infection and assembly. The coat proteins serve as a model system to investigate integral membrane proteins as well as the viral infection and assembly processes. The coat protein is insoluble in aqueous or organic solvents and can only be effectively solubilized in the presence of detergents that form micelles or phospholipids that form vesicles. The effective molecular weight of the detergent-micelle complex is ca. 30K daltons. Sequential assignment strategies were ineffective due to short T/sub 2s/ and severe resonance degeneracy. The backbone resonance assignments were completed by the combination of several homo- and heteronuclear correlation techniques with biosynthetic /sup 15/N labelling. 2D NOE experiments were used to locate and characterize the secondary structure of the membrane bound form of the proteins showing them to be largely helical with the hydrophobic core existing in a very stable helix.

  5. Mechanistic Insights into Reversible Photoactivation in Proteins of the GFP Family

    PubMed Central

    Gayda, Susan; Nienhaus, Karin; Nienhaus, G. Ulrich

    2012-01-01

    Light-controlled modification of the fluorescence emission properties of proteins of the GFP family is of crucial importance for many imaging applications including superresolution microscopy. Here, we have studied the reversibly photoswitchable fluorescent protein mIrisGFP using optical spectroscopy. By analyzing the pH dependence of isomerization and protonation equilibria and the isomerization kinetics, we have obtained insight into the coupling of the chromophore to the surrounding protein moiety and a better understanding of the photoswitching mechanism. A different acid-base environment of the chromophore’s protonating group in its two isomeric forms, which can be inferred from the x-ray structures of IrisFP, is key to the photoswitching function and ensures that isomerization and protonation are correlated. Amino acids near the chromophore, especially Glu212, rearrange upon isomerization, and Glu212 protonation modulates the chromophore pKa. In mIrisGFP, the cis chromophore protonates in two steps, with pKcis of 5.3 and 6, which is much lower than pKtrans (>10). Based on these results, we have put forward a mechanistic scheme that explains how the combination of isomeric and acid-base properties of the chromophore in its protein environment can produce negative and positive photoswitching modes. PMID:23260054

  6. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora

    PubMed Central

    Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie

    2016-01-01

    In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12. PMID:27309377

  7. Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy.

    PubMed

    Zhang, Guoxiu; Zhu, Yao; Wei, Dongzhi; Wang, Wei

    2014-01-01

    The filamentous fungus Trichoderma reesei has received attention as a host for heterologous protein production because of its high secretion capacity and eukaryotic post-translational modifications. However, the heterologous production of proteins in T. reesei is limited by its high expression of proteases. The pH control strategies have been proposed for eliminating acidic, but not alkaline, protease activity. In this study, we verified the expression of a relatively major extracellular alkaline protease (GenBank accession number: EGR49466.1, named spw in this study) from 20 candidates through real-time polymerase chain reaction. The transcriptional level of spw increased about 136 times in response to bovine serum albumin as the sole nitrogen source. Additionally, extracellular protease activity was reduced by deleting the spw gene. Therefore, using this gene expression system, we observed enhanced production and stability of the heterologous alkaline endoglucanase EGV from Humicola insolens using the Δspw strain as compared to the parental strain RUT-C30.

  8. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora.

    PubMed

    Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie

    2016-01-01

    In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.

