Sample records for rf ablation system

  1. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  2. Biophysics and clinical utility of irrigated-tip radiofrequency catheter ablation.

    PubMed

    Houmsse, Mahmoud; Daoud, Emile G

    2012-01-01

    Catheter ablation by radiofrequency (RF) energy has successfully eliminated cardiac tachyarrhythmias. RF ablation lesions are created by thermal energy. Electrode catheters with 4-mm-tips have been adequate to ablate arrhythmias located near the endocardium; however, the 4-mm-tip electrode does not readily ablate deeper tachyarrhythmia substrate. With 8- and 10-mm-tip RF electrodes, ablation lesions were larger; yet, these catheters are associated with increased risk for coagulum, char and thrombus formation, as well as myocardial steam rupture. Cooled-tip catheter technology was designed to cool the electrode tip, prevent excessive temperatures at the electrode tip-tissue interface, and thus allow continued delivery of RF current into the surrounding tissue. This ablation system creates larger and deeper ablation lesions and minimizes steam pops and thrombus formation. The purpose of this article is to review cooled-tip RF ablation biophysics and outcomes of clinical studies as well as to discuss future technological improvements.

  3. [Study of New Micropore RF system on Lesion Formation and Complications].

    PubMed

    Song, Yuwen; Xu, Xiulin; Cai, Yameng

    2017-07-30

    To study the safety and effectiveness of a new type of micropore ablation catheter in vitro ablation system, and to provide reference for clinical practice. To evaluate two kinds of catheter in cardiac tissue ablation depth, tissue temperature and thrombosis situation by the same RF system. The power set 25 W, There was no significant difference in ablation depth between the two groups, and no Pop and thrombosis occurred. When the power is more than 40 W, two groups occurred more Pop and thrombosis. When using high power for Cardiac RF ablation, doctors should pay more attention to complications and thrombosis.

  4. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.

    PubMed

    Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L

    2012-03-01

    To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P < .05). There was no difference in mean diameter between cluster RF and MW ablations (RF 3.3-4.4 cm 4-16 minutes; P = .4-.9). In vivo lesion diameters for MW (and RF) were as follows: 2.6 cm ± 0.72 (RF 1.5 cm ± 0.14), 3.6 cm ± 0.89 (RF 2.0 cm ± 0.4), 3.4 cm ± 0.87 (RF 1.8 cm ± 0.23), and 3.8 cm ± 0.74 (RF 2.1 cm ± 0.3) at 2 minutes, 5 minutes, 7 minutes, and 10 minutes (P < .05 all time points). Gas-cooled, high-powered MW ablation allows the generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  5. Accuracy of Voltage Signal Measurement During Radiofrequency Delivery Through the SMARTTOUCH Catheter.

    PubMed

    Safavi-Naeini, Payam; Zafar-Awan, Dreema; Zhu, Hongjian; Zablah, Gerardo; Ganapathy, Anand V; Rasekh, Abdi; Saeed, Mohammad; Razavi, Joanna Esther Molina; Razavi, Mehdi

    2017-01-01

    Current methods for measuring voltage during radiofrequency (RF) ablation (RFA) necessitate turning off the ablation catheter. If voltage could be accurately read without signal attenuation during RFA, turning off the catheter would be unnecessary, allowing continuous ablation. We evaluated the accuracy of the Thermocool SMARTTOUCH catheter for measuring voltage while RF traverses the catheter. We studied 26 patients undergoing RFA for arrhythmias. A 7.5F SMARTTOUCH catheter was used for sensing voltage and performing RFA. Data were collected from the Carto-3 3-dimensional mapping system. Voltages were measured during ablation (RF-ON) and immediately before or after ablation (RF-OFF). In evaluating the accuracy of RF-ON measurements, we utilized the RF-OFF measure as the gold standard. We measured 465 voltage signals. The median values were 0.2900 and 0.3100 for RF-ON and RF-OFF, respectively. Wilcoxon signed rank testing showed no significant difference in these values (P = 0.608). The intraclass correlation coefficient (ICC) was 0.96, indicating that voltage measurements were similarly accurate during RF-OFF versus RF-ON. Five patients had baseline atrial fibrillation (AF), for whom 82 ablation points were measured; 383 additional ablation points were measured for the remaining patients. The voltages measured during RF-ON versus RF-OFF were similar in the presence of AF (P = 0.800) versus non-AF rhythm (P = 0.456) (ICC, 0.96 for both). Voltage signal measurement was similarly accurate during RF-ON versus RF-OFF independent of baseline rhythm. Physicians should consider not turning off the SMARTTOUCH ablation catheter when measuring voltage during RFA. © 2016 Wiley Periodicals, Inc.

