Off-Design Reynolds Number Effects for a Supersonic Transport
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Wahls, Richard A.; Rivers, S. Melissa
2005-01-01
A high Reynolds number wind tunnel test was conducted to assess Reynolds number effects on the aerodynamic performance characteristics of a realistic, second-generation supersonic transport concept. The tests included longitudinal studies at transonic and low-speed, high-lift conditions across a range of chord Reynolds numbers (8 million to 120 million). Results presented focus on Reynolds number and static aeroelastic sensitivities at Mach 0.30 and 0.90 for a configuration without a tail. Static aeroelastic effects, which mask Reynolds number effects, were observed. Reynolds number effects were generally small and the drag data followed established trends of skin friction as a function of Reynolds number. A more nose-down pitching moment was produced as Reynolds number increased because of an outward movement of the inboard leading-edge separation at constant angles of attack. This study extends the existing Reynolds number database for supersonic transports operating at off-design conditions.
Magnetic Reynolds Number Effects in Compressible Turbulence
NASA Astrophysics Data System (ADS)
Ladeinde, Foluso; Gaitonde, Datta V.
2002-11-01
This research pertains to compressible MHD turbulence which, unlike the traditional emphasis on astrophysical problems, is motivated by the application to aerospace engineering. In this case, the magnetic Reynolds number, operatorname Re_σ, is small compared to unity, and the magnetic pressure Reynolds number, operatornameRe_b, is large. Other parameters of the problem include the standard kinetic energy Reynolds number, operatornameRe, and the acoustic Mach number, M_1. The Alfvénic Mach number, M_2 ˜ operatornameRe_b-1/2 and so it does not represent a new parameter. The problem under investigation involves decaying turbulence and the initial state is characterized in terms of the pseudosound density correction, δρ(x), the pressure fluctuation, δ p(x), the average kinetic energy, E_kin=<ρ uot u>/2, and the magnetic energy, E_mag=< b% otb>/(2M_2^2), where u is the fluctuating velocity field and b is the fluctuating magnetic induction field. We also have the internal energy, E_int, the cross helicity, H_c, and the location of the initial flow within the E/A-E/2Hc diagram,(S. Ghosh and W. H. Matthaeus, Phys. Fluids B 2) (7), 1520 (1990). where E is the total energy, A=
Reynolds number effects in combustion noise
NASA Technical Reports Server (NTRS)
Seshan, P. K.
1981-01-01
Acoustic emission spectra have been obtained for non-premixed turbulent combustion from two small diameter laboratory gas burners, two commercial gas burners and a large gas burner in the firebox of a Babcock-Wilcox Boiler (50,000 lb steam/hr). The changes in burner size and firing rate represent changes in Reynolds number and changes in air/fuel ratio represent departure from stoichiometric proportions. The combustion efficiency was measured independently through gas analysis. The acoustic spectra obtained from the various burners exhibit a persistent shape over the Reynolds number range of 8200-82,000. The spectra were analyzed for identification of a predictable frequency domain that is most responsive to, and readily correlated with, combustion efficiency. A simple parameter (consisting of the ratio of the average acoustic power output in the most responsive frequency bandwidth to the acoustic power level of the loudest frequency) is proposed whose value increases significantly and unmistakably as combustion efficiency approaches 100%. The dependence of the most responsive frequency domain on the various Reynolds numbers associated with turbulent jets is discussed.
Reynolds Number Effects on the Performance of Lateral Control Devices
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
2000-01-01
The influence of Reynolds number on the performance of outboard spoilers and ailerons was investigated on a generic subsonic transport configuration in the National Transonic Facility over a chord Reynolds number range 41 from 3x10(exp 6) to 30xl0(exp 6) and a Mach number range from 0.50 to 0.94, Spoiler deflection angles of 0, 10, 15, and 20 deg and aileron deflection angles of -10, 0, and 10 deg were tested. Aeroelastic effects were minimized by testing at constant normalized dynamic pressure conditions over intermediate Reynolds number ranges. Results indicated that the increment in rolling moment due to spoiler deflection generally becomes more negative as the Reynolds number increases from 3x10(exp 6) to 22x10(exp 6) with only small changes between Reynolds numbers of 22x10(exp 6) and 30x10(exp 6). The change in the increment in rolling moment coefficient with Reynolds number for the aileron deflected configuration is generally small with a general trend of increasing magnitude with increasing Reynolds number.
Reynolds Number Effects on a Supersonic Transport at Transonic Conditions
NASA Technical Reports Server (NTRS)
Wahls, R. N.; Owens, L. R.; Rivers, S. M. B.
2001-01-01
A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and the high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at low speed high-lift and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on both the Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.90 for a configuration without an empennage.
Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Wang, S.; Zhou, Y.; Alam, Md. Mahbub; Yang, H.
2014-11-01
This work investigates the aerodynamics of a NACA 0012 airfoil at the chord-based Reynolds numbers (Rec) from 5.3 × 103 to 2.0 × 104. The lift and drag coefficients, CL and CD, of the airfoil, along with the flow structure, were measured as the turbulent intensity Tu of oncoming flow varies from 0.6% to 6.0%. The analysis of the present data and those in the literature unveils a total of eight distinct flow structures around the suction side of the airfoil. Four Rec regimes, i.e., the ultra-low (<1.0 × 104), low (1.0 × 104-3.0 × 105), moderate (3.0 × 105-5.0 × 106), and high Rec (>5.0 × 106), are proposed based on their characteristics of the CL-Rec relationship and the flow structure. It has been observed that Tu has a more pronounced effect at lower Rec than at higher Rec on the shear layer separation, reattachment, transition, and formation of the separation bubble. As a result, CL, CD, CL/CD and their dependence on the airfoil angle of attack all vary with Tu. So does the critical Reynolds number Rec,cr that divides the ultra-low and low Rec regimes. It is further noted that the effect of increasing Tu bears similarity in many aspects to that of increasing Rec, albeit with differences. The concept of the effective Reynolds number Rec,eff advocated for the moderate and high Rec regimes is re-evaluated for the low and ultra-low Rec regimes. The Rec,eff treats the non-zero Tu effect as an addition of Rec and is determined based on the presently defined Rec,cr. It has been found that all the maximum lift data from both present measurements and previous reports collapse into a single curve in the low and ultra-low Rec regimes if scaled with Rec,eff.
High Reynolds Number Effects on HSCT Stability and Control Characteristics
NASA Technical Reports Server (NTRS)
Elzey, Michael B.; Owens, Lewis R., Jr.; Wahls, Richard A.; Wilson, Douglas L.
1999-01-01
Two wind tunnel tests during 1995 in the National Transonic Facility (NTF 070 and 073) served to define Reynolds number effects on longitudinal and lateral-directional stability and control. Testing was completed at both high lift and transonic conditions. The effect of Reynolds number on the total airplane configuration, horizontal and vertical tail effectiveness, forebody chine performance, rudder control and model aeroelastics was investigated. This paper will present pertinent stability and control results from these two test entries. Note that while model aeroelastic effects are examined in this presentation, no corrections for these effects have been made to the data.
Subsonic Reynolds Number Effects on a Diamond Wing Configuration
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Ghee, T. A.
2001-01-01
An advanced diamond-wing configuration was tested at low speeds in the National Transonic Facility (NTF) in air at chord Reynolds numbers from 4.4 million (typical wind-tunnel conditions) to 24 million (nominal flight value). Extensive variations on high-lift rigging were explored as part of a broad multinational program. The analysis for this study is focused on the cruise and landing settings of the wing high-lift systems. Three flow domains were identified from the data and provide a context for the ensuing data analysis. Reynolds number effects were examined in incremental form based upon attached-flow theory. A similar approach showed very little effect of low-speed compressibility.
Reynolds number effects on mixing due to topological chaos.
Smith, Spencer A; Warrier, Sangeeta
2016-03-01
Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol. PMID:27036184
Reynolds number effects on mixing due to topological chaos.
Smith, Spencer A; Warrier, Sangeeta
2016-03-01
Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.
Reynolds number effects on mixing due to topological chaos
NASA Astrophysics Data System (ADS)
Smith, Spencer A.; Warrier, Sangeeta
2016-03-01
Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.
Reynolds Number Effects on Mixing Due to Topological Chaos
NASA Astrophysics Data System (ADS)
Warrier, Sangeeta; Smith, Spencer
2014-11-01
Topological chaos has emerged as a powerful modeling tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for two different stirring protocols, one topologically complex (pseudo Anosov) and one simple (finite order), over a range of viscosities. After extracting appropriate measures indicative of mixing from the FTLE field, we see a clearly defined range of Reynolds numbers for which the relative efficacy of the pseudo Anosov protocol over the finite order protocol justifies the application of topological chaos. The Reynolds number dependance of these mixing measures also reveals several other intriguing phenomena. Undergraduate Student.
Reynolds number and installation effects on turbine meters
Park, J.T.
1995-12-31
Experimental results are presented for four 100-mm (4-inch) turbine meters from three manufacturers and four models. Tests were performed with nitrogen gas in the Low Pressure Loop of the Gas Research Institute (GRI) Metering Research Facility (MRF). The turbine meters were calibrated gas by binary weighted sonic nozzles which were calibrated against a primary gravimetric standard. Reynolds number effects were determined from operating pressures of 0.206 and 0.793 MPa (30 and 115 psia) and flowrates of 34 to 510 m{sup 3}/h(1,200 to 18,000 acfh). The range for the same Reynolds number at the two pressures was 62,000 to 251,000. The difference in meter factor for the 100-mm (4-inch) meters for two pressures at the same Reynolds number was within {plus_minus}0.4%. The 100-mm meters were also tested in the A.G.A. Report 7 short-coupled installation. The largest difference from the baseline calibration was -0.3%. The small difference appears to be a velocity profile effect of two closely coupled elbows in the same plane with the entering and exiting flow in the same direction.
Reynolds Number Effects at High Angles of Attack
NASA Technical Reports Server (NTRS)
Fisher, David F.; Cobleigh, Brent R.; Banks, Daniel W.; Hall, Robert M.; Wahls, Richard A.
1998-01-01
Lessons learned from comparisons between ground-based tests and flight measurements for the high-angle-of-attack programs on the F-18 High Alpha Research Vehicle (HARV), the X-29 forward-swept wing aircraft, and the X-31 enhanced fighter maneuverability aircraft are presented. On all three vehicles, Reynolds number effects were evident on the forebodies at high angles of attack. The correlation between flight and wind tunnel forebody pressure distributions for the F-18 HARV were improved by using twin longitudinal grit strips on the forebody of the wind-tunnel model. Pressure distributions obtained on the X-29 wind-tunnel model at flight Reynolds numbers showed excellent correlation with the flight data up to alpha = 50 deg. Above (alpha = 50 deg. the pressure distributions for both flight and wind tunnel became asymmetric and showed poorer agreement, possibly because of the different surface finish of the model and aircraft. The detrimental effect of a very sharp nose apex was demonstrated on the X-31 aircraft. Grit strips on the forebody of the X-31 reduced the randomness but increased the magnitude of the asymmetry. Nose strakes were required to reduce the forebody yawing moment asymmetries and the grit strips on the flight test noseboom improved the aircraft handling qualities.
Reynolds number effects on gill pumping mechanics in mayfly nymphs
NASA Astrophysics Data System (ADS)
Sensenig, Andrew; Shultz, Jeffrey; Kiger, Ken
2006-11-01
Mayfly nymphs have an entirely aquatic life stage in which they frequently inhabit stagnant water. Nymphs have the capability to generate a ventilation current to compensate for the low oxygen level of the water by beating two linear arrays of plate-like gills that typically line the lateral edge of the abdomen. The characteristic Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 5 to 100 depending on age and species. The assumption that the system maintains optimal energetic efficiency leads to the prediction that animals transition from rowing to flapping mechanisms with increasing Re, while possibly utilizing a squeeze mechanism to a greater extent at lower Re. To investigate this hypothesis, we capture the motion of the gills through 3D imaging to investigate the effect of Reynolds number on the stroke patterns. PIV is utilized to assess flow rates and viscous dissipation. The effectiveness of the ventilation mechanism at each size has important consequences for the range of oxygen levels, and hence the habitat range, that can be tolerated by that size.
NASA Technical Reports Server (NTRS)
Baals, D. D. (Editor)
1977-01-01
Fundamental aerodynamic questions for which high Reynolds number experimental capability is required are discussed. The operational characteristics and design features of the National Transonic Facility are reviewed.
Reynolds Number Effects on the Richtmyer-Meshkov Instability
NASA Technical Reports Server (NTRS)
Niederhaus, Charles; Vitaliy, Krivets; Collins, Brett; Jacobs, Jeffrey
2002-01-01
This presentation compares the results of two very different experimental studies of Richtmyer-Meshkov instability: shock tube experiments in which an air/SF6 interface is accelerated by a weak shock wave; and incompressible experiments in which a box containing two different density miscible liquids is impulsively accelerated by bouncing it off of a fixed coil spring. Both experiments are initiated with sinusoidal initial perturbations. The interface perturbation initially remains sinusoidal as it grows in amplitude, but eventually the interfacial vorticity concentrates into points, forming a row of line vortices of alternating sign. The Reynolds number based on vortex circulation ranges from 1,000 to 45,000 in these experiments. It is found that viscous effects have a large, quantifiable effect on the evolution of the individual vortices. The effects of viscosity on the overall perturbation amplitude, however, are small and will be compared to theory.
Effect of Reynolds Number and Mach Number on flow angularity probe sensitivity
NASA Technical Reports Server (NTRS)
Smith, L. A.; Adcock, J. B.
1986-01-01
Preliminary calibrations were performed on nine flow angularity probes in the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST) and the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). These probes will be used in surveying the test section flows of the National Transonic Facility (NTF). The probes used in this study have a pyramid head with five pressure orifices. The calibrations consisted of both isolated probe measurements and rake-mounted multiprobe measurements that covered a range of subsonic Mach numbers up to 0.90 and Reynolds numbers per foot up to 40 X 10 to the 6th power. The preliminary calibration in the 7 x 10 HST included testing the probes both individually and in a rake. The 0.3-m TCT calibration tested two probes singly at varying Reynolds numbers. The results from these tests include Mach number, Reynolds number, and rake-mounting effects. The results of these tests showed probe sensitivity to be slightly affected by Mach number. At Reynolds numbers per foot above 10 x 10 to the 6th power, the probe did not exhibit a Reynolds number sensitivity.
High Reynolds number effects on a localized stratified turbulent flow
NASA Astrophysics Data System (ADS)
Zhou, Qi; Diamessis, Peter
2015-11-01
We report large-eddy simulations (LES) of the turbulent flow behind a sphere of diameter D translating at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N. These simulations are performed using a spectral-multidomain-penalty incompressible Navier-Stokes solver, at Reynolds numbers Re ≡ UD / ν ∈ { 5 ×103 , 105 , 4 ×105 } and Froude numbers Fr ≡ 2 U / (ND) ∈ { 4 , 16 , 64 } . An increasingly richer turbulent fine-structure is observed within the larger-scale quasi-horizontal vortices at later times. Turbulent transport of momentum is examined during the non-equilibrium (NEQ) regime of the turbulent life cycle, with an emphasis on the vertical transport that occurs after the establishment of local buoyancy control. The turbulent viscosities in both horizontal and vertical directions are estimated through the LES data; possible parameterization of the vertical turbulent viscosity with the buoyancy Reynolds number Reb = ɛ / (νN2) (or its easy-to-obtain surrogates) is discussed. The dynamical role of the buoyancy Reynolds number in choosing the vertical turbulence length scales is also investigated. ONR grant N00014-13-1-0665 (managed by Dr. R. Joslin); HPCMP Frontier Project FP-CFD-FY14-007 (P.I.: Dr. S. de Bruyn Kops).
The effect of Prandtl number on mixing in low Reynolds number Kelvin-Helmholtz billows
NASA Astrophysics Data System (ADS)
Rahmani, M.; Seymour, B. R.; Lawrence, G. A.
2016-05-01
The effect of Prandtl number on mixing in temporally evolving Kelvin-Helmholtz (KH) instabilities at low to moderate Reynolds numbers is studied through direct numerical simulation. We distinguish between the mixing induced by the primary billow and the mixing generated by three-dimensional motions by performing each simulation in two and three dimensions. The results indicate that the time evolution of the rate of two- and three-dimensional mixing through different stages of the life cycle of KH flow is significantly influenced by the Prandtl number. As the Prandtl number increases, the final amount of mixing increases for Reynolds that are too low to support active three-dimensional motions. This trend is the opposite in sufficiently high Reynolds number KH flows that can overcome viscous effects and develop significant three-dimensional instabilities. While the mixing generated in the two-dimensional flows, uniform in the span-wise direction, is not significantly dependent on the Prandtl number, the turbulent mixing induced by three-dimensional motions is a function of the Prandtl number. We observe a steady increase in the total amount of mixing for buoyancy Reynolds numbers above 7, consistent with the results of Shih et al. ["Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations," J. Fluid Mech. 525, 193-214 (2005)]. Both maximum instantaneous and cumulative mixing efficiencies exhibit a decreasing trend with increasing Prandtl number. We compare the dependence of the mixing efficiency on Prandtl number to previous studies.
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.
1996-01-01
Experimental data from jet-engine tests have indicated that unsteady blade-row interaction effects can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Preliminary studies indicate that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study, numerical experiments have been performed to quantify the Reynolds number dependence of unsteady wake/separation bubble interaction on the performance of a low-pressure turbine.
High Reynolds number and turbulence effects on aerodynamics and heat transfer in a turbine cascade
NASA Technical Reports Server (NTRS)
Yeh, Frederick C.; Hippensteele, Steven A.; Vanfossen, G. James; Poinsatte, Philip E.; Ameri, Ali
1993-01-01
Experimental data on pressure distribution and heat transfer on a turbine airfoil were obtained over a range of Reynolds numbers from 0.75 to 7.5 x 10 exp 6 and a range of turbulence intensities from 1.8 to about 15 percent. The purpose of this study was to obtain fundamental heat transfer and pressure distribution data over a wide range of high Reynolds numbers and to extend the heat transfer data base to include the range of Reynolds numbers encountered in the Space Shuttle main engine (SSME) turbopump turbines. Specifically, the study aimed to determine (1) the effect of Reynolds number on heat transfer, (2) the effect of upstream turbulence on heat transfer and pressure distribution, and (3) the relationship between heat transfer at high Reynolds numbers and the current data base. The results of this study indicated that Reynolds number and turbulence intensity have a large effect on both the transition from laminar to turbulent flow and the resulting heat transfer. For a given turbulence intensity, heat transfer for all Reynolds numbers at the leading edge can be correlated with the Frossling number developed for lower Reynolds numbers. For a given turbulence intensity, heat transfer for the airfoil surfaces downstream of the leading edge can be approximately correlated with a dimensionless parameter. Comparison of the experimental results were also made with a numerical solution from a two-dimensional Navier-Stokes code.
Effect of Reynolds number on the structure of turbulent boundary layers
NASA Astrophysics Data System (ADS)
Smith, Randall William
This dissertation presents an investigation of the Reynolds number dependence of the structure of turbulent boundary layers. Experiments were performed in an incompressible, constant property, turbulent boundary layer developing on a flat plate in zero pressure gradient. Measurements of the mean flow spanned a momentum thickness Reynolds number range 4,600 less than Re(sub theta) less than 13,200. Turbulence statistics and space-time correlations were measured at two Reynolds numbers, Re(sub theta) approximately equal to 5,000 and 13,000. The mean flow data is used to assess the validity of the traditional mean flow scaling laws. The present data favor an alternative defect law, recently revived by George et al., which results in a Reynolds number dependent power-law overlap region. Measurements of single-point turbulence statistics are compared with existing data in an effort to distinguish between true Reynolds number effects and experimental uncertainties, especially errors due to inadequate spatial resolution. The Reynolds normal and shear stresses exhibit definite Reynolds number variations, and follow a distinctive behavior in the overlap region. The shear correlation coefficient and shear rate suggest a change in the character of the near-wall turbulence as Reynolds number increases. However, the distribution of the shear stress among the quadrants of the u'-v' plane is independent of Reynolds number. The production term of the turbulence kinetic energy budget scales on mixed variables. Space-time correlation measurements are used to examine the Reynolds number dependence of the large scale outer layer structure. Convection velocities and decay distances are only weakly dependent on Reynolds number, but the structure angle increases with Reynolds number. The wavelet transform is used to filter the data and examine how these properties vary with the scale of the motions considered. Convection velocities and structure angles decrease with increasing scale, but
Reynolds Number Effects on the Stability and Control Characteristics of a Supersonic Transport
NASA Technical Reports Server (NTRS)
Owens, L. R.; Wahls, R. A.; Elzey, M. B.; Hamner, M. P.
2002-01-01
A High Speed Civil Transport (HSCT) configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. A series of tests included longitudinal and lateral/directional studies at transonic and low speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results presented focus on Reynolds number sensitivities of the stability and control characteristics at Mach 0.30 and 0.95 for a complete HSCT aircraft configuration including empennage. The angle of attack where the pitching-moment departure occurred increased with higher Reynolds numbers for both the landing and transonic configurations. The stabilizer effectiveness increased with Reynolds number for both configurations. The directional stability also increased with Reynolds number for both configurations. The landing configuration without forebody chines exhibited a large yawing-moment departure at high angles of attack and zero sideslip that varied with increasing Reynolds numbers. This departure characteristic nearly disappeared when forebody chines were added. The landing configuration's rudder effectiveness also exhibited sensitivities to changes in Reynolds number.
Reynolds Number Effects on the Performance of Ailerons and Spoilers (Invited)
NASA Technical Reports Server (NTRS)
Mineck, R. E.
2001-01-01
The influence of Reynolds number on the performance of outboard spoilers and ailerons was investigated on a generic subsonic transport configuration in the National Transonic Facility over a chord Reynolds number range from 3 to 30 million and a Mach number range from 0.70 to 0.94. Spoiler deflection angles of 0, 10, and 20 degrees and aileron deflection angles of -10, 0, and 10 degrees were tested. Aeroelastic effects were minimized by testing at constant normalized dynamic pressure conditions over intermediate Reynolds number ranges. Results indicated that the increment in rolling moment due to spoiler deflection generally becomes more negative as the Reynolds number increases from 3 x 10(exp 6) to 22 x 10 (exp 6) with only small changes between Reynolds numbers of 22 x 10(exp 6) and 30 x 10(exp 6). The change in the increment in rolling moment coefficient with Reynolds number for the aileron deflected configuration is generally small with a general trend of increasing magnitude with increasing Reynolds number.
Study of Low Reynolds Number Effects on the Losses in Low-Pressure Turbine Blade Rows
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Ashpis, David E.
1998-01-01
Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical experiments have been performed to study the models available for low Reynolds number flows, and to quantify the Reynolds number dependence of low-pressure turbine cascades and stages. The predicted aerodynamic results exhibit good agreement with design data.
Reynolds Number Effects on a Supersonic Transport at Subsonic High-Lift Conditions (Invited)
NASA Technical Reports Server (NTRS)
Owens, L.R.; Wahls, R. A.
2001-01-01
A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at transonic and low-speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.30 for a configuration without an empennage. A fundamental change in flow-state occurred between Reynolds numbers of 30 to 40 million, which is characterized by significantly earlier inboard leading-edge separation at the high Reynolds numbers. Force and moment levels change but Reynolds number trends are consistent between the two states.
Effect of Reynolds number on the subsonic boattail drag of several wing-body configurations
NASA Technical Reports Server (NTRS)
Reubush, D. E.
1976-01-01
An investigation was conducted in a transonic cryogenic tunnel to determine the effect of varying Reynolds number on the boattail drag of several wing-body configurations. This study was made at 0 deg angle of attack at Mach numbers from 0.6 to 0.9 for Reynolds numbers up to 67 x 1 million (based on distance from the nose to the start of the boattail). Results indicate that as the Reynolds number was increased the boattail static pressure coefficients in the expansion region of the boattail became more negative while those in the recompression region became more positive. Results show that there was only a small effect of Reynolds number of boattail pressure drag.
NASA Technical Reports Server (NTRS)
Tomek, W. G.; Hall, R. M.; Wahls, R. A.; Luckring, J. M.; Owens, L. R.
2002-01-01
A wind tunnel test of a generic fighter configuration was tested in the National Transonic Facility through a cooperative agreement between NASA Langley Research Center and McDonnell Douglas. The primary purpose of the test was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The test included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: (1) Fuselage/Wing; (2) Fuselage/Wing/Centerline Vertical Tail/Horizontal Tail; and (3) Fuselage/Wing/Trailing-Edge Extension/Twin Vertical Tails. Reynolds number effects on the longitudinal aerodynamic characteristics are presented herein.
The effect of Reynolds number on transonic compressor blade rotor section
NASA Astrophysics Data System (ADS)
Beheshti Amiri, H.; Shahrabi Farahani, A.; Khazaei, H.
2016-10-01
In this paper, the effect of Reynolds number on transonic compressor blade rotor section is investigated. After passing through the first transonic compressor stages , the flow becomes remarkably compressed. In the present work, it is intended to numerically investigate the effects of the inflow Reynolds number on the unique incidence, flow losses, deviation angle, and shock position, at three different important points of "Minimum Loss" and "Choked Flow" in started conditions and "Stall Operation" in un-started conditions.
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Wahls, Richard A.
1999-01-01
This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
NASA Technical Reports Server (NTRS)
Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.
2001-01-01
A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.
A review of some Reynolds number effects related to bodies at high angles of attack
NASA Technical Reports Server (NTRS)
Polhamus, E. C.
1984-01-01
A review of some effects of Reynolds number on selected aerodynamic characteristics of two- and three-dimensional bodies of various cross sections in relation to fuselages at high angles of attack at subsonic and transonic speeds is presented. Emphasis is placed on the Reynolds number ranges above the subcritical and angles of attack where lee side vortex flow or unsteady wake type flows predominate. Lists of references, arranged in subject categories, are presented with emphasis on those which include data over a reasonable Reynolds number range. Selected Reynolds number data representative of various aerodynamic flows around bodies are presented and analyzed and some effects of these flows on fuselage aerodynamic parameters are discussed.
Low-Reynolds-number effects in a fully developed turbulent channel flow
NASA Technical Reports Server (NTRS)
Antonia, R. A.; Teitel, M.; Kim, J.; Browne, L. W. B.
1992-01-01
Low-Reynolds-number effects are observed in the inner region of a fully developed turbulent channel flow, using data obtained either from experiments or by direct numerical simulations. The Reynolds-number influence is observed on the turbulence intensities and to a lesser degree on the average production and dissipation of the turbulent energy. In the near-wall region, the data confirm Wei and Willmarth's (1989) conclusion that the Reynolds stresses do not scale on wall variables. One of the reasons proposed to account for this behavior, namely, the 'geometry' effect or direct interaction between inner regions on opposite walls, was investigated in some detail by introducing temperature at one of the walls, both in experiment and simulation. Although the extent of penetration of thermal excursions into the opposite side of the channel can be significant at low Reynolds numbers, the contribution these excursions make to the Reynolds shear stress and the spanwise vorticity in the opposite wall region is negligible. In the inner region, spectra and cospectra of the velocity fluctuations u and v change rapidly with the Reynolds number, the variations being mainly confined to low wavenumbers in the u spectrum.
NASA Technical Reports Server (NTRS)
Stanewsky, E.; Freimuth, P.
1989-01-01
A comparison of results from conventional and adaptive wall wind tunnels with regard to Reynolds number effects was carried out. The special objective of this comparison was to confirm or reject earlier conclusions, soley based on conventional wind tunnel results, concerning the influence of viscous effects on the characteristics of partially open wind tunnel walls, hence wall interference. The following postulations could be confirmed: (1) certain classes of supercritical airfoils exhibit a non-linear increase in lift which is, at least in part, related to viscous-inviscid interactions on the airfoil. This non-linear lift characteristic can erroneously be suppressed by sidewall interference effects in addition to being affected by changes in Reynolds number. Adaptive walls seem to relieve the influence of sidewall interference; (2) the degree of (horizontal) wall interference effects can be significantly affected by changes in Reynolds number, thus appearing as true Reynolds number effects; (3) perforated wall characteristics seem much more susceptible to viscous changes than the characteristics of slotted walls; here, blockage interference may be most severely influenced by viscous changes; and (4) real Reynolds number effects are present on the CAST 10-2/DOA 2 airfoil; they were shown to be appreciable also by the adaptive wall wind tunnel tests.
Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.
Niazmand, H; Rajabi Jaghargh, E
2010-09-01
The purpose of this study is to investigate the effects of the Reynolds number and the bend sweep angle on the blood flow patterns of S-shaped bends. The numerical simulations of steady flows in S-shaped bends with sweep angles of 45 degrees , 90 degrees , and 135 degrees are performed at Reynolds numbers of 125, 500, and 960. Hemodynamic characteristics such as secondary flows, vorticity, and axial velocity profiles are analyzed in detail. Flow patterns in S-shaped bends are strongly dependent on both Reynolds number and bend sweep angle, which can be categorized into three groups based on the first bend secondary flow effects on the transverse flow of the second bend. For low Reynolds numbers and any sweep angles, secondary flows in the second bend eliminate the first bend effects in the early sections of the second bend and therefore the axial velocity profile is consistent with the bend curvature, while for high Reynolds numbers depending on the bend sweep angles the secondary vortex pattern of the first bend may persist partially or totally throughout the second bend leading to a four-vortex secondary structure. Moreover, an interesting flow feature observed at the Reynolds number of 960 is that the secondary flow asymmetrical behavior occurred around the second bend exit and along the outflow straight section. This symmetry-breaking phenomenon which has not been reported in the previous studies is shown to be more pronounced in the 90 degrees S-shaped bend as compared to other models considered here. The probability of flow separation as one of the important flow features contributing to the onset and development of arterial wall diseases is also studied. It is observed that the second bend outer wall of gentle bends with sweep angles from 20 degrees to 30 degrees at high enough Reynolds numbers are prone to flow separation.
Reynolds number effects on the performance and near-wake of a cross-flow turbine
NASA Astrophysics Data System (ADS)
Bachant, Peter; Wosnik, Martin
2013-11-01
To design wind or marine hydrokinetic (MHK) turbine farms with high efficiency, interactions between turbine wakes must be accurately predicted. However, to date numerical models predicting detailed wake properties of cross-flow (or vertical-axis) turbines have been validated with experimental data taken at Reynolds numbers significantly lower than those of full scale devices, casting doubt on the models' accuracy. To address this uncertainty, we investigated the effects of Reynolds number on the performance and near-wake characteristics of a 3-bladed cross-flow turbine, both experimentally and numerically. Mechanical power output and overall streamwise drag were measured in a towing tank at turbine diameter Reynolds numbers ReD = 0 . 5 ×105 - 2 . 0 ×106 . A detailed map of the near-wake one turbine diameter downstream was acquired via acoustic Doppler velocimetry for each Reynolds number case, from which differences in the mean velocity, turbulence intensity, and Reynolds stresses are highlighted. Finally, Reynolds-averaged Navier-Stokes (RANS) numerical simulations were performed, the results from which are compared with the experimental data. Work supported by NSF-CBET grant 1150797.
Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, James M.
2004-01-01
An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.
Negative Magnus Effect on a Rotating Sphere at around the Critical Reynolds Number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Watanabe, Hiroaki; Tsubokura, Makoto; Oshima, Nobuyuki
2011-12-01
Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow is investigated using large-eddy simulation at three Reynolds numbers of 1.0× 104, 2.0 × 105, and 1.14 × 106. The numerical methods adopted are first validated on a non-rotating sphere and the spatial resolution around the sphere is determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed at around the critical Reynolds number. In the rotating sphere, positive or negative Magnus effect is observed depending on the Reynolds number and the rotating speed imposed. At the Reynolds number in the subcritical or supercritical region, the direction of the lift force follows the Magnus effect to be independent of the rotational speed tested here. In contrast, negative lift is observed at the Reynolds number at the critical region when particular rotating speeds are imposed. The negative Magnus effect is discussed in the context of the suppression or promotion of boundary layer transition around the separation point.
Effective swimming strategies in low Reynolds number flows
NASA Astrophysics Data System (ADS)
Olla, P.
2011-03-01
The optimal strategy for a microscopic swimmer to migrate across a linear shear flow is discussed. The two cases, in which the swimmer is located at large distance, and in the proximity of a solid wall, are taken into account. It is shown that migration can be achieved by means of a combination of sailing through the flow and swimming, where the swimming strokes are induced by the external flow without need of internal energy sources or external drives. The structural dynamics required for the swimmer to move in the desired direction is discussed and two simple models, based respectively on the presence of an elastic structure, and on an orientation dependent friction, to control the deformations induced by the external flow, are analyzed. In all cases, the deformation sequence is a generalization of the tank-treading motion regimes observed in vesicles in shear flows. Analytic expressions for the migration velocity as a function of the deformation pattern and amplitude are provided. The effects of thermal fluctuations on propulsion have been discussed and the possibility that noise be exploited to overcome the limitations imposed on the microswimmer by the scallop theorem have been discussed.
Effect of Reynolds number on stability characteristics of a cruciform wing-body
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.; Lamb, M.; Watson, C. B.
1980-01-01
An experimental investigation was conducted to determine the effect of Reynolds number on the stability characteristics of a body with cruciform wings at large angles of attack. Pressure distributions and force and moment data (axial force not measured) are presented for Mach 1.60 and 2.70, Reynolds numbers based on body diameter from approximately 130,000 to 2,800,000, and angles of attack from 0 deg to 50 deg. In general, the data show only small effects of Reynolds number throughout the range of test condition. Also discussed are force balance and pressure data that suggest a direct relationship between wind choking and the onset of a nonlinear stability variaton with angle of attack.
Effect of Reynolds number on the aerodynamic characteristics of a cruciform wing-body configuration
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.
1979-01-01
An experimental investigation has been conducted to determine the effect of Reynolds number on the aerodynamic characteristics of a body with cruciform wings at large angles of attack. Both pressure distributions and force and moment data have been obtained and are presented for Mach 1.6 and 2.7, Reynolds numbers based on body diameter of approximately 200,000-2,800,000, and angles of attack from 0 to 50 deg. In general, the data show only small effects of Reynolds number throughout the range of test conditions. Also presented and discussed are schlieren and pressure data that suggest the existence of 'wing-choking' between the two windward wings for certain roll angles at large angles of attack.
Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2002-01-01
A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.
Reynolds Number and Leading-Edge Bluntness Effects on a 65 Deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2002-01-01
A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.
Reynolds number effects on boattail drag of exhaust nozzles from wind tunnel and flight tests
NASA Technical Reports Server (NTRS)
Wilcox, F. A.; Chamberlin, R.
1974-01-01
A family of nacelle mounted high angle boattail nozzles was tested to investigate Reynolds number effects on drag. The nozzles were flown on a modified F-106B and mounted on scale models of a F-106 in a wind tunnel. A 19- to 1-range of Reynolds number was covered as a result of the large size differences between models and by flying over a range of altitude. In flight, the nozzles were mounted behind J-85 turbojet engines. Jet boundary simulators and a powered turbojet engine simulator were used on the wind tunnel models. Data were taken at Mach numbers of 0.6 and 0.9. Boattail drag was found to be affected by boattail number. The effect is a complex relationship dependent upon boundary layer thickness and nozzle boattail shape. As Reynolds number was increased from the lowest values obtained with scale models, boattail drag first increased to a maximum at the lowest flight Reynolds number and then decreased.
Turbulence effect on crossflow around a circular cylinder at subcritical Reynolds numbers
NASA Technical Reports Server (NTRS)
Sadeh, W. Z.; Saharon, D. B.
1982-01-01
An investigation of the effect of freestream turbulence on the flow around a smooth circular cylinder at subcritical Reynolds numbers from 5.2 x 10 to the 4th power to 2.09 x 10 to the 5th power was conducted. Measurements show that the interaction of incident turbulence with the initial laminar boundary layer: (1) modifies the characteristics of the mean surface pressure distribution; (2) induces an aft shift in the separation point ranging from 5 to 50 beyond the laminar separation angle of 80 degrees; and, (3) reduces the mean drag coefficient to values between 97 and 46% of its nearly constant laminar counterpart. The extent of these changes depends on the particular Reynolds number background turbulence combination. These results demonstrate that a boundary-layer flow similar to that found in critical, supercritical and/or transcritical flow regimes is induced by turbulence at subcritical Reynolds numbers and, hence, the effect of turbulence is equivalent to an effective increase in the Reynolds number. The change in the nature and properties of the boundary layer in the subcritical regime, consequent upon the penetration of turbulence into it, is in agreement with the model proposed by the vorticity-amplification theory.
Reynolds number influences in aeronautics
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.; Yip, Long P.; Yao, Chung-Sheng; Lin, John C.; Lawing, Pierce L.; Batina, John T.; Hardin, Jay C.; Horvath, Thomas J.; Fenbert, James W.; Domack, Christopher S.
1993-01-01
Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical
Vacuum chamber pressure effects on thrust measurements of low Reynolds number nozzles
NASA Technical Reports Server (NTRS)
Sovey, J. S.; Penko, P. F.; Grisnik, S. P.; Whalen, M. V.
1985-01-01
Tests were conducted to investigate the effect of vacuum facility pressure on the performance of small thruster nozzles. Thrust measurements of two converging-diverging nozzles with an area ratio of 140 and an orifice plate flowing unheated nitrogen and hydrogen were taken over a wide range of vacuum facility pressures and nozzle throat Reynolds numbers. In the Reynolds number range of 2200 to 12 000 there was no discernable viscous effect on thrust below an ambient to total pressure ratio of 1000. In nearly all cases, flow separation occurred at a pressure ratio of about 1000. This was the upper limit for obtaining an accurate thrust measurement for a conical nozzle with an area ratio of 140.
Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames
NASA Technical Reports Server (NTRS)
Bollinger, Lowell M; Williams, David T
1949-01-01
The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.
Stochastic low Reynolds number swimmers.
Golestanian, Ramin; Ajdari, Armand
2009-05-20
As technological advances allow us to fabricate smaller autonomous self-propelled devices, it is clear that at some point directed propulsion could not come from pre-specified deterministic periodic deformation of the swimmer's body and we need to develop strategies for extracting a net directed motion from a series of random transitions in the conformation space of the swimmer. We present a theoretical formulation for describing the 'stochastic motor' that drives the motion of low Reynolds number swimmers based on this concept, and use it to study the propulsion of a simple low Reynolds number swimmer, namely, the three-sphere swimmer model. When the detailed balanced is broken and the motor is driven out of equilibrium, it can propel the swimmer in the required direction. The formulation can be used to study optimal design strategies for molecular scale low Reynolds number swimmers.
NASA Astrophysics Data System (ADS)
Hammer, Patrick R.
It is well established that natural flyers flap their wings to sustain flight due to poor performance of steady wing aerodynamics at low Reynolds number. Natural flyers also benefit from the propulsive force generated by flapping. Unsteady airfoils allow for simplified study of flapping wing aerodynamics. Limited previous work has suggested that both the Reynolds number and motion trajectory asymmetry play a non-negligible role in the resulting forces and wake structure of an oscillating airfoil. In this work, computations are performed to on this topic for a NACA 0012 airfoil purely pitching about its quarter-chord point. Two-dimensional computations are undertaken using the high-order, extensively validated FDL3DI Navier-Strokes solver developed at Wright-Patterson Air Force Base. The Reynolds number range of this study is 2,000-22,000, reduced frequencies as high as 16 are considered, and the pitching amplitude varies from 2° to 10°. In order to simulate the incompressible limit with the current compressible solver, freestream Mach numbers as low as 0.005 are used. The wake structure is accurately resolved using an overset grid approach. The results show that the streamwise force depends on Reynolds number such that the drag-to-thrust crossover reduced frequency decreases with increasing Reynolds number at a given amplitude. As the amplitude increases, the crossover reduced frequency decreases at a given Reynolds number. The crossover frequency data show good collapse for all pitching amplitudes considered when expressed as the Strouhal number based on trailing edge-amplitude for different Reynolds numbers. Appropriate scaling causes the thrust data to become nearly independent of Reynolds number and amplitude. An increase in propulsive efficiency is observed as the Reynolds number increases while less dependence is seen in the peak-to-peak lift and drag amplitudes. Reynolds number dependence is also seen for the wake structure. The crossover reduced frequency
High Reynolds number research - 1980
NASA Technical Reports Server (NTRS)
Mckinney, L. W. (Editor); Baals, D. D. (Editor)
1981-01-01
The fundamental aerodynamic questions for which high Reynolds number experimental capability is required were examined. Potential experiments which maximize the research returns from the use of the National Transonic Facility (NTF) were outlined. Calibration plans were reviewed and the following topics were discussed: fluid dynamics; high lit; configuration aerodynamics; aeroelasticity and unsteady aerodynamics; wind tunnel/flight correlation; space vehicles; and theoretical aerodynamics
A study of the spray injection Reynolds number effects on gasoline yields of an FCC riser reactor
Bowman, B. J.; Zhou, C. Q.; Chang, S. L.; Lottes, S. A.
2000-04-03
A computational analysis of the combined effects of feed oil injection parameters in a commercial-scale fluidized catalytic cracking riser reactor was performed using a three-phase, multiple species kinetic cracking computer code. The analysis showed that the injection operating parameters (droplet diameter and injection velocity) had strong impacts on the gasoline yields of the FCC unit. A spray injection Reynolds number combining the two parameters was defined. A correlation between the spray injection Reynolds number and the gasoline product yields for various feed injection conditions was developed. A range of spray injection Reynolds number for the maximum gasoline yield was identified.
Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.
Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick Glauert Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.
Effect of ambient flow inhomogeneity on drag forces on a sphere at finite Reynolds numbers
NASA Astrophysics Data System (ADS)
Kim, Jungwoo; Balachandar, S.; Lee, Hyungoo
2013-11-01
For studies on particle-laden flows involving particle transport and dispersion, the prediction capability of hydrodynamic forces on the particle in a non-uniform flow is one of the central issues. However, existing analytical expressions and empirical correlations are mainly made based on the homogeneous flow conditions such as uniform or uniform shear flows. Therefore, the objective of this study is to investigate the effect of flow inhomogeneity on drag forces on a sphere at finite Reynolds numbers. To do so, we perform direct numerical simulations of flow over a sphere in an inhomogeneous flow. In this study, we consider three different kinds of the inhomogeneous flows: cosine, hyperbolic cosine and hyperbolic secant profiles. The Reynolds number of the sphere based on the freestream velocity and sphere diameter is 100. The present simulations show that the quasi-steady drag forces in inhomogeneous flows are reasonably estimated by standard drag law based on the relative velocity if the fluid velocity seen by the particle is evaluated by surface average. The results support Loth and Dorgan (2009)'s proposed formula. In the final presentation, the effect of ambient flow inhomogeneity on drag forces would be presented in more detail.
NASA Astrophysics Data System (ADS)
Shields, Matthew; Mohseni, Kamran
2011-11-01
The innovation of micro aerial vehicles (MAVs) has brought to attention the unique flow regime associated with low aspect ratio (LAR), low Reynolds number fliers. The dominant effects of developing tip vortices and leading edge vortices create a fundamentally different flow regime than that of conventional aircraft. An improved knowledge of low aspect ratio, low Reynolds number aerodynamics can be greatly beneficial for future MAV design. A little investigated but vital aspect of LAR aerodynamics is the behavior of the fluid as the wing yaws. Flow visualization experiments undertaken in the group for the canonical case of varying AR flat plates indicate that the propagation of the tip vortex keeps the flow attached over the upstream portion of the wing, while the downstream vortex is convected away from the wing. This induces asymmetric, destabilizing loading on the wing which has been observed to adversely affect MAV flight. In addition, experimental load measurements indicate significant nonlinearities in forces and moments which can be attributed to the development and propagation of these vortical structures. A non-dimensional analysis of the rigid body equations of motion indicates that these nonlinearities create dependencies which dramatically change the conventional linearization process. These flow phenomena are investigated with intent to apply to future MAV design.