  9. Protein zero, a nervous system adhesion molecule, triggers epithelial reversion in host carcinoma cells

    PubMed Central

    1995-01-01

    Protein zero (P(o)) is the immunoglobulin gene superfamily glycoprotein that mediates the self-adhesion of the Schwann cell plasma membrane that yields compact myelin. HeLa is a poorly differentiated carcinoma cell line that has lost characteristic morphological features of the cervical epithelium from which it originated. Normally, HeLa cells are not self-adherent. However, when P(o) is artificially expressed in this line, cells rapidly aggregate, and P(o) concentrates specifically at cell-cell contact sites. Rows of desmosomes are generated at these interfaces, the plasma membrane localization of cingulin and ZO-1, proteins that have been shown to be associated with tight junctions, is substantially increased, and cytokeratins coalesce into a cohesive intracellular network. Immunofluorescence patterns for the adherens junction proteins N-cadherin, alpha-catenin, and vinculin, and the desmosomal polypeptides desmoplakin, desmocollin, and desmoglein, are also markedly enhanced at the cell surface. Our data demonstrate that obligatory cell-cell adhesion, which in this case is initially brought about by the homophilic association of P(o) molecules across the intercellular cleft, triggers pronounced augmentation of the normally sluggish or sub-basal cell adhesion program in HeLa cells, culminating in suppression of the transformed state and reversion of the monolayer to an epithelioid phenotype. Furthermore, this response is apparently accompanied by an increase in mRNA and protein levels for desmoplakin and N-cadherin which are normally associated with epithelial junctions. Our conclusions are supported by analyses of ten proteins we examined immunochemically (P(o), cingulin, ZO-1, desmoplakin, desmoglein, desmocollin, N-cadherin, alpha-catenin, vinculin, and cytokeratin-18), and by quantitative polymerase chain reactions to measure relative amounts of desmoplakin and N-cadherin mRNAs. P(o) has no known signaling properties; the dramatic phenotypic changes we

  10. TRBP Control of PACT-Induced Phosphorylation of Protein Kinase R Is Reversed by Stress▿ †

    PubMed Central

    Daher, Aïcha; Laraki, Ghislaine; Singh, Madhurima; Melendez-Peña, Carlos E.; Bannwarth, Sylvie; Peters, Antoine H. F. M.; Meurs, Eliane F.; Braun, Robert E.; Patel, Rekha C.; Gatignol, Anne

    2009-01-01

    The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTΔ13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTΔ13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTΔ13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2−/− murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress. PMID:18936160

  11. Reversible Folding of Human Peripheral Myelin Protein 22, a Tetraspan Membrane Protein†

    PubMed Central

    Schlebach, Jonathan P.; Peng, Dungeng; Kroncke, Brett M.; Mittendorf, Kathleen F.; Narayan, Malathi; Carter, Bruce D.; Sanders, Charles R.

    2013-01-01

    Misfolding of the α-helical membrane protein peripheral myelin protein 22 (PMP22) has been implicated in the pathogenesis of the common neurodegenerative disease known as Charcot-Marie-Tooth disease (CMTD) and also several other related peripheral neuropathies. Emerging evidence suggests that the propensity of PMP22 to misfold in the cell may be due to an intrinsic lack of conformational stability. Therefore, quantitative studies of the conformational equilibrium of PMP22 are needed to gain insight into the molecular basis of CMTD. In this work, we have investigated the folding and unfolding of wild type (WT) human PMP22 in mixed micelles. Both kinetic and thermodynamic measurements demonstrate that the denaturation of PMP22 by n-lauroyl sarcosine (LS) in dodecylphosphocholine (DPC) micelles is reversible. Assessment of the conformational equilibrium indicates that a significant fraction of unfolded PMP22 persists even in the absence of the denaturing detergent. However, we find the stability of PMP22 is increased by glycerol, which facilitates quantitation of thermodynamic parameters. To our knowledge, this work represents the first report of reversible unfolding of a eukaryotic multispan membrane protein. The results indicate that WT PMP22 possesses minimal conformational stability in micelles, which parallels its poor folding efficiency in the endoplasmic reticulum. Folding equilibrium measurements for PMP22 in mixed micelles may provide an approach to assess the effects of cellular metabolites or potential therapeutic agents on its stability. Furthermore, these results pave the way for future investigation of the effects of pathogenic mutations on the conformational equilibrium of PMP22. PMID:23639031

  12. Evolution and characterization of a new reversibly photoswitching chromogenic protein, Dathail.

    PubMed

    Langan, Patricia S; Close, Devin W; Coates, Leighton; Rocha, Reginaldo C; Ghosh, Koushik; Kiss, Csaba; Waldo, Geoff; Freyer, James; Kovalevsky, Andrey; Bradbury, Andrew R M