  6. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  7. Multiple-electrode radiofrequency ablation: simultaneous production of separate zones of coagulation in an in vivo porcine liver model.

    PubMed

    Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T

    2005-12-01

    A multiple-electrode radiofrequency (RF) system was developed based on switching between electrodes that allows for the simultaneous use of as many as three electrically independent electrodes. The purpose of this study was to determine if each multiple-electrode ablation zone is identical to an ablation zone created with conventional single-electrode mode. Nine female domestic pigs (mean weight, 90 kg) were used for this study. A prototype monopolar multiple-electrode RF ablation system was created with use of an RF generator and an electronic switching algorithm. A maximum of three electrodes can be used simultaneously by switching between electrodes at each impedance spike (30 omega greater than baseline levels). A total of 39 zones of ablation were created at open laparotomy in pig livers with use of a conventional single electrode (n = 9), two single electrodes simultaneously (n = 6 ablations; 12 ablation zones), or three single electrodes simultaneously (n = 6 ablations; 18 ablation zones). RF electrodes were spaced in separate lobes of the liver when multiple zones of coagulation were created simultaneously. Animals were euthanized after RF ablation, livers were removed, and ablation zones were sectioned and measured. Zones of coagulation created simultaneously with two or three electrodes were equivalent to ablation zones created with use of conventional single-electrode ablation. No significant differences were observed among control animals treated with a single electrode, those with two separate zones of ablation created simultaneously, and those with three simultaneously created ablation zones in terms of mean (+/-SD) minimum diameter (1.6 cm +/- 0.6, 1.6 cm +/- 0.5, and 1.7 cm +/- 0.4, respectively), maximum diameter (2.0 cm +/- 0.5, 2.3 cm +/- 0.5, 2.2 cm +/- 0.5, respectively), and volume (6.7 cm3 +/- 3.7, 7.4 cm3 +/- 3.8, and 7.8 cm3 +/- 3.9; P > .30, analysis of variance, pairwise t-test comparisons). A rapid-switching multiple-electrode RF system was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.

  8. Biophysics and pathology of catheter energy delivery systems.

    PubMed

    Nath, S; Haines, D E

    1995-01-01

    Catheter ablation has rapidly emerged as the treatment of choice for many symptomatic cardiac arrhythmias. The initial experience with catheter ablation used high-energy DC as the energy source. However, over the last several years radiofrequency (RF) catheter ablation has become the dominant mode of energy delivery. Currently, a major limitation of RF ablation is the small lesion size created by this technique that has reduced its success rate in ablation of larger arrhythmogenic substrates such as coronary artery disease-related ventricular tachycardia. Alternate energy sources such as microwave or ultrasound catheter ablation are being developed that have the potential for producing larger lesions than RF ablation. This review will discuss the biophysics and pathophysiology of the various energy modalities used in catheter ablation.

  9. Optimization of direct current-enhanced radiofrequency ablation: an ex vivo study.

    PubMed

    Tanaka, Toshihiro; Isfort, Peter; Bruners, Philipp; Penzkofer, Tobias; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2010-10-01

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, and mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 +/- 3.9 vs. 26.5 +/- 4.0 ml), but ablation duration was significantly decreased (296 +/- 85 s vs. 423 +/- 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.