The effects of Reynolds number, tip speed ratio, and solidity in VAWTs
NASA Astrophysics Data System (ADS)
Parker, Colin; Schult, Allen; Leftwich, Megan C.
2015-11-01
The wakes of several scale models of vertical axis wind turbines (VAWTs) are investigated in a wind tunnel using particle imaging velocimetry (PIV). The tip speed ratio, Reynolds number, and solidity (chord to diameter ratio) is varied to see effect each parameter. The solidity is changed by varying the chord length of a three blade turbine of constant diameter. The range of parameters (Reynolds number and tip-speed ratio) investigated, closely matches those of full size turbines. Time averaging behind the turbines shows the asymmetry in wake. A more complete picture of the wake is seen using phase averaging by syncing the imaging to the position of the turbine. These results show a cycle of structures developing on the blades and then being shed into the wake. Imaging is done at the midplane of the turbine from upstream of the turbine back into the wake. Additionally a vertical plane behind the center of the turbine is used to measure the horizontal components in the wake.
Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number
NASA Astrophysics Data System (ADS)
Tamayol, A.; Wong, K. W.; Bahrami, M.
2012-02-01
In this study, effects of microstructure on the viscous permeability and Forchheimer coefficient of monodispersed fibers are investigated. The porous material is represented by a unit cell which is assumed to be repeated throughout the medium. Based on the orientation of the fibers in the space, fibrous media are divided into three categories: one-, two-, and three-directional (1D, 2D, and 3D) structures. Parallel and transverse flow through square arrangements of 1D fibers, simple 2D mats, and 3D simple cubic structures are solved numerically over a wide range of porosity (0.35 < ɛ < 0.95) and Reynolds number (0.01 < Re < 200). The results are used to calculate the permeability and the inertial coefficient of the considered geometries. An experimental study is performed; the flow coefficients of three different ordered tube banks in the moderate range of Reynolds number (0.001 < Re < 15) are determined. The numerical results are successfully compared with the present and the existing experimental data in the literature. The results suggest that the permeability and Forchheimer coefficient are functions of porosity and fiber orientation. A comparison of the experimental and numerical results with the Ergun equation reveals that this equation is not suitable for highly porous materials. As such, accurate correlations are proposed for determining the Forchheimer coefficient in fibrous porous media.
Spectral approach to finite Reynolds number effects on Kolmogorov's 4/5 law in isotropic turbulence
NASA Astrophysics Data System (ADS)
Tchoufag, J.; Sagaut, P.; Cambon, C.
2012-01-01
The Kolmogorov's 4/5 law is often considered as the sole exact relationship of inertial range statistics. Its asymptotic character, however, has been evidenced, investigating the finite Reynolds number (FRN) effect for the third-order structure function S3(r) (e.g., for longitudinal velocity increments with r separation length) using variants of the Kármán-Howarth equation in physical space. Similar semi-empirical fits were proposed for the maximum of the normalized structure function, C3 = -maxrS3(r)/(ɛr), expressing C3 - 4/5 as a power law of the Taylor-based Reynolds number. One of the most complete studies in this domain is by Antonia and Burratini [J. Fluid Mech. 550, 175 (2006)]. Considering that these studies are based on a model for the unsteady second-order structure function S2(r,t), with no explicit model for the third-order structure function itself, we propose to revisit the FRN effect by a spectral approach, in the line of Qian [Phys. Rev. E 55, 337 (1997), Phys. Rev. E 60, 3409 (1999)]. The spectral transfer term T(k,t), from which S3(r,t) is derived by an exact quadrature, is directly calculated by solving the Lin equation for the energy spectrum E(k,t), closed by a standard triadic (or three-point) theory, here Eddy Damped Quasi Normal Markovian. We show that the best spectral approach to the FRN effect is found by separately investigating the negative (largest scales) and positive (smaller scales) bumps of the transfer term, and not only by looking at the maximum of the spectral flux or maxk ∫k∞T(p ,t)dp→ɛ. In the forced case, previous results are well reproduced, with Reynolds numbers as high as Reλ = 5 000 to nearly recover the 4/5 value. In the free decay case, the general trend is recovered as well, with an even higher value of Reλ = 50 000, but the EDQNM plots are systematically below those in Antonia and Burattini [J. Fluid Mech. 550, 175 (2006)]. This is explained by the sensitivity to initial data for E(k) in solving the Lin
NASA Technical Reports Server (NTRS)
Pauley, H.; Ralston, J.; Dickes, E.
1995-01-01
The National Aeronautics and Space Administration and the Defense Research Agency (United Kingdom) have ongoing experimental research programs in rotary-flow aerodynamics. A cooperative effort between the two agencies is currently underway to collect an extensive database for the development of high angle of attack computational methods to predict the effects of Reynolds number on the forebody flowfield at dynamic conditions, as well as to study the use of low Reynolds number data for the evaluation of high Reynolds number characteristics. Rotary balance experiments, including force and moment and surface pressure measurements, were conducted on circular and rectangular aftbodies with hemispherical and ogive noses at the Bedford and Farnborough wind tunnel facilities in the United Kingdom. The bodies were tested at 60 and 90 deg angle of attack for a wide range of Reynolds numbers in order to observe the effects of laminar, transitional, and turbulent flow separation on the forebody characteristics when rolling about the velocity vector.
Propulsion at low Reynolds number
NASA Astrophysics Data System (ADS)
Najafi, Ali; Golestanian, Ramin
2005-04-01
We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.
Surface tension effects during low-Reynolds-number methanol droplet combustion
Raghavan, Vasudevan; Howard, Damon; Gogos, George; Pope, Daniel N.
2006-06-15
A numerical investigation of methanol droplet combustion in a zero-gravity, low-pressure, and low-temperature environment is presented. Simulations have been carried out using a predictive, transient, and axisymmetric model, which includes droplet heating, liquid-phase circulation, and water absorption. A low initial Reynolds number (Re{sub 0}=0.01) is used to impose a weak gas-phase convective flow, introducing a deviation from spherical symmetry. The resulting weak liquid-phase circulation is greatly enhanced due to surface tension effects, which create a complex, time-varying, multicellular flow pattern within the liquid droplet. The complex flow pattern, which results in nearly perfect mixing, causes increased water absorption within the droplet, leading to larger extinction diameters. It is shown that, for combustion of a 0.43-mm droplet in a nearly quiescent environment (Re{sub 0}=0.01) composed of dry air, the extinction diameter is 0.11 mm when surface tension effects are included, and 0.054 mm when surface tension effects are neglected. Experimental work available in the literature for a 0.43-mm droplet reported extinction diameters in the range of 0.16 to 0.19 mm. Results for combustion in a nearly quiescent environment (Re{sub 0}=0.01) with varying initial droplet diameters (0.16 to 1.72 mm) show that including the effect of surface tension results in approximately linear variation of the extinction diameter with the initial droplet diameter, which is in agreement with theoretical predictions and experimental measurements. In addition, surface tension effects are shown to be important even at initial Reynolds numbers as high as 5. (author)
Inertial effects at moderate Reynolds number in thin-film rimming flows driven by surface shear
NASA Astrophysics Data System (ADS)
Kay, E. D.; Hibberd, S.; Power, H.
2013-10-01
In this paper, we study two-dimensional thin-film flow inside a stationary circular cylinder driven by an imposed surface shear stress. Modelling is motivated by a need to understand the cooling and film dynamics provided by oil films in an aero-engine bearing chamber characterised by conditions of very high surface shear and additional film mass flux from oil droplets entering the film through the surface. In typical high-speed operation, film inertial effects can provide a significant leading-order mechanism neglected in existing lubrication theory models. Inertia at leading-order is included within a depth-averaged formulation where wall friction is evaluated similar to hydraulic models. This allows key nonlinear inertial effects to be included while retaining the ability to analyse the problem in a mathematically tractable formulation and compare with other approaches. In constructing this model, a set of simplified mass and momentum equations are integrated through the depth of the film yielding a spatially one-dimensional depth-averaged formulation of the problem. An a priori assumed form of velocity profile is needed to complete the system. In a local Stokes flow analysis, a quadratic profile is the exact solution for the velocity field though it must be modified when inertial effects become important. Extension of the velocity profile to a cubic profile is selected enabling specification of a wall friction model to include the roughness of the cylinder wall. A modelling advantage of including the inertia term, relevant to the applications considered, is that a smooth progression in solution can be obtained between cases of low Reynolds number corresponding to lubrication theory, and high Reynolds number corresponding to uniform rimming-flow. Importantly, we also investigate the effect of inertia on some typical solutions from other studies and present a greater insight to existing and new film solutions which arise from including inertia effects.
Magnus effects at high angles of attack and critical Reynolds numbers
NASA Technical Reports Server (NTRS)
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
NASA Technical Reports Server (NTRS)
Gentry, L., Jr.; Gentry, C. L., Jr.
1983-01-01
The aerodynamic characteristics of pressure loss and turbulence on four tube-bundle configurations representing heat-exchanger geometries with nominally the same heat capacity were measured as a function of Reynolds numbers from about 4000 to 400,000 based on tube hydraulic diameter. Two configurations had elliptical tubes, the other two had round tubes, and all four had plate fins. The elliptical-tube configurations had lower pressure loss and turbulence characteristics than the round-tube configurations over the entire Reynolds number range.
Effect of a horizontal plane boundary on a falling horizontal cylinder at low Reynolds number
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Hussey, R. G.
1980-05-01
Experimental results are presented for the change in velocity of a slender cylinder with its axis horizontal as it falls through a viscous fluid toward a horizontal plane boundary. When the boundary influence is strong, the deceleration of the cylinder is observed to be constant, and the velocity extrapolates to zero at the boundary. When the relative change in velocity is small (less than 20%), it is observed to depend inversely on the square of the distance from the boundary. The Reynolds number based on cylinder diameter ranges from 2.9 to 0.015 and the Reynolds number based on cylinder length ranges from 122 to 0.16.
High Reynolds Number Effects on Multi-Hole Probes and Hot Wire Anemometers
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Smith, A.; Gerry, G.; Kauffman, W.
1995-01-01
The paper reports on the results from an experimental investigation of the response of multi-hole and hot wire probes at high flow Reynolds numbers (Re approx. 10(exp 6)). The limited results available in literature for 5-hole probes are restricted to Re approx. 10(exp 4). The experiment aims to investigate the probe response (in terms of dimensionless pressure ratios, characterizing pitch, and yaw angles and the total and static pressures) at high Re values and to gauge their effect on the calculated velocity vector. Hot wire calibrations were also undertaken with a parametric variation of the flow pressure, velocity and temperature. Different correction and calibration schemes are sought to be tested against the acquired data set. The data is in the analysis stage at the present time. The test provided good benchmark quality data that can be used to test future calibration and testing methods.
Flow Structure over Moderate Swept Delta Wing: Effects of Reynolds Number and Attack Angle
NASA Astrophysics Data System (ADS)
Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin
2013-11-01
Recent investigations have revealed the appearance of a distinctive type of leading edge vortex, dual vortex structure, over simple delta wing planforms having moderate sweep angles. Flow over a moderate swept 45-degree wing has been investigated using laser illuminated smoke visualization, Laser Doppler Anemometry (LDA), and surface pressure measurements. The effects of Reynolds number and attack angles on dual vortex structure, vortex breakdown, and poststall regime are reported. The footprint of flow regimes on the surface of the planform is captured by the pressure measurements, and the lift performance of the wing is tried to be extracted. The relation between surface pressure fluctuations and near surface velocity fluctuations is investigated. The reattachment region of the separated shear layer on the surface, vortex breakdown, and stall regime are studied with considering the aforementioned relation, which will enlighten some of the aspects of the buffeting on the wing planform.
Effect of spanwise shear on flow past a square cylinder at intermediate Reynolds numbers
NASA Astrophysics Data System (ADS)
Visakh, M. G.; Saha, Arun K.; Muralidhar, K.
2016-03-01
Three-dimensional numerical simulation of flow past a square cylinder with linear spanwise shear has been performed in the Reynolds numbers range of 165-250. Navier-Stokes equations are discretized using second order central differencing for both advection and diffusion terms, explicitly marching in time using the second order Adams-Bashforth scheme. The solution methodology used is the Simplified Marker and Cell algorithm. Spanwise shear is simulated by providing a linear variation in the inlet velocity profile along the spanwise direction and the resulting wake characteristics are compared with uniform inflow. Presence of mode-A, mode-B, and large scale vortical irregularities of two-sided symmetrical vortex dislocations is detected when the inflow is uniform. With shear, oblique and cellular vortex shedding are identified for the square cylinder. Shedding frequency of the vortices varies in a stepwise manner along the span, giving rise to local cells of constant frequency. Constant frequency cell sizes are found to be longer for a square cylinder in shear flow as compared to the circular one. Spanwise shear leads to vortex splitting and one-sided vortex dislocation, contrary to the naturally occurring two-sided vortex dislocation for uniform flow. Reynolds number dependence of spanwise shear flow is studied by comparing wake dynamics at three mid-span Reynolds numbers of 165, 200, and 250 with a shear parameter of 0.025. With an increase in the average Reynolds number, cell sizes decrease and dislocations become irregular in space and time. Simulations with three different shear parameters of 0.0125, 0.025, and 0.05 have been carried out for an average Reynolds number of 250. With an increase in the shear parameter, the frequency of occurrence of vortex dislocations increases in the wake. In addition, obliqueness of the primary vortices and the number of cells also show an increase.
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1974-01-01
A circular-arc - conic boattail nozzle, typical of those used on a twin engine fighter, was tested on an underwing nacelle mounted on an F-106B aircraft. The boattail had a radius ratio r/r sub c of 0.41 and a terminal boattail angle of approximately 19 deg. The gas generator was a J85-GE-13 turbojet engine. The effects of Reynolds number and angle of attack on boattail pressure drag and boattail pressure profiles were investigated. Increasing Reynolds number resulted in reduced boattail drag at both Mach numbers of 0.6 and 0.9.
Reynolds number effects on Rayleigh-Taylor Instability with Implications for Type Ia Supernovae
Cabot, W H; Cook, A W
2006-03-22
Spontaneous mixing of materials at unstably stratified interfaces occurs in a wide variety of atmospheric, oceanic, geophysical and astrophysical flows. The Rayleigh-Taylor instability, in particular, plays key roles in the death of stars, planet formation and the quest for controlled thermonuclear fusion. Despite its ubiquity, fundamental questions regarding Rayleigh-Taylor instability persist. Among such questions are: Does the flow forget its initial conditions? Is the flow self-similar? What is the value of the scaling constant? How does mixing influence the growth rate? Here we show results from a 3072{sup 3} grid-point Direct Numerical Simulation in an attempt to answer these and other questions. The data indicate that the scaling constant cannot be found by fitting a curve to the width of the mixing region (as is common practice) but can only be accurately obtained by recourse to the similarity equation for the growth rate. The data further establish that the ratio of kinetic energy to released potential energy is not constant, as has heretofore been assumed. The simulated flow reaches a Reynolds number of 32,000, far exceeding that of all previous simulations. The latter stages of the simulation reveal a weak Reynolds number dependence, which may have profound consequences for modeling Type Ia supernovae as well as other high Reynolds number flows.
Effect of low Reynolds number flow on the quorum sensing behavior of sessile bacteria
NASA Astrophysics Data System (ADS)
Ingremeau, Francois; Minyoung, Kevin Kim; Bassler, Bonnie; Stone, Howard; Mechanical; Aerospace Engineering, Complex fluids Group Team; Molecular Biology Lab Team
2014-11-01
Sessile and planktonic bacteria can be sensitive to the bacteria cell density around them through a chemical mediated communication called quorum sensing. When the quorum sensing molecules reach a certain value, the metabolism of the bacteria changes. Quorum sensing is usually studied in static conditions or in well mixed environments. However, bacteria biofilms can form in porous media or in the circulatory system of an infected body: quorum sensing in such flowing environment at low Reynolds number is not well studied. Using microfluidic devices, we observe how the flow of a pure media affects quorum sensing of bacteria attached to the wall. The biofilm formation is quantified by measuring the optical density in brightfield microscopy and the quorum sensing gene expression is observed through the fluorescence of a green fluorescent protein, which is a reporter for one of the quorum sensing genes. We measured without flow the amount of Staphylococcus aureus biofilm when the quorum sensing gene expression starts. In contrast, when the media is flowing in the microchannel, the quorum sensing expression is delayed. This effect can be understood and modelled by considering the diffusion of the quorum sensing molecules in the biofilm and their convection by the flowing media.
NASA Astrophysics Data System (ADS)
Ma, Rong; Ma, Hongwei; Zhang, Zhenyang; Zhang, Jinghui
2016-10-01
Pipes are widely used to transport gas, oil and water in industries. Drag reduction in pipes is an increasingly concerned problem to save energy. Some researches have indicated that the non-smooth surface with special structures can reduce flow loss. In this paper, an experimental investigation has been performed on the effects of a kind of surface groove on the drag in both rectangular and circular duct at different Reynolds numbers. In the experiment of the rectangular duct, total pressure at both inlet and outlet were measured. Static pressure on the wall was measured on the surface with smooth and grooved film respectively. In the circular duct, a boundary layer pressure probe was used to measure the total pressure distribution at both inlet and outlet. Four taps at inlet and outlet were used to measure static pressure. The loss coefficient is used to evaluate the effects of the surface groove on drag reduction. The experiment was conducted with the Reynolds number range from 1.28×104 to 2.57×104. The result shows a maximum drag loss reduction of approximately 2.4% in rectangular duct at Reynolds number of 2.4×104. A 10% reduction of pipe pressure loss by grooved surface is measured in circular duct at a Reynolds number of 3.0×105.
NASA Technical Reports Server (NTRS)
Polhamus, Edward C.
1996-01-01
This paper presents a survey of the effects of Reynolds number on the low- speed lift characteristics of wings encountering separated flows at their leading and side edges, with emphasis on the region near the stall. The influence of leading-edge profile and Reynolds number on the stall characteristics of two- dimensional airfoils are reviewed first to provide a basis for evaluating three- dimensional effects associated with various wing planforms. This is followed by examples of the effects of Reynolds number and geometry on the lift characteristics near the stall for a series of three-dimensional wings typical of those suitable for high-speed aircraft and missiles. Included are examples of the effects of wing geometry on the onset and spanwise progression of turbulent reseparation near the leading edge and illustrations of the degree to which simplified theoretical approaches can be useful in defining the influence of the various geometric parameters. Also illustrated is the manner in which the Reynolds number and wing geometry parameters influence whether the turbulent reseparation near the leading edge results in a sudden loss of lift, as in the two-dimensional case, or the formation of a leading-edge vortex with Rs increase in lift followed by a gentle stall as in the highly swept wing case. Particular emphasis is placed on the strong influence of 'induced camber' on the development of turbulent reseparation. R is believed that the examples selected for this report may be useful in evaluating viscous flow solutions by the new computational methods based on the Navier-Stokes equations as well as defining fruitful research areas for the high-Reynolds-number wind tunnels.
Reynolds number effects on leading edge vortex development on a waving wing
NASA Astrophysics Data System (ADS)
Jones, A. R.; Babinsky, H.
2011-07-01
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.
Low Reynolds number airfoil survey, volume 1
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1981-01-01
The differences in flow behavior two dimensional airfoils in the critical chordlength Reynolds number compared with lower and higher Reynolds number are discussed. The large laminar separation bubble is discussed in view of its important influence on critical Reynolds number airfoil behavior. The shortcomings of application of theoretical boundary layer computations which are successful at higher Reynolds numbers to the critical regime are discussed. The large variation in experimental aerodynamic characteristic measurement due to small changes in ambient turbulence, vibration, and sound level is illustrated. The difficulties in obtaining accurate detailed measurements in free flight and dramatic performance improvements at critical Reynolds number, achieved with various types of boundary layer tripping devices are discussed.
2015-01-01
Background The changes of hemodynamics and drug concentration distribution caused by the implantation of drug eluting stents (DESs) in curved vessels have significant effects on In-Stent Restenosis. Methods A 3D virtual stent with 90°curvature was modelled and the distribution of wall shear stress (WSS) and drug concentration in this model were numerically studied at Reynolds numbers of 200, 400, 600, 800. Results The results showed that (1) the intensity of secondary flow at the 45° cross-section was stronger than that at the 90° cross-section; (2) As the Reynolds number increases, the WSS decreases. When the Reynolds number reaches 600, the low-WSS region only accounts for 3% of the total area. (3) The effects of Reynolds number on drug concentration in the vascular wall decreases in proportionally and then the blood velocity increased 4 times, the drug concentration in the vascular wall decreased by about 30%. (4) The size of the high drug concentration region is inversely proportional to the Reynolds number. As the blood velocity increases, the drug concentration in the DES decreases, especially at the outer bend. Conclusions It is beneficial for the patient to decrease vigorous activities and keep calm at the beginning of the stent implantation, because a substantial amount of the drug is released in the first two months of stent implantation, thus a calm status is conducive to drug release and absorption; Subsequently, appropriate exercise which increases the blood velocity is helpful in decreasing regions of low-WSS. PMID:25602685
The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Parker, Colin M.; Leftwich, Megan C.
2016-05-01
This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.
NASA Astrophysics Data System (ADS)
Jin, Zhe-Yan; Pasqualini, Sylvio; Qin, Bo
2014-06-01
In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image velocimetry (Stereo-PIV) technique. The parachute model tested in the present study was attached by 28 nylon suspension lines and placed horizontally at the test section center of the wind tunnel. The obtained results showed that with the increase of Reynolds number, the intensities of the vortices near the downstream region of the canopy skirt were found to increase accordingly. However, the increase of Reynolds number did not result in a significant change in ensembleaveraged normalized x-component of the velocity, ensembleaveraged normalized vorticity, normalized Reynolds stress, and normalized turbulent kinetic energy distributions in the turbulent wake of the circular parachute canopy. The obtained results are very useful to further our understanding about the unsteady aerodynamics in the wake of flexible circular parachute canopies and to constitute a reference for CFD computation.
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Ball, C. L.
1972-01-01
A 9.4-centimeter (3.7-in.) diameter six-stage axial-flow compressor was tested in argon over a range of inlet pressures corresponding to a Reynolds number range of 30,600 to 160,000. The effect of Reynolds number on efficiency, pressure ratio, work input, maximum flow, and surge is shown. The Reynolds number effects are discussed in terms of changes in boundary-layer thickness, losses, and the resulting changes in throughflow velocity. Significant deviation was noted from the 0.2 power relation often used to express the variation of loss with Reynolds number.
Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza
2015-12-01
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
NASA Astrophysics Data System (ADS)
Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza
2015-12-01
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
NASA Technical Reports Server (NTRS)
Forrette, Robert E.; Holeski, Donald E.; Plohr, Henry W.
1959-01-01
High-altitude turbojet performance is adversely affected by the effects of low air density. This performance loss is evaluated as a Reynolds number effect, which represents the increased significance of high fluid viscous forces in relation to dynamic fluid forces as the Reynolds number is decreased. An analytical and experimental investigation of the effects of low Reynolds number operation on a single-stage, high-work-output turbine with a downstream stator was carried out at Reynolds numbers of 182,500, 39,600, and 23,000, based on average rotor-design flow conditions. At low Reynolds numbers and turbulent flow conditions, increased viscous losses caused decreased effective flow area, and thus decreased weight flow, torque, and over-all efficiency at a given equivalent speed and pressure ratio. Decreasing the Reynolds number from 182,500 to 23,000 at design equivalent speed resulted in a 5.00-point loss in peak over-all turbine efficiency for both theory and experiment. The choking equivalent weight flow decreased 2.30 percent for these conditions. Limiting loading work output was reached at design equivalent speed for all three Reynolds numbers. The value of limiting loading work output at design speed decreased 4.00 percent as Reynolds number was decreased from 182,500 to 23,000. A theoretical performance-prediction method using basic boundary-layer relations gave good agreement with experimental results over most of the performance range at a given Reynolds number if the experimental and analytical design operating conditions were carefully matched at the highest Reynolds number with regard to design performance parameters. High viscous losses in the inlet stator and rotor prevented the attainment of design equivalent work output at the lowest Reynolds number of 23,000.
Decay of Turbulence at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Sinhuber, Michael; Bodenschatz, Eberhard; Bewley, Gregory P.
2015-01-01
Turbulent motions in a fluid decay at a certain rate once stirring has stopped. The role of the most basic parameter in fluid mechanics, the Reynolds number, in setting the decay rate is not generally known. This Letter concerns the high-Reynolds-number limit of the process. In a classical grid-turbulence wind-tunnel experiment that both reaches higher Reynolds numbers than ever before and covers a wide range of them (1 04
NASA Astrophysics Data System (ADS)
Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.
2014-11-01
While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade. PMID:11460633
Low-Reynolds-number swimming at pycnoclines.
Doostmohammadi, Amin; Stocker, Roman; Ardekani, Arezoo M
2012-03-01
Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compared to the bulk water column, including reduced turbulence, slow mass transfer, and high particle and predator concentrations. Here we show that, at an even more fundamental level, the density stratification itself can affect microbial ecology at pycnoclines, by quenching the flow signature, increasing the energetic expenditure, and stifling the nutrient uptake of motile organisms. We demonstrate this through numerical simulations of an archetypal low-Reynolds-number swimmer, the "squirmer." We identify the Richardson number--the ratio of buoyancy forces to viscous forces--as the fundamental parameter that quantifies the effects of stratification. These results demonstrate an unexpected effect of buoyancy on low-Reynolds-number swimming, potentially affecting a broad range of abundant organisms living at pycnoclines in oceans and lakes.
Low-Reynolds-number swimming at pycnoclines.
Doostmohammadi, Amin; Stocker, Roman; Ardekani, Arezoo M
2012-03-01
Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compared to the bulk water column, including reduced turbulence, slow mass transfer, and high particle and predator concentrations. Here we show that, at an even more fundamental level, the density stratification itself can affect microbial ecology at pycnoclines, by quenching the flow signature, increasing the energetic expenditure, and stifling the nutrient uptake of motile organisms. We demonstrate this through numerical simulations of an archetypal low-Reynolds-number swimmer, the "squirmer." We identify the Richardson number--the ratio of buoyancy forces to viscous forces--as the fundamental parameter that quantifies the effects of stratification. These results demonstrate an unexpected effect of buoyancy on low-Reynolds-number swimming, potentially affecting a broad range of abundant organisms living at pycnoclines in oceans and lakes. PMID:22355147
Low-Reynolds-number swimming at pycnoclines
Doostmohammadi, Amin; Stocker, Roman; Ardekani, Arezoo M.
2012-01-01
Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compared to the bulk water column, including reduced turbulence, slow mass transfer, and high particle and predator concentrations. Here we show that, at an even more fundamental level, the density stratification itself can affect microbial ecology at pycnoclines, by quenching the flow signature, increasing the energetic expenditure, and stifling the nutrient uptake of motile organisms. We demonstrate this through numerical simulations of an archetypal low-Reynolds-number swimmer, the “squirmer.” We identify the Richardson number—the ratio of buoyancy forces to viscous forces—as the fundamental parameter that quantifies the effects of stratification. These results demonstrate an unexpected effect of buoyancy on low-Reynolds-number swimming, potentially affecting a broad range of abundant organisms living at pycnoclines in oceans and lakes. PMID:22355147
NASA Astrophysics Data System (ADS)
Weygand, J. M.; Kivelson, M. G.; Matthaeus, M. H.; Dasso, S.; Kistler, L. M.
2009-04-01
ACE, Cluster, Geotail, IMP-8, Interball, THEMIS, and Wind data from many different intervals in the solar wind are employed to determine the magnetic correlation scale and the Taylor microscale from simultaneous multiple point measurements. For this study we define the correlation scale as the exponential decay constant of the correlation coefficient as a function of spacecraft separation and the Taylor scale as the radius of curvature of the correlation coefficient values at zero separation. The present determination of the Taylor scale makes use of a novel extrapolation technique to derive a statistically stable estimate from a range of measurements at small spatial separations [Weygand et al., 2007]. Using all the slow solar wind data (600 km/s), the correlation scale length is found to be smallest (about 1.3x106 km) in the direction parallel to the magnetic field and largest (about 2.2x106 km) in the direction perpendicular to the magnetic field. The anisotropies in the turbulent magnetic fluctuations in the solar wind are consistent with slow solar containing mainly two-dimensional turbulence and the fast solar wind having mostly slab type turbulence. The effective magnetic Reynolds number can be expressed in terms of the correlation scale and the Taylor scale. The difference in the Taylor and correlation scale in the parallel and perpendicular direction indicates that the effective magnetic Reynolds number varies with the direction of the magnetic field and has values between 1x106 and 8x106 . Knowledge of the effective magnetic Reynolds number may be useful in magnetohydrodynamic modeling of the solar wind and galactic cosmic ray diffusion in the heliosphere.
Calculations of low Reynolds number rocket nozzles
NASA Technical Reports Server (NTRS)
Kim, Suk C.
1993-01-01
The performance of low-thrust rocket nozzles was studied with a full Navier-Stokes code. The effect of the reduction of the nozzle length on the viscous loss and on the two-dimensional loss due to the increase in the nozzle exit angle was examined by calculating the flowfield and performance values of hydrogen resistojet nozzle with various lengths and shapes (such as 20-deg or 30-deg conical nozzles and a nozzle whose wall contour is given by the Rao nozzle optimization code). It was found that the vacuum specific impulse value of the 30-deg conical nozzle was the highest and that of the contoured nozzle was the lowest among the three nozzles, whose throat Reynolds number and area ratio were 1150 and 82, respectively.
The aerodynamics of small Reynolds numbers
NASA Technical Reports Server (NTRS)
Schmitz, F. W.
1980-01-01
Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.
NASA Astrophysics Data System (ADS)
Rostamzadeh, Nikan; Kelso, Richard M.; Dally, Bassam
2016-05-01
Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.
Low Reynolds number numerical solutions of chaotic flow
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
1989-01-01
Numerical computations of two-dimensional flow past an airfoil at low Mach number, large angle of attack, and low Reynolds number are reported which show a sequence of flow states leading from single-period vortex shedding to chaos via the period-doubling mechanism. Analysis of the flow in terms of phase diagrams, Poincare sections, and flowfield variables are used to substantiate these results. The critical Reynolds number for the period-doubling bifurcations is shown to be sensitive to mesh refinement and the influence of large amounts of numerical dissipation. In extreme cases, large amounts of added dissipation can delay or completely eliminate the chaotic response. The effect of artificial dissipation at these low Reynolds numbers is to produce a new effective Reynolds number for the computations.
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
NASA Technical Reports Server (NTRS)
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data
NASA Astrophysics Data System (ADS)
Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Snel, H.
2016-09-01
The aerodynamic behaviour of a wind turbine airfoil has been measured in a dedicated 2D wind tunnel test at the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. The tests have been performed on the DU00W212 airfoil at different Reynolds numbers: 3, 6, 9, 12 and 15 million, and at low Mach numbers (below 0.1). Both clean and tripped conditions of the airfoil have been measured. An analysis of the impact of a wide Reynolds number variation over the aerodynamic characteristics of this airfoil has been performed.
The Influence of Realistic Reynolds Numbers on Slat Noise Simulations
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.
2012-01-01
The slat noise from the 30P/30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. Varying the Reynolds number from 1.71 to 12.0 million based on the stowed chord resulted in slight changes in the radiated noise. Tonal features in the spectra were robust and evident for all Reynolds numbers and even when a spanwise flow was imposed. The general trends observed in near-field fluctuations were also similar for all the different Reynolds numbers. Experiments on simplified, subscale high-lift systems have exhibited noticeable dependencies on the Reynolds number and tripping, although primarily for tonal features rather than the broadband portion of the spectra. Either the 30P/30N model behaves differently, or the computational model is unable to capture these effects. Hence, the results underscore the need for more detailed measurements of the slat cove flow.
MHD Turbulence at Moderate Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Kassinos, S.; Carati, D.
2003-01-01
In the present article we will consider the decay of MHD turbulence under the influence of a strong external magnetic field at moderate magnetic Reynolds numbers. Typical values of R(sub m) that are considered here range from R(sub m) approx. 0.1 to R(sub m) approx. 20. As a comparison, the initial kinetic Reynolds number common to all our simulations is Re(sub L) = 199. This means that the range of Prandtl numbers explored is 5 x 10(exp -4) to 10(exp -1). Our motivation is mainly to exhibit how the transition from the QS approximation to FMHD occurs. At the lowest values of R(sub m) studied here, the QS approximation is shown to model the flow faithfully. However, for the higher values of R(sub m) considered, it is clearly inadequate but can be replaced by another approximation which will be referred to as the Quasi-Linear (QL) approximation. Another objective of the present study is to describe how variations in the magnetic Reynolds number (while maintaining all other parameters constant) affect the dynamics of the flow. This complements past studies where variations in either the strength of the external magnetic field or the kinetic Reynolds number were considered. This article is organized as follows. In section 2 we recall the definition of the quasi-static approximation. Section 3 is devoted to the description of the numerical experiments performed using the quasi-static approximation and full MHD. In section 4 we describe the quasi-linear approximation and test it numerically against full MHD. A concluding summary is given in section 5.
Hot wire in low Reynolds number flow
NASA Technical Reports Server (NTRS)
Kolb, M. A.; Covert, E. E.
1984-01-01
Progress reports were issued on the following experiments: (1) low Reynolds number flow phenomenon of periodic vortex shedding in the wake behind a cylinder as studied by applying the hot wire anemometer technique of flow measurement. The downstream diffusion of these shed vortices was of prime concern. An evaluation of the performance of the hot wire at low Reynolds number is also considered. (2) A brief examination of the back sections of the Wright Brothers wind tunnel circuits were conducted to establish whether or not gross flow deviations were present at corners, or turning vane regions. A calibration of the test sections was done. (3) The attractiveness of using rembedded grids for airfoil calculations modeled by the Euler equations was explored. These calculations were extended to C-type grids and then to Navier-Stokes calculations,
Low Reynolds number, long endurance aircraft design
Foch, R.J.; Ailinger, K.G. )
1992-02-01
Airplanes are typically designed to maximize range at the highest practical cruising speed. However, several missions require extended duration rather than range, and favor the slowest possible cruise speed. Such missions include surveillance, radio relay, and ship's electronic decoy. These missions are ideally suited for advanced technology unmanned aircraft, either remotely piloted or autonomous. Feasibility studies have been conducted and flight demonstrator prototypes of such unique aircraft have been under steady research and development at the Naval Research Laboratory since 1978. This paper discusses the design aspects and tradeoffs unique to small, slow speed long endurance unmanned aircraft operating at wing chord Reynolds numbers between 150,000 and 500,000. Additionally, many of these low Reynolds number-driven design features have applicability to high altitude, long endurance aircraft. 6 refs.
Nichols, J Tyler; Krueger, Paul S
2012-09-01
Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases.
Nichols, J Tyler; Krueger, Paul S
2012-09-01
Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases. PMID:22549087
Unsteady low Reynolds number shock boundary layer interactions
NASA Astrophysics Data System (ADS)
Loth, E.; Matthys, Mark W.
1995-05-01
Finite element methods were used to perform an investigation of the interaction between a reflected shock wave and a low Reynolds number laminar boundary layer in Mach 2 flow. The finite element scheme makes use of the time-accurate flux-corrected transport technique and a fully unstructured mesh, which is adaptive to both viscous and gasdynamic effects. A boundary layer transformation was employed to eliminate both the upstream pressure gradient and resolution issues of the leading edge flow. Shock wave/boundary layer interactions were simulated for four different shock intersection Reynolds numbers: 600, 2400, 9600, and 24 000. While significant amounts of flow separation were found for all Reynolds numbers, the character and size of the separated region varied significantly. It was also noted that separation bubble lengths when normalized by the distance from the leading edge to the shock intersection point decreased as the Reynolds number increased for the conditions considered herein. However, the most interesting observation was the inherent unsteadiness found for the higher Reynolds numbers. This led to separation bubble instability and vortex shedding for the two highest Reynolds number cases. The results indicated a natural shedding frequency of 1.3 based on ambient velocity and primary separation bubble length for these two cases.
Preston Probe Calibrations at High Reynolds Number
NASA Technical Reports Server (NTRS)
Smits, Alexander J.
1998-01-01
The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors
Minimal polar swimmer at low Reynolds number.
Pandey, Ankita; Simha, R Aditi
2012-06-01
We propose a minimal model for a polar swimmer, consisting of two spheres connected by a rigid slender arm, at low Reynolds number. The propulsive velocity for the proposed model is the maximum for any swimming cycle with the same variations in its two degrees of freedom and its displacement in a cycle is achieved entirely in one step. The stroke averaged flow field generated by the contractile swimmer at large distances is found to be dipolar. In addition, the changing radius of one of the spheres generates the field of a potential doublet centered at its initial position.
Effect of superhydrophobic surfaces on the flow over a hydrofoil at low Reynolds number
NASA Astrophysics Data System (ADS)
Kim, Hyunseok; Kim, Nayoung; Park, Hyungmin
2014-11-01
In the present study, we experimentally investigate the effect of superhydrophobic surface on the flow over a hydrofoil at low Rec <104 , where c is the chord length of a hydrofoil. As a hydrofoil, we consider the cross-sections typically used for airfoils like NACA0012, NACA0024, and NACA4412, which stand for thin, thick and cambered hydrofoils, respectively. Spray-coating of hydrophobic nanoparticles are applied onto the hydrofoil surface and subsequent velocity fields are measured in a water tunnel using two-dimensional particle image velocimetry at different angles of attack, α =0° -20° . At small α's (for example, less than 10°), it is found that the surface slip tends to affect the flow separation slightly and also modify the size of recirculation region in the wake. Since a massive separation occurs at the leading edge at larger α's, however, the effect of superhydrophobic surface becomes diminished. In the talk, the dependence of the hydrodynamic role of surface slip on the hydrofoil shape and Rec will be presented. Supported by the NRF Programs (NRF-2012M2A8A4055647, NRF-2013R1A1A1008373) of Korean government.
NASA Astrophysics Data System (ADS)
Kapral, Raymond; Mikhailov, Alexander S.
2016-04-01
Most of the proteins in the cell, including not only molecular motors and machines, but also enzymes, are active. When ATP or other substrates are supplied, these macromolecules cyclically change their conformations. Therefore, they mechanically stir the cytoplasm and nucleoplasm, so that non-thermal fluctuating flows are produced. As we have recently shown (Mikhailov and Kapral, 2015), stochastic advection by such flows might lead to substantial diffusion enhancement of particles inside a living cell. Additionally, when gradients in the concentrations of active particles or in the ATP/substrate supply are present, chemotaxis-like drift should take place. Here, the motion of passive tracers with various sizes in a mixture of different kinds of active proteins is analyzed. Moreover, effects of hydrodynamic interactions on the motion of active proteins are explored. Theoretical results are compared with available experimental data for ATP-dependent diffusion of natural and microinjected particles in biological cells.
Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.
Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam
2016-02-01
Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.
Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.
Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam
2016-02-01
Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models. PMID:26986411
NASA Technical Reports Server (NTRS)
Lockwood, V. E.
1972-01-01
The investigation was made on a 1/18-scale model of a twin-engine light airplane. Static longitudinal, lateral, and directional characteristics were obtained at 0 deg and plus or minus 5 deg sideslip at a Mach number of about 0.2. The angle of attack varied from about 20 deg at a Reynolds number of 0.39 times one million to 13 deg at a Reynolds number of 3.7 times one million, based on the reference chord. The effect of fixed transition, vertical and horizontal tails, and nacelle fillets was studied.
The cryogenic wind tunnel for high Reynolds number testing
NASA Technical Reports Server (NTRS)
Kilgore, R. A.; Dress, D. A.
1982-01-01
The development of cryogenic wind tunnels is reviewed with reference to the theory and advantages of cryogenic tunnels, problems common to wind tunnels and their solution, and application of cryogenic wind tunnels to high Reynolds number testing. It is shown that cryogenic wind tunnels can achieve full-scale Reynolds number with reasonable tunnel size, dynamic pressure, and drive power; the use of such tunnels also makes it possible to separate the effects of Reynolds number, Mach number, and aeroelasticity. Application of the cryogenic tunnel concept is illustrated by three examples, namely an atmospheric low-speed cryogenic tunnel, a 0.3-meter transonic cryogenic tunnel, and the National Transonic Facility now nearing completion.
Analysis of low Reynolds number separation bubbles using semiempirical methods
NASA Technical Reports Server (NTRS)
Schmidt, Gordon S.; Mueller, Thomas J.
1989-01-01
The formation and growth of transitional separation bubbles can significantly affect boundary-layer development on airfoils operating at low chord Reynolds numbers. Of primary concern is the change in boundary-layer thickness between laminar separation and turbulent reattachment. This can be estimated using semiempirical methods, such as the one devised by Horton (1968), which are based on solutions to the integral forms of the boundary-layer equations. The applicability of these methods at low Reynolds numbers was investigated using hot-wire measurements of bubbles formed on an NACA 66(3)-018 airfoil at chord Reynolds numbers of 50,000-200,000. The momentum thickness growth between separation and transition was found to be similar to that predicted for a laminar half-jet and appears to be influenced by the momentum thickness Reynolds number at separation. This parameter also was found to have a noticeable effect on the Reynolds number based on the length of a bubble's laminar portion.
NASA Astrophysics Data System (ADS)
Yucel, S. Banu; Sahin, Mehmet; Unal, M. Fevzi
2015-12-01
The flow pattern around a NACA0012 airfoil undergoing harmonic plunging motion corresponding to the deflected wake phenomenon reported by Jones and Platzer (Exp Fluids 46:799-810, 2009) is investigated in detail using direct numerical simulations. An arbitrary Lagrangian-Eulerian formulation based on an unstructured side-centered finite volume method is utilized in order to solve the incompressible unsteady Navier-Stokes equations. The Reynolds number is chosen to be 252, and the reduced frequency of plunging motion ( k = 2π fc/ U ∞) and the plunge amplitude non-dimensionalized with respect to chord are set to be 12.3 and 0.12, respectively, as in the experimental study of Jones and Platzer (2009). The present numerical simulations reveal a highly persistent transient effect, and it takes two orders of magnitude larger duration than the heave period to reach the time-periodic state. In addition, the three-dimensional simulation reveals that the flow field is three-dimensional for the parameters used herein. The calculation reproduces the deflected wake and shows a good agreement with the experimental wake pattern. The instantaneous vorticity contours, finite-time Lyapunov exponent fields and particle traces are presented along with the aerodynamic parameters including the lift and thrust coefficients.
NASA Astrophysics Data System (ADS)
Islam, Toukir; Curet, Oscar M.
2015-11-01
Zebrafish exhibits significant changes in fin morphology as well as fin actuation during its physical development. In larval stage (Re ~ 10), they beat pectoral fins asymmetrically during slow swimming and prey tracking and a hypothesis suggests pectoral fin motion enhances fluid mixing to assist respiration. We performed a series of computational simulations to study effect of Reynolds number (Re) and pectoral fin kinematics in the fluid dynamics and mixing around a larval zebrafish. The CFD algorithm is based on a constraint formulation where the kinematics of the zebrafish are specified. We simulated experimental zebrafish kinematics at different Re (17 to 300) and considered variations on the fin kinematics to evaluate role of fin deformation in the fluid structures generated by the pectoral fins. Using Lagrangian Coherent Structures and Lagrangian fluid tracers, we identified distinctly dynamic fluid regions and found that mixing around the pectoral fin significantly increases with Re and fin bending enhance fluid mixing at low Re. However, as zebrafish matures and its Re increases, the need to beat the pectoral fins to enhance mixing is reduced.
NASA Technical Reports Server (NTRS)
Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.
1977-01-01
The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.
A circle swimmer at low Reynolds number.