    2016-05-08

    We report the engineering of a new reversibly switching chromogenic protein, Dathail. Dathail was evolved from the extremely thermostable fluorescent proteins thermal green protein (TGP) and eCGP123 using directed evolution and ratiometric sorting. Dathail has two spectrally distinct chromogenic states with low quantum yields, corresponding to absorbance in a ground state with a maximum at 389nm, and a photo-induced metastable state with a maximum at 497nm. In contrast to all previously described photoswitchable proteins, both spectral states of Dathail are non-fluorescent. The photo-induced chromogenic state of Dathail has a lifetime of ~50min at 293K and pH7.5 as measured by UV-Vis spectrophotometry, returning to the ground state through thermal relaxation. X-ray crystallography provided structural insights supporting a change in conformation and coordination in the chromophore pocket as being responsible for Dathail's photoswitching. Neutron crystallography, carried out for the first time on a protein from the green fluorescent protein family, showed a distribution of hydrogen atoms revealing protonation of the chromophore 4-hydroxybenzyl group in the ground state. The neutron structure also supports the hypothesis that the photo-induced proton transfer from the chromophore occurs through water-mediated proton relay into the bulk solvent. Beyond its spectroscopic curiosity, Dathail has several characteristics that are improvements for applications, including low background fluorescence, large spectral separation, rapid switching time, and the ability to switch many times. Therefore, Dathail is likely to be extremely useful in the quickly developing fields of imaging and biosensors, including photochromic Förster resonance energy transfer, high-resolution microscopy, and live tracking within the cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Special issue on filamentation

    NASA Astrophysics Data System (ADS)

    Li, Ruxin; Milchberg, Howard; Mysyrowicz, André

    2014-05-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on filamentation, to appear in the spring of 2015, and invites you to submit a paper. This special issue will attempt to give an overview of the present status of this field in order to create synergies and foster future developments. The issue is open to papers on the following issues: Theoretical advances on filamentation. Self-focusing and collapse. Filamentation in various media. Pulse self-compression and ultrafast processes in filaments. Molecular alignment and rotation. Filamentation tailoring. Interaction between filaments. Filament weather and pollution control. Filament induced condensation and precipitation. Terahertz science with filaments. Lasing in filaments. Filament induced molecular excitation and reaction. Electric discharge and plasma. Cross-disciplinary applications. Novel concepts related to these topics are particularly welcome. Please submit your article by 1 October 2014 (expected web publication: spring 2015) using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be included in the special issue. The issue will be edited by Ruxin Li, Howard Milchberg and André Mysyrowicz.

  14. Intermediate filaments in nervous tissues

    PubMed Central

    Liem, RKH; Yen, S; Salomon, GD; Shelanski, ML

    1978-01-01

    Intermediate filaments have been isolated from rabbit intradural spinal nerve roots by the axonal flotation method. This method was modified to avoid exposure of axons to low ionic strength medium. The purified filaments are morphologically 75-80 percent pure. The gel electrophoretogram shows four major bands migrating at 200,000, 145,000, 68,000, and 60,000 daltons, respectively. A similar preparation from rabbit brain shows four major polypeptides with mol wt of 200,000 145,000, 68,000, and 51,000 daltons. These results indicate that the neurofilament is composed of a triplet of polypepetides with mol wt of 200,000, 145,000, and 68,000 daltons. The 51,000-dalton band that appears in brain filament preparations as the major polypeptide seems to be of glial origin. The significance of the 60,000- dalton band in the nerve root filament preparation is unclear at this time. Antibodies raised against two of the triplet proteins isolated from calf brain localize by immunofluorescence to neurons in central and peripheral nerve. On the other hand, an antibody to the 51,000-dalton polypeptide gives only glial staining in the brain, and very weak peripheral nerve staining. Prolonged exposure of axons to low ionic strength medium solubilizes almost all of the triplet polypeptides, leaving behind only the 51,000- dalton component. This would indicate that the neurofilament is soluble at low ionic strength, whereas the glial filament is not. These results indicate that neurofilaments and glial filaments are composed of different polypeptides and have different solubility characteristics. PMID:83322

  15. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    PubMed Central

    Geisler, Florian; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection. PMID:27355965

  16. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy

    PubMed Central

    Zhang, Xi; Zhang, Mingshu; Li, Dong; He, Wenting; Peng, Jianxin; Betzig, Eric; Xu, Pingyong