  10. Optimization of Direct Current-Enhanced Radiofrequency Ablation: An Ex Vivo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Isfort, Peter; Bruners, Philipp

    2010-10-15

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, andmore » mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 {+-} 3.9 vs. 26.5 {+-} 4.0 ml), but ablation duration was significantly decreased (296 {+-} 85 s vs. 423 {+-} 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.« less

  11. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue.

    PubMed

    Andreano, A; Huang, Yu; Meloni, M Franca; Lee, Fred T; Brace, Christopher

    2010-06-01

    To compare ablation zones created with equal amounts of 2.45 GHz microwave and 480 kHz radiofrequency (RF) energy in ex vivo liver and lung. A total of 38 ablations were performed in ex vivo liver and lung for 10 min each. Nineteen RF ablations (nine liver, ten lung) were performed with a 480 kHz system (200 W max, impedance-based pulsing) and cooled electrode while measuring the average RF power applied. Nineteen microwave ablations (nine liver, ten lung) were then created using a cooled triaxial antenna to deliver 2.45 GHz at the same power level as in RF experiments. Ablation zones were then sectioned and measured for minimum, maximum and mean diameters, and circularity. Measurements were compared using t-tests, with P < 0.05 indicating statistical significance. Mean diameters of microwave ablations were greater than RF ablations in both liver and lung (4.4 +/- 0.3 vs 3.3 +/- 0.2 cm in liver; 2.45 +/- 0.3 vs 1.6 +/- 0.5 cm in lungs; P < 0.0005 all comparisons). There was no significant difference in the mean power applied during microwave or RF ablations in either organ (54.44 +/- 1.71 W vs 56.4 +/- 6.7 W in liver, P > 0.05; 40 +/- 0.95 W vs 44.9 +/- 7.1 W in lung, P > 0.05). Using a single cooled applicator, microwave energy at 2.45 GHz produces larger ablations than an equivalent amount of 480 kHz RF energy in normal liver and lung. This was more apparent in lung, likely due to the high baseline impedance which limits RF, but not microwave power delivery.

  12. [Radiofrequency ablation in the multimodal treatment of liver metastases--preliminary report].

    PubMed

    Burcoveanu, C; Dogaru, C; Diaconu, C; Grecu, F; Dragomir, Cr; Pricop, Adriana; Balan, G; Drug, V L

    2007-01-01

    Although the "gold standard" in the multimodal treatment of liver primary and secondary tumors is the surgical ablation, the rate of resection, despite the last decades advances, remains still low (10 - 20%). In addition, the interest for non-surgical ablation therapies is increasing. Among them, regional or systemic chemotherapy, intra-arterial radiotherapy as well as locally targeted therapies--cryotherapy, alcohol instillation and radiofrequency (RF) are the most valuable options as alternative to the surgical approach. Between February 2005 - January 2007, 9 patients with liver metastases underwent open RF ablation of their secondaries in the III-rd Surgical Unit, "St. Spiridon" Hospital. An Elektrotom 106 HiTT Berchtold device with a 60W power generator and a 15 mm monopolar active electrode was used. Destruction of the tumors was certified with intraoperative ultrasound examination. Pre- and postoperative CarcinoEmbryonic Antigen (CEA) together with imaging follow-up was carried out, in order to determine local or systemic recurrencies. Six patients died between 6 month - 4 years after the RF ablation. Median survival is 29.2 months. RF ablation is a challenge alternative in non-resectable liver tumors.

  13. Radiofrequency Ablation for Tumor-Related Massive Hematuria

    PubMed Central

    Neeman, Ziv; Sarin, Shawn; Coleman, Jonathan; Fojo, Tito; Wood, Bradford J.