Ledesma-Aguilar, R; Löwen, H; Yeomans, J M
2012-08-01
Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. For small strokes, we discuss the motion of the swimmer as a function of the separation angle between its links. We find that swimmers describe either clockwise or anticlockwise circular motion depending on the tilting angle in a non-trivial manner. The symmetry of the swimmer leads to a quadrupolar decay of the far flow field. We discuss the potential extensions and experimental realisation of our model.
Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow
NASA Astrophysics Data System (ADS)
Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam
2016-02-01
Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013), 10.1103/PhysRevE.87.043002]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013), 10.1103/PhysRevE.87.043002] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.
Finite-span rotating flat-plate wings at low reynolds number and the effects of aspect ratio
NASA Astrophysics Data System (ADS)
Carr, Zakery R.
In the complex and dangerous environments of the modern warrior and emergency professional, the small size, maneuverability, and stealth of flapping-wing micro air vehicles (MAVs), scaled to the size of large insects or hummingbirds, has the potential to provide previously inaccessible levels of situational awareness, reconnaissance capability, and flexibility directly to the front lines. Although development of such an efficient, autonomous, and capable MAV is years away, there are immediate contributions that can be made to the fundamental science of the flapping-wing-type propulsion that makes MAVs so attractive. This investigation contributes to those fundamentals by considering the unsteady vortex dynamics problem of a rigid, rectangular flat plate at a fixed angle of attack rotating from rest---a simplified hovering half-stroke. Parameters are chosen to be biologically-relevant and relevant to MAVs operating at Reynolds numbers of O (103), and experiments are performed in a 50% by mass glycerin-water mixture. These experiments use novel application of methodologies verified by rigorous uncertainty analysis. The overall objective is to understand the vortex formation and forces as well as aspect ratio ( AR) effects. Of interest is the overall, time-varying, three-dimensional vortex structure obtained qualitatively from dye visualization and quantitatively from volumes reconstructed using planar stereoscopic digital particle image velocimetry (S-DPIV) measurements. The velocity information from S-DPIV also allows statements to be made on leading-edge vortex (LEV) stability, spanwise flow, LEV and tip-vortex (TV) circulation, and numerous circulation scalings. Force measurements are made and the lift coefficient is discussed in the context of the flow structure, the dimensional lift and the ability to relate velocity and force measurements going forward. AR effects is a topic of continued interest to those performing MAV-related research and also a primary
Reynolds-number dependence of turbulence enhancement on collision growth
NASA Astrophysics Data System (ADS)
Onishi, Ryo; Seifert, Axel
2016-10-01
This study investigates the Reynolds-number dependence of turbulence enhancement on the collision growth of cloud droplets. The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015) is updated by using the direct numerical simulation (DNS) results for the Taylor-microscale-based Reynolds number (Reλ) up to 1140. The DNS results for particles with a small Stokes number (St) show a consistent Reynolds-number dependence of the so-called clustering effect with the locality theory proposed by Onishi et al. (2015). It is confirmed that the present Onishi kernel is more robust for a wider St range and has better agreement with the Reynolds-number dependence shown by the DNS results. The present Onishi kernel is then compared with the Ayala-Wang kernel (Ayala et al., 2008a; Wang et al., 2008). At low and moderate Reynolds numbers, both kernels show similar values except for r2 ˜ r1, for which the Ayala-Wang kernel shows much larger values due to its large turbulence enhancement on collision efficiency. A large difference is observed for the Reynolds-number dependences between the two kernels. The Ayala-Wang kernel increases for the autoconversion region (r1, r2 < 40 µm) and for the accretion region (r1 < 40 and r2 > 40 µm; r1 > 40 and r2 < 40 µm) as Reλ increases. In contrast, the Onishi kernel decreases for the autoconversion region and increases for the rain-rain self-collection region (r1, r2 > 40 µm). Stochastic collision-coalescence equation (SCE) simulations are also conducted to investigate the turbulence enhancement on particle size evolutions. The SCE with the Ayala-Wang kernel (SCE-Ayala) and that with the present Onishi kernel (SCE-Onishi) are compared with results from the Lagrangian Cloud Simulator (LCS; Onishi et al., 2015), which tracks individual particle motions and size evolutions in homogeneous isotropic turbulence. The SCE-Ayala and SCE-Onishi kernels show consistent results with the LCS results for small Reλ. The two SCE
Low Reynolds Number Swimming in Two Dimensions
NASA Astrophysics Data System (ADS)
Cherman, Alexandre; Delgado, Joaquín; Duda, Fernando; Ehlers, Kurt; Koiller, Jair; Montgomery, Richard
2000-10-01
A geometrical approach for low Reynolds number swimming was introduced by Shapere and Wilczek1. Here we pursue some developments for the two dimensional theory. The outer membrane or the ciliary envelope of the planar organism is represented by the conformal image of the unit circle. Power expenditures and velocities can be computed using complex variable techniques. As an example, we present the calculations for a self deforming ellipse. The results compare well with observations for the nematode Turbatrix aceti. We also compute the most efficient swimming stroke, using the criterion efficiency = velocity/hydrodynamical power. A pattern noticed by SW for the circle and the sphere is confirmed: efficiency is optimized around certain high order geometric modes. For the case of a deforming membrane, these modes require great mechanical stress. However, such high order geometric modes are easily emulated by ciliary envelopes without extra (mechanical) power expenditure. Therefore, coordinated spatio-temporal ciliary movements, besides providing an inherent maneuverability, have the added advantage of saving energy.
Decay of Isotropic Turbulence at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Wray, A. A.
1994-01-01
Decay of isotropic turbulence is computed using direct numerical simulations. Comparisons with experimental spectra at moderate and low Reynolds numbers (R(sub lambda) less than 70) show good agreement. At moderate to high Reynolds numbers (R(sub lambda) greater 50), the spectra are found to collapse with Kolmogorov scaling at high wave numbers. However, at low Reynolds numbers (R(sub lambda) less than 50) the shape of the spectra at the Kolmogorov length scales is Reynolds number dependent. Direct simulation data from flowfields of decaying isotropic turbulence are used to compute the terms in the equation for the dissipation rate of the turbulent kinetic energy. The development of the skewness and the net destruction of the turbulence dissipation rate in the limit of low Reynolds numbers are presented. The nonlinear terms are found to remain active at surprisingly low Reynolds numbers.
Investigation of Transonic Reynolds Number Scaling on a Twin-Engine Transport
NASA Technical Reports Server (NTRS)
Curtin, M. M.; Bogue, D. R.; Om, D.; Rivers, S. M. B.; Pendergraft, O. C., Jr.; Wahls, R. A.
2002-01-01
This paper discusses Reynolds number scaling for aerodynamic parameters including force and wing pressure measurements. A full-span model of the Boeing 777 configuration was tested at transonic conditions in the National Transonic Facility (NTF) at Reynolds numbers (based on mean aerodynamic chord) from 3.0 to 40.0 million. Data was obtained for a tail-off configuration both with and without wing vortex generators and flap support fairings. The effects of aeroelastics were separated from Reynolds number effects by varying total pressure and temperature independently. Data from the NTF at flight Reynolds number are compared with flight data to establish the wind tunnel/flight correlation. The importance of high Reynolds number testing and the need for developing a process for transonic Reynolds number scaling is discussed. This paper also identifies issues that need to be worked for Boeing Commercial to continue to conduct future high Reynolds number testing in the NTF.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.
2007-01-01
The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.
Low Reynolds number suspension gravity currents.
Saha, Sandeep; Salin, Dominique; Talon, Laurent
2013-08-01
The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation. PMID:23933985
Low Reynolds number suspension gravity currents.
Saha, Sandeep; Salin, Dominique; Talon, Laurent
2013-08-01
The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1976-01-01
An investigation was conducted in the Langley low turbulence pressure tunnel to determine the effects of wing leading edge radius and Reynolds number on the longitudinal aerodynamic characteristics of a series of highly swept wing-body configurations. The tests were conducted at Mach numbers below 0.30, angles of attack up to 16 deg, and Reynolds numbers per meter from 6.57 million to 43.27 million. The wings under study in this investigation had leading edge sweep angles of 61.7 deg, 64.61 deg, and 67.01 deg in combination with trailing edge sweep angles of 0 deg and 40.6 deg. The leading edge radii of each wing planform could be varied from sharp to nearly round.
NASA Technical Reports Server (NTRS)
Cunningham, Atlee M., Jr.; Spragle, Gregory S.
1987-01-01
The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At
Experimental studies of Reynolds number dependence of turbulent mixing & transport
Warhaft, Z.
1996-12-31
An overview of recent experiments, in which the author generated high Reynolds number homogeneous grid turbulence, is provided. The author shows that in a small wind tunnel, Reynolds numbers that are sufficiently high (R{sub {lambda}} {approximately} 800, R{sub {ell}} {approximately} 36, 000) such that many of the aspects of turbulence that hitherto have only been observed in large scale anisotropic shear flows, are obtained. In particular the author studied the evolution of the spectrum with Reynolds number, the Kolmogorov constant and the internal intermittency, showing the way they tend to their high Reynolds number asymptotes. Thus the author links previous low Reynolds number laboratory experiments with large scale environmental measurements.
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1994-01-01
Wall functions, as used in the typical high Reynolds number k-epsilon turbulence model, can be implemented in various ways. A least disruptive method (to the flow solver) is to directly solve for the flow variables at the grid point next to the wall while prescribing the values of k and epsilon. For the centrally-differenced finite-difference scheme employing artificial viscocity (AV) as a stabilizing mechanism, this methodology proved to be totally useless. This is because the AV gives rise to a large error at the wall due to too steep a velocity gradient resulting from the use of a coarse grid as required by the wall function methodology. This error can be eliminated simply by extrapolating velocities at the wall, instead of using the physical values of the no-slip velocities (i.e. the zero value). The applicability of the technique used in this paper is demonstrated by solving a flow over a flat plate and comparing the results with those of experiments. It was also observed that AV gives rise to a velocity overshoot (about 1 percent) near the edge of the boundary layer. This small velocity error, however, can yield as much as 10 percent error in the momentum thickness. A method which integrates the boundary layer up to only the edge of the boundary (instead of infinity) was proposed and demonstrated to give better results than the standard method.
A two-scale low-Reynolds number turbulence model
NASA Astrophysics Data System (ADS)
Jaw, Shenq-Yuh; Hwang, Robert R.
2000-07-01
In this study, a two-scale low-Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (, ), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near-wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ) scale to a (, ) scale. The damping functions of the low-Reynolds number models can thus be simplified and the near-wall turbulence characteristics, such as the distribution, are correctly reproduced. The proposed two-scale low-Reynolds number turbulence model is first examined in detail by predicting a two-dimensional channel flow, and then it is applied to predict a backward-facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two-scale model indeed improves the predictions of the turbulent flows considered. Copyright
Reynolds number dependence of thermal diffusion from a line source in decaying grid turbulence
NASA Astrophysics Data System (ADS)
Johnson, Erika; Warhaft, Zellman
2008-11-01
Existing experiments on line source dispersion in isotropic turbulence are for low Reynolds numbers (Taylor scale Reynolds numbers of less than 100) and there has been no attempt to systematically vary the Reynolds number. Here we present new results of passive temperature fluctuations produced by a fine heated wire in decaying grid turbulence. The Taylor Reynolds number is varied from approximately 50 to 500 by means of active and passive grids. We study the dependence of the mean and r.m.s. temperature profiles on the Reynolds number. The effects of source size are also investigated. The results are compared with the recent modeling work of Viswanathan and Pope (Physics of Fluids, to be published) who find significant Reynolds number dependence but small effects when varying the source size. The peak centerline ratio of the r.m.s. to the mean of the scalar is also examined and compared with predictions. This work is funded by the US National Science Foundation.
NASA Astrophysics Data System (ADS)
Bogey, Christophe; Marsden, Olivier
2013-05-01
The influence of the nozzle-exit boundary-layer thickness in isothermal round jets at a Mach number of 0.9 and at diameter Reynolds numbers ReD ≃ 5 × 104 is investigated using large-eddy simulations. The originality of this work is that, contrary to previous studies on the topic, the jets are initially highly disturbed, and that the effects of the boundary-layer thickness are explored jointly on the exit turbulence, the shear-layer and jet flow characteristics, and the acoustic field. The jets originate from a pipe of radius r0, and exhibit, at the exit, peak disturbance levels of 9% of the jet velocity, and mean velocity profiles similar to laminar boundary-layer profiles of thickness δ0 = 0.09r0, 0.15r0, 0.25r0, or 0.42r0, yielding 99% velocity thicknesses between 0.07r0 and 0.34r0 and momentum thicknesses δθ(0) between 0.012r0 and 0.05r0. Two sets of computations are reported to distinguish, for the first time to the best of our knowledge, between the effects of the ratio δ0/r0 and of the Reynolds number Reθ based on δθ(0). First, four jets with a fixed diameter, hence at a constant Reynolds number ReD = 5 × 104 giving Reθ = 304, 486, 782, and 1288 depending on δ0, are considered. In this case, due to the increase in Reθ, thickening the initial shear layers mainly results in a weaker mixing-layer development with lower spreading rates and turbulence intensities, and reduced sound levels at all emission angles. Second, four jets at Reynolds numbers ReD between 1.8 × 104 and 8.3 × 104, varying so as to obtain Reθ ≃ 480 in all simulations, are examined. Here, increasing δ0/r0 has a limited impact on the mixing-layer key features, but clearly leads to a shorter potential core, a more rapid velocity decay, and higher fluctuations on the jet axis, and stronger noise in the downstream direction. Similar trends can be expected for high-Reynolds-number jets in which viscosity plays a negligible role.
On the modeling of low-Reynolds-number turbulence
NASA Technical Reports Server (NTRS)
So, R. M. C.; Yoo, G. J.
1986-01-01
A full Reynolds-stress closure that is capable of describing the flow all the way to the wall was formulated for turbulent flow through circular pipe. Since viscosity does not appear explicitly in the pressure redistribution terms, conventional high-number models for these terms are found to be applicable. However, the models for turbulent diffusion and viscous dissipation have to be modified to account for viscous diffusion near a wall. Two redistribution and two diffusion models are investigated for their effects on the model calculations. Wall correction to pressure redistribution modeling is also examined. Diffusion effects on calculated turbulent properties are further investigated by simplifying the transport equations to algebraic equations for Reynolds stress. Two approximations are explored. These are the equilibrium and nonequilibrium turbulence assumptions. Finally, the two-equation closure is also used to calculate the flow in question and the results compared with all the other model calculations. Fully developed pipe flows at two moderate Reynolds numbers are used to validate these model calculations.
Numerical investigation of transition critical Reynolds number of channel flow.
NASA Astrophysics Data System (ADS)
Zhang, Yongming
2015-11-01
Two critical Reynolds numbers are mentioned in investigation of laminar-turbulent transition. One is instability critical Reynolds number from linear stability theory (LST). The other is transition critical Reynolds number at which transition occurs in reality, which is significantly lower than the former in general. The determination of transition critical Reynolds number is of important practical significance in some engineering problems. Theoretical method has not been proposed for its determination, so it has to depend on experiments. However, for some flows with important practical significance, such as hypersonic boundary layer, transition critical Reynolds number cannot be determined by experiments in current situation. In this paper, transition critical Reynolds number of incompressible channel flow is determined by direct numerical simulations (DNS). It is found as Re =1114, which agrees with experimental data. In subsequent paper, transition critical Reynolds number of boundary layer will be investigation by the similar method. Project supported by the National Natural Science Foundation of China (Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund (New Teacher Class) for the Doctoral Program of Higher Education (No. 20120032120007).
Support-sting interference on boattail pressure drag for Reynolds numbers up to 70 x 10 to the 6th
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Sewall, W. G.
1983-01-01
A model was tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel to investigate the effects of Reynolds number on boattail pressure drag for a variety of sting shapes. The boattail pressure drag for constant Mach number increased linearly with Reynolds number over the Reynolds number range tested. The data indicated that, as the disturbance produced by the sting on the boattail increased, the boattail pressure drag became less sensitive to Reynolds number change. Also, it was found that the model base pressure versus Reynolds number curve reached a plateau within the Reynolds number range examined.
The role of Reynolds number in the fluid-elastic instability of tube arrays
NASA Astrophysics Data System (ADS)
Kevlahan, Nicholas; Ghasemi, Ali
2015-11-01
The onset of fluid-elastic instability in tube arrays is thought to depend primarily on the mean flow velocity, the Scruton number and the natural frequencies of the tubes. However, there is evidence from experiments and numerical simulations that the Reynolds number is also an important parameter, although the available data are not sufficient to understand or quantify this effect. We use a high resolution pseudo-spectral scheme to solve two-dimensional penalized Navier-Stokes equations in order to accurately model turbulent flow through tightly packed tube arrays. To investigate the Reynolds number effect we perform simulations that vary Reynolds number between about 100 and 13,600 independent of flow velocity at fixed Scruton numbers, and then analyze the tube responses. Increasing Reynolds number has a strong de-stabilizing effect for rotated arrays. For in-line arrays, although Reynolds number still affects the instability threshold, the effect is not monotonic with increasing Reynolds number. The main de-stabilizing effect of increasing Reynolds number appears to be broadening of the vortex shedding frequency spectrum. This study increases reduces uncertainties in the experimental data, which usually do not account for the effect of Reynolds number.
Low Reynolds number swimming in a stratified fluid
NASA Astrophysics Data System (ADS)
Doostmohammadi, Amin; Stocker, Roman; Ardekani, Arezoo
2011-11-01
Significant progress has been made in analyzing low-Reynolds number locomotion in homogeneous fluids. Even though many aquatic environments are influenced by vertical variations in density, the effects of stratification on the hydrodynamics of swimming of small organisms are very poorly understood. In this article, by using a squirmer model, we show that motility, energy expenditure, and nutrient uptake of small organisms in a density stratified fluid can be largely influenced due to buoyancy effects. Not only does the stratification suppress the swimming velocity, but it also enhances the nutrient uptake and the energy required for a squirmer to swim across pycnoclines. This work is supported by NSF grant CBET-1066545.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall
Energy transfer in isotropic turbulence at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Domaradzki, J. A.; Rogallo, R. S.
1988-01-01
Detailed measurements were made of energy transfer among the scales of motion in incompressible turbulent fields at low Reynolds numbers generated by direct numerical simulation. It was observed that although the transfer resulted from triad interactions that were non-local in k space, the energy always transferred locally. The results are consistent with the notion of non-uniform advection of small weak eddies by larger and stronger ones, similar to transfer processes in the far dissipation range at high Reynolds numbers.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
NASA Astrophysics Data System (ADS)
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
NASA Technical Reports Server (NTRS)
Omeara, M. M.; Mueller, T. J.
1986-01-01
An experimental investigation was conducted in order to document the structure and behavior of laminar separation bubbles at low Reynolds numbers. Data of this type is necessary if the currently insufficient analytical and numerical models are to be improved. The laminar separation bubble which forms on a NACA 66(3)-018 airfoil model was surveyed at chord Reynolds numbers ranging from 50,000 to 200,000 at angles of attack from 8 to 12 degrees. The effects of the various testing conditions on the separation bubble were isolated, and the data was analyzed in relation to existing separation bubble correlations in order to test their low Reynolds number applicability. This analysis indicated that the chord Reynolds number and the disturbance environment strongly influence the experimental pressure distributions. These effects must be included in any analytic prediction technique applied to the low Reynolds number flight regime.
Effect of Particle Existence on High Reynolds Number Slit Nozzle Gas-Particle Two-Phase Jet
NASA Astrophysics Data System (ADS)
Yuu, Shinichi; Kohno, Hiroyuki; Umekage, Toshihiko
Three-dimensional Eulerian air velocities and Lagrangian particle trajectories are numerically simulated to describe the effect of particle existence on a high Re number (Re=104) gas-particle turbulent jet using two-way coupling and Large Eddy Simulation in which the effects of particle existence on subgrid-scale flows are taken into account. The calculated results of air and particle turbulence characteristics (mean velocity distributions and turbulence intensity distributions) are in good agreement with experimental data obtained using a laser Doppler anemometer. Comparison of the instantaneous air vorticity isocontours of gas-particle and clean air jets reveals the production of vortices and eddies in both initial and transitional regions and the reduction of air turbulence in the developed region by the presence of particles. Based on the model for the effects of particle existence on subgrid-scale flow, states that reduce or enhance air turbulence in high Re number gas-particle flow are discussed.
Turbulent convection in the zero Reynolds number limit
NASA Astrophysics Data System (ADS)
Breuer, M.; Hansen, U.
2009-04-01
We discuss thermal convection in the infinite Prandtl number limit. This is relevant for convection in planetary interiors, where inertia of momentum is neglegible, i.e., the Reynolds number of the flow is zero. By means of a numerical two-dimensional model of Rayleigh-Bénard convection, we investigate the evolution of a flow at the Rayleigh number (Ra=108) and demonstrate that even in this zero Reynolds number limit convection exhibits key features of turbulent flow, commonly addressed to high Reynolds number convection. Special attention is given to the phenomenon of reversals in the orientation of the underlying large-scale circulation of the flow. Our case study indicates that flow reversals are an intrinsic feature of turbulent thermal convection resulting from competing states whose main modes turn out to be solutions of the underlying stationary equations.
NASA Technical Reports Server (NTRS)
Loftin, Laurence K, Jr; Bursnall, William J
1950-01-01
Results are presented of an investigation made to determine the two-dimensional lift and drag characteristics of nine NACA 6-series airfoil section at Reynolds numbers of 15.0 x 10sub6, 20.0 x 10sub6, and 25.0 x 10sub6. Also presented are data from NACA Technical Report 824 for the same airfoils at Reynolds numbers of 3.0 x 10sub6, 6.0 x 10sub6, and 9.0 x 10sub6. The airfoils selected represent sections having variations in the airfoil thickness, thickness form, and camber. The characteristics of an airfoil with a split flap were determined in one instance, as was the effect of surface roughness. Qualitative explanations in terms of flow behavior are advanced for the observed types of scale effect.
Large Eddy Simulations of Kelvin Helmholtz instabilities at high Reynolds number stratified flows
NASA Astrophysics Data System (ADS)
Brown, Dana; Goodman, Lou; Raessi, Mehdi
2015-11-01
Simulations of Kelvin Helmholtz Instabilities (KHI) at high Reynolds numbers are performed using the Large Eddy Simulation technique. Reynolds numbers up to 100,000 are achieved using our model. The resulting data set is used to examine the effect of Reynolds number on various statistics, including dissipation flux coefficient, turbulent kinetic energy budget, and Thorpe length scale. It is shown that KHI are qualitatively different at high Re, up to and including the onset of vortex pairing and billow collapse and quantitatively different afterward. The effect of Richardson number is also examined. The results are discussed as they apply to ocean experiments.
Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number.
Leoni, M; Liverpool, T B
2012-04-01
We introduce a generic model of a weakly nonlinear self-sustained oscillator as a simplified tool to study synchronization in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators and show that they can lead to synchronization. Furthermore, we find that synchronization is strongly enhanced when the oscillators are nonisochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Nonisochronity is determined by a nonlinear coupling α being nonzero. We find that its (α) sign determines if they synchronize in phase or antiphase. We then study an infinite array of oscillators in the long-wavelength limit, in the presence of noise. For α>0, hydrodynamic interactions can lead to a homogeneous synchronized state. Numerical simulations for a finite number of oscillators confirm this and, when α<0, show the propagation of waves, reminiscent of metachronal coordination.
NASA Astrophysics Data System (ADS)
Madhukar, K.; Ramamohan, T. R.; Shivakumara, I. S.
2010-09-01
We make use of the formulation developed by Lovalenti and Brady [1] for the hydrodynamic force acting upon a spherical particle undergoing arbitrary time dependent motion in an arbitrary time dependent uniform flow field at low Reynolds numbers, to derive an expression for the effects of a constant bias force acting on a periodically forced rigid spherical particle in a Newtonian fluid. We use Newton's second law to relate the total force acting on the particle to the motion of the particle. The total force is given by: Total force = Fext+FH, where, Fext is the external force inclusive of both the periodic force and the constant bias force. FH is the hydrodynamic force derived by Lovalenti and Brady [1] including both unsteady and convective inertia. The equation derived contains a nonlinear history term and is nonlinear. This equation is solved numerically using an adaptive step size Runge—Kutta scheme. We obtain several phase plots (plots between particle displacement and particle velocity), which show the effects of low Reynolds numbers, the periodic force and the effects of the constant bias force on the particle motion. It is observed that at low magnitudes of the periodic forcing the external constant force dominates and the particle moves along the direction of the external constant force. As we increase the magnitude of the periodic forcing, the periodic force is seen to dominate and the particle is seen to oscillate along a mean position with a slight drift along the direction of the periodic force and the external constant force, when they are imposed in the same direction. However the motion of the particle becomes more complicated when the directions of the periodic forcing and external constant force are opposite to each other. We also observe a reflection in phase space when the directions of both the forces are reversed. The phase plots typically are of a half sinusoidal, sinusoidal and a coiled (solenoidal) pattern. These plots include the effects
Compensatory escape mechanism at low Reynolds number
Gemmell, Brad J.; Sheng, Jian; Buskey, Edward J.
2013-01-01
Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation. PMID:23487740
Electrified film flows at moderate Reynolds number
NASA Astrophysics Data System (ADS)
Craster, Richard; Wray, Alex; Papageorgiou, Demetrios; Matar, Omar
2014-11-01
We examine the flow of a thin, inclined film sandwiched between two parallel electrodes. We follow the Weighted Residual Integral Boundary Layer method, which has been shown via comparison with both direct numerical simulations and experiments to give good results in both the drag-gravity and drag-inertia regimes. We extend existing models to give an accurate model of electrostatic effects via a similar separation of variables approach. A disparity in material properties between the liquid and gas regions induces a Maxwell stress at the interface, which affords a significant degree of control over the behaviour of the film. In one dimension, linear stability comparisons are made with a full Orr-Sommerfeld calculation, and nonlinear comparisons are made with direct numerical simulations, both showing excellent agreement in large parts of parameter space. The model is also extended to fully two-dimensional simulations. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1, EPSRC DTG Studentship (AWW).
NASA Astrophysics Data System (ADS)
Rylatt, D. I.; O'Donovan, T. S.
2014-07-01
Heat transfer to three configurations of ducted jet and un-ducted semiconfined jets is investigated experimentally. The influence of the jet operating parameters, stroke length (L0/D) and Reynolds (Re) number on the heat transferred to the jet is of particular interest. Heat transfer distributions to the jet are reported at H/D = 1 for a range of experimental parameters Re (1000 to 4000) and L0/D (5 to 20). Secondary and tertiary peaks are discernable in the heat transfer distributions across the range of parameters tested. It is shown that for a fixed Re varying the L0/D has little effect on the magnitude of the stagnation region heat transfer but does effect the position and magnitude of the secondary and tertiary peaks in the heat transfer distribution. It is also shown that for a fixed L0/D increasing the Re has a significant effect on the magnitude of the stagnation region heat transfer but has little impact on the position of the secondary and tertiary peaks in the heat transfer distributions. Ducting is added to the configuration to improve heat transfer by drawing cold air from a remote location into the jet flow. Ducting is shown to increase stagnation region and area averaged heat transfer across the range of jet parameters tested when compared with an un-ducted jets of equal confinement. Increasing the stroke length from L0/D = 5 to 20 for a Reynolds number of 2000 reduces the enhancement in stagnation region heat transfer provided by the ducting from 35% to 10%; the area averaged heat transfer provided by the ducting also changes from a 42% to a 21% enhancement. This is shown to be partly due to relative magnitude of the peaks in heat transfer outwith the stagnation region; at low stroke lengths, the difference in the magnitude of these peaks is large and reduces with increasing L0/D. It is also shown that as L0/D is increased the stagnation region heat transfer to the un-ducted jets increases while for the ducted jets stagnation region heat transfer
Flow and roller array interaction at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Sheikh, Zubair M.; Wang, Lipo; Zhang, Qiang
2016-06-01
Differing from the conventional no-slip wall boundary condition, the moving surface may have strong influences on the flow structures and the flow physics. Such effects are potentially important and useful for flow control. In this paper we analyze the two-dimensional flow over a roller array with different spacing and rotating speeds at the low Reynolds numbers. The numerical results indicate that the pressure drag and the friction drag of the rollers are strongly dependent on flowing and geometric parameters. Physically, surface motion can induce the viscous traction stream, which leads to very important effects, such as the so called impingement block and traction stream flush. These interesting findings may help to better understand the fluid dynamics for the general moving boundary cases.
Numerical simulation of high Reynolds number bubble motion
McLaughlin, J.B.
1995-12-31
This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.
Numerical solution of compressible viscous flows at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Maccormack, R. W.
1981-01-01
A new numerical method which was used to reduce the computation time required in fluid dynamics to solve the Navier-Stokes equations at flight Reynolds numbers is described. The method is the implicit analogue of the explicit finite different method. It uses this as its first stage, while the second stage removes the restrictive stability condition by recasting the difference equations in an implicit form. The resulting matrix equations to be solved are either upper or lower block bidiagonal equations. The new method makes it possible and practical to calculate many important three dimensional, high Reynolds number flow fields on computers.
The performance of discrete models of low Reynolds number swimmers.
Wang, Qixuan; Othmer, Hans G
2015-12-01
Swimming by shape changes at low Reynolds number is widely used in biology and understanding how the performance of movement depends on the geometric pattern of shape changes is important to understand swimming of microorganisms and in designing low Reynolds number swimming models. The simplest models of shape changes are those that comprise a series of linked spheres that can change their separation and/or their size. Herein we compare the performance of three models in which these modes are used in different ways.
Turbulence regeneration in pipe flow at moderate Reynolds numbers.
Hof, Björn; van Doorne, Casimir W H; Westerweel, Jerry; Nieuwstadt, Frans T M
2005-11-18
We present the results of an experimental investigation into the nature and structure of turbulent pipe flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the wavelength of numerically observed exact traveling wave solutions and close agreement is found. The advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable nonlinear traveling waves.
Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers
NASA Astrophysics Data System (ADS)
Schnitzer, Ory
2015-11-01
In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1992-01-01
Reynolds number and cowl position effects on the internal shock structure and the resulting performance of a generic three-dimensional sidewall compression scramjet inlet with a leading edge sweep of 45 degrees at Mach 10 have been examined both computationally and experimentally. Prior to the experiment, a three-dimensional Navier-Stokes code was adapted to perform preliminary parametric studies leading to the design of the present configuration. Following this design phase, the code was then utilized as an analysis tool to provide a better understanding of the flow field and the experimental static pressure data for the final experimental configuration. The wind tunnel model possessed 240 static pressure orifices distributed on the forebody plane, sidewalls, and cowl and was tested in the NASA Langley 31 Inch Mach 10 Tunnel.
High Reynolds number decay of turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Verschoof, Ruben A.; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2015-11-01
We study the decay of high-Reynolds number turbulence in a Taylor-Couette facility for pure inner cylinder rotation. The rotation of the inner cylinder (Rei = 2 ×106) is suddenly decelerated as fast as possible, thus removing the energy input within seconds. Local velocity measurements show that the decay in this wall-bounded inhomogeneous flow is faster than observed for homogeneous isotropic turbulent flows, due to the strong viscous drag applied by the inner and outer cylinder surfaces. We found that the decay over time can be described with the differential equation Re . (t) =cf (Re)Re2 , where the effects of the walls are included through the friction coefficient. A self-similar behavior of the azimuthal velocity is found: its normalized velocity profile as a function of the radius collapses over time during the decay process.
Flow past a porous sphere at small Reynolds number
NASA Astrophysics Data System (ADS)
Srivastava, A. C.; Srivastava, Neetu
2005-09-01
low of an incompressible viscous fluid past a porous sphere has been discussed. The flow has been divided in three regions. The Region-I is the region inside the porous sphere in which the flow is governed by Brinkman equation with the effective viscosity different from that of the clear fluid. In Regions II and III clear fluid flows and Stokes and Oseen solutions are respectively valid. In all the three regions Stokes stream function is expressed in powers of Reynolds number. Stream function of Region II is matched with that of Region I at the surface of the sphere by the conditions suggested by Ochao-Tapia and Whitaker and it is matched with that of Oseen’s solutions far away from the sphere. It is found that the drag on the sphere reduces significantly when it is porous and it decreases with the increase of permeability of the medium.
Experimental investigations of He II flows at high Reynolds number
NASA Technical Reports Server (NTRS)
Van Sciver, Steve W.
1991-01-01
Fluid dynamics studies of He II at high Reynolds number (Re(d) greater than 10 exp 6) reveal characteristics which are best interpreted in terms of classical scaling relationships. In particular, the smooth tube friction factor is seen to correlate with the Von Karman-Nikuradse formulation. Also, the performance of a centrifugal pump is unchanged whether being used with He I or He II. These effects are expected to result provided the He II possesses a viscous sublayer and that the drag is determined by laminar flow within this layer. On the other hand, heat transfer in He II is substantially different from that of He I because of the unique internal convection mechanism present in this quantum fluid. These experiments are performed in the University of Wisconsin liquid helium flow facility which has unique capabilities of He II temperature, pressure and flow.
Two-sphere low-Reynolds-number propeller
NASA Astrophysics Data System (ADS)
Najafi, Ali; Zargar, Rojman
2010-06-01
A three-dimensional model of a low-Reynolds-number swimmer is introduced and analyzed in this Brief Report. This model consists of two large and small spheres connected by two perpendicular thin rods. The geometry of this system is motivated by the microorganisms that use a single tail to swim; the large sphere represents the head of microorganism and the small sphere resembles its tail. Each rod changes its length and orientation in a nonreciprocal manner that effectively propels the system. Translational and rotational velocities of the swimmer are studied for different values of parameters. Our findings show that by changing the parameters we can adjust both the velocity and the direction of motion of the swimmer.
The Aerodynamics of Deforming Wings at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Medina, Albert
responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.
The variation with Reynolds number of pressure distribution over an airfoil section
NASA Technical Reports Server (NTRS)
Pinkerton, Robert M
1938-01-01
Pressures were simultaneously measured at 54 orifices distributed over the midspan section of a 5 by 30-inch rectangular model of the NACA 4412 airfoil in the variable-density tunnel. These measurements were made at 17 angles of attack from -20 degrees to 30 degrees for eight values of the effective Reynolds number form approximately 100,000 to 8,200,000. Accurate data were thus obtained for studying the variation of pressure distribution with Reynolds number. These results on the NACA 4412 section indicated that the pressure distribution is practically unaffected by changes in Reynolds number except where separation is involved.
Probability density distribution of velocity differences at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Praskovsky, Alexander A.
1993-01-01
Recent understanding of fine-scale turbulence structure in high Reynolds number flows is mostly based on Kolmogorov's original and revised models. The main finding of these models is that intrinsic characteristics of fine-scale fluctuations are universal ones at high Reynolds numbers, i.e., the functional behavior of any small-scale parameter is the same in all flows if the Reynolds number is high enough. The only large-scale quantity that directly affects small-scale fluctuations is the energy flux through a cascade. In dynamical equilibrium between large- and small-scale motions, this flux is equal to the mean rate of energy dissipation epsilon. The pdd of velocity difference is a very important characteristic for both the basic understanding of fully developed turbulence and engineering problems. Hence, it is important to test the findings: (1) the functional behavior of the tails of the probability density distribution (pdd) represented by P(delta(u)) is proportional to exp(-b(r) absolute value of delta(u)/sigma(sub delta(u))) and (2) the logarithmic decrement b(r) scales as b(r) is proportional to r(sup 0.15) when separation r lies in the inertial subrange in high Reynolds number laboratory shear flows.
Prediction of Very High Reynolds Number Compressible Skin Friction
NASA Technical Reports Server (NTRS)
Carlson, John R.
1998-01-01
Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.
NASA Technical Reports Server (NTRS)
Mueller, Thomas J.
1989-01-01
As a result of the continued interest in designing efficient low Reynolds number systems, the University of Notre Dame decided to organize a Conference on Low Reynolds Number Aerodynamics in June 1989. This Conference followed the 1986 International Conference in London by about three years and the first Conference on Low Reynolds Number Airfoil Aerodynamics at Notre Dame in 1985 by four years. The emphasis of the 1989 Conference was to assess the state-of-the-art in the chord Reynolds number range from about 10,000 to about 700,000. Applications of current interest include high altitude remotely or robotically piloted vehicles, ultra-light, and human powered vehicles as well as mini-RPVs at low altitudes. Other examples include small axial-flow fans used to cool electronic equipment in the unpressurized sections of high-altitude aircraft and gas turbine blades. High Reynolds number airfoil design strategies attempt to control the onset and development of turbulent boundary layers. This is difficult at low Reynolds numbers because of the increased stability of attached laminar boundary layers. Therefore, laminar separation is common even at small angles of attack at low Reynolds numbers. Under these conditions, the development of a turbulent boundary layer usually depends on the formation of a transitional separation bubble. The purpose of this Conference on Low Reynolds Number Aerodynamics was to bring together those researchers who have been active in areas closely related to this subject. It is clear from the papers presented that a great deal of progress has been made in understanding the occurrence and behavior of laminar separation and transition as well as their overall effect on the performance of airfoils at low chord Reynolds numbers. This progress has brought us closer to our goal of improving analytical methods for the design and evaluation of a variety of practical applications.
Unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Hess, R. W.
1989-01-01
Steady and unsteady pressures were measured on a 14 percent supercritical airfoil at transonic Mach numbers at Reynolds numbers from 6,000,000 to 35,000,000. Instrumentation techniques were developed to measure unsteady pressures in a cryogenic tunnel at flight Reynolds numbers. Experimental steady data, corrected for wall effects show very good agreement with calculations from a full potential code with an interacted boundary layer. The steady and unsteady pressures both show a shock position that is dependent on Reynolds number. For a supercritical pressure distribution at a chord Reynolds number of 35,000,000 laminar flow was observed between the leading edge and the shock wave at 45 percent chord.
NASA Astrophysics Data System (ADS)
Sutton, David M.
The effect of freestream turbulence intensities ranging from Tu = 1.26% to Tu = 3.2% is studied. Skin friction measurements made on the surface of the airfoil using oil film interferometry (OFI) show that, in general, the effect of the increased Tu is to inhibit separation of the laminar boundary layer. With increased Tu, the near-wall flow experiences strong deceleration in the adverse pressure gradient, but does not reverse as it does in the baseline case where Tu = 0.05%. The Cp distribution resulting from this decelerated fluid is similar in appearance to that of a laminar separation bubble. OFI results also show that laminar separation initiates a more rapid transition process than does higher turbulence intensity: transition of the boundary layer occurs over a shorter distance with Tu = 1.26% than it does with Tu = 2.19% due to the presence of a LSB at the lower turbulence intensity.
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Murphy, Kelly J.
1993-01-01
Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
Turbulent Convection in the Zero Reynolds Number Limit (Invited)
NASA Astrophysics Data System (ADS)
Hansen, U.; Breuer, M.
2010-12-01
Turbulent thermal convection plays an important role in many natural systems, such as atmospheres, oceans and planetary interiors. We concentrate here on convection in planetary interiors in the limit of an infinite Prandtl number. . This type of flow is characterized by the absence of mechanical inertia, i.e. The Reynolds number of the flow is virtually zero. At the same time heat transport is mainly governed by advection, such that thermal inertia arises. By numerical models we investigate the evolution of thermal convection at Rayleigh numbers of Ra > 109 and demonstrate that even in the zero Reynolds Number limit, convection exhibits key features of turbulent flows, as commonly addressed to high Reynolds number convection. Special attention is addressed to the phenomenon of reversals of the large-scale circulation. Our studies indicate that flow reversals are intrinsic features of turbulent thermal convection resulting from competing states. These main modes can be found as the solutions of the stationary equations. Besides such reversals we also observe excursions which are characterized by fluctuation over one fundamental mode.
NASA Technical Reports Server (NTRS)
Ventrice, M.
1979-01-01
The amplification of a Reynolds number dependent process by wave distortion and the possibility of applying the results to other similar Reynolds number dependent processes were investigated. The process investigated was that associated with the operation of a constant-temperature hot-wire anemometer. The application of vaporization limited combustion, the type of combustion typically associated with liquid propellant rocket engines, was studied. A series of experiments were carried out to determine the effect of wave distortion on a Reynolds number dependent process and to establish the analogy between the anemometer process and the combustion process. Parametric trends, behavior common to different chamber geometries, and stability boundaries were identified. The results indicate a high degree of similarity between the two processes and the possibility of using the anemometer system to investigate combustion instability. The nonlinear aspects of a Reynolds number dependent process appear to be the dominant mechanisms controlling instability.
Wall-bounded turbulence at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Vallikivi, Margit
Measurements are reported that give new insight into the behavior of turbulent wall-bounded flows at high Reynolds number. Turbulent pipe and boundary layer flows are examined experimentally over a wide range of Reynolds numbers -- up to Retau=100,000 (Re D=6x106) in pipe flow, and up to Re tau=73,000 (ReD=235x103) in a flat plate zero pressure gradient boundary layer. A Nano-Scale Thermal Anemometry Probe (NSTAP) was developed for very high spatial and temporal resolution measurements. Sensors with wire lengths 30 and 60 mum were fabricated, tested and validated in known flows, and then used to obtain single-point measurements at high Reynolds numbers in pipe and boundary layers. The mean velocity data together with data from previous studies and extensive error analysis showed that the von Karman's constant in the log-law is kappa=0.40+/-0.02. It was shown that the streamwise Reynolds stress exhibits a logarithmic behavior in the inertial sublayer for Retau≥20,000, in both pipes and boundary layers. Variances as well as higher order even moments were compared for pipes and boundary layers and it was shown that all even moments have a logarithmic behavior in the inertial sublayer, suggesting a true scale separation. Streamwise turbulent spectra showed a clear k --5/3 region for up to two decades in wavenumber. No k--1 region was found to be present in any of the cases in the pipe or the boundary layer. The location of the outer spectral peak, associated with very large scale motions, was found to have only a weak dependence on Reynolds number. The loci of these peak occur at the same wall-normal distance where the streamwise stresses establish a logarithmic behavior and where the amplitude modulation coefficient has a zero value. This suggests that with Reynolds number increasing to infinity most of the energy is contained within a diminishing wall-layer in physical coordinates.
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Murphy, Kelly J.
1993-01-01
The effects of the decrease in the ratio of specific heats have been investigated in generic 3D sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air. In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
Low-Reynolds-number swimming near a wall
NASA Astrophysics Data System (ADS)
Li, Gaojin; Ardekani, Arezoo
2013-11-01
Hydrodynamics of swimming organisms in a low Reynolds number regime near a no-slip wall has been a subject of growing interest in recent years because of its importance in many health and environmental problems. In addition to the changes in the swimming speed and energy expenditure of organisms in the presence of a wall, unexpected interesting swimming dynamics has been reported in recent experiments. In this study, the hydrodynamics of an archetypal low-Reynolds number swimmer, called ``squirmers,'' near a wall has been numerically studied. Depending on the swimming mechanism and swimming direction, three different modes are distinguished: (a) squirmer escaping from the wall, (b) squirmer swimming along the wall keeping a constant height and orientation angle and (c) squirmer swimming near the wall in a periodic trajectory. This work is supported by NSF Grant No. CBET-1150348-CAREER.
Turbulence Model Selection for Low Reynolds Number Flows.
Aftab, S M A; Mohd Rafie, A S; Razak, N A; Ahmad, K A
2016-01-01
One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil's surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail. PMID:27104354
The Variation of Slat Noise with Mach and Reynolds Numbers
NASA Technical Reports Server (NTRS)
Lockhard, David P.; Choudhari, Meelan M.
2011-01-01
The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.
Performance measurements of an airfoil at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Mcghee, Robert J.; Walker, Betty S.