    2016-01-01

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent “on” to “off” state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm2) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view. PMID:27562163

  17. Lck Inhibits Heat Shock Protein 65-Mediated Reverse Cholesterol Transport in T Cells.

    PubMed

    Luo, Tiantian; Hu, Jing; Xi, Dan; Xiong, Haowei; He, Wenshuai; Liu, Jichen; Li, Menghao; Lu, Hao; Zhao, Jinzhen; Lai, Wenyan; Guo, Zhigang

    2016-11-15

    Previously, we reported that heat shock protein (HSP)65 impairs the effects of high-density lipoprotein on macrophages. We also showed that immune response activation adversely affects reverse cholesterol transport (RCT). In this study, we investigated the effects of the Src family kinase lymphocyte-specific protein tyrosine kinase (Lck) and elucidated the mechanism underlying HSP65-regulated cholesterol efflux in T cells. We evaluated cell proliferation, Lck expression, and inflammatory cytokine production in Jurkat cells and CD4(+) T cells. HSP65-mediated inhibition of RCT was assessed by evaluating ABCA1, ABCG1, SR-BI, PPAR-γ, and liver X receptor-α expression. A dose-dependent relationship was found between the levels of these proteins and the suppression of cholesterol efflux. Stimulation of Lck-silenced T cells with ionomycin resulted in a decrease in intracellular calcium levels. Treatment of Jurkat cells with PP2, an inhibitor of Src family kinase, inhibited calcium-induced, but not PMA-induced, ERK phosphorylation. NF-κB activation in response to PMA was minimally inhibited in cells stimulated with PP2. HSP65 failed to trigger downstream ERK or JNK phosphorylation or to activate NF-κB or protein kinase C-γ in Lck-silenced cells. Additionally, elevation of intracellular calcium was also impaired. However, HSP65 significantly enhanced cholesterol efflux and decreased cellular cholesterol content by inducing the expression of cholesterol transport proteins in Lck-silenced cells. The treatment of Jurkat cells with PP2 also inhibited cell proliferation and promoted RCT. In conclusion, Lck is a key molecule in the TCR signaling cascade that inhibits cholesterol efflux and upregulates intracellular cholesterol ester content in T cells. Our results demonstrate that the immune response plays a previously unrecognized role in RCT. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. In situ, Reversible Gating of a Mechanosensitive Ion Channel through Protein-Lipid Interactions

    PubMed Central

    Dimitrova, Anna; Walko, Martin; Hashemi Shabestari, Maryam; Kumar, Pravin; Huber, Martina; Kocer, Armagan

    2016-01-01

    Understanding the functioning of ion channels, as well as utilizing their properties for biochemical applications requires control over channel activity. Herein we report a reversible control over the functioning of a mechanosensitive ion channel by interfering with its interaction with the lipid bilayer. The mechanosensitive channel of large conductance from Escherichia coli is reconstituted into liposomes and activated to its different sub-open states by titrating lysophosphatidylcholine (LPC) into the lipid bilayer. Activated channels are closed back by the removal of LPC out of the membrane by bovine serum albumin (BSA). Electron paramagnetic resonance spectra showed the LPC-dose-dependent gradual opening of the channel pore in the form of incrementally increasing spin label mobility and decreasing spin-spin interaction. A method to reversibly open and close mechanosensitive channels to distinct sub-open conformations during their journey from the closed to the fully open state enables detailed structural studies to follow the conformational changes during channel functioning. The ability of BSA to revert the action of LPC opens new perspectives for the functional studies of other membrane proteins that are known to be activated by LPC. PMID:27708587

  19. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice.

    PubMed

    Mallucci, Giovanna R; White, Melanie D; Farmer, Michael; Dickinson, Andrew; Khatun, Husna; Powell, Andrew D; Brandner, Sebastian; Jefferys, John G R; Collinge, John

    2007-02-01

    Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.

  20. Multidimensional profiling of plasma lipoproteins by size exclusion chromatography followed by reverse-phase protein arrays

    PubMed Central

    Dernick, Gregor; Obermüller, Stefan; Mangold, Cyrill; Magg, Christine; Matile, Hugues; Gutmann, Oliver; von der Mark, Elisabeth; Handschin, Corinne; Maugeais, Cyrille; Niesor, Eric J.