1989-01-01
Performance characteristics of an Eppler 387 airfoil using both direct (force) and indirect (pressure) measurement techniques have been obtained at Reynolds numbers from 60,000 to 460,000 in the Langley Low-Turbulence Pressure Tunnel. Lift, drag, and pitching-moment data were obtained from two internally-mounted strain-gage balances specifically designed for small aerodynamic loads. Comparisons of these results with data from a pressure model of an Eppler 387 airfoil are included. Drag data for both models using the wake traverse method are compared with the balance data. Oil flow visualization and surface mounted hot-film sensors were used to determine laminar-separation and turbulent-reattachment locations. Problems associated with obtaining accurate wind-tunnel data at low Reynolds numbers are discussed.
Turbulence Model Selection for Low Reynolds Number Flows.
Aftab, S M A; Mohd Rafie, A S; Razak, N A; Ahmad, K A
2016-01-01
One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil's surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail.
Numerical simulations of undulatory swimming at moderate Reynolds number.
Eldredge, Jeff D
2006-12-01
We perform numerical simulations of the swimming of a three-linkage articulated system in a moderately viscous regime. The computational methodology focuses on the creation, diffusion and transport of vorticity from the surface of the bodies into the fluid. The simulations are dynamically coupled, in that the motion of the three-linkage swimmer is computed simultaneously with the dynamics of the fluid. The novel coupling scheme presented in this work is the first to exploit the relationship between vorticity creation and body dynamics. The locomotion of the system, when subject to undulatory inputs of the hinges, is computed at Reynolds numbers of 200 and 1000. It is found that the forward swimming speed increases with the Reynolds number, and that in both cases the swimming is slower than in an inviscid medium. The vortex shedding is examined, and found to exhibit behavior consistent with experimental flow visualizations of fish. PMID:17671314
Optical measurement techniques for high Reynolds number train investigations
NASA Astrophysics Data System (ADS)
Loose, S.; Richard, H.; Bosbach, J.; Thimm, M.; Becker, W.; Raffel, M.
2006-04-01
This article reports on experimental aerodynamic investigations on a generic high-speed train configuration performed within two different wind tunnels. Both wind tunnels are specialized facilities for high Reynolds number investigations and offer low turbulence levels. The wind tunnels are the cryogenic wind tunnel located in Cologne (KKK) and in the high-pressure wind tunnel located in Göttingen (HDG). Both facilities are part of the German Dutch wind tunnel association (DNW). The adaptation and application of three optical measurement techniques for such high Reynolds number investigations is described in the article. The optical methods are: Particle Image Velocimetry for the measurement of velocity fields, Background Oriented Schlieren technique for density gradient measurements, and a white light Digital Speckle Photography technique for model deformation monitoring.
Turbulence Model Selection for Low Reynolds Number Flows
2016-01-01
One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil’s surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail. PMID:27104354
Lagrangian coherent structures in low Reynolds number swimming.
Wilson, Megan M; Peng, Jifeng; Dabiri, John O; Eldredge, Jeff D
2009-05-20
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference.
Optical diagnostic investigation of low Reynolds number nozzle flows
NASA Technical Reports Server (NTRS)
Micci, Michael M.
1991-01-01
The objectives are to obtain temperature, density and velocity profile measurements in the expansion region of low Reynolds number nozzles through the use of optical diagnostics. An LIF system will be used to probe the expansion of a microwave-heated expansion in the Center vacuum facility. The experimental measurements made in this program will be compared to numerical predictions obtained by Drs. Charles Merkle and Lyle Long.
Lagrangian coherent structures in low Reynolds number swimming.
Wilson, Megan M; Peng, Jifeng; Dabiri, John O; Eldredge, Jeff D
2009-05-20
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference. PMID:21825514
Lagrangian coherent structures in low Reynolds number swimming
NASA Astrophysics Data System (ADS)
Wilson, Megan M.; Peng, Jifeng; Dabiri, John O.; Eldredge, Jeff D.
2009-05-01
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference.
High Reynolds Number Transition Experiments in ETW (TELFONA project)
NASA Astrophysics Data System (ADS)
Perraud, J.; Archambaud, J.-P.; Schrauf, G.; Donelli, R. S.; Hanifi, A.; Quest, J.; Hein, S.; Streit, T.; Fey, U.; Egami, Y.
A wind-tunnel experiment on laminar-turbulent transition has been performed in ETW (the European Transonic Wind Tunnel in Koln) at high Reynolds number and cryogenic conditions. The studied geometry is a sting mounted full model in swept-wing configuration. The transition location was determined by means of Temperature Sensitive Paint (CryoTSP). The experimental observations were further analysed using different transition prediction tools, based on linear stability theory.
Computational analysis of amoeboid swimming at low Reynolds number.
Wang, Qixuan; Othmer, Hans G
2016-06-01
Recent experimental work has shown that eukaryotic cells can swim in a fluid as well as crawl on a substrate. We investigate the swimming behavior of Dictyostelium discoideum amoebae who swim by initiating traveling protrusions at the front that propagate rearward. In our model we prescribe the velocity at the surface of the swimming cell, and use techniques of complex analysis to develop 2D models that enable us to study the fluid-cell interaction. Shapes that approximate the protrusions used by Dictyostelium discoideum can be generated via the Schwarz-Christoffel transformation, and the boundary-value problem that results for swimmers in the Stokes flow regime is then reduced to an integral equation on the boundary of the unit disk. We analyze the swimming characteristics of several varieties of swimming Dictyostelium discoideum amoebae, and discuss how the slenderness of the cell body and the shapes of the protrusion effect the swimming of these cells. The results may provide guidance in designing low Reynolds number swimming models.
DSMC simulation of low Reynolds number nozzle flows
NASA Technical Reports Server (NTRS)
Zelesnik, D.; Micci, M. M.; Long, L. N.
1993-01-01
A numerical analysis of low Reynolds number nozzle flows was performed to investigate the loss mechanisms involved and to determine the nozzle wall contour that minimizes these losses. DSMC was used to simulate flows through three different nozzle configurations at two different stagnation chamber temperatures so that the heat transfer losses could be separated from the wall contour effects on performance. A trumpet-shaped nozzle had 5 percent higher efficiency than a conical nozzle and a 3 percent higher efficiency than a bell-shaped nozzle with the unheated flow. With heated flow both the trumpet and bell-shaped nozzles had a 6.5 percent higher efficiency than the conical nozzle. The conical nozzle had the highest discharge coefficient of the three configurations, 0.92, and the trumpet-shaped nozzle had the lowest, 0.82. The discharge coefficient of each nozzle was unaffected by the change in stagnation temperature; however the increase in stagnation temperature increased the heat transfer and viscous losses in the boundary layer. These results suggest that the trumpet-shaped wall contour performed most efficiently except near the throat region, where it incurred large viscous losses. However, the bell-shaped nozzle may increase its overall performance with an increase in stagnation temperature.
A Numerical Study of Low-Reynolds-Number Separation Bubbles
NASA Technical Reports Server (NTRS)
Tatineni, Mahidhar; Zhong, Xiao-Lin
1999-01-01
The present study uses two dimensional numerical simulations to study unsteady low-Reynolds-number separation bubbles. The numerical study is in two parts: (1) a two dimensional time-accurate Navier-Stokes solver is used to simulate flows over the APEX airfoil, and (2) a numerical procedure is developed for localized simulations of transitional separation bubbles. The 2-D computations of flow over the APEX airfoil show that the flow is unsteady with periodic vortex shedding. A linear stability analysis of the separated flow shows that the vortex shedding is caused due to the instability of the separated flow. For transonic flows over the APEX airfoil the vortex shedding is additionally influenced by the presence of shocks. The flowfield has two characteristic time scales, one corresponding to the vortex shedding and another corresponding to the movement of the shocks. The two dimensional (2-D) airfoil simulations also showed the presence of nonlinear effects in the separated region. To better understand the characteristics of separation bubbles a numerical procedure has been developed for localized separation bubble calculations. This procedure is used to perform computations for a flat plate separation bubble test case. The separation bubble is induced by specifying a velocity gradient in the freestream. The growth of disturbances in the separation bubble is analyzed by introducing disturbances upstream of the separation bubble.
Stability Characteristics of Low Reynolds Number, Low Aspect Ratio Wings
NASA Astrophysics Data System (ADS)
Shields, Matthew; Mohseni, Kamran
2010-11-01
The recent interest in Micro Aerial Vehicles (MAVs) has led to the development of many different aircraft; however, little progress has been made in understanding the physics of MAV flow. MAVs aerodynamics is affected by low Reynolds number flow and low aspect ratios. As a result nonlinear effects due to tip vortices are quite important. We have developed a new experimental setup for measuring stability derivatives in a small wind tunnel. Using a four degree of freedom actuation system, a model can be placed in the test section and maneuvered in such a way to isolate the flow components responsible for creating stability derivatives. Accurate measurements of the aerodynamic loading can then be used to compute these values. Initial testing was conducted primarily on a series of flat plates of different aspect ratios. In addition, the CU MAV was tested as a specific case study. Test results indicate that some of the cross coupled stability derivatives, ignored for larger aircrafts, are on the same order of magnitude as standard derivatives and thus can not be ignored in the derivation of the linear equations of motion for a micro aerial vehicle. As a result, a more general set of equations of motion are derived based upon experimentally obtained stability derivatives.
Prediction of stall and post-stall behavior of airfoils at low and high Reynolds numbers
NASA Technical Reports Server (NTRS)
Cebeci, T.; Roknaldin, F.; Carr, L. W.
1993-01-01
An interactive boundary-layer method, together with the e(super n)-approach to the calculation of transition, has been used to predict the stall and post-stall behavior of airfoils at low and high Reynolds numbers. The turbulence model is based on the Cebeci-Smith algebraic eddy-viscosity formulation with improvements for strong pressure gradient effects and transitional flows at low Reynolds numbers. Comparison of calculated results for incompressible flows indicate good agreement with experiment for a wide range of Reynolds numbers. Preliminary calculations for low Mach number flows with this interactive method with compressibility corrections to the panel method indicate that, at a Mach number of 0.3, the compressibility effect on (C sub Q)max is not negligible.
Dynamics of Active Separation Control at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2000-01-01
A series of active flow control experiments were recently conducted at high Reynolds numbers on a generic separated configuration. The model simulates the upper surface of a 20% thick Glauert-Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. The main motivation for the experiments is to generate a comprehensive data base for validation of unsteady numerical simulation as a first step in the development of a CFD design tool, without which it would not be possible to effectively utilize the great potential of unsteady flow control. This paper focuses on the dynamics of several key features of the baseline as well as the controlled flow. It was found that the thickness of the upstream boundary layer has a negligible effect on the flow dynamics. It is speculated that separation is caused mainly by the highly convex surface while viscous effects are less important. The two-dimensional separated flow contains unsteady waves centered on a reduced frequency of 0.8, while in the three dimensional separated flow, frequencies around a reduced frequency of 0.3 and 1 are active. Several scenarios of resonant wave interaction take place at the separated shear-layer and in the pressure recovery region. The unstable reduced frequency bands for periodic excitation are centered on 1.5 and 5, but these reduced frequencies are based on the length of the baseline bubble that shortens due to the excitation. The conventional swept wing-scaling works well for the coherent wave features. Reproduction of these dynamic effects by a numerical simulation would provide benchmark validation.
An experimental study of high Reynolds number turbulence in the atmosphere
NASA Astrophysics Data System (ADS)
Dhruva, Brindesh R.
2000-11-01
High Reynolds number turbulence in the atmospheric boundary layer has been investigated using constant temperature hot-wire anemometry. The Taylor microscale Reynolds numbers (Rλ) were typically between 5 × 103 at 2 meters in the salt flats of Western Utah and 2 × 104 at 35 meters on the meterological tower of Brookhaven National Laboratory in Long Island. The measurements were used to study the statistical properties of inertial range quantities, Reynolds stress and wind direction. The identification of possible self- similar behavior in the inertial range is a primary goal in turbulence research. To motivate the need for high Reynolds number measurements we demonstrate the Reynolds number effect on the existence and extent of the inertial range. We find that the inertial range is non-existent at typical laboratory Reynolds numbers. We thus turn to high Reynolds numbers and analyze the asymmetry in the probability distribution function (pdf) of the longitudinal velocity increment. We compute the scaling exponents of the positive and negative structure functions and find that the negative exponents are more anomalous than the positive ones. Furthermore, we quantify the contribution to the asymmetry-or the skewness-from different regions of the pdf. We find that the core region of the pdf is more or less symmetric and the skewness comes primarily from the rare large amplitude events contained in the tails of the pdf. We discuss this result in the context of the down-scale cascade of energy. Next it is shown that even at Rλ ~ 20,000 the structure functions do not scale unambiguously-although the situation is far better than that at low Reynolds numbers. By applying various filtering techniques and conditional sampling it is shown that this lack of strict scaling even at very high Reynolds numbers is due to large scale ``corrupting effects'' on the inertial range. We propose a plausible scheme to remove the large scale effects. Next, we characterize the
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAF2, developed to calculate high Reynolds number internal/external flows is described. The program solves the two dimensional, time dependent Navier-Stokes equations. Turbulence is modeled with either a mixing length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Anisotropy of MHD Turbulence at Low Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Zikanov, O.; Vorobev, A.; Thess, A.; Davidson, P. A.; Knaepen, B.
2004-01-01
Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic under the action of a sufficiently strong magnetic field. We consider the technologically relevant case of low magnetic Reynolds number and apply the method of DNS of forced flow in a periodic box to generate velocity fields. The analysis based on different anisotropy characteristics shows that the dimensional anisotropy is virtually scale-independent. We also find that, except for the case of very strong magnetic field, the flow is componentally isotropic. Its kinetic energy is practically uniformly distributed among the velocity components.
Local isotropy in high Reynolds number turbulent shear flows
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1993-01-01
This is a report on the continuation of experiments, which Dr. Srinivas Veeravalli and the present author started in 1991, to investigate the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods like large-eddy simulation. The importance of Kolmogorov's ideas arises from the fact that they create a foundation for turbulence theory.
Resonance of flexible flapping wings at low Reynolds number
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Alexeev, Alexander
2010-05-01
Using three-dimensional computer simulations, we examine hovering aerodynamics of flexible planar wings oscillating at resonance. We model flexible wings as tilted elastic plates whose sinusoidal plunging motion is imposed at the plate root. Our simulations reveal that large-amplitude resonance oscillations of elastic wings drastically enhance aerodynamic lift and efficiency of low-Reynolds-number plunging. Driven by a simple sinusoidal stroke, flexible wings at resonance generate a hovering force comparable to that of small insects that employ a very efficient but much more complicated stroke kinematics. Our results indicate the feasibility of using flexible wings driven by a simple harmonic stroke for designing efficient microscale flying machines.
Collinear swimmer propelling a cargo sphere at low Reynolds number.
Felderhof, B U
2014-11-01
The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes equations in the presence of a sphere with a no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.
The design of a low Reynolds number RPV
NASA Technical Reports Server (NTRS)
Siddiqi, S.; Evangelista, R.; Kwa, T. S.
1989-01-01
This paper covers the ongoing design process for a long endurance Remotely Piloted Vehicle (RPV). The 45-pound RPV must operate in the 25-50 knot speed range at low altitudes. Specially designed low-Reynolds number airfoils were used for efficient aerodynamics. A wing of AR = 23 was selected which will give an estimated L/D(max) of 27. Wing tip feathers will be used to reduce the induced drag. A comparison between the computed aerodynamic predictions and wind tunnel results is given. The predicted handling quality and performance results are given.
Optimal translational swimming of a sphere at low Reynolds number.
Felderhof, B U; Jones, R B
2014-08-01
Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low-Reynolds-number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently, more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.
Unsteady aerodynamic models for agile flight at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Brunton, Steven L.
This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of
Reynolds number dependency of an insect-based flapping wing.
Han, Jong-Seob; Chang, Jo-Won; Kim, Sun-Tae
2014-01-01
Aerodynamic characteristics depending on Reynolds number (Re) ranges were studied to investigate the suitable design parameters of an insect-based micro air vehicle (MAV). The tests centered on the wing rotation timing and Re ranges, and were conducted to understand the lift augmentations and unsteady effects. A dynamically scaled-up flapping wing controlled by a pair of servos was installed underwater with a micro force/torque sensor. A high-speed camera and a laser sheet were also put in front of the water tank for the time-resolved digital particle image velocimetry (DPIV). The lift augmentations clearly appeared at low Re and were well reflected on the insect's flight range. In the case of the high Re, however, the peak standing for the wing–wake interaction was delayed, and the pitching-up rotation was not able to lead to another lift enhancement, i.e., rotational lift. In such Re, the mean CL and the L/D of the advanced rotation were substantially decreased from those of the other rotations. The DPIV results at high Re well described turbulent characteristics such as the irregular, unstable, and high-intensity vortex structures with a short temporal delay. In the advanced rotation, the LEV in the rotational phase could not maintain the attachment. Thus, the rotational lift was not able to work. On the contrary, the temporal response delay benefitted the wing in the delayed rotation. Therefore, the wing in the delayed rotation had both a similar level of the mean CL and a higher marked L/D than those of the advanced rotation. Such results indicate that the high Re could interrupt lift augmentation mechanisms, and these augmentations would not be suitable for a heavier MAV. In conclusion, using adequate wing kinematics to acquire estimations of the weight and range of the Re is highly recommended at the aerodynamic design step.
Reynolds number dependency of an insect-based flapping wing.
Han, Jong-Seob; Chang, Jo-Won; Kim, Sun-Tae
2014-01-01
Aerodynamic characteristics depending on Reynolds number (Re) ranges were studied to investigate the suitable design parameters of an insect-based micro air vehicle (MAV). The tests centered on the wing rotation timing and Re ranges, and were conducted to understand the lift augmentations and unsteady effects. A dynamically scaled-up flapping wing controlled by a pair of servos was installed underwater with a micro force/torque sensor. A high-speed camera and a laser sheet were also put in front of the water tank for the time-resolved digital particle image velocimetry (DPIV). The lift augmentations clearly appeared at low Re and were well reflected on the insect's flight range. In the case of the high Re, however, the peak standing for the wing–wake interaction was delayed, and the pitching-up rotation was not able to lead to another lift enhancement, i.e., rotational lift. In such Re, the mean CL and the L/D of the advanced rotation were substantially decreased from those of the other rotations. The DPIV results at high Re well described turbulent characteristics such as the irregular, unstable, and high-intensity vortex structures with a short temporal delay. In the advanced rotation, the LEV in the rotational phase could not maintain the attachment. Thus, the rotational lift was not able to work. On the contrary, the temporal response delay benefitted the wing in the delayed rotation. Therefore, the wing in the delayed rotation had both a similar level of the mean CL and a higher marked L/D than those of the advanced rotation. Such results indicate that the high Re could interrupt lift augmentation mechanisms, and these augmentations would not be suitable for a heavier MAV. In conclusion, using adequate wing kinematics to acquire estimations of the weight and range of the Re is highly recommended at the aerodynamic design step. PMID:25381677
NASA Technical Reports Server (NTRS)
Clark, L. E.
1972-01-01
The phase-change-coating technique was used to study the interference heating to the windward surface of 14 deg, 25 deg, and 50 deg swept wings of an entry vehicle configuration. One wing root of each model was faired to the fuselage with a fillet. Tests were made at Mach 8 at angles of attack of 0 deg, 20 deg, 40 deg, and 60 deg and at free-stream Reynolds numbers based on model length of 0.47 and 1.7 million. Bow shock impingement heating was found to increase in magnitude and affected area with increasing angle of attack until at a higher angle of attack it decreases; this angle of attack is lower for a 50 deg swept wing. Wing root interference heating was found to increase with angle of attack up to 40 deg and then to remain approximately constant. Consequently, wing root interference heating becomes the major type of interference heating at large angles of attack, and this occurs at a lower angle of attack for the highest sweep angle. A wing leading-edge root fillet reduces the peak in wing root interference heating near the leading edge, and increasing Reynolds number increases the level of interference heating.
Self-organized cooperative swimming at low Reynolds numbers.
Reinmüller, Alexander; Schöpe, Hans Joachim; Palberg, Thomas
2013-02-12
Investigations of swimming at low Reynolds numbers (Re < 10(-4)) so far have focused on individual or collectively moving autonomous microswimmers consisting of a single active building unit. Here we show that linear propulsion can also be reproducibly generated in a self-assembled dynamic complex formed from a granular, HCl-releasing particle settled on a charged quartz wall and a swarm of micrometer-sized negatively charged colloids. In isolation, none of the constituents shows motion beyond diffusion. When brought together, they self-assemble into a complex capable of directed swimming. It is stabilized by toroidal solvent flow centered about the granular particle. Propulsion is then launched by an asymmetric distribution of the colloids. Motion is self-stabilizing and continues for up to 25 min with velocities of 1-3 μm/s. Although the details of the mechanisms involved pose a formidable experimental and theoretical challenge, our observations offer a conceptually new, well-reproduced, versatile approach to swimming and transport at low Reynolds numbers.
High-Reynolds Number Taylor-Couette Turbulence
NASA Astrophysics Data System (ADS)
Grossmann, Siegfried; Lohse, Detlef; Sun, Chao
2016-01-01
Taylor-Couette flow, the flow between two coaxial co- or counter-rotating cylinders, is one of the paradigmatic systems in the physics of fluids. The (dimensionless) control parameters are the Reynolds numbers of the inner and outer cylinders, the ratio of the cylinder radii, and the aspect ratio. One key response of the system is the torque required to retain constant angular velocities, which can be connected to the angular velocity transport through the gap. Whereas the low-Reynolds number regime was well explored in the 1980s and 1990s of the past century, in the fully turbulent regime major research activity developed only in the past decade. In this article, we review this recent progress in our understanding of fully developed Taylor-Couette turbulence from the experimental, numerical, and theoretical points of view. We focus on the parameter dependence of the global torque and on the local flow organization, including velocity profiles and boundary layers. Next, we discuss transitions between different (turbulent) flow states. We also elaborate on the relevance of this system for astrophysical disks (quasi-Keplerian flows). The review ends with a list of challenges for future research on turbulent Taylor-Couette flow.
Fabrication and control of simple low Reynolds number microswimmers
NASA Astrophysics Data System (ADS)
Cheang, U. Kei; Kim, Min Jun
2016-07-01
The development of miniaturized robotic swimmers is hindered by technical limitations in micro- and nanofabrication. To circumvent these limitations, we investigated the minimal geometrical requirements for swimming in low Reynolds number. Micro- and nanofabrication of complex shapes, such as helices, on a massive scale requires sophisticated state of the art technologies and has size limitations. In contrast, simple shaped structures, such as spherical particles, can be fabricated massively using chemical synthesis with relative ease. Here, simple microswimmers were fabricated using two microparticles with debris attached to their surface. The debris on the microswimmer's surface creates a geometry with two or more planes of symmetry, allowing the microswimmer to swim in bulk fluid at low Reynolds number. The microswimmers are magnetically actuated and controlled via a uniform rotating magnetic field generated by an approximate Helmholtz electromagnetic coil system. We characterized the microswimmer's velocity profile with respect to rotating frequency and analyzed the motion of the microswimmer using image processing. Finally, we demonstrated the controllability of the microswimmers by freely steering them in any desired directions.
Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.
Fakhari, Abbas; Lee, Taehun
2013-02-01
The lattice Boltzmann method for immiscible multiphase flows with large density ratio is extended to high Reynolds number flows using a multiple-relaxation-time (MRT) collision operator, and its stability and accuracy are assessed by simulating the Kelvin-Helmholtz instability. The MRT model is successful at damping high-frequency oscillations in the kinetic energy emerging from traveling waves generated by the inclusion of curvature. Numerical results are shown to be in good agreement with prior studies using adaptive mesh refinement techniques applied to the Navier-Stokes equations. Effects of viscosity and surface tension, as well as density ratio, are investigated in terms of the Reynolds and Weber numbers. It is shown that increasing the Reynolds number results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is shown to have a stabilizing effect.
Evaluation of high Reynolds number flow in a 180 degree turn-around-duct
NASA Astrophysics Data System (ADS)
Sandborn, V. A.; Marcy, S. J.
1991-10-01
Mean and turbulent velocities were measured for the flow in a 180 degree turn-around-duct over a Reynolds number range from 600,000 to greater than 900,000. The measurements were made in water using a forward scattering laser velocimeter. A duct of 100 x 10 cm constant cross-section, with a mean radius of curvature (centerline) of 10 cm was employed for the study. The measurements are in agreement with previous studies in that the use of local bulk velocity to nondimensionalize the mean and turbulent velocities reduce the Reynolds number variations. The basic phenomenon of relaminarization along the inner surface at the exit of the turn are similar to the flow observed at low Reynolds numbers. The separation bubble region shows a systematic variation with Reynolds number, however the Reynolds number effect may be of second order in the calculation of the overall flow. Large tangential, radial, and lateral turbulent velocities are measured along the outer surface of the turn.
The influence of Reynolds numbers on resistance properties of jet pumps
NASA Astrophysics Data System (ADS)
Geng, Q.; Zhou, G.; Li, Q.
2014-01-01
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.
The influence of Reynolds numbers on resistance properties of jet pumps
Geng, Q.; Zhou, G.; Li, Q.
2014-01-29
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.
A survey of the three-dimensional high Reynolds number transonic wind tunnel
NASA Technical Reports Server (NTRS)
Takashima, K.; Sawada, H.; Aoki, T.
1982-01-01
The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.
Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model.
Lyon, C K; Scott, J B; Wang, C Y
1980-07-01
The applicability of the waterfall model was tested using the Starling resistor and different viscosities of fluids to vary the Reynolds number. The waterfall model proved adequate to describe flow in the Starling resistor model only at very low Reynolds numbers (Reynolds number less than 1). Blood flow characterized by such low Reynolds numbers occurs only in the microvasculature. Thus, it is inappropriate to apply the waterfall model indiscriminately to flow through large collapsible veins.
NASA Astrophysics Data System (ADS)
Jaman, Md. Shah; Islam, Showmic; Saha, Sumon; Hasan, Mohammad Nasim; Islam, Md. Quamrul
2016-07-01
A numerical analysis is carried out to study the performance of steady laminar mixed convection flow inside a square lid-driven cavity filled with water-Al2O3 nanofluid. The top wall of the cavity is moving at a constant velocity and is heated by an isothermal heat source. Two-dimensional Navier-stokes equations along with the energy equations are solved using Galerkin finite element method. Results are obtained for a range of Reynolds and Grashof numbers by considering with and without the presence of nanoparticles. The parametric studies for a wide range of governing parameters in case of pure mixed convective flow show significant features of the present problem in terms of streamline and isotherm contours, average Nusselt number and average temperature profiles. The computational results indicate that the heat transfer coeffcient is strongly influenced by the above governing parameters at the pure mixed convection regime.
Swimming with stiff legs at low Reynolds number.
Takagi, Daisuke
2015-08-01
Locomotion at low Reynolds number is not possible with cycles of reciprocal motion, an example being the oscillation of a single pair of rigid paddles or legs. Here, I demonstrate the possibility of swimming with two or more pairs of legs. They are assumed to oscillate collectively in a metachronal wave pattern in a minimal model based on slender-body theory for Stokes flow. The model predicts locomotion in the direction of the traveling wave, as commonly observed along the body of free-swimming crustaceans. The displacement of the body and the swimming efficiency depend on the number of legs, the amplitude, and the phase of oscillations. This study shows that paddling legs with distinct orientations and phases offers a simple mechanism for driving flow.
Structure and dynamics of low Reynolds number turbulent pipe flow.
Duggleby, Andrew; Ball, Kenneth S; Schwaenen, Markus
2009-02-13
Using large-scale numerical calculations, we explore the proper orthogonal decomposition of low Reynolds number turbulent pipe flow, using both the translational invariant (Fourier) method and the method of snapshots. Each method has benefits and drawbacks, making the 'best' choice dependent on the purpose of the analysis. Owing to its construction, the Fourier method includes all the flow fields that are translational invariants of the simulated flow fields. Thus, the Fourier method converges to an estimate of the dimension of the chaotic attractor in less total simulation time than the method of snapshots. The converse is that for a given simulation, the method of snapshots yields a basis set that is more optimal because it does not include all of the translational invariants that were not a part of the simulation. Using the Fourier method yields smooth structures with definable subclasses based upon Fourier wavenumber pairs, and results in a new dynamical systems insight into turbulent pipe flow. These subclasses include a set of modes that propagate with a nearly constant phase speed, act together as a wave packet and transfer energy from streamwise rolls. It is these interactions that are responsible for bursting events and Reynolds stress generation. These structures and dynamics are similar to those found in turbulent channel flow. A comparison of structures and dynamics in turbulent pipe and channel flows is reported to emphasize the similarities and differences.
NASA Technical Reports Server (NTRS)
Blair, Michael F.; Anderson, Olof L.
1989-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similiar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full-span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The primary objective of the program was to provide a benchmark-quality data base for the assessment of rotor passage heat transfer computational procedures. The experimental portion of the study was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer data were obtained using thermocouple and liquid-crystal techniques to measure temperature distributions on the thin, electrically-heated skin of the rotor passage model. Test data were obtained for various combinations of Reynolds number, rotor incidence angle and model surface roughness. The data are reported in the form of contour maps of Stanton number. These heat distribution maps revealed numerous local effects produced by the three-dimensional flows within the rotor passage. Of particular importance were regions of local enhancement produced on the airfoil suction surface by the main-passage and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis to the calculation of the three-dimensional viscous flow through ducts simulating the a gas turbine passage. These cases include a 90 deg turning duct, a gas turbine cascade simulating a stator passage, and a gas turbine rotor passage including Coriolis forces. The calculated results were evaluated using experimental data of the three-dimensional velocity fields, wall static pressures, and wall heat transfer on the suction surface of the turbine airfoil and on the end wall. Particular attention was paid to an
Experimental studies of the boundary layer on an airfoil at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Jansen, B. J., Jr.; Mueller, T. J.
1983-01-01
An experimental wind tunnel investigation was carried out to study the effect of laminar separation bubbles on a NACA 66(3)-018 airfoil for Reynolds numbers less than 4.0 x 10 to the 5th. Leading edge laminar separation bubbles formed for angles of attack of approximately 7 to 12 deg. To study the leading edge separation bubble more closely, hotwire anemometer measurements were made in the airfoil a Reynolds number of 8.0 x 10 to the 4th. Velocity and turbulence intensity profiles were obtained and boundary layer parameters were calculated. Frequency spectra were also calculated at key points in the airfoil boundary layer for this case. Correlation of the anemometry data with static pressure distributions, and flow visualization data provided insight into laminar separation bubble behavior at low Reynolds numbers.
Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Llorente, E.; Gorostidi, A.; Jacobs, M.; Timmer, W. A.; Munduate, X.; Pires, O.
2014-06-01
Wind tunnel tests have been performed to measure the two-dimensional aerodynamic characteristics of two different airfoil families at high Reynolds numbers (from 3 to 12 millions) in the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. Also, tests at a Reynolds number of 3 millions have been performed in the Low-Speed Low- Turbulence Wind Tunnel of Delft University, The Netherlands. The airfoils tested belong to two wind turbine dedicated families: the TU-Delft DU family and the ACCIONA Windpower AWA family that was designed in collaboration with CENER. Reynolds number effects on airfoil performance have been obtained in the range of 3 to 12 millions. The availability of data from two different wind tunnels has brought the opportunity to cross compare the results from the two facilities.
NASA Technical Reports Server (NTRS)
Ozturk, B.; Schobeiri, M. T.; Ashpis, David E.
2005-01-01
The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.
Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
1999-01-01
An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.
NASA Astrophysics Data System (ADS)
Shao, Xueming; Yu, Zhaosheng; Sun, Bo
2008-10-01
The inertial migration of spherical particles in a circular Poiseuille flow is numerically investigated for the tube Reynolds number up to 2200. The periodic boundary condition is imposed in the streamwise direction. The equilibrium positions, the migration velocity, and the angular velocity of a single particle in a tube cell are examined at different Reynolds numbers, particle-tube size ratios, and tube lengths. Inner equilibrium positions are observed as the Reynolds number exceeds a critical value, in qualitatively agreement with the previous experimental observations [J.-P. Matas, J. F. Morris, and E. Guazzelli, J. Fluid Mech. 515, 171 (2004)]. Our results indicate that the hydrodynamic interactions between the particles in different periodic cells have significant effects on the migration of the particles at the tube length being even as large as 6.7 particle diameters and they tend to stabilize the particles at the outer Segré-Silberberg equilibrium positions and to suppress the emergence of the inner equilibrium positions. A mirror-symmetric traveling-wave-like structure is observed when the particle Reynolds number is large enough. A pair of counter-rotating streamwise vortices exists at both upstream and downstream of the particle but with different rotating directions. The fluids in the half of the pipe without the particle flow more slowly and most fluids in the other half with the particle move faster with respect to the parabolic profile. The intensity of the structure is influenced by the local particle Reynolds number, the particle motion, and the tube length. In addition, the migration of multiple particles in a periodic tube cell is examined. We attribute the disparity in the critical particle Reynolds number for the occurrence of the inner particle annulus for the experiments and our simulations to the effect of the tube length or the periodic boundary condition in our numerical model.
Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Napolillo, Zachary G.
The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly
Resistance of plates and pipes at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Schiller, L; Hermann, R
1931-01-01
It was learned that the law of resistance for high R values does not follow the simple powers, and that the powers, which can be obtained approximately for the velocity distribution, gradually change. Since, moreover, very important investigations have recently been made on the resistance of plates at very high R values, it seemed of interest to apply the above line of reasoning to the new general law of resistance. For this purpose, the resistance and velocity distribution along the plate must always be equal to the values of the pipe flow at the corresponding Reynolds number. We made two kinds of calculations, of which the one given here is the simpler and more practical and also agrees better with the experimental results.
Hydrodynamic Interaction between Two Swimmers at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Pooley, C. M.; Alexander, G. P.; Yeomans, J. M.
2007-11-01
We investigate the hydrodynamic interactions between micro-organisms swimming at low Reynolds number. By considering simple model swimmers, and combining analytic and numerical approaches, we investigate the time-averaged flow field around a swimmer. At short distances the swimmer behaves like a pump. At large distances the velocity field depends on whether the swimming stroke is invariant under a combined time-reversal and parity transformation. We then consider two swimmers and find that the interaction between them consists of two parts: a passive term, independent of the motion of the second swimmer, and an active term resulting from the simultaneous swimming action of both swimmers. The swimmer-swimmer interaction is a complicated function of their relative displacement, orientation, and phase, leading to motion that can be attractive, repulsive, or oscillatory.
Low Reynolds number Couette flow facility for drag measurements.
Johnson, Tyler J; Lang, Amy W; Wheelus, Jennifer N; Westcott, Matthew
2010-09-01
For this study a new low Reynolds number Couette facility was constructed to investigate surface drag. In this facility, mineral oil was used as the working fluid to increase the shear stress across the surface of the experimental models. A mounted conveyor inside a tank creates a flow above which an experimental model of a flat plate was suspended. The experimental plate was attached to linear bearings on a slide system that connects to a force gauge used to measure the drag. Within the gap between the model and moving belt a Couette flow with a linear velocity profile was created. Digital particle image velocimetry was used to confirm the velocity profile. The drag measurements agreed within 5% of the theoretically predicted Couette flow value. PMID:20887004
Microelectrokinetic turbulence in microfluidics at low Reynolds number.
Wang, Guiren; Yang, Fang; Zhao, Wei
2016-01-01
There is commonly no turbulence in microfluidics, and the flows are believed to be either laminar or chaotic, since Reynolds number (Re) in microflows is usually on the order of unity or lower. However, we recently demonstrated that it is possible to achieve turbulence with low Re (based on the measured flow velocity and the width of the channel entrance) when a pressure-driven flow is electrokinetically forced in a quasi T-microchannel. To be able to measure high frequency velocity fluctuations in microchannels, a velocimeter with submicrometer spatial resolution and microsecond temporal resolution, called a laser-induced fluorescence photobleaching anemometer, is developed. Here we characterize the microelectrokinetic turbulence and observe some typical and important features of high Re flows, such as Kolmogorov -5/3 spectrum of velocity fluctuation, which usually can be realized only at very high Re in macroturbulent flows.
There can be turbulence in microfluidics at low Reynolds number.
Wang, G R; Yang, Fang; Zhao, Wei
2014-04-21
Turbulence is commonly viewed as a type of macroflow, where the Reynolds number (Re) has to be sufficiently high. In microfluidics, when Re is below or on the order of 1 and fast mixing is required, so far only chaotic flow has been reported to enhance mixing based on previous publications since turbulence is believed not to be possible to generate in such a low Re microflow. There is even a lack of velocimeter that can measure turbulence in microchannels. In this work, we report a direct observation of the existence of turbulence in microfluidics with Re on the order of 1 in a pressure driven flow under electrokinetic forcing using a novel velocimeter having ultrahigh spatiotemporal resolution. The work could provide a new method to control flow and transport phenomena in lab-on-a-chip and a new perspective on turbulence.
Feedback control of flow vorticity at low Reynolds numbers.
Zeitz, Maria; Gurevich, Pavel; Stark, Holger
2015-03-01
Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.
Microelectrokinetic turbulence in microfluidics at low Reynolds number.
Wang, Guiren; Yang, Fang; Zhao, Wei
2016-01-01
There is commonly no turbulence in microfluidics, and the flows are believed to be either laminar or chaotic, since Reynolds number (Re) in microflows is usually on the order of unity or lower. However, we recently demonstrated that it is possible to achieve turbulence with low Re (based on the measured flow velocity and the width of the channel entrance) when a pressure-driven flow is electrokinetically forced in a quasi T-microchannel. To be able to measure high frequency velocity fluctuations in microchannels, a velocimeter with submicrometer spatial resolution and microsecond temporal resolution, called a laser-induced fluorescence photobleaching anemometer, is developed. Here we characterize the microelectrokinetic turbulence and observe some typical and important features of high Re flows, such as Kolmogorov -5/3 spectrum of velocity fluctuation, which usually can be realized only at very high Re in macroturbulent flows. PMID:26871154
Low Reynolds number Couette flow facility for drag measurements.
Johnson, Tyler J; Lang, Amy W; Wheelus, Jennifer N; Westcott, Matthew
2010-09-01
For this study a new low Reynolds number Couette facility was constructed to investigate surface drag. In this facility, mineral oil was used as the working fluid to increase the shear stress across the surface of the experimental models. A mounted conveyor inside a tank creates a flow above which an experimental model of a flat plate was suspended. The experimental plate was attached to linear bearings on a slide system that connects to a force gauge used to measure the drag. Within the gap between the model and moving belt a Couette flow with a linear velocity profile was created. Digital particle image velocimetry was used to confirm the velocity profile. The drag measurements agreed within 5% of the theoretically predicted Couette flow value.
Microelectrokinetic turbulence in microfluidics at low Reynolds number
NASA Astrophysics Data System (ADS)
Wang, Guiren; Yang, Fang; Zhao, Wei
2016-01-01
There is commonly no turbulence in microfluidics, and the flows are believed to be either laminar or chaotic, since Reynolds number (Re) in microflows is usually on the order of unity or lower. However, we recently demonstrated that it is possible to achieve turbulence with low Re (based on the measured flow velocity and the width of the channel entrance) when a pressure-driven flow is electrokinetically forced in a quasi T-microchannel. To be able to measure high frequency velocity fluctuations in microchannels, a velocimeter with submicrometer spatial resolution and microsecond temporal resolution, called a laser-induced fluorescence photobleaching anemometer, is developed. Here we characterize the microelectrokinetic turbulence and observe some typical and important features of high Re flows, such as Kolmogorov -5 /3 spectrum of velocity fluctuation, which usually can be realized only at very high Re in macroturbulent flows.
Magnetic propulsion of robotic sperms at low-Reynolds number
NASA Astrophysics Data System (ADS)
Khalil, Islam S. M.; Fatih Tabak, Ahmet; Klingner, Anke; Sitti, Metin
2016-07-01
We investigate the microswimming behaviour of robotic sperms in viscous fluids. These robotic sperms are fabricated from polystyrene dissolved in dimethyl formamide and iron-oxide nanoparticles. This composition allows the nanoparticles to be concentrated within the bead of the robotic sperm and provide magnetic dipole, whereas the flexibility of the ultra-thin tail enables flagellated locomotion using magnetic fields in millitesla range. We show that these robotic sperms have similar morphology and swimming behaviour to those of sperm cells. Moreover, we show experimentally that our robotic sperms swim controllably at an average speed of approximately one body length per second (around 125 μm s-1), and they are relatively faster than the microswimmers that depend on planar wave propulsion in low-Reynolds number fluids.
Reynolds number influence on statistical behaviors of turbulence in a circular free jet
NASA Astrophysics Data System (ADS)
Mi, J.; Xu, M.; Zhou, T.
2013-07-01
The present paper examines the effect of Reynolds number on turbulence properties in the transition region of a circular jet issuing from a smoothly contracting nozzle. Hot-wire measurements were performed for this investigation through varying the jet-exit Reynolds number Red (≡ Ujd/ν, where Uj, d, and ν are the jet-exit mean velocity, nozzle diameter, and kinematic viscosity) approximately from Red ≈ 4 × 103 to Red ≈ 2 × 104. Results reveal that the rates of the mean flow decay and spread vary with Reynolds number for Red < 104 and tend to become Reynolds-number independent at Red ≥ 104. Even more importantly, the small-scale turbulence properties, e.g., the mean rate of dissipation of kinetic energy (ɛ), the Kolmogorov and Taylor microscales, are found to vary in different forms over the Red ranges of Red > 104 and Red < 104. Namely, the critical Reynolds number appears to occur at Red,cr ≈ 104 across which the jet turbulence behaves distinctly. Two turbulence regimes are therefore identified: (i) developing or partially developed turbulence at Red < Red,cr and (ii) fully developed turbulence at Red ≥ Red,cr. It is suggested that the energy dissipation rate (DR) can be expressed as \\varepsilon ˜ ν U_c^2 /R^2 in regime (i) and \\varepsilon ˜ U_c^3 /R in regime (ii), where Uc and R are the centerline (or maximum) mean velocity and half-radius at which the mean velocity is 0.5Uc. In addition, the critical Reynolds number appears to vary from flow to flow.
NASA Technical Reports Server (NTRS)
Carlson, John R.
1996-01-01
The ability of the three-dimensional Navier-Stokes method, PAB3D, to simulate the effect of Reynolds number variation using non-linear explicit algebraic Reynolds stress turbulence modeling was assessed. Subsonic flat plate boundary-layer flow parameters such as normalized velocity distributions, local and average skin friction, and shape factor were compared with DNS calculations and classical theory at various local Reynolds numbers up to 180 million. Additionally, surface pressure coefficient distributions and integrated drag predictions on an axisymmetric nozzle afterbody were compared with experimental data from 10 to 130 million Reynolds number. The high Reynolds data was obtained from the NASA Langley 0.3m Transonic Cryogenic Tunnel. There was generally good agreement of surface static pressure coefficients between the CFD and measurement. The change in pressure coefficient distributions with varying Reynolds number was similar to the experimental data trends, though slightly over-predicting the effect. The computational sensitivity of viscous modeling and turbulence modeling are shown. Integrated afterbody pressure drag was typically slightly lower than the experimental data. The change in afterbody pressure drag with Reynolds number was small both experimentally and computationally, even though the shape of the distribution was somewhat modified with Reynolds number.
NASA Astrophysics Data System (ADS)
Muraoka, Masahiro; Yatagawa, Yuta; Kumagai, Yuki
2016-07-01
The coalescence of droplets in flow through a tube at low Reynolds number is potentially useful for different purposes including the handling of fluids, control of chemical reaction, and in drug delivery systems. The phenomenon is also the basis for analyzing the flow of multiphase fluids through porous media such as in enhanced oil recovery and the breaking of emulsions in porous coalescers. With regard to examples of studies on the creeping motion of droplets in a flow through a tube, Hetsroni G. et al.[1] theoretically examined the motion of a spherical droplet or bubble with small d/D, where d is the undeformed diameter of the droplet or bubble, and D is the tube diameter. Higdon J.J.L. and Muldowney G.P. [2] numerically obtained the resistance functions for a spherical particle, droplet, and bubble. Olbricht, W.L. and Kung D.M.[3] and Aul R.W. and Olbricht, W.L.[4] mainly investigated the coalescence time of droplets. Aul R.W. and Olbricht W.L. proposed a semi-theoretical formula of the coalescence time. Based on the formula by them, Muraoka, M. et al.[5] proposed other semi-theoretical formulas of the coalescence time in terms of the resistance experienced by the liquid droplet in creeping flow through a tube. The latter formulas take the eccentricity of the following droplets into consideration. In the present study, a glass tube of inner diameter 2.0mm, outer diameter 7.0mm, and length 1500 mm was used as the test tube. Silicon oil with a kinematic viscosity of 3000cSt was employed as the test fluid of the droplet. A mixture of glycerol and pure water was used as the surrounding fluid of the creeping flow through a tube. A large volumetric syringe pump was used to maintain steady flow through the tube at a designated average velocity. The test tube was immersed in temperature-controlled water contained in a tank to maintain constant temperature of the system. The droplets were injected into the test tube. The behaviors of the droplets were monitored by a
Low-Reynolds number compressible flow around a triangular airfoil
NASA Astrophysics Data System (ADS)
Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke
2013-11-01
We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
Large scale dynamics in a turbulent compressible rotor/stator cavity flow at high Reynolds number
NASA Astrophysics Data System (ADS)
Lachize, C.; Verhille, G.; Le Gal, P.
2016-08-01
This paper reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity of aspect ratio close to unity at high Reynolds number. The experiments have been driven by changing both the rotation rate of the disk and the thermodynamical properties of the working fluid. This fluid is sulfur hexafluoride (SF6) whose physical properties are adjusted by imposing the operating temperature and the absolute pressure in a pressurized vessel, especially near the critical point of SF6 reached for T c = 45.58 ◦C, P c = 37.55 bar. This original set-up allows to obtain Reynolds numbers as high as 2 × 107 together with compressibility effects as the Mach number can reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade as observed in rotating turbulence and in accordance with Kraichnan conjecture for 2D-turbulence. The spectra are however dominated by low-frequency peaks, which are subharmonics of the rotating disk frequency, involving large scale structures at small azimuthal wavenumbers. These modes appear for a Reynolds number around 105 and experience a transition at a critical Reynolds number Re c ≈ 106. Moreover they show an unexpected nonlinear behavior that we understand with the help of a low dimensional amplitude equations.
Negative Magnus lift on a rotating sphere at around the critical Reynolds number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki
2012-01-01
Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.
Graham, J Pietarila; Mininni, P D; Pouquet, A
2011-07-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
Flow characteristics over NACA4412 airfoil at low Reynolds number
NASA Astrophysics Data System (ADS)
Genç, Mustafa Serdar; Koca, Kemal; Hakan Açıkel, Halil; Özkan, Gökhan; Sadık Kırış, Mehmet; Yıldız, Rahime
2016-03-01
In this study, the flow phenomena over NACA4412 were experimentally observed at various angle of attack and Reynolds number of 25000, 50000 and 75000, respectively. NACA4412 airfoil was manufactured at 3D printer and each tips of the wing were closed by using plexiglas to obtain two-dimensional airfoil. The experiments were conducted at low speed wind tunnel. The force measurement and hot-wire experiments were conducted to obtain data so that the flow phenomenon at the both top and bottom of the airfoil such as the flow separation and vortex shedding were observed. Also, smoke-wire experiment was carried out to visualize the surface flow pattern. After obtaining graphics from both force measurement experiment and hot-wire experiment compared with smoke wire experiment, it was noticed that there is a good coherence among the experiments. It was concluded that as Re number increased, the stall angle increased. And the separation bubble moved towards leading edge over the airfoil as the angle of attack increased.
Onset of turbulence in accelerated high-Reynolds-number flow.
Zhou, Ye; Robey, Harry F; Buckingham, Alfred C
2003-05-01
A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types
Mechanisms Of Pressure Distributions Within Laminar Separation Bubble At Different Reynolds Numbers
NASA Astrophysics Data System (ADS)
Lee, Donghwi; Kawai, Soshi; Nonomura, Taku; Oyama, Akira; Fujii, Kozo
2014-11-01
Large-eddy simulation around 5 % thickness flat plate at Re = 5 , 000 , 6 , 100 , 11 , 000 and 20 , 000 are performed and the physical mechanisms of the pressure distributions (Cp) in laminar separation bubbles are analyzed. Depending on the Reynolds number, a gradual pressure recovery and plateau pressure distribution are observed as experiments by Anyoji et al. [AIAA paper 2011-0852]. The causes of the pressure distributions are quantitatively shown by deriving the pressure gradient (momentum budget) equation from the steady momentum equation. From the results, we identify that the viscous diffusion term near the surface has a major contribution to the pressure gradients, and a different growth of the separated shear layer relying on the Reynolds numbers affects the viscous stress near the surface. The gradual pressure recovery at the lower Reynolds numbers is caused by the progressive development of separated shear layer due to the viscous stress which makes a non-negligible viscous stress. On the other hand, a thin laminar separated shear layer is created at the higher Reynolds numbers because of the relatively small viscous diffusion effects, which results in a negligible shear stress distribution. It makes dp / dx ~ 0 and the plateau pressure distribution is generated. Asahi Glass Scholarship.
Flow control at low Reynolds numbers using periodic airfoil morphing
NASA Astrophysics Data System (ADS)
Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration
2014-11-01
The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.
Local structure of turbulence in flows with large Reynolds numbers.
Praskovsky, A. A.
1991-08-01
Results are reported on an experimental investigation of the characteristics of fine-scale pulsations of the velocity in several shear flows (mixing layer, boundary layer, planar, axially symmetric, and spatial wakes, and in the return channel of a large wind tunnel) in an interval of definite Reynolds numbers R(lambda) [approximately-equal-to] 70-3000 with respect to the Taylor microscale lambda. The characteristic scales of most of the studied flows are quite large, and the integral scale of the turbulence reaches 5 m. The apparatus had a high resolving power-the ratio of the hot-wire length to the Kolmogorov scale was varied in the range 0.8-2.5. It is shown that the Kolmogorov constant C in the "two thirds" law and the constants C(epsilon) and &mgr; in the energy-dissipation correlation function are not universal and have a systematic dependence on the coefficient of external intermittency. The same constants determined in a completely turbulent fluid are universal within the errors of the measurements.
Aerodynamics of biplane and tandem wings at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Jones, R.; Cleaver, D. J.; Gursul, I.
2015-06-01
Experiments were performed to investigate the aerodynamic characteristics of two-wing configurations at a low Reynolds number of 100,000. The wing models were rectangular flat plates with a semi-aspect ratio of two. The stagger between the wings was varied from ∆ X/c = 0 to 1.5; the gap was varied from ∆ Y/c = 0 to 2 and ∆ Y/c = -1.5 to 1.5 for biplane and tandem configurations, respectively, with the decalage angle fixed at 0°. Lift, drag, aerodynamic efficiency and power efficiency ratios show that for small incidence angles, performance compared with the single wing is degraded. However, for single-wing post-stall angles of attack, lift performance improves and stall is delayed significantly for many configurations with nonzero gap, i.e., ∆ Y/c ≥ 0. For a fixed angle of attack, there are optimal gaps between the wings for which total lift becomes maximum. Particle image velocimetry measurements show that performance improvement relies heavily on the strength of the inter-wing flow and the interaction of the separated shear layers from the leading edge and trailing edge of the leading wing with the trailing wing. Unsteady forces are found to intensify for certain two-wing configurations. A switching between the stalled and unstalled states for the trailing wing as well as a switching between the merged and distinct wakes is shown to have high flow unsteadiness and large lift fluctuations.
A self-propelled biohybrid swimmer at low Reynolds number.
Williams, Brian J; Anand, Sandeep V; Rajagopalan, Jagannathan; Saif, M Taher A
2014-01-01
Many microorganisms, including spermatozoa and forms of bacteria, oscillate or twist a hair-like flagella to swim. At this small scale, where locomotion is challenged by large viscous drag, organisms must generate time-irreversible deformations of their flagella to produce thrust. To date, there is no demonstration of a self propelled, synthetic flagellar swimmer operating at low Reynolds number. Here we report a microscale, biohybrid swimmer enabled by a unique fabrication process and a supporting slender-body hydrodynamics model. The swimmer consists of a polydimethylsiloxane filament with a short, rigid head and a long, slender tail on which cardiomyocytes are selectively cultured. The cardiomyocytes contract and deform the filament to propel the swimmer at 5-10 μm s(-1), consistent with model predictions. We then demonstrate a two-tailed swimmer swimming at 81 μm s(-1). This small-scale, elementary biohybrid swimmer can serve as a platform for more complex biological machines.
Swimming by reciprocal motion at low Reynolds number.
Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G; Morozov, Konstantin I; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M; Fischer, Peer
2014-11-04
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric 'micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.
Swimming by reciprocal motion at low Reynolds number
Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G.; Morozov, Konstantin I.; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M.; Fischer, Peer
2014-01-01
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids. PMID:25369018
Efficient simulation of detached flows at high Reynolds number
NASA Astrophysics Data System (ADS)
Vega, Jose M.; Asensio, Victor; Herrero, Raul; Varas, Fernando
2014-11-01
A method is presented for the computationally efficient simulation of quasi-periodic detached flows in multi-parameter problems at very large Reynolds numbers, keeping in mind a variety of applications, including helicopter flight simulators, control and certification of unmanned aerial vehicles, control of wind turbines, conceptual design in aeronautics, and civil aerodynamics. In many of these applications, the large scale flows (ignoring the smaller turbulent scales) are at most quasi-periodic, namely the Fourier transform exhibits a finite set of concentrated peaks resulting from the nonlinear passive interaction of periodic wakes. The method consists in an offline preprocess and the online operation. In the preprocess, a standard CFD solver (such as URANS) is used in combination with several ingredients such as an iterative combination proper orthogonal decomposition and fast Fourier transform. The online operation is made with a combination of high order singular value decomposition and interpolation. The performance of the method is tested considering the ow over a fairly complex urban topography, for various free stream intensities and orientations, seeking real time online simulations.
Propulsion at low Reynolds number via beam extrusion
NASA Astrophysics Data System (ADS)
Gosselin, Frederick; Neetzow, Paul
2014-03-01
We present experimental and theoretical results on the extrusion of a slender beam in a viscous fluid. We are particularly interested in the force necessary to extrude the beam as it buckles with large amplitude due to viscous friction. The problem is inspired by the propulsion of Paramecium via trichocyst extrusion. Self-propulsion in micro-organisms is mostly achieved through the beating of flagella or cilia. However, to avoid a severe aggression, unicellular Paramecium has been observed to extrude trichocysts in the direction of the aggression to burst away. These trichocysts are rod-like organelles which, upon activation, grow to about 40 μm in length in 3 milliseconds before detaching from the animal. The drag force created by these extruding rods pushing against the viscous fluid generates thrust in the opposite direction. We developed an experimental setup to measure the force required to push a steel piano wire into an aquarium filled with corn syrup. This setup offers a near-zero Reynolds number, and allows studying deployments for a range of constant extrusion speeds. The experimental results are reproduced with a numerical model coupling a large amplitude Euler-Bernoulli beam theory with a fluid load model proportional to the local beam velocity. This study was funded in part by the The Natural Sciences and Engineering Research Council of Canada.
Unsteady flow over flexible wings at different low Reynolds numbers
NASA Astrophysics Data System (ADS)
Genç, Mustafa Serdar; Özden, Mustafa; Hakan Açikel, Halil; Demir, Hacımurat; Isabekov, Iliasbek
2016-03-01
In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1) was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000). Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC) was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.
NASA Technical Reports Server (NTRS)
Tracy, M. B.; Plentovich, E. B.; Chu, Julio
1992-01-01
An experiment was performed in the Langley 0.3 meter Transonic Cryogenic Tunnel to study the internal acoustic field generated by rectangular cavities in transonic and subsonic flows and to determine the effect of Reynolds number and angle of yaw on the field. The cavity was 11.25 in. long and 2.50 in. wide. The cavity depth was varied to obtain length-to-height (l/h) ratios of 4.40, 6.70, 12.67, and 20.00. Data were obtained for a free stream Mach number range from 0.20 to 0.90, a Reynolds number range from 2 x 10(exp 6) to 100 x 10(exp 6) per foot with a nearly constant boundary layer thickness, and for two angles of yaw of 0 and 15 degs. Results show that Reynolds number has little effect on the acoustic field in rectangular cavities at angle of yaw of 0 deg. Cavities with l/h = 4.40 and 6.70 generated tones at transonic speeds, whereas those with l/h = 20.00 did not. This trend agrees with data obtained previously at supersonic speeds. As Mach number decreased, the amplitude, and bandwidth of the tones changed. No tones appeared for Mach number = 0.20. For a cavity with l/h = 12.67, tones appeared at Mach number = 0.60, indicating a possible change in flow field type. Changes in acoustic spectra with angle of yaw varied with Reynolds number, Mach number, l/h ratios, and acoustic mode number.
NASA Technical Reports Server (NTRS)
Fleming, J. L.; Simpson, R. L.
1997-01-01
Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.
Initial Results of Reynolds Number Testing at LaRC's NTF Using the 2.2% Reference H Model
NASA Technical Reports Server (NTRS)
Owens, Lewis R., Jr. (Editor); Wahls, Richard A. (Editor); Hamner, Marvine
1999-01-01
To develop full scale flight performance predictions an understanding of Reynolds number effects on HSCT-class configurations is essential. A wind tunnel database utilizing a 2.2% scale Reference H model in NASA Langley Research Centers National Transonic Facility is being developed to assess these Reynolds number effects. In developing this database temperature and aeroelastic corrections to the wind tunnel data have been identified and are being analyzed. Once final corrections have been developed and applied, then pure Reynolds number effects can be determined. In addition, final corrections will yield the data required for CFD validation at q = 0. Presented in this report are the results of seven tests involving the wing/body configuration. This includes summaries of data acquired in these tests, uncorrected Reynolds number effects, and temperature and aeroelastic corrections. The data presented herein illustrates the successes achieved to date as well as the challenges that will be faced in obtaining full scale flight performance predictions.
High Reynolds number analysis of an axisymmetric afterbody with flow separation
NASA Technical Reports Server (NTRS)
Carlson, John R.; Reubush, David E.
1996-01-01
The ability of a three-dimensional Navier-Stokes method, PAB3D, to predict nozzle afterbody flow at high Reynolds number was assessed. Predicted surface pressure coefficient distributions and integrated afterbody drag are compared with experimental data obtained from the NASA-Langley 0.3 m Transonic Cryogenic Tunnel. Predicted afterbody surface pressures matched experimental data fairly closely. The change in the pressure coefficient distribution with Reynolds number was slightly over-predicted. Integrated afterbody drag was typically high compared to the experimental data. The change in afterbody pressure drag with Reynolds number was fairly small. The predicted point of flow separation on the nozzle was slightly downstream of that observed from oilflow data at low Reynolds numbers and had a very slight Reynolds number dependence, moving slightly further downstream as Reynolds number increased.
Confined swirling jet impingement on a flat plate at moderate Reynolds numbers
NASA Astrophysics Data System (ADS)
Herrada, M. A.; Del Pino, C.; Ortega-Casanova, J.
2009-01-01
The behavior of a swirling jet issuing from a pipe and impinging on a flat smooth wall is analyzed numerically by means of axisymmetric simulations. The axial velocity profile at the pipe outlet is assumed flat while the azimuthal velocity profile is a Burger's vortex characterized by two non-dimensional parameters; a swirl number S and a vortex core length δ. We concentrate on the effects of these two parameters on the mechanical characteristics of the flow at moderate Reynolds numbers. Our results for S =0 are in agreement with Phares et al. [J. Fluid Mech. 418, 351 (2000)], who provide a theoretical determination of the wall shear stress under nonswirling impinging jets at high Reynolds numbers. In addition, we show that the swirl number has an important effect on the jet impact process. For a fixed nozzle-to-plate separation, we found that depending on the value of δ and the Reynolds number Re, there is a critical swirl number, S =S∗(δ ,Re), above which recirculating vortex breakdown bubbles are observed in the near axis region. For S >S∗, the presence of these bubbles enhances the transition from a steady to a periodic regime. For S
Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment
NASA Astrophysics Data System (ADS)
McArthur, John
the drag increase is really caused by the formation of a laminar separation bubble. The results clearly indicate that the reverse is true, and that the subsequent drag decrease is caused by the laminar separation bubble. Part III. The leading edge vortex. Four wings with different sweep angles were studied at Reynolds number 5x104: sweep angles of 0, 20, 40, and 60 degrees. The wings had a simple cambered plate airfoil similar to the cambered airfoil of part I above. Each wing was built to have the same aspect ratio, wing area, and streamwise airfoil shape. Previous studies on bird wings speculate that simply sweeping the wings can cause a leading edge vortex to form, which could cause substantial improvements in performance. However, these studies were not well controlled, and were conducted from a biological perspective. Qualitative and quantitative flow field measurements were combined with force measurements to conduct a well controlled engineering experiment on the formation and effect of a leading edge vortex on simple swept wings. A stable vortex was found to form over the 60 degree swept wing at one particular angle of attack, but it was not similar to the traditional notion of a leading edge vortex. The vortex has a small radius, and extends over little of the span. Force measurements indicate that the vortex has no significant impact on the forces measured. Thus, simply sweeping a wing is not sufficient to form a significant leading edge vortex, and other effects must be considered.
NASA Astrophysics Data System (ADS)
Lee, Donghwi; Kawai, Soshi; Nonomura, Taku; Anyoji, Masayuki; Aono, Hikaru; Oyama, Akira; Asai, Keisuke; Fujii, Kozo
2015-02-01
Mechanisms behind the pressure distribution and skin friction within a laminar separation bubble (LSB) are investigated by large-eddy simulations around a 5% thickness blunt flat plate at the chord length based Reynolds number 5.0 × 103, 6.1 × 103, 1.1 × 104, and 2.0 × 104. The characteristics inside the LSB change with the Reynolds number; a steady laminar separation bubble (LSB_S) at the Reynolds number 5.0 × 103 and 6.1 × 103, and a steady-fluctuating laminar separation bubble (LSB_SF) at the Reynolds number 1.1 × 104, and 2.0 × 104. Different characteristics of pressure and skin friction distributions are observed by increasing the Reynolds number, such that a gradual monotonous pressure recovery in the LSB_S and a plateau pressure distribution followed by a rapid pressure recovery region in the LSB_SF. The reasons behind the different characteristics of pressure distributions at different Reynolds numbers are discussed by deriving the Reynolds averaged pressure gradient equation. It is confirmed that the viscous stress distributions near the surface play an important role in determining the formation of different pressure distributions. Depending on the Reynolds numbers, the viscous stress distributions near the surface are affected by the development of a separated laminar shear layer or the Reynolds shear stress. In addition, we show that the same analyses can be applied to the flows around a NACA0012 airfoil.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
Geometry and Reynolds-Number Scaling on an Iced Business-Jet Wing
NASA Technical Reports Server (NTRS)
Lee, Sam; Ratvasky, Thomas P.; Thacker, Michael; Barnhart, Billy P.
2005-01-01
A study was conducted to develop a method to scale the effect of ice accretion on a full-scale business jet wing model to a 1/12-scale model at greatly reduced Reynolds number. Full-scale, 5/12-scale, and 1/12-scale models of identical airfoil section were used in this study. Three types of ice accretion were studied: 22.5-minute ice protection system failure shape, 2-minute initial ice roughness, and a runback shape that forms downstream of a thermal anti-ice system. The results showed that the 22.5-minute failure shape could be scaled from full-scale to 1/12-scale through simple geometric scaling. The 2-minute roughness shape could be scaled by choosing an appropriate grit size. The runback ice shape exhibited greater Reynolds number effects and could not be scaled by simple geometric scaling of the ice shape.
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM
Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam
2015-01-01
In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics. PMID:26267247
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.
Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam
2015-01-01
In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics. PMID:26267247
Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers
NASA Astrophysics Data System (ADS)
Norman, A. K.; McKeon, B. J.
2011-11-01
The flow over a smooth sphere is examined in the Reynolds number range of 5.0 × 104 < Re < 5.0 × 105 via measurements of the fluctuating forces and particle image velocimetry measurements in a planar cut of the velocity field. Comprehensive studies of the statistics and spectra of the forces are presented for a range of subcritical and supercritical Reynolds numbers. While the subcritical lateral force spectra are dominated by activity corresponding to the large-scale vortex shedding frequency at a Strouhal number of approximately 0.18, there is no such peak apparent in the supercritical spectra, although resolution effects may become important in this region. Nor does the large-scale vortex shedding appear to have a significant effect on the drag force fluctuations at either sub- or super-critical Reynolds numbers. A simple double spring model is shown to capture the main features of the lateral force spectra. The low-frequency force fluctuations observed in earlier computational studies are shown to have important implications for statistical convergence, and in particular, the apparent mean side force observed in earlier studies. At least one thousand dimensionless time units are required for reasonable estimates of the second and higher moments below the critical Reynolds number and even more for supercritical flow, stringent conditions for computational studies. Lastly, investigation of the relationship between the motion of the instantaneous wake shape, defined via the local position where the streamwise velocity is equal to half the freestream value, and the in-plane lateral force for subcritical flow reveals a significant negative correlation throughout the near wake, which is shown to be related to a structure inferred to arise from the large-scale vortex shedding convecting downstream at 61% of the freestream velocity. In addition to its utility in understanding basic sphere flow, the apparatus is also a testbed that will be used in future studies
Unsteady heat transfer from a sphere at low Reynolds and Strouhal numbers
NASA Technical Reports Server (NTRS)
Bayazitoglu, Y.; Anderson, C. F.; Cohen, R. D.; Shampine, R. W.
1993-01-01
An axisymmetric formulation is employed to examine convective heat transfer from a sphere in a traveling sound wave. Time-dependent thermal displacement and induced transient flows are found to increase the minimum value for transient heat transfer significantly above the pure conduction limit. Transient effects are found to cause significant differences when compared to a quasi-steady analysis in the determination of transient convection. General trends are found for a range of low Strouhal and Reynolds numbers.
Theory of viscous transonic flow over airfoils at high Reynolds number
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
NASA Astrophysics Data System (ADS)
Barnes, Caleb J.; Visbal, Miguel R.
2013-11-01
This paper explores the flow structure of a corrugated airfoil using a high-fidelity implicit large eddy simulation approach. The first three-dimensional simulations for a corrugated wing section are presented considering a range of Reynolds numbers of Rec = 5 × 103 to 5.8 × 104 bridging the gap left by previous numerical and experimental studies. Several important effects are shown to result from the corrugations in the leading-edge region. First, interaction between the detached shear layer and the first corrugation peak promotes recirculation upstream and enhances transition to turbulence due to flow instabilities. Thus, early transitional flow develops on the corrugated wing which helps to delay stall even at Reynolds numbers as low as Rec = 1 × 104. Transition is shown to occur as early as Rec = 7.5 × 103 and quickly advances toward the leading-edge as Reynolds number is increased. Modification of the first corrugation peak height produces significantly reduced separation and improved aerodynamic forces demonstrating the sensitivity of flow behavior to leading-edge geometry. Second, the unusual orientation of the corrugated surface and strong suction resulting from rapidly turning fluid over the separated region upstream of the first corrugation produces a new effect which serves to reduce drag. This effect was amplified through the enhanced interaction produced by a modified geometry. Corrugations were found to be most advantageous in the leading-edge region and could be optimized to properly take advantage of the flow field under different operating conditions.
An experimental investigation of the low Reynolds number performance of the Lissaman 7769 airfoil
NASA Technical Reports Server (NTRS)
Conigliaro, P. E.
1983-01-01
A Lissaman 7769 airfoil, used on the Gossamer Condor and Gossamer Albatross human-powered aircraft, was tested in a low turbulence subsonic wind tunnel. Lift and drag data were collected at chord Reynolds numbers of 100,000, 150,000, 200,000, 250,000, and 300,000; at angles of attack from -10 to +20 deg by using an external strain gage force balance. Lift curves, drag curves, and drag polars were generated from both uncorrected data and data corrected for wind tunnel blockage effects. A flow visualization study was performed to correlate with the force data. The results of the investigation have shown that the airfoil exhibits a significant degradation in performance for chord Reynolds numbers below 150,000.
N-231 High Reynolds Number Channel I is a blowdown Facility that utilizes interchangeable test
NASA Technical Reports Server (NTRS)
1980-01-01
N-231 High Reynolds Number Channel I is a blowdown Facility that utilizes interchangeable test sections and nozzles. The facility provides experimental support for the fluid mechanics research, including experimental verification of aerodynamic computer codes and boundary-layer and airfoil studies that require high Reynolds number simulation. (Tunnel 1)
High-Reynolds Number Circulation Control Testing in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.
2012-01-01
A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.
Control of wing-tip vortex using winglets at low Reynolds number
NASA Astrophysics Data System (ADS)
Cho, Seunghyun; Choi, Haecheon
2014-11-01
Winglets are considered as one of the effective devices for reducing induced drag, and thus many studies have been conducted, but mainly at high Reynolds numbers (Re ~106 ~107) for commercial airplanes. However, small-size unmanned air vehicles (UAV), operating at low Reynolds numbers (Re < 105) , become an important transportation system for different purposes. Therefore, in the present study, we experimentally investigate the effect of winglets on the aerodynamic performance of an UAV by varying the cant angle. The WASP UAV model is used and the Reynolds numbers considered are 110,000 ~ 140,000 based on the free stream velocity and mean chord length of the WASP wing. The lift and drag forces on UAV are measured, and PIV measurements are conducted at several cross-flow planes for a few different angles of attack (α) . At high angles of attack (7° ~13°) , the winglets with the cant angle of 70° increase the aerodynamic performance, whereas at low angles of attack (2° ~6°) , the wing-tip extension (cant angle of 0°) shows better performances. The velocity fields measured from PIV indicate that, with the winglet, the wing-tip vortex moves away from the wing surface at α =12° , and the downwash motion in the wake behind the trailing edge is decreased, reducing the magnitude of the induced drag. A concept of changing the cant angle during flight is also suggested at this talk. Supported by 2011-0028032.
Turbulent Boundary Layer Measurements in the Princeton/ONR High Reynolds Number Test Facility
NASA Astrophysics Data System (ADS)
Allen, James; Smits, Alexander
2003-11-01
Zero pressure gradient, high Reynolds number boundary layers are studied in the Princeton/ONR High Reynolds Number Test Facility (HRTF). The HRTF uses air at pressures up to 2500Ψ as the working fluid. Mean flow velocity profiles and turbulence measurements have been obtained at Reynolds numbers based on momentum thickness from 5× 10^3 up to 10^5. The log region at this Reynolds number is approximately two decades long in terms of y^+. The maximum y^+ achieved before departure from the log curve is of order y^+≃ 10,000. Results will be presented on the form of the best fit for the log law over this large Reynolds number range.
Wake flow pattern modified by small control cylinders at low Reynolds number
NASA Astrophysics Data System (ADS)
Kuo, C.-H.; Chiou, L.-C.; Chen, C.-C.
2007-08-01
Passive wake control behind a circular cylinder in uniform flow is studied by numerical simulation for ReD ranging from 80 to 300. Two small control cylinders, with diameter d/D=1/8, are placed at x/D=0.5 and y/D=±0.6. Unlike the 1990 results of Strykowski and Sreenivasan, in the present study, the vortex street behind the main cylinder still exists but the fluctuating lift and the form drag on the main cylinder reduces significantly and monotonously as the Reynolds number increases from 80 to 300. Obstruction of the control cylinders to the incoming flow deflects part of the fluid to pass through the gap between the main and control cylinders, forming two symmetric streams. These streams not only eliminate the flow separation along the rear surface of the main cylinder, they also merge toward the wake centerline to create an advancing momentum in the immediate near-wake region. These two effects significantly reduce the wake width behind the main cylinder and lead to monotonous decrease of the form drag as the Reynolds number increases. As the Reynolds number gets higher, a large amount of the downstream advancing momentum significantly delays the vortex formation farther downstream, leading to a more symmetric flow structure in the near-wake region of the main cylinder. As the Reynolds number increases from 80 to 300, both increasing symmetry of the flow structure in the near-wake and significant delay of the vortex formation are the main reasons for the fluctuating lift to decrease monotonously.
Analysis and Design of Rotors at Ultra-Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Kunz, Peter J.; Strawn, Roger C.
2003-01-01
Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.
NASA Astrophysics Data System (ADS)
Monkewitz, Peter A.; Chauhan, Kapil A.; Nagib, Hassan M.
2007-11-01
The asymptotic behavior of mean velocity and integral parameters in flat plate turbulent boundary layers under zero pressure gradient are studied for Reynolds numbers approaching infinity. Using the classical two-layer approach of Millikan, Rotta, and Clauser with a logarithmic velocity profile in the overlap region between "inner" and "outer" layers, a fully self-consistent leading-order description of the mean velocity profile and all integral parameters is developed. It is shown that this description fits most high Reynolds number data, and in particular their Reynolds number dependence, exceedingly well; i.e., within experimental errors.
Mixed-derivative skewness for high Prandtl and Reynolds numbers in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Briard, Antoine; Gomez, Thomas
2016-08-01
The mixed-derivative skewness Suθ of a passive scalar field in high Reynolds and Prandtl numbers decaying homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal Markovian closure, for Reλ ≥ 103 up to Pr = 105. A convergence of Suθ for Pr ≥ 103 is observed for any high enough Reynolds number. This asymptotic high Pr regime can be interpreted as a saturation of the mixing properties of the flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the influence of large scales initial conditions are investigated as well.
The Stealth Biplane: a Proposal in Response to a Low Reynolds Number Station Keeping Mission
NASA Technical Reports Server (NTRS)
Walsh, Timothy E.; Flynn, Kevin T.; Donovan, Steven; Paul, Chris; Pangilinan, Harold; Padgett, John; Twomey, Daniel
1990-01-01
The Stealth Biplane is conceived and constructed to serve as a remotely piloted vehicle designed to navigate a low-level figure-eight course at a target Reynolds number of 100,000. This flight vehicle will combine the latest in lightweight radio controlled hardware in conjunction with current low Reynolds number aerodynamic research to demonstrate feasible operation in a variety of applications. These potential low Reynolds number applications include high altitude atmospheric sampling, search and rescue, and even law enforcement. Design specs and fabrication technique are discussed.
Low-Reynolds number aerodynamics research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Harvey, William D.
1986-01-01
The present status of various types of low-Reynolds number aerodynamics research being conducted at the Fluid Dynamics Branch of NASA Langley Research Center is reviewed. The facilities, testing techniques, airfoil design, and experimental verification are addressed, and ongoing studies of laminar separation bubbles, boundary layer stability and transition control, and low-Reynolds number juncture flow are discussed. The possibility of improving vehicle characteristics at low Reynolds numbers and the general trends of the most promising research in these areas are examined.
Tests of Spheres with Reference to Reynolds Number, Turbulence, and Surface Roughness
NASA Technical Reports Server (NTRS)
Hoerner, S
1935-01-01
The behavior of the Reynolds Number of the sphere is explained (in known manner) with the aid of the boundary-layer theory. Rear spindles may falsify, under certain conditions, the supercritical sphere drag, while suspension wires in the space behind the sphere leave no traceable influence. The critical Reynolds Number of the sphere was arrived at by an unconventional method; that is, by determining the critical wind speed at which the static pressure at the back of the sphere is the same as that of the undisturbed flow. The method makes it possible to interpret the critical Reynolds Number with only one test station.
Influence of the Reynolds number on normal forces of slender bodies of revolution
NASA Technical Reports Server (NTRS)
Hartmann, K.
1982-01-01
Comprehensive force, moment, and pressure distribution measurements as well as flow visualization experiments were carried out to determine the influence of the Reynolds number on nonlinear normal forces of slender bodies of revolution. Experiments were performed in transonic wind tunnels at angles of attack up to 90 deg in the Mach number range 0.5 to 2.2 at variable Reynolds numbers. The results were analysed theoretically and an empirical theory was developed which describes the test results satisfactory.
The landscape Reynolds number and other dimensionless measures of Earth surface processes
NASA Astrophysics Data System (ADS)
Haff, P. K.
2007-11-01
An analogy between turbulent fluid systems and landscape drainage systems [Parker, G., Haff, P.K., Murray, A.B., 2001, EOS, Transactions of the American Geophysical Union, 82, pp. F564.] is suggested by the observation that transport in both systems can be approximated by diffusion with size-proportional effective diffusivities, with a cross-over at small scales to Fickian diffusion. The "landscape" Reynolds number of a typical fluvial landscape is estimated to be of order Re L ˜ 10 6 to 10 9, these large values reflecting the relative efficiency of fluvial transport compared to creep. Re L is the ratio of the large-scale effective diffusivity of rivers to the small-scale diffusivity of creep processes on hillslopes. The spatial dependence of the effective diffusivity produces rivers with logarithmic long-profiles, similar to the profiles of many rivers in nature, and analogous to the logarithmic dependence of mean fluid velocity on distance from a wall in turbulent flow. The landscape example suggests how other generalized "Reynolds numbers" can be constructed as ratios of large-scale to small-scale diffusivities to measure the efficiencies of complex processes that affect the surface. As an example, the global airline transportation network is estimated to have an efficacy relative to that of direct human mechanisms for transport of similar goods and materials of about 10 8 as measured by a corresponding "technology" Reynolds number. The appearance of such large dimensionless numbers, pertaining to the consequences of human invention and design, reflects the emergence of the technosphere as an increasingly efficient overlay on the historical domain of biology and surficial geology.
A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows
NASA Astrophysics Data System (ADS)
Fang, F.; Pain, C. C.; Navon, I. M.; Gorman, G. J.; Piggott, M. D.; Allison, P. A.; Farrell, P. E.; Goddard, A. J. H.
Herein a new approach to enhance the accuracy of a novel Proper Orthogonal Decomposition (POD) model applied to moderate Reynolds number flows (of the type typically encountered in ocean models) is presented. This approach develops the POD model of Fang et al. [Fang, F., Pain, C.C., Navon, I.M., Piggott, M.D., Gorman, G.J., Allison, P., Goddard, A.J.H., 2008. Reduced-order modelling of an adaptive mesh ocean model. International Journal for Numerical Methods in Fluids. doi:10.1002/fld.1841] used in conjunction with the Imperial College Ocean Model (ICOM), an adaptive, non-hydrostatic finite element model. Both the velocity and vorticity results of the POD reduced order model (ROM) exhibit an overall good agreement with those obtained from the full model. The accuracy of the POD-Galerkin model with the use of adaptive meshes is first evaluated using the Munk gyre flow test case with Reynolds numbers ranging between 400 and 2000. POD models using the L2 norm become oscillatory when the Reynolds number exceeds Re=400. This is because the low-order truncation of the POD basis inhibits generally all the transfers between the large and the small (unresolved) scales of the fluid flow. Accuracy is improved by using the H1 POD projector in preference to the L2 POD projector. The POD bases are constructed by incorporating gradients as well as function values in the H1 Sobolev norm. The accuracy of numerical results is further enhanced by increasing the number of snapshots and POD bases. Error estimation was used to assess the effect of truncation (involved in the POD-Galerkin approach) when adaptive meshes are used in conjunction with POD/ROM. The RMSE of velocity results between the full model and POD-Galerkin model is reduced by as much as 50% by using the H1 norm and increasing the number of snapshots and POD bases.
Swimming at low Reynolds number in fluids with odd, or Hall, viscosity
NASA Astrophysics Data System (ADS)
Lapa, Matthew F.; Hughes, Taylor L.
2014-04-01
We apply the geometric theory of swimming at low Reynolds number to the study of nearly circular swimmers in two-dimensional fluids with nonvanishing "odd," or Hall, viscosity. The odd viscosity gives an off-diagonal contribution to the fluid stress tensor, which results in a number of striking effects. In particular, we find that a swimmer whose area is changing will experience a torque proportional to the rate of change of the area, with the constant of proportionality given by the coefficient ηo of odd viscosity. After working out the general theory of swimming in fluids with odd viscosity for a class of simple swimmers, we give a number of example swimming strokes which clearly demonstrate the differences between swimming in a fluid with conventional viscosity and a fluid which also has an odd viscosity. We also include a discussion of the extension of the famous Scallop theorem of low Reynolds number swimming to the case where the fluid has a nonzero odd viscosity. A number of more technical results, including a proof of the torque-area relation for swimmers of more general shape, are explained in a set of Appendixes.
Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.
Lapa, Matthew F; Hughes, Taylor L
2014-04-01
We apply the geometric theory of swimming at low Reynolds number to the study of nearly circular swimmers in two-dimensional fluids with nonvanishing "odd," or Hall, viscosity. The odd viscosity gives an off-diagonal contribution to the fluid stress tensor, which results in a number of striking effects. In particular, we find that a swimmer whose area is changing will experience a torque proportional to the rate of change of the area, with the constant of proportionality given by the coefficient ηo of odd viscosity. After working out the general theory of swimming in fluids with odd viscosity for a class of simple swimmers, we give a number of example swimming strokes which clearly demonstrate the differences between swimming in a fluid with conventional viscosity and a fluid which also has an odd viscosity. We also include a discussion of the extension of the famous Scallop theorem of low Reynolds number swimming to the case where the fluid has a nonzero odd viscosity. A number of more technical results, including a proof of the torque-area relation for swimmers of more general shape, are explained in a set of Appendixes. PMID:24827344
Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.
Lapa, Matthew F; Hughes, Taylor L
2014-04-01
We apply the geometric theory of swimming at low Reynolds number to the study of nearly circular swimmers in two-dimensional fluids with nonvanishing "odd," or Hall, viscosity. The odd viscosity gives an off-diagonal contribution to the fluid stress tensor, which results in a number of striking effects. In particular, we find that a swimmer whose area is changing will experience a torque proportional to the rate of change of the area, with the constant of proportionality given by the coefficient ηo of odd viscosity. After working out the general theory of swimming in fluids with odd viscosity for a class of simple swimmers, we give a number of example swimming strokes which clearly demonstrate the differences between swimming in a fluid with conventional viscosity and a fluid which also has an odd viscosity. We also include a discussion of the extension of the famous Scallop theorem of low Reynolds number swimming to the case where the fluid has a nonzero odd viscosity. A number of more technical results, including a proof of the torque-area relation for swimmers of more general shape, are explained in a set of Appendixes.
Model-based control of vortex shedding at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Illingworth, Simon J.
2016-10-01
Model-based feedback control of vortex shedding at low Reynolds numbers is considered. The feedback signal is provided by velocity measurements in the wake, and actuation is achieved using blowing and suction on the cylinder's surface. Using two-dimensional direct numerical simulations and reduced-order modelling techniques, linear models of the wake are formed at Reynolds numbers between 45 and 110. These models are used to design feedback controllers using {H}_∞ loop-shaping. Complete suppression of shedding is demonstrated up to Re = 110—both for a single-sensor arrangement and for a three-sensor arrangement. The robustness of the feedback controllers is also investigated by applying them over a range of off-design Reynolds numbers, and good robustness properties are seen. It is also observed that it becomes increasingly difficult to achieve acceptable control performance—measured in a suitable way—as Reynolds number increases.
Liu, Chao; Hu, Guoqing; Jiang, Xingyu; Sun, Jiashu
2015-02-21
Inertial microfluidics has emerged as an important tool for manipulating particles and cells. For a better design of inertial microfluidic devices, we conduct 3D direct numerical simulations (DNS) and experiments to determine the complicated dependence of focusing behaviour on the particle size, channel aspect ratio, and channel Reynolds number. We find that the well-known focusing of the particles at the two centers of the long channel walls occurs at a relatively low Reynolds number, whereas additional stable equilibrium positions emerge close to the short walls with increasing Reynolds number. Based on the numerically calculated trajectories of particles, we propose a two-stage particle migration which is consistent with experimental observations. We further present a general criterion to secure good focusing of particles for high flow rates. This work thus provides physical insight into the multiplex focusing of particles in rectangular microchannels with different geometries and Reynolds numbers, and paves the way for efficiently designing inertial microfluidic devices.
The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions
NASA Technical Reports Server (NTRS)
Costello, J. K.; Greene, D. W.; Lee, T. T.; Matier, P. T.; Mccarthy, T. R.; Mcguire, R. J.; Schuette, M. J.
1990-01-01
The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed.
NASA Technical Reports Server (NTRS)
Cole, Gregory M.; Mueller, Thomas J.
1990-01-01
An experimental investigation was conducted to measure the flow velocity in the boundary layer of an Eppler 387 airfoil. In particular, the laminar separation bubble that this airfoil exhibits at low Reynolds numbers was the focus. Single component laser Doppler velocimetry data were obtained at a Reynolds number of 100,000 at an angle of attack of 2.0 degree. Static Pressure and flow visualization data for the Eppler 387 airfoil were also obtained. The difficulty in obtaining accurate experimental measurements at low Reynolds numbers is addressed. Laser Doppler velocimetry boundary layer data for the NACA 663-018 airfoil at a Reynolds number of 160,000 and angle of attack of 12 degree is also presented.
Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators
NASA Technical Reports Server (NTRS)
Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.
2006-01-01
The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are
NASA Astrophysics Data System (ADS)
Naghib-Lahouti, Arash; Lavoie, Philippe; Hangan, Horia
2011-11-01
The periodic shedding of von Kármán vortices is the primary instability in the wake of nominally 2D bluff bodies, beyond a critical Reynolds number around 45-49. When Reynolds number passes a second threshold, which can be as high as 700 depending on profile geometry, secondary instabilities emerge and accompany the von Kármán vortices. For most bluff bodies, these instabilities appear as pairs of counter-rotating streamwise vortices, and spanwise undulations of the von Kármán vortices. The mechanism and scale of these instabilities depend on the bluff body geometry and Reynolds number. The focus of the present study is to identify and characterize the dominant secondary instability in the wake of a blunt trailing edge profiled body at intermediate Reynolds numbers between 8,000 and 20,000 based on the body thickness. The experiments, which include PIV and hot-wire measurements in the wake, complement previous studies involving the same bluff body at higher and lower Reynolds numbers, and make it possible to determine the scale and mechanism of the secondary instability at intermediate Reynolds numbers. Funded partly by the Government of Ontario, MITACS and Bombardier Aerospace.
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
NASA Technical Reports Server (NTRS)
Stanewsky, E.; Demurie, F.; Ray, Edward J.; Johnson, C. B.
1989-01-01
The transonic airfoil CAST 10-2/DOA 2 was investigated in several major transonic wind tunnels at Reynolds numbers ranging from Re=1.3 x 10(exp 6) to 45 x 10(exp 6) at ambient and cryogenic temperature conditions. The main objective was to study the degree and extent of the effects of Reynolds number on both the airfoil aerodynamic characteristics and the interference effects of various model-wind-tunnel systems. The initial analysis of the CAST 10-2 airfoil results revealed appreciable real Reynolds number effects on this airfoil and showed that wall interference can be significantly affected by changes in Reynolds number thus appearing as true Reynolds number effects.
Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number
NASA Technical Reports Server (NTRS)
Khodadoust, Abdollah; Washburn, Anthony
2007-01-01
The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.
Backward-facing step measurements at low Reynolds number, Re(sub h)=5000
NASA Technical Reports Server (NTRS)
Jovic, Srba; Driver, David M.