    2011-01-01

    The composition of lipoproteins and the association of proteins with various particles are of much interest in the context of cardiovascular disease. Here, we describe a technique for the multidimensional analysis of lipoproteins and their associated apolipoproteins. Plasma is separated by size exclusion chromatography (SEC), and fractions are analyzed by reverse-phase arrays. SEC fractions are spotted on nitrocellulose slides and incubated with different antibodies against individual apolipoproteins or antibodies against various apolipoproteins. In this way, tens of analytes can be measured simultaneously in 100 μl of plasma from a single SEC separation. This methodology is particularly suited to simultaneous analysis of multiple proteins that may change their distribution to lipoproteins or alter their conformation, depending on factors that influence circulating lipoprotein size or composition. We observed changes in the distribution of exchangeable apolipoproteins following addition of recombinant apolipoproteins or interaction with exogenous compounds. While the cholesteryl ester transfer protein (CETP)-dependent formation of pre-β-HDL was inhibited by the CETP inhibitors torcetrapib and anacetrapib, it was not reduced by the CETP modulator dalcetrapib. This finding was elucidated using this technique. PMID:21971713

  1. Development of porous polymer monoliths for reverse-phase chromatography of proteins.

    SciTech Connect

    Shepodd, Timothy J.; Stephens, Christopher P.

    2003-09-01

    The polymers developed in this project are intended for use as a stationary phase in reverse-phase chromatography of proteins, where the mobile phase is a solution of acetonitrile and a phosphate buffer, 6.6 pH. A full library of pore sizes have been developed ranging from 0.41{micro}m to 4.09 {micro}m; these pore sizes can be determined by the solvent ratio of tetrahydrofuran:methoxyethanol during polymerization. A column that can separate proteins in an isocratic mode would be a vast improvement from the common method of separating proteins through gradient chromatography using multiple solvents. In the stationary phase, the main monomers have hydrophobic tails, lauryl acrylate and steryl acrylate. Separations of small hydrophobic molecules and peptides (trial molecules) have efficiencies of 24,000-33,000 theoretical plates m{sup -1}. The combination of a highly non-polar stationary phase and a mobile phase where the polarity can be controlled provide for excellent separation.

  2. Pex14/17, a filamentous fungus-specific peroxin, is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae.

    PubMed

    Li, Ling; Wang, Jiaoyu; Chen, Haili; Chai, Rongyao; Zhang, Zhen; Mao, Xueqin; Qiu, Haiping; Jiang, Hua; Wang, Yanli; Sun, Guochang

    2016-08-29

    Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity.

  3. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein.

    PubMed

    Ibrahim, Rama; Lemoine, Antoinette; Bertoglio, Jacques; Raingeaud, Joël

    2015-07-01

    Human enhancer of filamentation 1 (HEF1) is a member of the p130Cas family of docking proteins involved in integrin-mediated cytoskeleton reorganization associated with cell migration. Elevated expression of HEF1 promotes invasion and metastasis in multiple cancer cell types. To date, little is known on its role in CRC tumor progression. HEF1 is phosphorylated on several Ser/Thr residues but the effects of these post-translational modifications on the functions of HEF1 are poorly understood. In this manuscript, we investigated the role of HEF1 in migration of colorectal adeno-carcinoma cells. First, we showed that overexpression of HEF1 in colo-carcinoma cell line HCT116 increases cell migration. Moreover, in these cells, HEF1 increases Src-mediated phosphorylation of FAK on Tyr-861 and 925. We then showed that HEF1 mutation on Ser-369 enhances HEF1-induced migration and FAK phosphorylation as a result of protein stabilization. We also, for the first time characterized a functional mutation of HEF1 on Arg-367 which mimics the effect of Ser-369 to Ala mutation. Finally through mass spectrometry experiments, we identified BCAR3 as an essential interactor and mediator of HEF1-induced migration. We demonstrated that single amino acid mutations that prevent formation of the HEF1-BCAR3 complex imp