1994-01-01
An experimental study of the flow over a backward-facing step at low Reynolds number was performed for the purpose of validating a direct numerical simulation (DNS) which was performed by the Stanford/NASA Center for Turbulence Research. Previous experimental data on back step flows were conducted at Reynolds numbers and/or expansion ratios which were significantly different from that of the DNS. The geometry of the experiment and the simulation were duplicated precisely, in an effort to perform a rigorous validation of the DNS. The Reynolds number used in the DNS was Re(sub h)=5100 based on step height, h. This was the maximum possible Reynolds number that could be economically simulated. The boundary layer thickness, d, was approximately 1.0 h in the simulation and the expansion ratio was 1.2. The Reynolds number based on the momentum thickness, Re(sub theta), upstream of the step was 610. All of these parameters were matched experimentally. Experimental results are presented in the form of tables, graphs and a floppy disk (for easy access to the data). An LDV instrument was used to measure mean velocity components and three Reynolds stresses components. In addition, surface pressure and skin friction coefficients were measured. LDV measurements were acquired in a measuring domain which included the recirculating flow region.
Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
Levy, David-Elie; Seifert, Avraham
2010-10-21
Aerodynamic study of a simplified Dragonfly airfoil in gliding flight at Reynolds numbers below 10,000 is motivated by both pure scientific interest and technological applications. At these Reynolds numbers, the natural insect flight could provide inspiration for technology development of Micro UAV's and more. Insect wings are typically characterized by corrugated airfoils. The present study follows a fundamental flow physics study (Levy and Seifert, 2009), that revealed the importance of flow separation from the first corrugation, the roll-up of the separated shear layer to discrete vortices and their role in promoting flow reattachment to the aft arc, as the leading mechanism enabling high-lift, low drag performance of the Dragonfly gliding flight. This paper describes the effect of systematic airfoil geometry variations on the aerodynamic properties of a simplified Dragonfly airfoil at Reynolds number of 6000. The parameter study includes a detailed analysis of small variations of the nominal geometry, such as corrugation placement or height, rear arc and trailing edge shape. Numerical simulations using the 2D laminar Navier-Stokes equations revealed that the flow accelerating over the first corrugation slope is followed by an unsteady pressure recovery, combined with vortex shedding. The latter allows the reattachment of the flow over the rear arc. Also, the drag values are directly linked to the vortices' magnitude. This parametric study shows that geometric variations which reduce the vortices' amplitude, as reduction of the rear cavity depth or the reduction of the rear arc and trailing edge curvature, will reduce the drag values. Other changes will extend the flow reattachment over the rear arc for a larger mean lift coefficients range; such as the negative deflection of the forward flat plate. These changes consequently reduce the drag values at higher mean lift coefficients. The detailed geometry study enabled the definition of a corrugated airfoil
Project Dawdler: a Proposal in Response to a Low Reynolds Number Station Keeping Mission
NASA Technical Reports Server (NTRS)
Bartilotti, Rich; Coakley, Jill; Golla, Warren; Scamman, Glenn; Tran, Hoa T.; Trippel, Chris
1990-01-01
In direct response to Request for Proposals: Flight at very low Reynolds numbers - a station keeping mission, the members of Design Squad E present Project Dawdler: a remotely-piloted airplane supported by an independently controlled take-off cart. A brief introduction to Project Dawdler's overall mission and design, is given. The Dawdler is a remotely-piloted airplane designed to fly in an environmentally-controlled closed course at a Reynolds number of 10(exp 5) and at a cruise velocity of 25 ft/s. The two primary goals were to minimize the flight Reynolds number and to maximize the loiter time. With this in mind, the general design of the airplane was guided by the belief that a relatively light aircraft producing a fairly large amount of lift would be the best approach. For this reason the Dawdler utilizes a canard rather than a conventional tail for longitudinal control, primarily because the canard contributes a positive lift component. The Dawdler also has a single vertical tail mounted behind the wing for lateral stability, half of which is used as a rudder for yaw control. Due to the fact that the power required to take-off and climb to altitude is much greater than that required for cruise flight and simple turning maneuvers, it was decided that a take-off cart be used. Based on the current design, there are two unknowns which could possibly threaten the success of Project Dawdler. First, the effect of the fully-movable canard with its large appropriation of total lift on the performance of the plane, and secondly, the ability of the take-off procedure to go as planned are examined. These are questions which can only be answered by a prototype.
Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
Levy, David-Elie; Seifert, Avraham
2010-10-21
Aerodynamic study of a simplified Dragonfly airfoil in gliding flight at Reynolds numbers below 10,000 is motivated by both pure scientific interest and technological applications. At these Reynolds numbers, the natural insect flight could provide inspiration for technology development of Micro UAV's and more. Insect wings are typically characterized by corrugated airfoils. The present study follows a fundamental flow physics study (Levy and Seifert, 2009), that revealed the importance of flow separation from the first corrugation, the roll-up of the separated shear layer to discrete vortices and their role in promoting flow reattachment to the aft arc, as the leading mechanism enabling high-lift, low drag performance of the Dragonfly gliding flight. This paper describes the effect of systematic airfoil geometry variations on the aerodynamic properties of a simplified Dragonfly airfoil at Reynolds number of 6000. The parameter study includes a detailed analysis of small variations of the nominal geometry, such as corrugation placement or height, rear arc and trailing edge shape. Numerical simulations using the 2D laminar Navier-Stokes equations revealed that the flow accelerating over the first corrugation slope is followed by an unsteady pressure recovery, combined with vortex shedding. The latter allows the reattachment of the flow over the rear arc. Also, the drag values are directly linked to the vortices' magnitude. This parametric study shows that geometric variations which reduce the vortices' amplitude, as reduction of the rear cavity depth or the reduction of the rear arc and trailing edge curvature, will reduce the drag values. Other changes will extend the flow reattachment over the rear arc for a larger mean lift coefficients range; such as the negative deflection of the forward flat plate. These changes consequently reduce the drag values at higher mean lift coefficients. The detailed geometry study enabled the definition of a corrugated airfoil
Compressible Boundary Layer Predictions at High Reynolds Number using Hybrid LES/RANS Methods
NASA Technical Reports Server (NTRS)
Choi, Jung-Il; Edwards, Jack R.; Baurle, Robert A.
2008-01-01
Simulations of compressible boundary layer flow at three different Reynolds numbers (Re(sub delta) = 5.59x10(exp 4), 1.78x10(exp 5), and 1.58x10(exp 6) are performed using a hybrid large-eddy/Reynolds-averaged Navier-Stokes method. Variations in the recycling/rescaling method, the higher-order extension, the choice of primitive variables, the RANS/LES transition parameters, and the mesh resolution are considered in order to assess the model. The results indicate that the present model can provide good predictions of the mean flow properties and second-moment statistics of the boundary layers considered. Normalized Reynolds stresses in the outer layer are found to be independent of Reynolds number, similar to incompressible turbulent boundary layers.
NASA Technical Reports Server (NTRS)
Johnson, Charles B.; Dress, David A.; Hill, Acquilla S.; Wilcox, Peter A.; Bui, Minh H.
1986-01-01
A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity.
Subsonic and transonic low-Reynolds-number airfoils with reduced pitching moments
NASA Technical Reports Server (NTRS)
Van Dam, C. P.; Hicks, R.; Reuther, J.
1990-01-01
A subsonic and a transonic airfoil are presented for application in a high-altitude long-endurance aircraft and a very-high-altitude aircraft, respectively. The subsonic airfoil is designed for a lift coefficient c(l) = 1.4 at a chord Reynolds number Re = 700,000 and a very low Mach number. The transonic airfoil is designed for c(l) = 1.0 at Re = 500,000 and a transonic Mach number M = 0.7. Both airfoils are developed to perform as well or better than previously designed airfoils. However, the present airfoils are developed for a constrained pitching moment to reduce aircraft trim drag and to relieve, to some extent, the torsional loads in the typically high-aspect-ratio wings. The beneficial effects of a cruise flap and of boundary-layer transition control on the off-design performance characteristics are illustrated.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location o excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms o performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D
Control of Vortex Shedding on an Airfoil using Mini Flaps at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Oshiyama, Daisuke; Numata, Daiju; Asai, Keisuke
2015-11-01
In this study, the effects of mini flaps (MFs) on a NACA0012 airfoil were investigated experimentally at low Reynolds number. MFs are small flat plates attached to the trailing edge of an airfoil perpendicularly. All the tests were conducted at the Tohoku-University Basic Aerodynamic Research Tunnel at the chord Reynolds number of 25,000. Aerodynamic forces were measured using a 3-component balance and the surface flow was visualized by luminescent oil film technique. The results of force measurement show that attachment of MFs enhances lift and the enhanced lift increases with MF height. On the other hand, the results of oil flow visualization show that attachment of MFs enlarges the separated region on the airfoil rather than diminishes it. To understand the physical mechanism of MFs for lift enhancement, the flow around the airfoil was visualized by the smoke-wire method and the wake profile behind the airfoil was measured using a hot wire anemometer. It was found that vortices shed periodically from the tip of the MFs and interact with the separated shear layer from the upper surface. This unsteady vortex shedding forms a low-pressure region on the upper surface, generating higher lift. These results suggest that the height of MFs controls the frequency of vortex shedding behind the MF, forcing the separated shear layer on the upper surface flow in unsteady manner.
On the drag of model dendrite fragments at low Reynolds number
NASA Technical Reports Server (NTRS)
Zakhem, R.; Weidman, P. D.; De Groh, H. C., III
1992-01-01
An experimental study of low Reynolds number drag on laboratory models of dendrite fragments has been conducted. The terminal velocities of the dendrites undergoing free fall along their axis of symmetry were measured in a large Stokes flow facility. Corrections for wall interference give nearly linear drag vs Reynolds number curves. Corrections for both wall interference and inertia effects show that the dendrite Stokes settling velocities are always less than that of a sphere of equal mass and volume. In the Stokes limit, the settling speed ratio is found to correlate well with the primary dendrite arm aspect ratio and a second dimensionless shape parameter which serves as a measure of the fractal-like nature of the dendrite models. These results can be used to estimate equiaxed grain velocities and distance of travel in metal castings. The drag measurements may be used in numerical codes to calculate the movement of grains in a convecting melt in an effort to determine macrosegregation patterns caused by the sink/float mechanism.
Transport coefficients for the shear dynamo problem at small Reynolds numbers
Singh, Nishant K.; Sridhar, S.
2011-05-15
We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients {alpha}{sub il} and {eta}{sub iml} are derived. We prove that when the velocity field is nonhelical, the transport coefficient {alpha}{sub il} vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X{sub 3} and time {tau}; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Raedler, M. Rheinhardt, and P. J. Kaepylae [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor {eta}{sub ij}({tau}). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.
The FX/90: A proposal in response to a low Reynolds Number station keeping mission
NASA Technical Reports Server (NTRS)
Wirthman, David; Palmer, Julie; Gleixner, Aaron; Russell, Scott; Nevala, Tom; Nosek, Mark
1990-01-01
The FX/90 is a remotely piloted vehicle designed to fly at Reynolds numbers below 2 x 10 to the 5th power. Several applications exist for this type of flight, such as low altitude flight of very small aircraft. The design presented here allows investigation into the unique problems involved in low Reynolds number flight, which will, in turn, further understanding of this flight regime. The aircraft will operate in a steady flight environment, free from significant atmospheric turbulence and weather effects. The F-90 has a 39 in. fuselage which is constructed of balsa and plywood. The landing gear for the aircraft is a detachable carriage on which the aircraft rests. The aerodynamic planform is a rectangular wing (no taper or sweep) with a chord of 9 in., a wingspan of 72 in., and is constructed entirely out of styrofoam. The propulsion system is a puller configuration mounted on the front of the fuselage. It consists of an Astro 05 engine and a 10-6 two bladed propeller. Control of the aircraft is accomplished through the use of two movable control surfaces: elevators for pitch control, and a rudder for yaw control. The aircraft is soundly constructed, highly maneuverable, and adequately powered. Furthermore, the investigation into alternative technologies, most notably the styrofoam wing and the detachable landing gear, holds promise to improve the performance of the aircraft.
Holzman, Roi; China, Victor; Yaniv, Sarit; Zilka, Miri
2015-07-01
Larval fishes suffer prodigious mortality rates, eliminating 99% of the cohort within a few days after their first feeding. Hjort (1914) famously attributed this "critical period" of low survival to larval inability to obtain sufficient food. We discuss recent experimental and modeling work, suggesting that the viscous hydrodynamic regime have marked effects on the mechanism of suction feeding in larval fish. As larvae grow, the size of the gape and associated volume of the mouth increase. At the same time, larvae swim faster and can generate faster suction flows, thus transiting to a hydrodynamic regime of higher Reynolds numbers. This hydrodynamic regime further leads to changes in the spatio-temporal patterns of flow in front of the mouth, and an increasing ability in larger larvae to exert suction forces on the prey. Simultaneously, the increase in swimming speed and the distance from which the prey is attacked result in higher rates of encountering prey by larger (older) larvae. In contrast, during the first few days after feeding commence the lower rates of encounter and success in feeding translate to low feeding rates. We conclude that young larvae experience "hydrodynamic starvation," in which low Reynolds numbers mechanically limit their feeding performance even under high densities of prey.
On the drag of model dendrite fragments at low Reynolds number
NASA Technical Reports Server (NTRS)
Zakhem, R.; Weidman, P. D.; Degroh, H. C., III
1993-01-01
An experimental study of low Reynolds number drag on laboratory models of dendrite fragments has been conducted. The terminal velocities of the dendrites undergoing free fall along their axis of symmetry were measured in a large Stokes flow facility. Corrections for wall interference give nearly linear drag vs Reynolds number curves. Corrections for both wall interference and inertia effects show that the dendrite Stokes settling velocities are always less than that of a sphere of equal mass and volume. In the Stokes limit, the settling speed ratio is found to correlate well with primary dendrite arm aspect ratio and a second dimensionless shape paremeter which serves as a measure of the fractal-like nature of the dendrite models. These results can be used to estimate equiaxed grain velocities and distance of travel in metal castings. The drag measurements may be used in numerical codes to calculate the movement of grains in a convecting melt in an effort to determine macrosegregation patterns caused by the sink/float mechanism.
Second-Order Modeling of Low-Reynolds-Number Turbulence Near Walls
NASA Technical Reports Server (NTRS)
Shih, T.-H.; Mansour, N. N.
1989-01-01
This paper presents a set of second-order closure models for low-Reynolds-number turbulence near the wall. Existing closure models for the Reynolds-stress equations were modified to show proper near-wall behavior. A dissipation-rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The equations are solved for the mean velocity, the Reynolds stresses, and the dissipation rate of the turbulent kinetic energy. The calculations are compared with both direct numerical simulations and with measurements. It is shown that the present models perform well in predicting the behavior of the turbulence near a wall. Significant improvements over previous models in predicting the components of the Reynolds stress tensor are obtained in the present models.
Low Reynolds number modeling of turbulent flows with and without wall transpiration
NASA Technical Reports Server (NTRS)
So, Ronald M. C.; Yoo, Geun Jong
1987-01-01
A full Reynolds-stress closure that is capable of describing the flow all the way to the wall is formulated. The closure is based on the conventional high Reynolds number form of the redistribution model, the inclusion of molecular diffusion, and a modified dissipation model to account for viscous effects near a wall. Two dissipation models are investigated along with two gradient diffusion and two redistribution models. Their respective effects on the calculated flow properties are assessed by comparing them with the data of fully developed turbulent flows and a developing pipe flow with wall transpiration. The near-wall behavior is very well predicted; however, the wall correction to the redistribution modeling is found to have little effect on the calculated results. The overall behavior of the fully developed turbulent flows is best described by a nonisotropic gradient diffusion model, a return-to-isotropy redistribution model, and a dissipation model that accounts for viscous behavior near a wall. This same closure also gives the best prediction of the axial pressure drop behavior along a pipe with a uniform wall suction. Furthermore, the near-wall behavior of such a flow is very well predicted by this closure.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.
Low-Reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows
NASA Technical Reports Server (NTRS)
Fan, Sixin; Lakshminarayana, Budugur; Barnett, Mark
1993-01-01
An assessment of the near-wall and low-Reynolds-number functions used in low-Reynolds-number k-epsilon models suggests that they are not suitable for the near-wall region of unsteady turbulent boundary layers, where the flow is characterized by rapid changes in phase. An improved low-Reynolds-number k-epsilon model is developed in this paper. The near-wall and low-Reynolds-number functions in this model are formulated as functions of the local turbulent Reynolds numbers instead of the inner variable y(+). The present model also has the correct asymptotic behavior in the near-wall region. The turbulence model has been incorporated in an unsteady boundary-layer code and validated for unsteady turbulent boundary layers with and without adverse pressure gradients. The predictions agree well with the experimental data and the theoretical analysis. For the cases tested, the present model correctly predicts the unsteady near-wall flow and the unsteady shin friction at various frequencies.
A High Altitude-Low Reynolds Number Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Don; Krake, Keith; Hamory, Phil; Drela, Mark; Lee, Seunghee (Technical Monitor)
1999-01-01
A sailplane is currently being developed at NASA's Dryden Flight Research Center to support a high altitude flight experiment. The purpose of the experiment is to measure the performance characteristics of an airfoil at altitudes between 100,000 and 70,000 feet at Mach numbers between 0.65 and 0.5. The airfoil lift and drag are measured from pilot and static pressures. The location of the separation bubble and vortex shedding are measured from a hot film strip. The details of the flight experiment are presented. A comparison of several estimates of the airfoil performance is also presented. The airfoil, APEX-16, was designed by Drela (MIT) with his MSES code. A two dimensional Navier-Stokes analysis has been performed by Tatineni and Zhong (UCLA) and another at the Dryden Flight Research Center. The role these analysis served to define the experiment is discussed.
On an acoustic field generated by subsonic jet at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Arndt, R. E. A.
1978-01-01
An acoustic field generated by subsonic jets at low Reynolds numbers was investigated. This work is motivated by the need to increase the fundamental understanding of the jet noise generation mechanism which is essential to the development of further advanced techniques of noise suppression. The scope of this study consists of two major investigation. One is a study of large scale coherent structure in the jet turbulence, and the other is a study of the Reynolds number dependence of jet noise. With this in mind, extensive flow and acoustic measurements in low Reynolds number turbulent jets (8,930 less than or equal to M less than or equal to 220,000) were undertaken using miniature nozzles of the same configuration but different diameters at various exist Mach numbers (0.2 less than or equal to M less than or equal to 0.9).
Separation over a flat plate-wedge configuration at oceanic Reynolds numbers
NASA Technical Reports Server (NTRS)
Campbell, D. R.
1973-01-01
An experimental study of flow over a two-dimensional flat plate-wedge configuration is presented. The investigation encompasses a range of Reynolds numbers characteristics of conditions encountered by deep submersible oceanic vehicles. Flow separation, similar to that found on high speed aircraft control surfaces, is reported and discussed in light of the laminar or transitional nature of the separated shear layer. As discovered in previous high Mach number studies of plate-wedge or ramp configurations, the dependency of the size of the separated region on free stream Reynolds number is reversed for laminar and transitional types of flow separation.
Escaping From Predation At Low Reynolds Number: A Compensatory Mechanism
NASA Astrophysics Data System (ADS)
Gemmell, Brad; Sheng, Jian; Buskey, Ed
2010-11-01
Small planktonic organisms such as copepods are often the first foods for many species of fish and thus, subject to high predation rates. They have developed strong escape responses to attacks from visual predators and this behavior is found even in the youngest development stage. Because of their small size (approx. 100 μm), these juvenile copepods must contend with greater viscous forces than their predators during encounters. In this study, we investigate the role of viscosity on escape swimming performance of young copepods within the context of the environmental temperatures (10C-30C) these animals experience along the Texas coast. 3-Dimensional high speed (3000 frames per second) digital holographic techniques were used to elucidate kinematics and kinetics of swimming. Here we show that although escape velocity and acceleration are reduced as a function of both increasing viscosity and decreasing temperature, total escape distance is conserved. Interestingly, we observed no difference in the number swimming strokes per escape. Instead, the animals exhibit a compensatory mechanism based on increasing power stroke duration to recovery stroke duration to counter act the increasing viscosity at lower temperature. Flow analysis shows this results in the conservation of energy expenditure, and consequently escape distance.
NASA Technical Reports Server (NTRS)
Mueller, T. J. (Editor)
1985-01-01
Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.
Holden, M.S.; Bergman, R.; Harvey, J.; Duryea, G.; Moselle, J.
1988-12-02
The first of these 2 studies examined the detailed structure of the hypersonic boundary layer over a large cone/flare configuration. Emphasis was on development and use of instrumentation with which to obtain flow-field measurements of the mean and fluctuating properties of the attached and separated shear layers. Development and use of holographic interferometry and electron-beam techniques in the high Mach number and Reynolds number environment developed in the shock tunnel are described. In the second study, detailed measurements of heat transfer, pressure, and skin friction were made on a unique 'blowing and roughness' model constructed to simulate the aerothermal phenomena associated with a rough ablating maneuverable reentry vehicle. In this study emphasis was placed on development and use of unique heat transfer and skin-friction instrumentation to obtain measurements of the combined effects of blowing and roughness and to understand how such effects influence boundary-layer separation in regions of shock wave/boundary layer interaction. Each focused around providing information with which to construct and evaluate the modeling required in time-averaged Navier-Stokes equations to predict the structure of compressible hypersonic boundary layers in regions of strong pressure gradient, shock-wave/boundary-layer interaction and flow separation over smooth, rough, and ablating surfaces.
Low Reynolds number two-equation modeling of turbulent flows
NASA Technical Reports Server (NTRS)
Michelassi, V.; Shih, T.-H.
1991-01-01
A k-epsilon model that accounts for viscous and wall effects is presented. The proposed formulation does not contain the local wall distance thereby making very simple the application to complex geometries. The formulation is based on an existing k-epsilon model that proved to fit very well with the results of direct numerical simulation. The new form is compared with nine different two-equation models and with direct numerical simulation for a fully developed channel flow at Re = 3300. The simple flow configuration allows a comparison free from numerical inaccuracies. The computed results prove that few of the considered forms exhibit a satisfactory agreement with the channel flow data. The model shows an improvement with respect to the existing formulations.
Low-Reynolds-number rising of a bubble near a free surface at vanishing Bond number
NASA Astrophysics Data System (ADS)
Guémas, Marine; Sellier, Antoine; Pigeonneau, Franck
2016-06-01
This work considers a nearly spherical bubble and a nearly flat free surface interacting under buoyancy at vanishing Bond number Bo. For each perturbed surface, the deviation from the unperturbed shape is asymptotically obtained at leading order on Bo. The task appeals to the normal traction exerted on the unperturbed surface by the Stokes flow due to a spherical bubble translating toward a flat free surface. The free surface problem is then found to be well-posed and to admit a solution in closed form when gravity is still present in the linear differential equation governing the perturbed profile through a term proportional to Bo. In contrast, the bubble problem amazingly turns out to be over-determined. It however becomes well-posed if the requirement of horizontal tangent planes at the perturbed bubble north and south poles is discarded or if the term proportional to Bo is omitted. Both previous approaches turn out to predict for a small Bond number, quite close solutions except in the very vicinity of the bubble poles. The numerical solution of the proposed asymptotic analysis shows in the overlapping range Bo = O ( 0.1 ) and for both the bubble and the free surface perturbed shapes, a good agreement with a quite different boundary element approach developed in Pigeonneau and Sellier ["Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free surface," Phys. Fluids 23, 092102 (2011)]. It also provides approximated bubble and free surface shapes whose sensitivity to the bubble location is examined.
Cryogenic wind tunnels for high Reynolds number testing
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Kilgore, R. A.; Mcguire, P. D.
1986-01-01
A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels.
Airfoil Section Characteristics as Affected by Variations of the Reynolds Number
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Sherman, Albert
1937-01-01
Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number.
Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Moin, P.
2003-01-01
In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results
Dynamic unified RANS-LES simulations of high Reynolds number separated flows
NASA Astrophysics Data System (ADS)
Mokhtarpoor, Reza; Heinz, Stefan; Stoellinger, Michael
2016-09-01
The development of hybrid RANS-LES methods is seen to be a very promising approach to enable efficient simulations of high Reynolds number turbulent flows involving flow separation. To contribute to further advances, we present a new, theoretically well based, dynamic hybrid RANS-LES method, referred to as DLUM. It is applied to a high Reynolds number flow involving both attached and separated flow regimes: a periodic hill flow is simulated at a Reynolds number of 37 000. Its performance is compared to pure LES, pure RANS, other hybrid RANS-LES (given by DLUM modifications), and experimental observations. It is shown that the use of this computational method offers huge cost reductions (which scale with Re/200, Re refers to the Reynolds number) of very high Reynolds number flow simulations compared to LES, it is much more accurate than RANS, and more accurate than LES, which is not fully resolved. In particular, this conclusion does also apply to the comparison of DLUM and pure LES simulations on rather coarse grids, which are often simply required to deal with simulations of very high Reynolds number flows: the DLUM provides mean velocity fields which are hardly affected by the grid, whereas LES velocity fields reveal significant shortcomings. We identified the reason for the superior performance of our new dynamic hybrid RANS-LES method compared to LES: it is the model's ability to respond to a changing resolution with adequate turbulent viscosity changes by ensuring simultaneously a physically correct turbulence length scale specification under the presence of interacting RANS and LES modes.
Numerical and approximate solution of the high Reynolds number small separation problem
NASA Technical Reports Server (NTRS)
Davis, R. T.
1976-01-01
Several possible methods of solving the small separation problem at high Reynolds number are investigated. In addition to using analytical methods, there are several numerical approaches which are used. High Reynolds number laminar two dimensional problems are used for simplicity. A brief discussion is given of the finite difference methods since these methods are discussed in detail. Most of the emphasis is placed on developing an approximate integral method. As a model problem the supersonic compression ramp problem is chosen since several numerical solutions along with experimental data are available. The techniques discussed are modified and applied to other similar type wall geometries.
Simplified physical models of the flow around flexible insect wings at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Harenberg, Steve; Reis, Johnny; Miller, Laura
2011-11-01
Some of the smallest insects fly at Reynolds numbers in the range of 5-100. We built a dynamically scaled physical model of a flexible insect wing and measured the resulting wing deformations and flow fields. The wing models were submerged in diluted corn syrup and rotated about the root of the wing for Reynolds numbers ranging from 1-100. Spatially resolved flow fields were obtained using particle image velocimetry (PIV). Deformations of the wing were tracked using DLTdv software to determine the motion and induced curvature of the wing.
Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall.
Crowdy, Darren G; Or, Yizhar
2010-03-01
This paper studies a simple two-dimensional model of a swimmer at low-Reynolds-number near a no-slip wall by utilizing methods of complex analysis. The swimmer is propelled by purely tangential surface deformations and is modeled by moving point singularities. The nonlinear dynamics of the swimmer is formulated explicitly, and its motion near the wall is fully characterized. The results show qualitative agreement with predictions of three-dimensional models and with motion experiments on a robotic swimmer. The success and simplicity of the model suggest that it will provide a simple way to study the dynamics of low-Reynolds-number swimmers in more complicated geometries.
Finite element simulation of turbulent Couette-Poiseuille flows using a low Reynolds number k- model
NASA Astrophysics Data System (ADS)
Kazemzadeh Hannani, Siamak; Stanislas, Michel
1999-05-01
Developing Couette-Poiseuille flows at Re=5000 are studied using a low Reynolds number k- two-equation model and a finite element formulation. Mesh-independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least-squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k- model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright
NASA Technical Reports Server (NTRS)
Igoe, William B.
1991-01-01
Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.
NASA Technical Reports Server (NTRS)
Phillips, W. P.
1981-01-01
Subsonic longitudinal andd laternal directional characteristics were obtained for several modified configurations of the 140 A/B orbiter (0.010 scale). These modifications, designed to extend longitudinal trim capability forward of the 65 percent fuselage length station, consisted of modified wing planform fillet and a canard. Tests were performed in the Langley Low Turbulence Pressure Tunnel at Reynolds numbers from about 4.2 million to 14.3 million based on the fuselage reference length.
NASA Astrophysics Data System (ADS)
Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Madsen, J.; Schepers, J. G.
2016-09-01
2D wind tunnel tests at high Reynolds numbers have been done within the EU FP7 AVATAR project (Advanced Aerodynamic Tools of lArge Rotors) on the DU00-W-212 airfoil and at two different test facilities: the DNW High Pressure Wind Tunnel in Gottingen (HDG) and the LM Wind Power in-house wind tunnel. Two conditions of Reynolds numbers have been performed in both tests: 3 and 6 million. The Mach number and turbulence intensity values are similar in both wind tunnels at the 3 million Reynolds number test, while they are significantly different at 6 million Reynolds number. The paper presents a comparison of the data obtained from the two wind tunnels, showing good repeatability at 3 million Reynolds number and differences at 6 million Reynolds number that are consistent with the different Mach number and turbulence intensity values.
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2016-07-01
Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.
Three dimensional spatio-temporal instabilities in two-layer flows at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Valluri, Prashant; O'Na'Raigh, Lennon; Spelt, Peter
2010-11-01
Interfacial instabilities in Newtonian two-layer flows are investigated via three-dimensional direct numerical simulations using the diffuse-interface method to capture the interface. The simulations study the effect of waves, generated by a random 3D noise, at the inlet on the spatio-temporal behaviour of the instabilities. Of specific interest are the conditions of growth/decay of the spanwise interfacial perturbation. Preliminary results show a sustained growth of the spanwise mode, irrespective of the primary streamwise mode, at various streamwise locations in the domain. At positions close to the inlet the spanwise wave grows linearly until a non-linear distortion which eventually saturates the amplitude. This work extends our recently reported two-dimensional studies on spatiotemporal interfacial instabilities (J. Fluid Mech. (2010), vol. 656, pp. 458--480) to i) three dimensions and ii) higher Reynolds numbers.
On large-scale dynamo action at high magnetic Reynolds number
Cattaneo, F.; Tobias, S. M.
2014-07-01
We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect of the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.
Elliptic flow computation by low Reynolds number two-equation turbulence models
NASA Technical Reports Server (NTRS)
Michelassi, V.; Shih, T.-H.
1991-01-01
A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.
Control of a Separation bubble at Low Reynolds Numbers Using Electro-Active Polymers
NASA Astrophysics Data System (ADS)
Dell'Orso, Haley; Chang, Lucia; Zaremski, Sarah; Demauro, Edward; Leong, Chia; Amitay, Michael
2013-11-01
An experimental investigation was performed to study the effects of electro-active polymers (EAPs) on a 3-dimensional separation bubble on a two-dimensional NACA0009 airfoil at a Reynolds number of 20,000 and an angle of attack 5 deg. A single row of EAPs was placed at 20% chord and activated at 1500V and 50Hz, corresponding to the Kelvin-Helmholtz frequency of the separated mixing layer. Stereoscopic Particle Image Velocimetry data were collected in the vicinity of the EAPs for three cases: baseline (no EAP present), EAP present but not actuated, and EAP present and actuated. Data demonstrated that the presence of the EAP slightly reduced the magnitude of the separation bubble. When the EAPs were actuated at the chosen frequency and voltage, the separation bubble was almost completely mitigated.
Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer
NASA Astrophysics Data System (ADS)
Coudert, S.; Foucaut, J. M.; Kostas, J.; Stanislas, M.; Braud, P.; Fourment, C.; Delville, J.; Tutkun, M.; Mehdi, F.; Johansson, P.; George, W. K.
2011-01-01
An experiment on a flat plate turbulent boundary layer at high Reynolds number has been carried out in the Laboratoire de Mecanique de Lille (LML, UMR CNRS 8107) wind tunnel. This experiment was performed jointly with LEA (UMR CNRS 6609) in Poitiers (France) and Chalmers University of Technology (Sweden), in the frame of the WALLTURB European project. The simultaneous recording of 143 hot wires in one transverse plane and of two perpendicular stereoscopic PIV fields was performed successfully. The first SPIV plane is 1 cm upstream of the hot wire rake and the second is both orthogonal to the first one and to the wall. The first PIV results show a blockage effect which based on both statistical results (i.e. mean, RMS and spatial correlation) and a potential model does not seem to affect the turbulence organization.
Separated shear layer transition over an airfoil at a low Reynolds number
NASA Astrophysics Data System (ADS)
Boutilier, Michael S. H.; Yarusevych, Serhiy
2012-08-01
Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100 000 was investigated using a combination of flow visualization, velocity field mapping, surface pressure fluctuation measurements, and stability analysis. The results provide a detailed description of shear layer transition on an airfoil at low Reynolds numbers. An extensive comparison of measured surface pressure and velocity fluctuations demonstrated that time-resolved surface pressure sensor arrays can be used to identify the presence of flow separation, estimate the extent of the separated flow region, and measure disturbance growth rate spectra in significantly less time than is required by conventional techniques. Surface pressure sensor measurements of disturbance growth rate, wave number, and convection speed are found to compare well with predictions of linear stability theory, supporting the claim that convection speeds measured in separation bubbles over low Reynolds number airfoils are associated with wave packets of growing disturbances propagating through the shear layer. Through a comparison of measured convection speeds in this investigation and prior low Reynolds number airfoil experiments, it is shown that disturbance convection speeds of between 30% and 50% of the edge velocity are typical for this type of flow, consistent with phase speed estimates from previous analytical studies on transitional separation bubbles. Modal RMS velocity profiles were measured and found to be reasonably predicted by stability theory. The results suggest that, even for the relatively thick NACA 0018 airfoil profile, disturbance development over the majority of the laminar separated shear layer is primarily governed by a linear inviscid mechanism.
Thrust production of free-to-pivot plates at low Reynolds number
NASA Astrophysics Data System (ADS)
Granlund, Kenneth; Ol, Michael; Bernal, Luis
2012-11-01
As an abstraction of flapping-wing aerodynamics, rigid flat plates free-to-pivot at the leading edge between incidence angle limits of +/-45 are considered in rectilinear as well as waving motion in a quiescent fluid. Thrust (lift) and resistive-force are measured, forming a hover Figure-of-Merit (FoM). The evolution of spatial retention of a leading edge vortex is tracked throughout the motion cycle, showing vortex formation shortly after the plate completes its rotation, and in some cases shedding of subsequent vortices after the initial leading edge vortex is ejected. Vortex evolution in rectilinear- vs. rotating and steady vs. accelerating motion is visualized with fluorescent dye illuminated by a laser light sheet at several spanwise stations along the leading edge. Experiments in water reveal a Reynolds number indifference in thrust and FoM for 8,000
NASA Astrophysics Data System (ADS)
Fleming, Jonathan Lee
Laser Doppler velocimetry (LDV) measurements and hydrogen-bubble flow-visualization techniques were used to examine the near-wall flow structure of 2-D and 3-D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers, (2) to observe and quantify differences between 2-D and 3-D TBL flow structures, and (3) to document Reynolds number effects for 3-D TBLs. An ultimate application of this work would be to improve turbulence modeling for 3-D flows. The LDV data have provided results detailing the turbulence structure of the 2-D and 3-D TBLs, as well as low uncertainty skin friction estimates. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3-D flow were examined when possible. Comparison to results with the same 3-D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3-D TBLs. While the 3-D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen-bubble technique was used as a flow-visualization tool to examine the near-wall flow structure of 2-D and 3-D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2-D flow. The 2-D low-speed streaky structures experienced greater interaction with the outer region high-momentum fluid than observed for the 3-D flow. The near-wall 3-D flow structures were generally more quiescent. Numerical parameters quantified the observed differences, and characterized the low-speed streak and high-speed sweep events. All observations indicated a more stable near-wall flow structure with less turbulent interactions occurring
Predictions of fully developed pulsating flow with the aid of low-Reynolds number turbulence models
NASA Astrophysics Data System (ADS)
Bartosik, A. S.; Sobocinski, R.; Wanik, A. J.
Four low-Reynolds-number turbulence models are studied to investigate the fully developed pulsating turbulent flow of an incompressible Newtonian fluid in a circular pipe. In these models, the Reynolds stress is related to the local velocity gradient by the turbulent viscosity, and the turbulent viscosity is determined using modeled transport equations for the kinetic energy of turbulence and its dissipation rate. The models of Launder and Sharma (1974) and Chien (1982) are found to perform better than those of Hassid and Poreh (1978 and 1975).
Wake instabilities of a blunt trailing edge profiled body at intermediate Reynolds numbers
NASA Astrophysics Data System (ADS)
Naghib-Lahouti, A.; Lavoie, P.; Hangan, H.
2014-07-01
Experiments have been conducted to identify and characterize the instabilities in the wake of a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, for a broad range of Reynolds numbers ( based on the thickness of the body). These experiments, which include measurements of the wake velocity field using hot-wire anemometry and particle image velocimetry, complement previous studies of the wake flow for the same geometry at lower and higher Reynolds numbers. The spatial characteristics of the primary wake instability (the von Kármán vortex street) are found to have relatively little variation in the range of Reynolds numbers investigated, in spite of the transition of the boundary layer upstream of the trailing edge from a laminar to a turbulent state. The dominant secondary instability, identified based on the structure of velocity and vorticity fields in the wake extracted using proper orthogonal decomposition, is found to have features similar to the ones described numerically and experimentally by Ryan et al. (J Fluid Mech 538:1-29, 2005), and Naghib-Lahouti et al. (Exp Fluids 52:1547-1566, 2012) at lower Reynolds numbers. The findings suggest that the spatial characteristics of the dominant primary and secondary wake flow instabilities have little dependence on the state of the flow upstream of the separation points, in spite of the distinct change in the normalized vortex shedding frequency upon the transition of the boundary layer.
Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities
NASA Technical Reports Server (NTRS)
Britcher, Colin P.
1996-01-01
The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.
NASA Astrophysics Data System (ADS)
Schumacher, Jörg
2004-08-01
Studies of the relation between the shear parameter S* and the Reynolds number Re are presented for a nearly homogeneous and statistically stationary turbulent shear flow. The parametric investigations are in line with a generalized perspective on the return to local isotropy in shear flows that was outlined recently [J. Schumacher, K. R. Sreenivasan, and P. K. Yeung, Phys. Fluids 15, 84 (2003)]. Therefore, two parameters, the constant shear rate S and the level of initial turbulent fluctuations as prescribed by an energy injection rate ɛin, are varied systematically. The investigations suggest that the shear parameter levels off for larger Reynolds numbers which is supported by dimensional arguments. It is found that the skewness of the transverse derivative shows a different decay behavior with respect to Reynolds number when the sequence of simulation runs follows different pathways across the two-parameter plane. The study can shed new light on different interpretations of the decay of odd order moments in high-Reynolds number experiments.
Performance of a cascade in an annular vortex-generating tunnel over range of Reynolds numbers
NASA Technical Reports Server (NTRS)
Thurston, Sidney; Brunk, Ralph E
1951-01-01
Total-pressure deficiency for an annular cascade of 65-(12)10 blades was measured at three radial stations over a range of Reynolds numbers from 50,000 to 250,000 and at angles of attack of 15 degrees and 25 degrees. The variation of turning angle and shape of static pressure distribution at these stations is also shown.
Drag-n-fly: a Proposal in Response to a Low Reynolds Number Station Keeping Mission
NASA Technical Reports Server (NTRS)
Foohey, Mark; Niehaus, John; Neumann, Jenny; Deviny, Pat; Zurovchak, Jerry; Brenner, Joey; Gendron, Peter
1990-01-01
The Drag-n-Fly is a remotely piloted, low Reynolds number vehicle. It was designed to maintain level controlled flight and fly a closed course at flight speeds corresponding to Reynolds numbers of less than 2 x 10(exp 5) and as close to 1 x 10(exp 5) as possible. The success of the mission will be associated with achieving the lowest mean chord Reynolds number possible and maximizing loiter time on the course. The flight plan for the Drag-n-Fly calls for the vehicle to ascent to a cruise altitude of 25 ft. The airfoil selected for the Drag-n-Fly is a Spica chosen for its high lift coefficient at low Reynolds number. The propulsion system for the Drag-n-Fly consists of a 10 inch diameter propeller mounted on the front of the vehicle. Structural support for the Drag-n-Fly comes from four box beams running the length of the fuselage. The tail and horizontal stabilizers are located far aft of the lifting surface in order to assure proper static stability. The present design for the Drag-n-Fly will meet the criteria for the present mission.
Multigrid solution of the convection-diffusion equation with high-Reynolds number
Zhang, Jun
1996-12-31
A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.
The George C. Marshall Space Flight Center High Reynolds Number Wind Tunnel Technical Handbook
NASA Technical Reports Server (NTRS)
Gwin, H. S.
1975-01-01
The High Reynolds Number Wind Tunnel at the George C. Marshall Space Flight Center is described. The following items are presented to illustrate the operation and capabilities of the facility: facility descriptions and specifications, operational and performance characteristics, model design criteria, instrumentation and data recording equipment, data processing and presentation, and preliminary test information required.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Technical Reports Server (NTRS)
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Stokesian swimming of a sphere at low Reynolds number by helical surface distortion
NASA Astrophysics Data System (ADS)
Felderhof, B. U.; Jones, R. B.
2016-07-01
Explicit expressions are derived for the matrices determining the mean translational and rotational swimming velocities and the mean rate of dissipation for Stokesian swimming at low Reynolds number of a distorting sphere in a viscous incompressible fluid. As an application, an efficient helical propeller-type stroke is found and its properties are calculated.
Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing
NASA Astrophysics Data System (ADS)
Gatti, Davide; Quadrio, Maurizio
2016-09-01
This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The considered forcing is based on the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the travelling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like for example riblets, the performance of the travelling waves is well described by a vertical shift of the logarithmic portion of the mean streamwise velocity profile. Except when $Re$ is very low, this shift remains constant with $Re$, at odds with the percentage reduction of the friction coefficient, which is known to present a mild, logarithmic decline. Our new data agree with the available literature, which is however mostly based on low-$Re$ information and hence predicts a quick drop of maximum drag reduction with $Re$. The present study supports a more optimistic scenario, where for an airplane at flight Reynolds numbers a drag reduction of nearly 30\\% would still be possible thanks to the travelling waves.
NASA Technical Reports Server (NTRS)
Watson, Ralph D.; Hall, Robert M.; Anders, John B.
2000-01-01
This paper reviews flat plate skin friction data from early correlations of drag on plates in water to measurements in the cryogenic environment of The NASA Langley National Transonic Facility (NTF) in late 1996. The flat plate (zero pressure gradient with negligible surface curvature) incompressible skin friction at high Reynolds numbers is emphasized in this paper, due to its importance in assessing the accuracy of measurements, and as being important to the aerodynamics of large scale vehicles. A correlation of zero pressure gradient skin friction data minimizing extraneous effects between tests is often used as the first step in the calculation of skin friction in complex flows. Early data compiled by Schoenherr for a range of momentum thickness Reynolds numbers, R(sub Theta) from 860 to 370,000 contained large scatter, but has proved surprisingly accurate in its correlated form. Subsequent measurements in wind tunnels under more carefully controlled conditions have provided inputs to this database, usually to a maximum R(sub Theta) of about 40,000. Data on a large axisymmetric model in the NASA Langley National Transonic Facility extends the upper limit in incompressible R(sub Theta) to 619,800 using the van Driest transformation. Previous data, test techniques, and error sources ar discussed, and the NTF data will be discussed in detail. The NTF Preston tube and Clauser inferred data accuracy is estimated to be within -2 percent of a power-law curve fit, and falls above the Spalding theory by 1 percent at R(sub Theta) of about 600,000.
Design and installation of a high Reynolds number recirculating water tunnel
NASA Astrophysics Data System (ADS)
Daniel, Libin
The High-Reynolds Number Fluid Mechanics Laboratory has recently been established at Oklahoma State University (OSU). The three primary components of the laboratory are 1) a recirculating water tunnel, 2) a multiphase pipe flow facility, and 3) a multi-scale flow visualization system. This thesis focuses on the design and fabrication of the water tunnel, which will be used for high-Reynolds number turbulent boundary layer research. Two main design criteria for the water tunnel were to achieve a momentum thickness based Reynolds number in excess of 104 and to have high optical access to the flow surfaces in the test section. This is being achieved with a 1 m. long test section and a maximum flow speed of 10 m/s. This Reynolds number was targeted to bridge the gap between typical university water tunnels (103) and the world's largest water tunnel facilities (105). The water tunnel is powered by a 150 hp motor and a 4500 gpm capacity centrifugal pump. The water tunnel is designed for a maximum operating pressure of 40 psi. This will make the facility a low cost option to perform high-Reynolds number aerodynamic and hydrodynamic tests. Improved flow imaging capability is a major advantage to liquid based fluid facilities because of the increased density for seeding and reduced field-of-view for equivalent Reynolds number. The laboratory's state-of-the-art flow visualization system can be used for time-resolved and phase averaged stereo- particle-image-velocimetry (sPIV), laser-induced-fluorescence, and high-speed imaging. Design provisions are also made to allow a multi-phase loop to share the pump and motor configuration of this water tunnel facility. The major design decisions that went into the design of the water tunnel facility are discussed. The design considerations that were taken into account for the test section, flow conditioning sections and the entire flow loop are discussed in greater detail. The final configuration and the technical drawings of the water
DNS/LES Simulations of Separated Flows at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.
Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators
Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.
2009-09-15
The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.
NASA Astrophysics Data System (ADS)
Renksizbulut, M.
Nusselt Numbers and drag coefficients of single-component liquid droplets and solid spheres in high temperature, intermediate Reynolds Number flows were investigated. The evaporation of suspended water, Methanol and n-Heptane droplets were followed in laminar air streams up to 1059 K in temperature using a steady-state measurement technique. It is found that the dynamic blowing effect of evaporation causes large reductions in heat transfer rates, and that the film conditions constitute an appropriate reference state for the evaluation of thermophysical properties. The numerical results indicate that the blowing effect of evaporation on momentum transfer is to reduce friction drag very significantly but at the same time increase pressure drag by almost an equal amount; the net effect on the total drag force being only a marginal reduction. In all cases, it is found that thermophysical property variations play a very dominant role in reducing the drag forces acting on cold particles. Results are analysed and a correlation for stagnation-point heat transfer is also presented.
The Use of Heavy Gas for Increased Reynolds Numbers in Transonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Anders, J. B.; Anderson, W. K.; Murthy, A. V.
1998-01-01
The use of a high molecular weight test gas to increase the Reynolds number range of transonic wind tunnels is explored. Modifications to a small transonic wind tunnel are described and the real gas properties of the example heavy gas (sulfur hexafluoride) are discussed. Sulfur hexafluoride is shown to increase the test Reynolds number by a factor of more than 2 over air at the same Mach number. Experimental and computational pressure distributions on an advanced supercritical airfoil configuration at Mach 0.7 in both sulfur hexafluoride and nitrogen are presented. Transonic similarity theory is shown to be partially successful in transforming the heavy gas results to equivalent nitrogen (air) results, provided the correct definition of gamma is used.
Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan
2015-01-01
Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.
DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan
2013-01-01
Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.
An evaluation of nozzle relaminarization using Low Reynolds Number k-epsilon turbulence models
NASA Technical Reports Server (NTRS)
Jentink, Thomas N.
1993-01-01
Two nozzle flowfields are evaluated numerically using a Low Reynolds k-epsilon turbulence model to examine possible boundary layer relaminarization. Flow enters the scramjet-like nozzles at a Mach Number of approximately 4.5 and is expanded around smooth shoulders to an exit Mach number of about 6.5. The strong streamwise acceleration and large favorable pressure gradients act with the convex curvature to form small regions of laminar-like boundary layer behavior along the expansion surface. Two relaminarization criteria are evaluated and they both predict relaminarization to be occurring, with the trends accurately modeled by the Low-Reynolds Number turbulence model that is used. The Baldwin-Lomax turbulence model cannot model the near-wall changes that take place in the rapidly accelerating boundary layer, but it proves to be useful in providing the acceleration parameters used in predicting the potential for relaminarization.
NASA Astrophysics Data System (ADS)
Boutilier, Michael S. H.; Yarusevych, Serhiy
2012-06-01
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.
1982-01-01
A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows
Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2011-01-01
Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows.
Kumar, Haribalan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long
2011-04-01
Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan-Carpenter (K(C)) number. PMID:21580803
NASA Technical Reports Server (NTRS)
Dryden, Hugh L; Schubauer, G B; Mock, W C , Jr; Skramstad, H K
1937-01-01
The investigation of wind-tunnel turbulence, conducted at the National Bureau of Standards with the cooperation of the National Advisory Committee for Aeronautics, has been extended to include a new variable, namely, the scale of the turbulence. This report presents the results of a study of this new variable together with the intensity of the turbulence, and the effect of both on the critical Reynolds number of spheres.
NASA Astrophysics Data System (ADS)
van Hout, R.; Katz, J.
2011-10-01
Particle image velocimetry was used for measuring the velocity and Reynolds stress distributions in the latitudinal plane of counter-rotating Taylor-Couette flow at high Reynolds numbers (Re). The ratio of outer to inner cylinder angular velocity, μ, varied between -10.79 and -0.68, and Rei based on the inner cylinder velocity ranged between 2635 and 40 446, substantially extending previously available data. The results were used for examining scaling trends, especially the effects of Re and μ on the mean flow and turbulence statistics. We showed that using a kind of "inner wall" scaling, μ was the primary parameter controlling the normalized profiles of mean velocity, Reynolds stresses, TKE production and dissipation rates. Re effects on the scaled profiles were much smaller. Increasing μ flattened the mean azimuthal velocity profiles in the center of the annulus, increased the radial velocity gradients near the walls, and moved the radial point at which the velocity changed sign towards the outer cylinder. The flow also became more turbulent and a log layer with increasing extent developed near the inner wall. All the Reynolds stress components, along with the TKE production and dissipation rates peaked near the inner wall. Raising μ extended the high turbulence levels deeper into the annulus. At low μ, the stabilizing effect of the outer cylinder kept the flow in the outer regions laminar. Only when the magnitude of the inner cylinder angular velocity equaled or exceeded that of the outer one, the Reynolds stresses remained significant across the entire measurement range, and started increasing also near the outer cylinder. The azimuthal energy spectra confirmed these trends and showed that the changes to turbulence levels occurred at a broad range of scales. Furthermore, for low μ, the instantaneous vorticity fields were dominated by nearly parallel, elongated, counter-rotating vorticity contours, reminiscent of inclined counter-rotating vortex pairs. At
Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids
Wang, Shiyan; Ardekani, Arezoo M.
2015-01-01
We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288
N-231 High Reynolds Number Channel Facility (An example of a Versatile Wind Tunnel) Tunnel 1 I is a
NASA Technical Reports Server (NTRS)
1980-01-01
N-231 High Reynolds Number Channel Facility (An example of a Versatile Wind Tunnel) Tunnel 1 I is a blowdown Facility that utilizes interchangeable test sections and nozzles. The facility provides experimental support for the fluid mechanics research, including experimental verification of aerodynamic computer codes and boundary-layer and airfoil studies that require high Reynolds number simulation. (Tunnel 1)
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1990-01-01
The variation of the velocity-derivative skewness of a Navier-Stokes flow as the Reynolds number goes toward zero is calculated numerically. The value of the skewness, which has been somewhat controversial, is shown to become small at low Reynolds numbers.
Reynolds number dependence of velocity structure functions in turbulent shear flows
NASA Astrophysics Data System (ADS)
Antonia, R. A.; Satyaprakash, B. R.; Chambers, A. J.
1982-01-01
Measurements of moments up to order eight of wind velocity changes in laboratory and atmospheric conditions are reported over a wide range of Reynolds numbers. Circular and plane jet trials were run at Re of 55,600 and 471,000, respectively, and the flows were observed to be self-preserving. Measurements of the atmospheric surface layer in Re ranging from 400-9000, and both interior and exterior measurements of the velocity fluctuations were made with a hot-wire anemometer. Fourth, sixth, and eighth order moments of delta-u were calculated to follow power-law curves over the inertial subrange, with the magnitude of the power-law exponent increasing with the order. For orders greater than three, the degree of departure of the nth order structure from that predicted by the Kolmogoroff theory decreased with increasing Reynolds numbers.
The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.
Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie
2014-03-01
Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.
Flow and acoustic properties of low Reynolds number underexpanded supersonic jets
NASA Technical Reports Server (NTRS)
Hu, Tieh-Feng; Mclaughlin, D. K.
1990-01-01
An experimental program to investigate the flow and acoustic properties of model underexpanded supersonic jets was conducted. In particular, the role played by large-scale organized fluctuations in the flow evolution and acoustic production processes was examined in detail. The experimental conditions were chosen as low-Reynolds-number (Re = 8000) Mach 1.4 and 2.1 underexpanded jets exhausting from convergent nozzles. A consequence of performing the experiments at low Reynolds number is that the broadband shock-associated noise is suppressed. The focus of the present study is on the generation of noise by large-scale instabilities in the presence of strong shock cell structures. It is demonstrated that the production of screech is related to the modulation and decay of large-scale turbulence structures.
Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.
Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P
2014-10-01
The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.
Low Reynolds number k-epsilon modelling with the aid of direct simulation data
NASA Technical Reports Server (NTRS)
Rodi, W.; Mansour, N. N.
1993-01-01
The constant C sub mu and the near-wall damping function f sub mu in the eddy-viscosity relation of the k-epsilon model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary layer flow at two Reynolds numbers each. Various existing f sub mu model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The epsilon-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the epsilon-equation is analyzed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the epsilon-equation are tested against the DNS data, and an improved model is proposed.
Low Reynolds number kappa-epsilon modeling with the aid of direct simulation data
NASA Technical Reports Server (NTRS)
Rodi, W.; Mansour, N. N.
1990-01-01
The constant C(sub mu) and the near-wall damping function f(sub mu) in the eddy-viscosity relation of the kappa-epsilon model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary layer flow at two Reynolds numbers each. Various existing f(sub mu) model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The epsilon-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the epsilon-equation is analyzed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the epsilon-equation are tested against the DNS data, and an improved model is proposed.
Nonisothermal Flow Around a Circular Cylinder with a Permeable Layer at Moderate Reynolds Numbers
NASA Astrophysics Data System (ADS)
Morenko, I. V.; Snigerev, B. A.
2016-07-01
Results of a numerical investigation of a separation nonisothermal flow of an incompressible viscous fluid around a circular cylinder covered with a permeable porous layer at moderate Reynolds numbers are presented. This flow was defined with the use of Navier-Stokes and energy equations, and the filtration flow in the porous layer was determined by the Forchheimer law. The dependence of the hydrodynamical drag of the indicated cylinder and the length of the vortex region in the flow around it on the Reynolds and Darcy numbers was determined. An analysis of the heat transfer from cylindrical bodies covered with permeable layers of a highly heat-conducting material or a heat-insulating material has been performed.
Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number
NASA Astrophysics Data System (ADS)
Cranch, G. A.; Lane, J. E.; Miller, G. A.; Lou, J. W.
2013-05-01
The motion of submerged cantilevers driven by viscous fluids is experimentally investigated and a previously published theoretical model is verified over a broad range of Reynolds number covering 4×10-3≤Re≤2000 at frequencies up to 1 kHz. Both planar and cylindrical cantilevers are implemented using short length (few centimeters) fiber lasers, which are also used to measure the deflections. The driving forces are analyzed in detail illustrating how the dominant force transitions from a pressure related force to a viscous force depending on the Reynolds number of the fluid flow around the cantilever. Simplified, approximate expressions for the tip displacement of cantilevers oscillating in the highly viscous regime are also presented. These results will enable accurate, a priori, calculation of the motion of driven cantilevers over a range of dimensions, geometries, and fluid properties.
Application of shock tubes to transonic airfoil testing at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.
1978-01-01
Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.
Heat transfer predictions for two turbine nozzle geometries at high Reynolds and Mach numbers
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Jackson, R.
1995-01-01
Predictions of turbine vane and endwall heat transfer and pressure distributions are compared with experimental measurements for two vane geometries. The differences in geometries were due to differences in the hub profile, and both geometries were derived from the design of a high rim speed turbine (HRST). The experiments were conducted in the Isentropic Light Piston Facility (ILPF) at Pyestock at a Reynolds number of 5.3 x 10(exp 6), a Mach number of 1.2, and a wall-to-gas temperature ratio of 0.66. Predictions are given for two different steady-state three-dimensional Navier-Stokes computational analyses. C-type meshes were used, and algebraic models were employed to calculate the turbulent eddy viscosity. The effects of different turbulence modeling assumptions on the predicted results are examined. Comparisons are also given between predicted and measured total pressure distributions behind the vane. The combination of realistic engine geometries and flow conditions proved to be quite demanding in terms of the convergence of the CFD solutions. An appropriate method of grid generation, which resulted in consistently converged CFD solutions, was identified.
Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers
Squire, J.; Bhattacharjee, A.
2015-10-28
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the "magnetic shear-current effect" as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis bymore » enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. Furthermore, these illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.« less
Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers
Squire, J.; Bhattacharjee, A.
2015-10-28
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the "magnetic shear-current effect" as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. Furthermore, these illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.
Dynamics of flexible fibers and vesicles in Poiseuille flow at low Reynolds number.
Farutin, Alexander; Piasecki, Tomasz; Słowicka, Agnieszka M; Misbah, Chaouqi; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L
2016-09-21
The dynamics of flexible fibers and vesicles in unbounded planar Poiseuille flow at low Reynolds number is shown to exhibit similar basic features, when their equilibrium (moderate) aspect ratio is the same and vesicle viscosity contrast is relatively high. Tumbling, lateral migration, accumulation and shape evolution of these two types of flexible objects are analyzed numerically. The linear dependence of the accumulation position on relative bending rigidity, and other universal scalings are derived from the local shear flow approximation.
Design of a remotely piloted vehicle for a low Reynolds number station keeping mission
NASA Technical Reports Server (NTRS)
1990-01-01
Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration.
NASA Astrophysics Data System (ADS)
Savenkov, I. V.
2015-02-01
For the pressure-driven flow in an annular channel with a wall moving in the axial direction, its linear instability with respect to axisymmetric perturbations at high Reynolds numbers is investigated within the framework of the triple-deck theory. When the gap between the cylinders is sufficiently small (as compared to the radii of the cylinders), it is shown that the perturbations can split into two wave packets, the first of which grows faster and moves at a higher velocity.
The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
Ngo, Victoria; McHenry, Matthew James
2014-08-01
The fluid forces that govern propulsion determine the speed and energetic cost of swimming. These hydrodynamics are scale dependent and it is unclear what forces matter to the tremendous diversity of aquatic animals that are between a millimeter and a centimeter in length. Animals at this scale generally operate within the regime of intermediate Reynolds numbers, where both viscous and inertial fluid forces have the potential to play a role in propulsion. The present study aimed to resolve which forces create thrust and drag in the paddling of the water boatman (Corixidae), an animal that spans much of the intermediate regime (10
Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number
NASA Astrophysics Data System (ADS)
Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique
2016-07-01
A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.
Small-scale behavior in distorted turbulent boundary layers at low Reynolds number
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1994-01-01
During the last three years we have conducted high- and low-Reynolds-number experiments, including hot-wire measurements of the velocity fluctuations, in the test-section-ceiling boundary layer of the 80- by 120-foot Full-Scale Aerodynamics Facility at NASA Ames Research Center, to test the local-isotropy predictions of Kolmogorov's universal equilibrium theory. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation; however, its range of validity in shear flows has been a subject of controversy. The present experiments were planned to enhance our understanding of the local-isotropy hypothesis. Our experiments were divided into two sets. First, measurements were taken at different Reynolds numbers in a plane boundary layer, which is a 'simple' shear flow. Second, experiments were designed to address this question: will our criteria for the existence of local isotropy hold for 'complex' nonequilibrium flows in which extra rates of mean strain are added to the basic mean shear?
Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number
NASA Astrophysics Data System (ADS)
Lenormand, E.; Sagaut, P.; Phuoc, L. Ta
2000-02-01
Large eddy simulation (LES) of compressible periodic channel flow is performed using a fourth-order finite difference scheme for a Reynolds number based on bulk density, bulk velocity and channel half-width equal to 3000. Two configurations are studied: a subsonic case (M0=0.5) that corresponds to the experiments of Niederschulte et al. [Measurements of turbulent flow in a channel at low Reynolds numbers, Exp. Fluids, 9, 222-230 (1990)] and a supersonic case (M0=1.5) that corresponds to the direct numerical simulation (DNS) results by Coleman et al. [A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech., 305, 159-183 (1995); Compressible turbulent channel flows: DNS results and modeling, J. Fluid Mech., 305, 185-218 (1995)]. In order to determine the influence of the discretization, two cases are computed using two different meshes, a coarse one and a fine one. Two subgrid-scale models are tested: the first one is an extension to compressible flows of the Smagorinsky model, while the second one is a model based both on large and small scales of turbulence, a hybrid Bardina-selective mixed scale model. Various statistical comparisons are made with experimental and DNS data at similar Reynolds numbers, including higher-order statistics. Copyright
Small-scale behavior in distorted turbulent boundary layers at low Reynolds number
NASA Astrophysics Data System (ADS)
Saddoughi, Seyed G.
1994-12-01
During the last three years we have conducted high- and low-Reynolds-number experiments, including hot-wire measurements of the velocity fluctuations, in the test-section-ceiling boundary layer of the 80- by 120-foot Full-Scale Aerodynamics Facility at NASA Ames Research Center, to test the local-isotropy predictions of Kolmogorov's universal equilibrium theory. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation; however, its range of validity in shear flows has been a subject of controversy. The present experiments were planned to enhance our understanding of the local-isotropy hypothesis. Our experiments were divided into two sets. First, measurements were taken at different Reynolds numbers in a plane boundary layer, which is a 'simple' shear flow. Second, experiments were designed to address this question: will our criteria for the existence of local isotropy hold for 'complex' nonequilibrium flows in which extra rates of mean strain are added to the basic mean shear?
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
Learning from jellyfish: Fluid transport in muscular pumps at intermediate Reynolds numbers
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Dabiri, John
2010-11-01
Biologically inspired hydrodynamic propulsion and maneuvering strategies promise the advancement of medical implants and minimally invasive clinical tools. We have chosen juvenile jellyfish as a model system for investigating fluid dynamics and morphological properties underlying fluid transport by a muscular pump at intermediate Reynolds numbers. Recently we have described how natural variations in viscous forces are balanced by changes in jellyfish body shape (phenotypic plasticity), to the effect of facilitating efficient body-fluid interaction. Complementing these studies in our live model organisms, we are also engaged in engineering an artificial jellyfish, that is, a jellyfish-inspired construct of a flexible plastic sheet actuated by a monolayer of rat cardiomyocytes. The main challenges here are (1) to derive a body shape and deformation suitable for effective fluid transport under physiological conditions, (2) to understand the mechanical properties of the muscular film and derive a design capable of the desired deformation, (3) to master the proper alignment and timely contraction of the muscle component needed to achieve the desired deformation, and (4) to evaluate the performance of the design.
Active Control of Separation on a Low Reynolds Number Airfoil Using Synthetic Jet Actuation
NASA Astrophysics Data System (ADS)
Feero, Mark
Wind tunnel experiments were used to study the effect of excitation amplitude and frequency on flow separation using synthetic jet actuation. A synthetic jet actuator was located near the leading edge of a NACA0025 airfoil at a chord-based Reynolds number of 100,000 and angle-of-attack of 10°. Under these flow conditions, the boundary layer separated from the suction surface and failed to reattach. Low-frequency excitation was used to target flow instabilities, while high-frequency excitation was performed at time scales an order of magnitude smaller. Low-frequency excitation at the separated shear layer frequency was found to be the most effective technique for flow reattachment and drag reduction. The results suggested that flow reattachment depended on exceeding a threshold momentum coefficient that varied with excitation frequency. Furthermore, a local minimum in drag independent of excitation frequency was achieved when the momentum coefficient corresponded to an average jet velocity that matched the freestream velocity.
COHERENT NONHELICAL SHEAR DYNAMOS DRIVEN BY MAGNETIC FLUCTUATIONS AT LOW REYNOLDS NUMBERS
Squire, J.; Bhattacharjee, A.
2015-11-01
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire and Bhattacharjee—pertain to the “magnetic shear-current effect” as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.
Spanwise gradients in flow speed and leading edge vortex attachment on low Reynolds number wings
NASA Astrophysics Data System (ADS)
Jardin, Thierry; David, Laurent
2014-11-01
It is now accepted that the aerodynamic performance of low aspect ratio revolving wings, such as insect wings or maple seed membranes, largely relies on sustained leading edge vortex attachment. However, the mechanisms responsible for this sustained attachment are still poorly understood. Here, we compute the Navier-Stokes solution of the flow around a finite wing (i) subjected to a uniform oncoming flow, (ii) subjected to a spanwise varying oncoming flow and (iii) revolving about its root. Therefore, we are able to isolate the mechanisms associated with the spanwise gradient of the local wing speed from those associated with centrifugal and Coriolis effects. We show that over flapping amplitudes typical of insect flight the spanwise gradient of the local wing speed may suffice in maintaining leading edge vortex attachment. We correlate this result with the development of spanwise flow and we evaluate the sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading edge vortex attachment through the spanwise gradient of the local wing speed does not promote large lift, which ultimately arises from centrifugal and Coriolis effects.
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed. PMID:26244665
Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
Wittkowski, Raphael; Löwen, Hartmut
2012-02-01
Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well as cycloids and arbitrary periodic trajectories.
Settling of a sphere through a fluid-fluid interface: influence of the Reynolds number
NASA Astrophysics Data System (ADS)
Pierson, Jean-Lou; Magnaudet, Jacques
2015-11-01
When a particle sediments through a horizontal fluid-fluid interface (a situation frequently encountered in oceanography as well as in coating processes), it often tows a tail of the upper fluid into the lower one. This feature is observed in both inertia- and viscosity-dominated regimes. Nevertheless the tail evolution and the particle motion are found to highly depend on the ratio of the two effects, i.e. on the Reynolds number. In this work we study numerically the settling of a sphere through a horizontal fluid-fluid interface using an Immersed Boundary Method combined with a Volume of Fluid approach. To get some more insight into the underlying physical mechanisms, we combine this computational approach with a semi-analytical description based on the concept of Darwin ''drift'' which allows us to predict the interface evolution, hence the thickness of the film encapsulating the sphere, in the two limits of Stokes flow and potential flow. This work was funded by DGA whose financial support is greatly appreciated.
NASA Astrophysics Data System (ADS)
Yeo, Kyongmin; Maxey, Martin R.
2013-05-01
We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number Re_{dot{γ }} and the bulk volume fraction ϕ in a homogeneous linear shear flow, in which Re_{dot{γ }} is defined from the density ρf and dynamic viscosity μ of the fluid, particle radius a, and the shear rate dot{γ } as Re_{dot{γ }}= ρ _f dot{γ } a^2 / μ. It is shown that the velocity fluctuations in the velocity-gradient and vorticity directions decrease at larger Re_{dot{γ }}. However, the particle self-diffusivity is found to be an increasing function of Re_{dot{γ }} as the motion of the suspended particles develops a longer auto-correlation under finite fluid inertia. It is shown that finite-inertia suspension flows are shear-thickening and the particle stresses become highly intermittent as Re_{dot{γ }} increases. To study the detailed changes in the suspension microstructure and rheology, we introduce a particle-stress-weighted pair-distribution function. The stress-weighted pair-distribution function clearly shows that the increase of the effective viscosity at high Re_{dot{γ }} is mostly related to the strong normal lubrication interaction in the compressive principal axis of the shear flow.
Linear drag law for high-Reynolds-number flow past an oscillating body
NASA Astrophysics Data System (ADS)
Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif
2016-07-01
An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.
Triple-deck analysis of transonic high Reynolds number flow through slender channels.
Kluwick, A; Kornfeld, M
2014-07-28
In this work, laminar transonic weakly three-dimensional flows at high Reynolds numbers in slender channels, as found in microsupersonic nozzles and turbomachines of micro-electro-mechanical systems, are considered. The channel height is taken so small that the viscous wall layers forming at the channel walls start to interact strongly rather than weakly with the inviscid core flow and, therefore, the classical boundary layer approach fails. The resulting viscous-inviscid interaction problem is formulated using matched asymptotic expansions and found to be governed by a triple-deck structure. As a consequence, the properties of the predominantly inviscid core region and the viscous wall layers have to be calculated simultaneously in the interaction region. Weakly three-dimensional effects caused by surface roughness, upstream propagating flow perturbations, boundary layer separation as well as bifurcating solutions are discussed. Representative results for subsonic as well as supersonic conditions are presented, and the importance of these flow phenomena in technical applications as, for example, a means to reduce shock losses through the use of deformed geometry is addressed.
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)
2002-01-01
The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Spalart, Philippe R.
2008-01-01
The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave transitionally in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Spalart, Philippe R.
2008-01-01
The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave 'transitionally' in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.
NASA Astrophysics Data System (ADS)
Sato, Makoto; Nonomura, Taku; Okada, Koichi; Asada, Kengo; Aono, Hikaru; Yakeno, Aiko; Abe, Yoshiaki; Fujii, Kozo
2015-11-01
Large-eddy simulations have been conducted to investigate the mechanisms of separated-flow control using a dielectric barrier discharge plasma actuator at a low Reynolds number. In the present study, the mechanisms are classified according to the means of momentum injection to the boundary layer. The separated flow around the NACA 0015 airfoil at a Reynolds number of 63 000 is used as the base flow for separation control. Both normal and burst mode actuations are adopted in separation control. The burst frequency non-dimensionalized by the freestream velocity and the chord length (F+) is varied from 0.25 to 25, and we discuss the control mechanism through the comparison of the aerodynamic performance and controlled flow-fields in each normal and burst case. Lift and drag coefficients are significantly improved for the cases of F+ = 1, 5, and 15 due to flow reattachment associated with a laminar-separation bubble. Frequency and linear stability analyses indicate that the F+ = 5 and 15 cases effectively excite the natural unstable frequency at the separated shear layer, which is caused by the Kelvin-Helmholtz instability. This excitation results in earlier flow reattachment due to earlier turbulent transition. Furthermore, the Reynolds stress decomposition is conducted in order to identify the means of momentum entrainment resulted from large-scale spanwise vortical structure or small-scale turbulent vortices. For the cases with flow reattachment, the large-scale spanwise vortices, which shed from the separated shear layer through plasma actuation, significantly increase the periodic component of the Reynolds stress near the leading edge. These large-scale vortices collapse to small-scale turbulent vortices, and the turbulent component of the Reynolds stress increases around the large-scale vortices. In these cases, although the combination of momentum entrainment by both Reynolds stress components results in flow reattachment, the dominant component is identified as
Laminar-Turbulent Transition: A Hysteresis Curve of Two Critical Reynolds Numbers in Pipe Flow
NASA Astrophysics Data System (ADS)
Kanda, Hidesada
2006-11-01
A laminar-turbulent transition model (DFD 2004) has been constructed for pipe flows: (1) Natural transition occurs in the entrance region, and (2) Entrance shape determines a critical Reynolds number Rc. To verify the model, we have carried out experiments similar to Reynolds's color-dye experiment with 5 bellmouth entrances and a straight pipe. Then, we observed the following: (i) two different types of Rc exist, Rc1 from laminar to turbulent and Rc2 from turbulent to laminar, and (ii) the ratio of bellmouth diameter BD to pipe diameter D affects the values of Rc1 and Rc2. For each entrance, Rc1 has a maximum value Rc1(max) and Rc2 has a minimum value Rc2(min). When overlapping the two curves of Rc1(max) and Rc2(min) against BD/D, a hysteresis curve is confirmed. All Rc values exist inside this hysteresis curve. Consequently, Rc takes a minimum value Rc(min) of approximately 2000 when BD/D is at a minimum, i.e., at BD/D = 1, Rc(min) = Rc1(max) = Rc2(min) = 2000. Regarding Reynolds's Rc of 12,830, we observed Rc1(max) of approximately 13,000 at BD/D above 1.54. Therefore, the model has been partly verified.
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607
Coherent large-scale structures in high Reynolds number supersonic jets
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Burrin, R. H.
1985-01-01
The flow structure of a 50.8 mm (2 in) diameter jet operated at a full expanded Mach number of 1.37, with Reynolds numbers in the range 1.7 to 2.35 million, was examined for the first 20 jet diameters. To facilitate the study of the large scale structure, and determine any coherence, a discrete tone acoustic excitation method was used. Phase locked flow visualization as well as laser velocimeter quantitative measurements were made. The main conclusions derived from this study are: (1) large scale coherent like turbulence structures do exist in large Reynolds number supersonic jets, and they prevail even beyond the potential core; (2) the most preferential Strouhal number for these structures is in the vicinity of 0.4; and (3) quantitatively, the peak amplitudes of these structures are rather low, and are about 1% of the jet exit velocity. Finally, since a number of unique problems related to LV measurements in supersonic jets were encountered, a summary of these problems and lessons learned therefrom are also reported.
Huang, Rong F.; Yen, Shun C.
2008-12-15
The aerodynamic characteristics and thermal structure of uncontrolled and controlled swirling double-concentric jet flames at low Reynolds numbers are experimentally studied. The swirl and Reynolds numbers are lower than 0.6 and 2000, respectively. The flow characteristics are diagnosed by the laser-light-sheet-assisted Mie scattering flow visualization method and particle image velocimetry (PIV). The thermal structure is measured by a fine-wire thermocouple. The flame shapes, combined images of flame and flow, velocity vector maps, streamline patterns, velocity and turbulence distributions, flame lengths, and temperature distributions are discussed. The flow patterns of the no-control case exhibit an open-top, single-ring vortex sitting on the blockage disc with a jetlike swirling flow evolving from the central disc face toward the downstream area. The rotation direction and size of the near-disc vortex, as well as the flow properties, change in different ranges of annulus swirl number and therefore induce three characteristic flame modes: weak swirling flame, lifted flame, and turbulent reattached flame. Because the near-disc vortex is open-top, the radial dispersion of the fuel-jet fluids is not significantly enhanced by the annulus swirling flow. The flows of the reacting swirling double-concentric jets at such low swirl and Reynolds numbers therefore present characteristics of diffusion jet flames. In the controlled case, the axial momentum of the central fuel jet is deflected radially by a control disc placed above the blockage disc. This arrangement can induce a large near-disc recirculation bubble and high turbulence intensities. The enhanced mixing hence tremendously shortens the flame length and enlarges the flame width. (author)
Dynamics and Energetics of Deformable Evaporating Droplets at Intermediate Reynolds Numbers.
NASA Astrophysics Data System (ADS)
Haywood, Ross Jeffrey
The behaviour of vaporizing droplets, representative of droplets present in hydrocarbon fuel sprays, has been investigated. A finite volume numerical model using a non-orthogonal, adaptive grid has been developed to examine both steady deformed and transient deforming droplet behaviour. Computations are made of the shapes of, and the velocity, pressure, temperature and concentration fields around and within n-heptane droplets evaporating in high temperature air environments at intermediate Reynolds and Weber numbers (10 <= Re <= 100, We <= 10). The numerical model has been rigorously tested by comparison with existing theoretical and numerical solutions and experimental data for problems of intermediate Reynolds number flows over spheroids, inviscid deforming droplets, viscous oscillating droplets, and transient deforming liquid droplets subjected to electrostatic fields. Computations show steady deformed droplets assuming oblate shapes with major axes perpendicular to the mean flow direction. When based on volume equivalent diameters, existing quasi-steady correlations of Nusselt and Sherwood numbers (Renksizbulut and Yuen (1983), Haywood et al. (1989), and Renksizbulut et al. (1991)) for spherical droplets are in good agreement with the numerical results. Providing they are based on actual frontal area, the computed drag coefficients are also reasonably well predicted by the existing quasi-steady drag correlation (Haywood et al. (1989), Renksizbulut and Yuen (1983)). A new correlation is developed for the total drag coefficient of quasi-steady deformed vaporizing droplets. The computed transient histories of droplets injected with an initial Reynolds number of 100 into 1000 K air at 1 and 10 atmospheres ambient pressure show strongly damped initial oscillations at frequencies within 25 percent of the theoretical natural frequency of Lamb (1932). Gas phase shear induced circulation within the droplets is responsible for the observed strong damping and promotes the
Experimental studies of Reynolds number dependence of turbulent mixing and transport
Warhaft, Z.
1994-07-01
Predicting turbulent mixing and transport remains a critical problem in industrial flows (combustion chambers, mixers, ventillation systems etc.) and in the environment (smoke plumes etc.). The mixing and transport processes are often a strong function of Reynolds number (Re) and yet there is a paucity of information on their Re dependence. Here we propose experiments of passive scalar mixing in isotropic grid turbulence whereby the Taylor Reynolds number (R{lambda}) will be varied from 30 to over 400 (60 < R{sub l} < 10,000). We will achieve the high R{lambda} by means of an active grid, which consists of grid bars with small wings that rotate and flap in a random way. We propose to study basic statistics (pdf, spectra etc). of a homogeneous passive scalar (linear mean profile), as well as of an inhomogeneous scalar (passive line source) as a function of Re. There are many problems concerning the nature of the fine scale structure of a scalar (e.g., the existence of derivative skewness, the relation of the scalar spectrum to the velocity spectrum, and the rate of spreading (dispersion) of a contaminant plume), placing the similarity theory developed over the past 40 years in doubt, yet there is no information concerning its Reynolds number dependence in isotropic turbulence. The passive scalar will be temperature, although some experiments will be done using helium (which has a Schmidt number of 0.23). Particular emphasis will be placed on higher order statistics of both the signal and its derivative. Our experiments will be related to theory and modelling and to recent advances in Direct Numerical Simulations. We will also do further work on mixing in a jet (also as a function of Re) and will relate this work to the (shearless) grid turbulence. The duration of the proposed research is three years.
Experimental studies of Reynolds number dependence of turbulent mixing and transport
NASA Astrophysics Data System (ADS)
Warhaft, Z.
Predicting turbulent mixing and transport remains a critical problem in industrial flows (combustion chambers, mixers, ventilation systems, etc.) and in the environment (smoke plumes, etc.). The mixing and transport processes are often a strong function of Reynolds number (Re) and yet there is a paucity of information on their Re dependence. We propose experiments of passive scalar mixing in isotropic grid turbulence whereby the Taylor Reynolds number (R(sub lambda)) will be varied from 30 to over 400 (60 less than R(sub l) less than 10,000). We will achieve the high R(sub lambda) by means of an active grid, which consists of grid bars with small wings that rotate and flap in a random way. We propose to study basic statistics (pdf, spectra, etc). of a homogeneous passive scalar (linear mean profile), as well as of an inhomogeneous scalar (passive line source) as a function of Re. There are many problems concerning the nature of the fine scale structure of a scalar (e.g., the existence of derivative skewness, the relation of the scalar spectrum to the velocity spectrum, and the rate of spreading of a contaminant plume), placing the similarity theory developed over the past 40 years in doubt, yet there is no information concerning its Reynolds number dependence in isotropic turbulence. The passive scalar will be temperature, although some experiments will be done using helium (which has a Schmidt number of 0.23). Particular emphasis will be placed on higher order statistics of both the signal and its derivative. Our experiments will be related to theory and modeling and to recent advances in direct numerical simulations. We will also do further work on mixing in a jet (also as a function of Re) and will relate this work to the (shearless) grid turbulence.
Edlund, E. M.; Ji, H.
2015-10-06
Here, we present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.
Drag measurements on long thin cylinders at small angles and high Reynolds numbers
NASA Astrophysics Data System (ADS)
Keith, William L.; Cipolla, Kimberly M.; Hart, David R.; Furey, Deborah A.
2005-06-01
Measurements of the drag caused by turbulent boundary layer mean wall shear stress on cylinders at small angles of attack and high length Reynolds numbers (8×106
Gable, C.; Travis, B.J.; O`Connell, R.J.; Stone, H.A.
1995-06-01
Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. As the plume spreads beneath the planet`s surface, the dynamic topography changes from a bell-shape to a plateau shape. The topography and surface stresses associated . with surface features called arachnoids, novae and coronae on Venus are consistent with the surface expression of a rising and spreading buoyant volume of fluid. Short wavelength viscosity variations, or sharp variations of lithosphere thickness, have a large effect on surface stresses. This study also considers the interaction and deformation of buoyancy-driven drops and bubbles in low Reynolds number multiphase systems. Applications include bubbles in magmas, the coalescence of liquid iron drops during core formation, and a wide range of industrial applications. Our methodology involves a combination of numerical boundary integral calculations, experiments and analytical work. For example, we find that for deformable drops the effects of deformation result in the vertical alignment of initially horizontally offset drops, thus enhancing the rate of coalescence.
Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers
NASA Astrophysics Data System (ADS)
Inoue, Michio
The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Adcock, J. B.; Ladson, C. L.
1980-01-01
Calibration data for the two dimensional test section of the Langley 0.3 Meter Transonic Cryogenic Tunnel were used to develop a Mach number-Reynolds number correlation for the fan pressure ratio in terms of test section conditions. Well established engineering relationships combined to form an equation which is functionally analogous to the correlation. A geometric loss coefficient which is independent of Reynolds number or Mach number was determined. Present and anticipated uses of this concept include improvement of tunnel control schemes, comparison of efficiencies for operationally similar wind tunnels, prediction of tunnel test conditions and associated energy usage, and determination of Reynolds number scaling laws for similar fluid flow systems.
Novel methods for evaluation of the Reynolds number of synthetic jets
NASA Astrophysics Data System (ADS)
Kordík, J.; Broučková, Z.; Vít, T.; Pavelka, M.; Trávníček, Z.
2014-06-01
The paper proposes four novel methods of evaluation of synthetic jet velocity amplitude (Reynolds number in dimensionless form). The methods are based on the measurement of synthetic jet actuator electrical input (alternating current and voltage) and are applicable for loudspeaker-based actuators with air as the working fluid. Experimental validations are performed by means of hot-wire anemometry and laser Doppler vibrometry. Uncertainty and limitation of the methods are discussed, including a proposal of an adequate incompressibility criterion. Ranges of applicability are specified. Additionally, the results are compared with available literature, namely with another method based on cavity pressure measurements, a good consistency is found.
Three-sphere low-Reynolds-number swimmer with a cargo container.
Golestanian, R
2008-01-01
A recently introduced model for an autonomous swimmer at low Reynolds number that is comprised of three spheres connected by two arms is considered when one of the spheres has a large radius. The Stokes hydrodynamic flow associated with the swimming strokes and net motion of this system can be studied analytically using the Stokes Green's function of a point force in front of a sphere of arbitrary radius R provided by Oseen. The swimming velocity is calculated, and shown to scale as 1/R3 with the radius of the sphere. PMID:18273551
Three-sphere low-Reynolds-number swimmer with a cargo container
NASA Astrophysics Data System (ADS)
Golestanian, R.
2008-01-01
A recently introduced model for an autonomous swimmer at low Reynolds number that is comprised of three spheres connected by two arms is considered when one of the spheres has a large radius. The Stokes hydrodynamic flow associated with the swimming strokes and net motion of this system can be studied analytically using the Stokes Green's function of a point force in front of a sphere of arbitrary radius R provided by Oseen. The swimming velocity is calculated, and shown to scale as 1/R3 with the radius of the sphere.
Reynolds number manipulation of mean nanowire lengths and nanowire suspension quantification
NASA Astrophysics Data System (ADS)
Beaux, Miles F.; Hass, Jamie; Bridges, Nathan; Kwon, Nam Hoon; McIlroy, David N.
2011-07-01
A process has been developed for post fabrication manipulation of silica nanowire lengths with reproducible mean length target ability by manual grinding in liquid media. The process is based on the relationship between nanowire Reynolds number and the laminar or turbulent motion of nanowires in a media. Mean lengths of nanowires prepared by this process are predicted to be inversely proportional to the density over viscosity of the media used. Experimental results giving the mean length measurements are in very good agreement with the predicted dependence on medium density and viscosity.
NASA Technical Reports Server (NTRS)
Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.
2006-01-01
Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.
Swimming at low Reynolds number of a cylindrical body in a circular tube
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2010-11-01
Swimming at low Reynolds number of a cylindrical body due to wavelike surface displacement is studied for the situation where the fluid is confined to a circular tube. The body has infinite length and swims in the direction of the tube axis. The swimming speed and dissipation are calculated to second order in the surface displacement for four different strokes. Both speed and dissipation are affected significantly by the confinement. For a helical stroke the body achieves both a translational and a rotational swimming velocity.
Transitional flow structure on classic and wavy wings at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Zverkov, I.; Kozlov, V.; Kryukov, A.
2015-06-01
The paper presents experimental results on the boundary-layer structure and laminar-turbulent transition on a wavy wing designed for unmanned air vehicles (UAVs). The study has been performed at the chord Reynolds number of the order of 105 to compare the wings with smooth and wavy surfaces at similar conditions. The flow past Z-15-25 airfoil was investigated with a particle-image velocimetry (PIV). The method made it possible to obtain a spatial pattern of velocity perturbations on the wing with wavy surface.
Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers.
Guillot, Pierre; Colin, Annie; Utada, Andrew S; Ajdari, Armand
2007-09-01
Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.
Swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2014-11-01
A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude, swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Wu, X. L.
2015-10-01
A structure-based Strouhal-Reynolds number relationship, St =1 /(A +B /Re ) , has been recently proposed based on observations of laminar vortex shedding from circular cylinders in a flowing soap film. Since the new St -Re relation was derived from a general physical consideration, it raises the possibility that it may be applicable to vortex shedding from bodies other than circular ones. The work presented herein provides experimental evidence that this is the case. Our measurements also show that, in the asymptotic limit (Re →∞ ), St∞=1 /A ≃0.21 is constant independent of rod shapes, leaving B the only parameter that is shape dependent.
Influence of the gas-flow Reynolds number on a plasma column in a glass tube
Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup
2013-08-15
Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.
Navier-Stokes computations for water drops falling in air: intermediate Reynolds numbers
NASA Astrophysics Data System (ADS)
Pearlstein, Arne; Shiue, Min-Po; Feng, James
2006-11-01
We report Navier-Stokes computations, using a finite-element technique, of the steady descent of a deformable water drop through air. Variations in drop shape, internal circulation, and drag coefficient with Reynolds number are discussed in terms of simple physical mechanisms. Discrepancies between the computational results and the experimental data of Beard and Pruppacher, obtained in an open-return vertical wind tunnel, are interpreted in terms of scavenging from the polluted atmosphere of surfactants, as measured by Kawamura et al. in collected rainwater samples several hundred meters southeast of the wind-tunnel intake.
Design of high-Reynolds-number flat-plate experiments in the NTF
NASA Technical Reports Server (NTRS)
Saric, William S.
1988-01-01
The design of an experiment to measure skin friction and turbulent boundary layer characteristics at Reynolds numbers exceeding 1 x 10 to the 9th is described. The experiment will be conducted in a zero-pressure-gradient flow on a flat plate in the National Transonic Facility (NTF). The development of computational codes to analyze the aerodynamic loads and the blockage is documented. Novel instrumentation techniques and models, designed to operate in cryogenic environments, are presented. Special problems associated with aerodynamic loads, surface finish, and hot-wire anemometers are discussed.
Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.
Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-04-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.
Progress in Flaps Down Flight Reynolds Number Testing Techniques at the NTF
NASA Technical Reports Server (NTRS)
Payne, Frank; Bosetti, Cris; Gatlin, Greg; Tuttle, Dave; Griffiths, Bob
2007-01-01
A series of NASA/Boeing cooperative low speed wind tunnel tests was conducted in the National Transonic Facility (NTF) between 2003 and 2004 using a semi-span high lift model representative of the 777-200 aircraft. The objective of this work was to develop the capability to acquire high quality, low speed (flaps down) wind tunnel data at up to flight Reynolds numbers in a facility originally optimized for high speed full span models. In the course of testing, a number of facility and procedural improvements were identified and implemented. The impact of these improvements on key testing metrics data quality, productivity, and so forth - was significant, and is discussed here, together with the relevance of these metrics as applied to cryogenic wind tunnel testing in general. Details of the improvements at the NTF are discussed in AIAA-2006-0508 (Recent Improvements in Semi-span Testing at the National Transonic Facility). The development work at the NTF culminated with validation testing of a 787-8 semi-span model at full flight Reynolds number in the first quarter of 2006.
Tomo-PIV Measurement of High Reynolds Number Dissipation Scale Structures
NASA Astrophysics Data System (ADS)
Worth, Nicholas; Nickels, Timothy
2008-11-01
Understanding the sources of dissipative intermittency in high Reynolds number turbulence is of significant interest, especially given the increasing affordability of LES. Coherent dissipation scale structures have been identified in numerous numerical and experiment investigations, although the latter are typically restricted by the need for accurate resolution of extremely small fast motions. These investigations are therefore often limited to one-dimensional measurements, making the study of these 3D structures and their relationship to the dissipation field difficult. The current investigation employs a very large water mixing tank (2m in diameter), which uses counter-rotating impellors to generate high Reynolds number turbulence (Rλ 1000) that is close to isotropic and homogeneous. The large scale of the tank brings the smallest scales within the resolution of Tomo-PIV, allowing full 3D realization of these structures. This unique experimental setup presents a number of challenges, which include: seeding density limitations imposed by optical attenuation through the tank; demanding light sheet intensity requirements; and the extremely high computational cost of Tomographic reconstruction for the thousands of velocity fields required for statistical analysis. Initial results will be presented along with future plans for measurement refinement.
Measurement of High Reynolds Number Near-Field Turbulent Sphere Wakes under Stratified Conditions
NASA Astrophysics Data System (ADS)
Kalumuck, Kenneth; Brandt, Alan; Decker, Kirk; Shipley, Kara
2015-11-01
To characterize the near-field of a stratified wake at Reynolds numbers, Re = 2 x 105 - 106, experiments were conducted with a large diameter (0.5 m) sphere towed through a thermally stratified fresh water lake. Stratification produced BV frequencies, N, up to 0.07/s (42 cph) resulting in Froude numbers F = U/ND >= 15. The submerged sphere and associated instrumentation including two Acoustic Doppler Velocimeters (ADVs) and an array of fast response thermistors were affixed to a common frame towed over a range of speeds. Three components of the instantaneous wake velocities were obtained simultaneously at two cross-wake locations with the ADVs while density fluctuations were inferred from temperature measurements made by the thermistors. These measurements were used to determine the mean, rms, and spectra of all three components of the turbulent velocity field and density fluctuations at multiple locations. The turbulence power spectra follow the expected -5/3 slope with wavenumber. Existing stratified near-field wake data for spheres are for Re =104 and less, and only a very limited set of data under unstratified conditions exists at these large values of Re. Those data are primarily measurements of the sphere drag, surface pressure distribution, and separation rather than in wake turbulence. Advances in CFD modeling have enabled simulations at these high Reynolds numbers without quantitative data available for validation. Sponsored by ONR Turbulence and Wakes program.
Three-dimensional structure of a confined swirling jet at moderately large Reynolds numbers.
NASA Astrophysics Data System (ADS)
Sanmiguel-Rojas, Enrique; Burgos, M. A.; Del Pino, Carlos; Fernandez-Feria, Ramon
2006-11-01
We have performed a series of three-dimensional (3D) numerical simulations of the incompressible flow discharging from a rotating pipe into a co-axial cylindrical container through a sudden expansion. We have considered several values of the Reynolds number based on the pipe flow rate, ReQ, between 100 and 400, and an expansion ratio of 8, and have analyzed the emerging 3D flow structures in the swirling jet exiting from the rotating pipe as the swirl Reynolds number Reθ, based on the circumferential velocity of the discharging pipe, is increased. The results are compared with axisymmetric (2D) numerical simulations of the same problem. Three-dimensional, non-linear instabilities are found in the swirling jet above a critical value of Reθ, which depends on ReQ, that obviously do not appear in the axisymmetric simulations. These non-linear instabilities are triggered by the linear instabilities inside the rotating pipe. We characterize the azimuthal wave number, frequency and other properties of these instabilities as Reθ is increased. There exists another critical value of Reθ above which 3D (helical) vortex breakdown appears in the swirling jet. But this critical value and the structure of the vortex breakdown flow are both substantially different from the axisymmetric counterparts. *Supported by the Ministerio de Educacion y Ciencia of Spain (FIS04-00538).
Phenomenology of a flow around a circular cylinder at sub-critical and critical Reynolds numbers
NASA Astrophysics Data System (ADS)
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Miozzi, Massimo
2016-07-01
In this work, the flow around a circular cylinder is investigated at Reynolds numbers ranging from 79 000 up to 238 000 by means of a combined acquisition system based on Temperature Sensitive Paint (TSP) and particle velocimetry. The proposed setup allows simultaneous and time-resolved measurement of absolute temperature and relative skin friction fields onto the cylinder surface and near-wake velocity field. Combination of time-resolved surface measurements and planar near-field velocity data allows the investigation of the profound modifications undergone by the wall shear stress topology and its connections to the near-field structure as the flow regime travels from the sub-critical to the critical regime. Laminar boundary-layer separation, transition, and re-attachment are analyzed in the light of temperature, relative skin friction maps, and Reynolds stress fields bringing about a new perspective on the relationship between boundary layer development and shear layer evolution. The fast-responding TSP employed allows high acquisition frequency and calculation of power spectral density from surface data. Correlation maps of surface and near-wake data provide insight into the relationship between boundary-layer evolution and vortex shedding. We find that as the Reynolds number approaches the critical state, the separation line oscillations feature an increasingly weaker spectrum peak compared to the near-wake velocity spectrum. In the critical regime, separation line oscillations are strongly reduced and the correlation to the local vorticity undergoes an overall decrease giving evidence of modifications in the vortex shedding mechanism.
NASA Astrophysics Data System (ADS)
Rouvas, Constantinos
The research presented here concentrates on experimental and analytical methods to identify the twelve rotordynamic coefficients of high-Reynolds-number hydrostatic bearings. Fluid-flow-induced noise (turbulence, cavitation) presents a significant problem in testing these bearings, since this noise exists in the same frequency range as the test signals. This common frequency range eliminates the possibility of rejecting the noise through filtering. A frequency-domain analysis method has been developed to extract the rotordynamic coefficients from data obtained by multi-frequency sequential excitation testing. Power-spectral-density estimates are used to reject noise that is independent of the applied excitation. The method is verified experimentally by single-frequency excitation, and repeatability tests. A second power-spectral-density based identification method has been developed and applied to simultaneous excitation test data. Here, two independent random excitations are applied simultaneously to the bearing, and their effects are separated by computing appropriate power-spectral-density estimates, while, at the same time, maintaining excellent noise rejection properties. This method yields results identical to the sequential excitation procedure, and reduces the actual test and analysis times by one half. Last, an analysis method in the time domain has been developed and implemented. In essence it is a direct application of least squares to the bearing housing equations of motion. For this method, it is shown that for the low-frequency noise present in the measurements, differentiation of the signals is acceptable, and preferable over integration. The twelve rotordynamic coefficients are obtained from a recursive formulation of least squares, and the results are shown to have acceptable convergence. Also, the coefficients extracted from this method are found to reconstruct the bearing response more accurately than the coefficients extracted from the power
On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2016-08-01
We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150~% higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance (x≈ 3 m). The effect of the degree of immersion of the trips for h/δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles' wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).
Borrell, Brendan J; Goldbogen, Jeremy A; Dudley, Robert
2005-08-01
We studied swimming kinematics of the Antarctic pteropod, Clione antarctica, to investigate how propulsive forces are generated by flexible oscillating appendages operating at low Reynolds numbers (10
Airfoil stall penetration at constant pitch rate and high Reynolds number
NASA Technical Reports Server (NTRS)
Lorber, Peter F.; Carta, Franklin O.
1989-01-01
The model wing consists of a set of fiberglass panels mounted on a steel spar that spans the 8 ft test section of the UTRC Large Subsonic Wind Tunnel. The first use of this system was to measure surface pressures and flow conditions for a series of constant pitch rate ramps and sinusoidal oscillations a Mach number range, a Reynolds number range, and a pitch angle range. It is concluded that an increased pitch rate causes stall events to be delayed, strengthening of the stall vortex, increase in vortex propagation, and increase in unsteady airloads. The Mach number range causes a supersonic zone near the leading edge, stall vortex to be weaker, and a reduction of unsteady airloads.
Sectional lift coefficient of a rotating wing at low Reynolds number
NASA Astrophysics Data System (ADS)
Kim, Jieun; Kweon, Jihoon; Choi, Haecheon
2012-11-01
We investigate the characteristics of sectional lift force on a rotating wing at low Reynolds number using three-dimensional numerical simulation. Three different types of flat plate wings (fruit-fly, rectangular and triangular wings) are considered but keeping their aspect ratio (wing span/wing chord) the same at 3.74. The wings rotate at a constant angular velocity and the angle of attack is fixed during rotation (5° ~45°). The Reynolds number is 136 based on the wing chord length and the translational velocity at the wing tip, corresponding to that of the flapping fruit-fly wing in hovering flight. An immersed boundary method in a non-inertial reference frame (Kim and Choi, JCP, 2006) is used to simulate the flow. During the first rotation, the sectional lift coefficient decreases from the wing root to the wing tip for all cases. After several rotations, however, the sectional lift coefficient becomes nearly constant except near the wing root and tip at low angles of attack (<=15°), but maintains a similar behavior to that of first rotation at high angle of attack (~45°). Finally, the wing shape does not significantly change the spanwise distribution of sectional lift coefficient. Supported by the NRF Program (2011-0028032).
The high Reynolds number flow through an axial-flow pump
NASA Astrophysics Data System (ADS)
Zierke, W. C.; Straka, W. A.; Taylor, P. D.
1993-11-01
The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. HIREP can involve blade chord Reynolds numbers as high as 6,000,000 and can accommodate a variety of instrumentation in both a stationary and a rotating frame of reference. The objectives of this experiment were as follows: to provide a database for comparison with three-dimensional, viscous (turbulent) flow computations; to evaluate the engineering models; and to improve our physical understanding of many of the phenomena involved in this complex flow field. The experimental results include a large quantity of data acquired throughout HIREP. A five-hole probe survey of the inlet flow 37.0 percent chord upstream of the inlet guide vane (IGV) leading edge is sufficient to give information for the inflow boundary conditions, while some static-pressure information is available to help establish an outflow boundary condition.
Heat Transfer from Radiatively Heated Material in a Low Reynolds Number Microgravity Environment
NASA Technical Reports Server (NTRS)
Yamashita, H.; Baum, H. R.; Kushida, G.; Nakabe, K.; Kashiwagi, T.
1993-01-01
A mathematical model of the transient three-dimensional heat transfer between a slowly moving ambient gas stream and a thermally thick or thin flat surface heated by external radiation in a microgravity environment is presented. The problem is motivated in part by fire safety issues in spacecraft. The gas phase is represented by variable property convection-diffusion energy and mass conservation equations valid at low Reynolds numbers. The absence of gravity and low Reynolds number together permit the flow to be represented by a self-consistent velocity potential determined by the ambient velocity and the thermal expansion in the gas. The solid exchanges energy with the gas by conduction/convection and with the surroundings by surface absorption and re-emission of radiation. Heat conduction in the solid is assumed to be one dimensional at each point on the surface as a consequence of the limited times (of order of 10 seconds) of interest in these simulations. Despite the apparent simplicity of the model, the results show a complex thermally induced flow near the heated surface. The thermal exchange between the gas and solid produces an outward sourcelike flow upstream of the center of the irradiated area and a sinklike flow downstream. The responses of the temperature fields and the associated flows to changes in the intensity of the external radiation and the ambient velocity are discussed.
Numerical Simulations of Unsteady Low-Reynolds-Number Flows Over the APEX Airfoil
NASA Technical Reports Server (NTRS)
Tatineni, Mahidhar; Zhong, Xiao-Lin
1998-01-01
Laminar and transitional separation bubbles are an important feature of low-Reynolds-number flows over airfoils. The separation bubbles are unsteady and have a significant impact on the aerodynamic properties of the airfoils. In this paper unsteady low-Reynolds-number separated flows over the APEX airfoil are calculated using a Navier-Stokes solver. The numerical results show the presence of unsteady separation bubbles in the flowfield. An analysis of the numerical results shows that flowfield disturbances are amplified significantly in the separation bubble, leading to periodic vortex shedding. A linear stability analysis of the separated boundary layer is performed and the results show that the dominant wavenumber and frequency in the numerical simulations agree with the most unstable wavenumber and frequency from the linear stability analysis. The numerical results also show the growth and interaction of disturbance waves in the separation bubble. For transonic flows over the APEX airfoil, the calculations show that the presence of shocks causes significant changes in the separation location and consequently, the overall flowfield.
Off-Axis Drag of Dendrite Fragments at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Weidman, P. D.
1994-01-01
The aim of the present investigation is to characterize the motion of dendrite fragments falling under the influence of gravity in a uniform liquid medium at low Reynolds number. In an earlier study, Zakhem, Weidman and de Groh (1992) reported on the settling speed of model equiaxed dendrite grains released along their axis of symmetry. In this follow-up study uniaxial model dendrite grains were released off-axis to observe and document their motion at different orientations. It was hypothesized that the dendrite models might rotate when released off-axis in which case an attempt would be made to document the ensuing unsteady motion. This latter event turned out to be in fact true: at the small but finite Reynolds numbers that existed, each uniaxial dendrite slowly rotated towards its equilibrium orientation while failing under the influence of gravity. In addition to completing the original goal, we have made use of a beads-on-a shell Stokes flow code to numerically determine the drag coefficient for capsules, i.e.. uniaxial dendrites without arms. The drag on horizontally and vertically falling capsules are reported and compared with measurements.
Characteristics of low reynolds number shear-free turbulence at an impermeable base.
Wan Mohtar, W H M; ElShafie, A
2014-01-01
Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.
Calculation of the Minimum Critical Reynolds Number for Circular Pipe Flows
NASA Astrophysics Data System (ADS)
Kanda, Hidesada
1999-11-01
A conceptual model was constructed for the problem of determining in circular pipes the conditions under which the transition from laminar to turbulent flow occurs. From many previous experimental investigations, it became clear that (i) plots of the transition length versus the Reynolds number (Re) show that the transition occurs in the entrance region under the condition of a natural disturbance, and (ii) plots of the critical Re versus the ratio of bellmouth diameter to the pipe diameter show that for the case of a straight pipe the critical Re takes a minimum value of about 2000. In the entrance region, the velocity profile changes from uniform at the inlet to parabolic at the entrance length. We found that the radial component of the curl of vorticity multiplied by (2/Re), which we call the normal wall strength, works as an acceleration force and decreases inversely as Re increases. Hence, the onset of the transition should depend on whether or not the acceleration power provided by the normal wall strength exceeds a required value. In this study we calculated the acceleration power via finite difference calculations, and thus obtained the minimum critical Reynolds number of 2040 when using J0 = 101 radial grid points.
Improvements of a nano-scale crossed hot-wire for high Reynolds number measurements
NASA Astrophysics Data System (ADS)
Fan, Yuyang; Hultmark, Marcus
2015-11-01
Hot-wire anemometry, despite its limited spatial and temporal resolution, is still the preferred tool for high Reynolds number flow measurements, mainly due to the continuous signal. To address the resolution issues, the Nano-Scale Thermal Anemometry Probe (NSTAP) was developed at Princeton University. The NSTAP has a sensing volume more than one order of magnitude smaller than conventional hot-wires, and it has displayed superior performance. However, the NSTAP can only measure a single component of the velocity. Using a novel combining method, a probe that enables two-component velocity measurements has been created (the x-NSTAP). The measurement volume is approximately 50 × 50 × 50 μ m, more than one order of magnitude smaller in all directions compared to conventional crossed hot-wires. The x-NSTAP has been further improved to allow more accurate measurements with the help of flow visualization using a scaled model but matching Reynolds number. Results from turbulent flow measurements with the new x-NSTAP are also presented. Supported under NSF grant CBET-1510100 (program manager Dimitrios Papavassiliou).
Fast response temperature and humidity sensors for measurements in high Reynolds number flows
NASA Astrophysics Data System (ADS)
Fan, Yuyang; Arwatz, Gilad; Vallikivi, Margit; Hultmark, Marcus
2013-11-01
Conventional hot/cold wires have been widely used in measuring velocity and temperature in turbulent flows due to their fine resolutions and fast response. However, for very high Reynolds number flows, limitations on the resolution appear. A very high Reynolds number flow is the atmospheric boundary layer. In order to accurately predict the energy balance at the Earth's surface, one needs information about the different turbulent scalar fields, mainly temperature and humidity, which together with velocity, contribute to the turbulent fluxes away from the surface. The nano-scaled thermal anemometry probe (NSTAP) was previously developed at Princeton and has proven to have much higher spatial and temporal resolution than the regular hot wires. Here we introduce new fast-response temperature and humidity sensors that have been developed and tested. These sensors are made in-house using standard MEMS manufacturing techniques, leaving high flexibility in the process for optimization to different conditions. The small dimensions of these novel sensors enable very high spatial resolution while the small thermal mass allows significant improvements in the frequency response. These sensors have shown promising results in acquiring un-biased data of turbulent scalar and vector fields. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).
NASA Astrophysics Data System (ADS)
Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg
2015-09-01
In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.
Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe
2014-01-01
Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.
NASA Technical Reports Server (NTRS)
Hicks, Raymond M.; Cliff, Susan E.
1991-01-01
Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.
1993-01-01
Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques.
An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers
NASA Technical Reports Server (NTRS)
Holden, M. S.
1972-01-01
Skin friction, heat transfer and pressure measurements were obtained in laminar, transitional and turbulent boundary layers on flat plates at Mach numbers from 7 to 13 at wall-to-free stream stagnation temperature ratios from 0.1 to 0.3. Measurements in laminar flows were in excellent agreement with the theory of Cheng. Correlations of the transition measurements with measurements on flight vehicles and in ballistic ranges show good agreement. Our transition measurements do not correlate well with those of Pate and Schueler. Comparisons have been made between the skin friction and heat transfer measurements and the theories of Van Driest, Eckert and Spalding and Chi. These comparisons reveal in general that at the high end of our Mach number range (10-13) the theory of Van Driest is in best agreement with the data, whereas at lower Mach numbers (6.5-10) the Spalding Chi theory is in better agreement with the measurements.
Boundary-value problem for plasma centrifuge at arbitrary magnetic Reynolds numbers
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Hong, S. H.
1977-01-01
We solve in closed form the boundary-value problem for the partial differential equations which describe the (azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring electrodes of different radii and an external, axial magnetic field. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number R. For small Hall coefficients, the induced magnetic field does not affect the plasma rotation. As a result of the Lorentz forces, the plasma rotates with speeds as high as 100,000 cm/sec around its axis of symmetry at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of the discharge cylinder.
The dynamics of flow around a cylinder at subcritical Reynolds numbers
NASA Astrophysics Data System (ADS)
Yokuda, S.; Ramaprian, B. R.
1990-05-01
Mean and fluctuating pressure and skin friction around a circular cylinder in cross-flow were studied in the subcritical Reynolds number range, 10,000- 100,000. Results are presented for two cases, namely, with and without a splitter plate behind the cylinder. The splitter plate was used to suppress vortex shedding. The nonlinear dynamics of the flow around the cylinder was examined to characterize the process of laminar separation in terms of the number of degrees of freedom, and to determine whether the process is chaotic. For this purpose, the Grassberger-Procaccia correlation dimension and the largest Liapunov exponent were estimated from the time series of the pressure data. The results indicate a correlation dimension of the order of 10-12 both in the presence and absence of the splitter plate.
Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark
2000-01-01
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
NASA Technical Reports Server (NTRS)
Purdy, K. R.; Ventrice, M. B.; Fang, J.
1972-01-01
Analytical and experimental studies were initiated to determine if the response of a constant temperature hot wire anemometer to acoustic oscillations could serve as an analog to the response of the drop vaporization burning rate process to acoustic oscillations, and, perhaps, also as an analog to any Reynolds number dependent process. The motivation behind this study was a recent analytical study which showed that distorted acoustic oscillations could amplify the open-loop response of vaporization limited combustion. This type of amplification may be the cause of unstable combustion in liquid propellant rocket engines. The analytical results obtained for the constant temperature anemometer are similar in nature to those previously obtained for vaporization limited combustion and indicate that the response is dependent on the amount and type of distortion as well as other factors, such as sound pressure level, Mach number and hot wire temperature. Preliminary results indicate qualitative agreement between theory and experiment.
Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark
1999-01-01
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.
Skin Friction at Very High Reynolds Numbers in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Watson, Ralph D.; Anders, John B.; Hall, Robert M.
2006-01-01
Skin friction coefficients were derived from measurements using standard measurement technologies on an axisymmetric cylinder in the NASA Langley National Transonic Facility (NTF) at Mach numbers from 0.2 to 0.85. The pressure gradient was nominally zero, the wall temperature was nominally adiabatic, and the ratio of boundary layer thickness to model diameter within the measurement region was 0.10 to 0.14, varying with distance along the model. Reynolds numbers based on momentum thicknesses ranged from 37,000 to 605,000. The measurements approximately doubled the range of available data for flat plate skin friction coefficients. Three different techniques were used to measure surface shear. The maximum error of Preston tube measurements was estimated to be 2.5 percent, while that of Clauser derived measurements was estimated to be approximately 5 percent. Direct measurements by skin friction balance proved to be subject to large errors and were not considered reliable.
Sticks in honey - Motor-connected Microtubules at low Reynolds number
NASA Astrophysics Data System (ADS)
Berman, Rotem S.; Leshansky, Alex; Avron, Joseph E.
2010-11-01
It is known that suspensions of microtubules (MTs) and molecular motors spontaneously form ordered asters and vortices. We consider the motion of MTs' assemblages connected by molecular motors at low Reynolds number. The MTs are modeled as rigid sticks and their hydrodynamic interaction with the medium is determined using slender body approximation. The motors are modeled as moving points which provide kinematic constrains for the sticks' motion. The hydrodynamic alignment of a pair of MTs for two possible motor connections is considered: a single head motor connection, in which the motor moves on one of the sticks and carries the other one, and a dual head motor connection whereas the motor advances on both sticks. We further address the formation of an aster from the vortex of inter-connected MTs. The forces the motors need to exert on the MTs in the course of closing the vortex and their dependence on the number of MTs are computed.
Structure and stability of a round jet exiting a rotating pipe at moderate Reynolds numbers
NASA Astrophysics Data System (ADS)
del Pino, C.; Sanmiguel-Rojas, E.
2005-11-01
The three-dimensional (3D) structure of a jet of water coming out of a rotating circular pipe into a quiescent tank of water is analyzed both experimentally (through LDA and PIV techniques), and numerically, for several values of the Reynolds number (Re) of the order of a few hundreds, and for several values of the swirl parameter (L). The observed 3D structure are discussed in the light of a spatial stability analysis of the corresponding axisymmetric jet for the same values of Re and L. Good agreement between the experimental measurements and the 3D numerical simulations, and between these and the structures predicted by the stability analysis for the most unstable waves, is found. Helical travelling waves with azimuthal wave number |n|=1 are the first to be detected in the swirless jet as Re is increased, and in the swirling jet for a given Re as L is increased.
Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
Janiga, Gábor
2014-04-01
This work investigates the flow in a benchmark nozzle model of an idealized medical device proposed by the FDA using computational fluid dynamics (CFD). It was in particular shown that a proper modeling of the transitional flow features is particularly challenging, leading to large discrepancies and inaccurate predictions from the different research groups using Reynolds-averaged Navier-Stokes (RANS) modeling. In spite of the relatively simple, axisymmetric computational geometry, the resulting turbulent flow is fairly complex and non-axisymmetric, in particular due to the sudden expansion. The resulting flow cannot be well predicted with simple modeling approaches. Due to the varying diameters and flow velocities encountered in the nozzle, different typical flow regions and regimes can be distinguished, from laminar to transitional and to weakly turbulent. The purpose of the present work is to re-examine the FDA-CFD benchmark nozzle model at a Reynolds number of 6500 using large eddy simulation (LES). The LES results are compared with published experimental data obtained by Particle Image Velocimetry (PIV) and an excellent agreement can be observed considering the temporally averaged flow velocities. Different flow regimes are characterized by computing the temporal energy spectra at different locations along the main axis.
Direct numerical simulations of a turbulent separation bubble over a wide Reynolds-number range
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki; Mizobuchi, Yasuhiro; Matsuo, Yuichi; Spalart, Philippe R.
2015-11-01
Direct numerical simulations (DNSs) of a turbulent boundary layer separating from a flat plate and reattaching have been performed with inlet data generated by rescaling-recycling at Reθ =300, 600 and 900. The focus is put on massive separation and the set-up close to those of Spalart & Coleman (1997) and Na & Moin (1998) at lower Reynolds number. This extends the work of Abe et al. (CTR Annual Brief, 2012) but removes the stagnation point, present over the bubble and due to strong blowing and suction Vtop at the upper boundary. The new simulations have a reduced Vtop, compensated by a smaller ceiling height. The overall agreement with the earlier DNSs is satisfactory. A small difference appears in the recovery region, in which turbulence is reduced slightly in the present DNSs. At all three Reθ , separation and reattachment locations are nearly identical. Also, the mean spanwise vorticity is conserved to a large extent along the bubble. We associate this inviscid transport with the high peak in Reynolds shear stress known to appear after reattachment, and to be a challenging phenomenon for turbulence theories and models. In the latter region, a significant Re dependence is found for the skin friction due to the weak development of near-wall turbulence.
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Friedman, Douglas M.; Serrano, Leonel
2005-01-01
A knowledge-based aerodynamic design method coupled with an unstructured grid Navier-Stokes flow solver was used to improve the propulsion/airframe integration for a Blended Wing Body with boundary-layer ingestion nacelles. A new zonal design capability was used that significantly reduced the time required to achieve a successful design for each nacelle and the elevon between them. A wind tunnel model was built with interchangeable parts reflecting the baseline and redesigned configurations and tested in the National Transonic Facility (NTF). Most of the testing was done at the cruise design conditions (Mach number = 0.85, Reynolds number = 75 million). In general, the predicted improvements in forces and moments as well as the changes in wing pressures between the baseline and redesign were confirmed by the wind tunnel results. The effectiveness of elevons between the nacelles was also predicted surprisingly well considering the crudeness in the modeling of the control surfaces in the flow code. A novel flow visualization technique involving pressure sensitive paint in the cryogenic nitrogen environment used in high-Reynolds number testing in the NTF was also investigated.
NASA Astrophysics Data System (ADS)
Örlü, Ramis; Schlatter, Philipp
2013-06-01
A detailed comparison between recent direct numerical simulation (DNS) and experiments of a turbulent boundary layer under zero pressure gradient at Re θ = 2,500 and 4,000 (based on the free-stream velocity and momentum-loss thickness) is presented. The well-resolved DNS is computed in a long spatial domain (Schlatter and Örlü in J Fluid Mech 659:116, 2010a), including the disturbance strip, while the experiments consist of single hot-wire probe and oil-film interferometry measurements. Remarkably, good agreement is obtained for integral quantities such as skin friction and shape factor, as well as mean and fluctuating streamwise velocity profiles, higher-order moments and probability density distributions. The agreement also extends to spectral/structural quantities such as the amplitude modulation of the small scales by the large-scale motion and temporal spectral maps throughout the boundary layer. Differences within the inner layer observed for statistical and spectral quantities could entirely be removed by spatially averaging the DNS to match the viscous-scaled length of the hot-wire sensor, thereby explaining observed differences solely by insufficient spatial resolution of the hot-wire sensor. For the highest Reynolds number, Re θ = 4,000, the experimental data exhibit a more pronounced secondary spectral peak in the outer region ( y/ δ 99 = 0.1) related to structures with length on the order of 5-7 boundary layer thicknesses, which is weaker and slightly moved towards lower temporal periods in the DNS. The cause is thought to be related to the limited spanwise box size which constrains the growth of the very large structures. In the light of the difficulty to obtain "canonical" flow conditions, both in DNS and the wind tunnel where effects such as boundary treatment, pressure gradient and turbulence tripping need to be considered, the present cross-validation of the data sets, at least for the present Re θ -range, provides important reference data
Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
Setter, E; Bucher, I; Haber, S
2012-06-01
Microscale slender swimmers are frequently encountered in nature and are now used in microrobotic applications. The swimming mechanism examined in this paper is based on small transverse axisymmetric traveling wave deformations of a cylindrical long shell. The thin-shelled device is assumed to be inextensible at the middle surface and extensible at the surface wetted by the fluid. Assuming low-Reynolds-number hydrodynamics, an analytical solution is derived for waves of small amplitudes compared with the cylinder diameter. We show that swimming velocity increases with β(1) (the ratio of cylinder radius to wavelength) and that swimming velocity is linearly dependent on wave propagation velocity, increasing to leading order with the square of the ratio of wave amplitude to wavelength β(2) and decreasing with the wall thickness. A fourth-order correction in β(2) was also calculated and was found to have a negative effect on the swimming velocity. The results for a shell of negligible-wall thickness were compared with Taylor's solution for an inextensible two-dimensional flat membrane undergoing a waving motion and Felderhof's results [Phys. Fluids 22, 113604 (2010)] for an unbounded flow field and negligible-wall thickness. We show that Taylor's analytic solution is a particular limiting case of the present solution, assuming zero wall thickness and infinite values of β(1). The present mechanism was also compared with Taylor's well known solutions of waving planar and helical circular tails. We show that the present approach yields higher velocities as β(1) increases, whereas, the opposite occurs for waving tails. Indeed, in the region where β(1)>15, the present approach yields velocities nearly as fast as Taylor's helical waving tail while consuming less power and with a design that is considerably more compact. In this regime, the axisymmetric swimmer is twice as fast as Taylor's planar-tail swimmer for an additional investment of only one-third of the power
Characteristics of the Velocity Power Spectrum as a Function of Taylor Reynolds Number
NASA Astrophysics Data System (ADS)
Puga, Alejandro J.
An understanding of the wide range of scales present in a turbulent flow as well as the turbulence kinetic energy associated with those scales can provide significant insight into the modeling of such flows. Since turbulence is a stochastic process, statistical quantities such as mean, root mean square, correlations and spectra are used to identify and understand the evolution of turbulent flows. Time-resolved velocity measurements presented herein are obtained using hot-wire anemometry in nearly homogeneous, isotropic and moderately high Taylor Reynolds number, Rlambda , flow downstream of an active grid. Velocity power spectra presented herein are show that the slope, n, of the inertial subrange, where the inertial subrange is defined as the wavenumber range where the power spectrum scales as kappa--n, varies with R lambda as n = 1.69 -- 5.86 Rlambda--0.645. This variation in the slope of the inertial subrange is consistent with measurements presented by Mydlarski and Warhaft (1996) in an active grid flow and Saddoughi and Veeravalli (1994) in a turbulent boundary layer. The effectiveness of velocity power spectrum normalizations proposed by Kolmogorov (1963), Von Karman and Howarth (1938), and George (1992) are compared qualitatively and quantitatively. The effectiveness of these normalizations suggests how the turbulent scales make specific portions of the velocity spectrum self-similar. It is found that the relation between the large and small scales is also shown by the normalized dissipation rate, which is defined as the dissipation rate normalized by the ratio of the turbulence kinetic energy to the time scale of the large scale structure is shown to be a constant with respect to R lambda for Rlambda ≥ 450. A modified model of the one-dimensional velocity power spectrum is proposed that is based on a model proposed by Pope (2000), which has been demonstrated to model power spectra at high value of Rlambda where the slope of the inertial subrange is very
Preliminary engineering study: Quick opening valve MSFC high Reynolds number wind tunnel
NASA Technical Reports Server (NTRS)
1983-01-01
FluiDyne Engineering Corporation has conducted a preliminary engineering study of a quick-opening valve for the MSFC High Reynolds Number Wind Tunnel under NASA Contract NAS8-35056. The subject valve is intended to replace the Mylar diaphragm system as the flow initiation device for the tunnel. Only valves capable of opening within 0.05 sec. and providing a minimum of 11.4 square feet of flow area were considered. Also, the study focused on valves which combined the quick-opening and tight shutoff features in a single unit. A ring sleeve valve concept was chosen for refinement and pricing. Sealing for tight shutoff, ring sleeve closure release and sleeve actuation were considered. The resulting cost estimate includes the valve and requisite modifications to the facility to accommodate the valve as well as the associated design and development work.
Local isotropy in distorted turbulent boundary layers at high Reynolds number
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1993-01-01
This is a report on the continuation of our experimental investigations of the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation. Since Kolmogorov proposed his theory, there have been many experiments, conducted in wakes, jets, mixing layers, a tidal channel, and atmospheric and laboratory boundary layers, in which attempts have been made to verify - or refute - the local-isotropy hypothesis. However, a review of the literature over the last five decades indicated that, despite all these experiments in shear flows, there was no consensus in the scientific community regarding this hypothesis, and, therefore, it seemed worthwhile to undertake a fresh experimental investigation into this question.
A wave roughness Reynolds number parameterization of the sea spray source flux
NASA Astrophysics Data System (ADS)
Norris, Sarah J.; Brooks, Ian M.; Salisbury, Dominic J.
2013-08-01
of the sea spray aerosol source flux are derived as functions of wave roughness Reynolds numbers, RHa and RHw, for particles with radii between 0.176 and 6.61 µm at 80% relative humidity. These source functions account for up to twice the variance in the observations than does wind speed alone. This is the first such direct demonstration of the impact of wave state on the variability of sea spray aerosol production. Global European Centre for Medium-Range Weather Forecasts operational mode fields are used to drive the parameterizations. The source flux from the RH parameterizations varies from approximately 0.1 to 3 (RHa) and 5 (RHw) times that from a wind speed parameterization, derived from the same measurements, where the wave state is substantially underdeveloped or overdeveloped, respectively, compared to the equilibrium wave state at the local wind speed.
Parametric Dependence of Homogeneous Turbulent Shear Flow on Reynolds Number and Shear Parameter
NASA Astrophysics Data System (ADS)
Isaza, Juan; Vaithianathan, T.
2005-11-01
The combined role of the Shear Parameter, S^* = S k / ɛ, and the Reynolds number in homogeneous turbulent shear flow is studied using direct numerical simulations (DNS). The parametric investigation involves DNS of 256^3, 512^3 and 1024^3 with a constant shear parameter, S^*, between 1 and 100. Particular attention is given to velocity derivatives (strain and rotation) and higher-order structure functions and their scaling with the two parameters. This study is in line with some recent results reported by Schumacher, [Phys. Fluids 16, 2004]. Due to the high level of shear investigated, a new algorithm that avoids the remeshing step is used. The 20% - 40% loss in kinetic energy and dissipation rate reported by Lee et al. [JFM, 216, 1990] using the Rogallo code is consequently avoided.
Simulation study of magnetic reconnection in high magnetic Reynolds number plasmas
NASA Astrophysics Data System (ADS)
Nakabo, T.; Kusano, K.; Miyoshi, T.; Vekstein, G.
2013-12-01
Magnetic reconnection is an important process for dynamics in space and laboratory plasmas. Magnetic reconnection is basically dominated by magnetic diffusion at thin current sheet as proposed by Sweet (1958) and Parker (1963). According to their theory, the reconnection rate must be inversely proportional to the square root of the magnetic Reynolds number (S). In magnetosphere and the solar corona, however, in spite of high magnetic Reynolds number (>10^12), reconnection rate is measured to be about 10^-2 that is much higher than the Sweet and Parker's prediction. Although Petschek proposed that the slow mode shock may accelerate reconnection, numerical simulations suggested that the Petschek's type reconnection cannot be sustained with uniform resistivity. On the other hand, it is pointed out that in high magnetic Reynolds number, the thin current sheet becomes unstable to the so-called secondary tearing instability, which generates many plasmoids and drives a sort of fast reconnection. Although Baty (2012) recently investigated the possibility of Petschek-like structure in relatively high-S (~10^4) regime, it is still unclear whether and how the magnetic reconnection is able to be accelerated in higher-S regime (S>10^5). In this paper, we developed the high-resolution magnetohydrodynamics (MHD) simulation of magnetic reconnection for very high-S (S~10^4-10^6) aiming at revealing the acceleration mechanism of magnetic reconnection. We applied the HLLD Riemann solver, which was developed by Miyoshi and Kusano (2005), to the high resolution two-dimensional MHD simulation of current sheet dynamics. In our model, the initial state is given by the Harris sheet equilibrium plus perturbation. As a result, in the case for S=10^5, multiple X-line reconnection appears as a result of the secondary tearing instability and magnetic reconnection is accelerated through the formation of multiple magnetic islands as pointed out by the previous studies. Furthermore, we found that
Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.
Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-04-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method. PMID:27176402
Isotropy of the small scales of turbulence at low Reynolds number
NASA Technical Reports Server (NTRS)
Kim, J.; Antonia, R. A.
1993-01-01
Spectral local isotropy tests are applied to direct numerical simulation data, mainly at the centerline of a fully developed turbulent channel flow. Despite the small Reynolds number of the simulation, the high-wavenumber behavior of velocity and vorticity spectra is consistent with local isotropy. This consistency is verified by the relationship between streamwise wavenumber spectra and spanwise wavenumber spectra. The high-wavenumber behavior of the pressure spectrum is also consistent with local isotropy and compares favorably with the calculation of Batchelor (1951), which assumes isotropy and joint normality of the velocity field at two points in space. The latter assumption is validated by the shape but not the magnitude of the quadruple correlation of the streamwise velocity fluctuation at small separations. There is only partial support for local spectral isotropy away from the centerline as the magnitude of the mean strain rate increases.
On micro-electrokinetic scalar turbulence in microfluidics at a low Reynolds number.
Wang, Guiren; Yang, Fang; Zhao, Wei; Chen, Chien-Pin
2016-03-21
We recently demonstrated the direct observation of micro-electrokinetic turbulence in a microchannel at a low Reynolds number (Re) when a pressure-driven flow was forced electrokinetically. Here, we characterize the corresponding scalar turbulence and surprisingly find that the corresponding turbulent mixing has some typical and important features of scalar turbulence, such as the Obukhov-Corrsin (O-C) -5/3 spectrum of concentration fluctuation, which can commonly be realized only at high Re in macroflows. This discovery could provide a new perspective of scalar turbulence and an avenue for control of transport phenomena in lab-on-a-chip platforms. This will deepen our fundamental understanding of transport phenomena in microfluidics.
Three-sphere low-Reynolds-number swimmer with a passive elastic arm.
Montino, Alessandro; DeSimone, Antonio
2015-05-01
One of the simplest model swimmers at low Reynolds number is the three-sphere swimmer by Najafi and Golestanian. It consists of three spheres connected by two rods which change their lengths periodically in non-reciprocal fashion. Here we investigate a variant of this model in which one rod is periodically actuated while the other is replaced by an elastic spring. We show that the competition between the elastic restoring force and the hydrodynamic drag produces a delay in the response of the passive elastic arm with respect to the active one. This leads to non-reciprocal shape changes and self-propulsion. After formulating the equations of motion, we study their solutions qualitatively and numerically. The leading-order term of the solution is computed analytically. We then address questions of optimization with respect to both actuation frequency and swimmer's geometry. Our results can provide valuable conceptual guidance in the engineering of robotic microswimmers.
Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-Based Optimization Procedure
NASA Technical Reports Server (NTRS)
Hussaini, M. Moin; Korte, John J.
1996-01-01
An optimization approach to rocket nozzle design, based on computational fluid dynamics (CFD) methodology, is investigated for low-Reynolds-number cases. This study is undertaken to determine the benefits of this approach over those of classical design processes such as Rao's method. A CFD-based optimization procedure, using the parabolized Navier-Stokes (PNS) equations, is used to design conical and contoured axisymmetric nozzles. The advantage of this procedure is that it accounts for viscosity during the design process; other processes make an approximated boundary-layer correction after an inviscid design is created. Results showed significant improvement in the nozzle thrust coefficient over that of the baseline case; however, the unusual nozzle design necessitates further investigation of the accuracy of the PNS equations for modeling expanding flows with thick laminar boundary layers.
Efficient swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2015-08-01
The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low-Reynolds-number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small-amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large-amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.
Evaluation of low Reynolds number turbulence models for attached and separated flows
NASA Astrophysics Data System (ADS)
Sugavanam, A.
1985-01-01
Time-averaged Navier-Stokes and boundary layer computations have been performed to study the algebraic and the two-equation turbulence models in complex flows. Special attention is paid to the near-wall behavior of the low Reynolds number turbulence models of Jones-Launder and Chien. The mean flow and turbulence predictions are compared with reliable experimental data. Both the algebraic and the two-equation turbulence models are found to predict the mean flow characteristics very well. However, the Chien k-epsilon model is found to perform better than other models in predicting turbulence characteristics. Also this model is found to have fewer numerical problems compared to the other two-equation models included in the study.
NASA Technical Reports Server (NTRS)
1999-01-01
This document describes the aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel intended for use on a Boeing 757 airplane to provide a facility for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on a full-scale commercial transport airplane. The design consists of revised wing leading edge contour designed to produce a pressure distribution favorable to laminar flow, definition of suction flow requirements to laminarize the boundary layer, provisions at the inboard end of the test panel to prevent attachment-line boundary layer transition, and a Krueger leading edge flap that serves both as a high lift device and as a shield to prevent insect accretion on the leading edge when the airplane is taking off or landing.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.
Low Reynolds Number Biofilm Streamers Form as Highly Viscous Liquid Jets
NASA Astrophysics Data System (ADS)
Kumar, Aloke; Hassanpourfard, Mahtab; Das, Siddhartha
2014-11-01
There are recent experimental investigations that suggest that in presence of low Reynolds number (Re << 1) transport, preformed bacterial biofilms may deform into filamentous structures termed as streamers. Streamer formation time-scales usually far exceed reported rheological relaxation time scales for biofilms. Here we propose a theory that hypothesizes that streamers form due to the viscous response of the viscoelastic biofilms. The theoretical model is based on a stability analysis and can accurately explain hitherto unresolved issues, such as extremely large time needed for appearance of streamers and exponential growth of streamer dimensions after it has formed. We also provide results from our own initial experiments that indicate towards the validity of this ``liquid-state'' hypothesis.
High Reynolds number experimentation in the US Navy's William B Morgan Large Cavitation Channel
NASA Astrophysics Data System (ADS)
Etter, Robert J.; Cutbirth, J. Michael; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc
2005-09-01
The William B Morgan Large Cavitation Channel (LCC) is a large variable-pressure closed-loop water tunnel that has been operated by the US Navy in Memphis, TN, USA, since 1991. This facility is well designed for a wide variety of hydrodynamic and hydroacoustic tests. Its overall size and capabilities allow test-model Reynolds numbers to approach, or even achieve, those of full-scale air- or water-borne transportation systems. This paper describes the facility along with some novel implementations of measurement techniques that have been successfully utilized there. In addition, highlights are presented from past test programmes involving (i) cavitation, (ii) near-zero pressure-gradient turbulent boundary layers, (iii) the near-wake flow characteristics of a two-dimensional hydrofoil and (iv) a full-scale research torpedo.
Unstructured and adaptive mesh generation for high Reynolds number viscous flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1991-01-01
A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.
NASA High-Reynolds Number Circulation Control Research - Overview of CFD and Planned Experiments
NASA Technical Reports Server (NTRS)
Milholen, W. E., II; Jones, Greg S.; Cagle, Christopher M.
2010-01-01
A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. This technique is focused on the use of semi-span models due to their increased model size and relative ease of routing high-pressure air to the model. A new dual flow-path high-pressure air delivery station has been designed, along with a new high performance transonic sem -si pan wing model. The modular wind tunnel model is designed for testing circulation control concepts at both transonic cruise and low-speed high-lift conditions. The ability of the model to test other active flow control techniques will be highlighted. In addition, a new higher capacity semi-span force and moment wind tunnel balance has been completed and calibrated to enable testing at transonic conditions.