    2008-01-01

    To determine whether radiofrequency (RF) ablation targeting the tumor-collecting system interface has a durable effect in patients with transfusion-dependent kidney tumor-related hematuria, four patients aged 61-71 years were successfully treated with RF ablation, with a mean follow up of 12 months. Baseline creatinine levels varied from 2.0 mg/dL to 3.7 mg/dL. All patients had received red blood cell transfusions in the days and hours before RF ablation. No subsequent surgical or interventional procedures were required for management of hematuria. Gross hematuria resolved in 24-48 hours in all four patients. Two of the patients are alive with stable renal function and two died of causes unrelated to treatment. RF ablation may be an effective therapeutic option for transfusion-dependent cancer-related hematuria in patients with renal insufficiency, solitary kidney, or comorbidities, or after failed conventional therapies in patients who are not candidates for surgery. PMID:15758142

  14. Radiofrequency ablation for tumor-related massive hematuria.

    PubMed

    Neeman, Ziv; Sarin, Shawn; Coleman, Jonathan; Fojo, Tito; Wood, Bradford J

    2005-03-01

    To determine whether radiofrequency (RF) ablation targeting the tumor-collecting system interface has a durable effect in patients with transfusion-dependent kidney tumor-related hematuria, four patients aged 61-71 years were successfully treated with RF ablation, with a mean follow up of 12 months. Baseline creatinine levels varied from 2.0 mg/dL to 3.7 mg/dL. All patients had received red blood cell transfusions in the days and hours before RF ablation. No subsequent surgical or interventional procedures were required for management of hematuria. Gross hematuria resolved in 24-48 hours in all four patients. Two of the patients are alive with stable renal function and two died of causes unrelated to treatment. RF ablation may be an effective therapeutic option for transfusion-dependent cancer-related hematuria in patients with renal insufficiency, solitary kidney, or comorbidities, or after failed conventional therapies in patients who are not candidates for surgery.

  15. Idiopathic ventricular outflow tract arrhythmias from the great cardiac vein: challenges and risks of catheter ablation.

    PubMed

    Steven, D; Pott, C; Bittner, A; Sultan, A; Wasmer, K; Hoffmann, B A; Köbe, J; Drewitz, I; Milberg, P; Lueker, J; Mönnig, G; Servatius, H; Willems, S; Eckardt, L

    2013-11-20

    Catheter ablation for idiopathic ventricular arrhythmia is well established but epicardial origin, proximity to coronary arteries, and limited accessibility may complicate ablation from the venous system in particular from the great cardiac vein (GCV). Between April 2009 and October 2010 14 patients (56 ± 15 years; 9 male) out of a total group of 117 patients with idiopathic outflow tract tachycardias were included undergoing ablation for idiopathic VT or premature ventricular contractions (PVC) originating from GCV. All patients in whom the PVC arose from the GCV were subject to the study. In these patients angiography of the left coronary system was performed with the ablation catheter at the site of earliest activation. Successful ablation was performed in 6/14 (43%) and long-term success was achieved in 5/14 (36%) patients. In 4/14 patients (28.6%) ablation was not performed. In another 4 patients (26.7%), ablation did not abolish the PVC/VT. In the majority, the anatomical proximity to the left coronary system prohibited effective RF application. In 3 patients RF application resulted in a coronary spasm with complete regression as revealed in repeat coronary angiography. A relevant proportion idiopathic VT/PVC can safely be ablated from the GCV without significant permanent coronary artery stenosis after RF application. Our data furthermore demonstrate that damage to the coronary artery system is likely to be transient. © 2013.

  16. Development of a fine thermocouple-needle system for real-time feedback of thermal tumour ablation margin

    PubMed Central

    Ishizaka, H; Shiraishi, A; Awata, S; Shimizu, A; Hirasawa, S

    2011-01-01

    Thermal tumour ablation techniques such as radiofrequency (RF) ablation are applied for radical removal of local tumours as an easier, less invasive alternative to surgical resection. A serious drawback of thermal ablation, however, is that the ablation area cannot be accurately assessed during the procedure. To achieve real-time feedback and exact and safe ablation, a superfine thermocouple-needle system (TNS) comprising a 0.25-mm diameter thermocouple embedded in a 22-G, 15-cm-long needle was devised and efficacy was tested in vitro using porcine livers (n = 15) and in vivo using rabbit back muscles (n = 2) and livers (n = 3). A 17-gauge RF electrode with a 2 cm active tip was used for ablation. The TNS was inserted 1 cm from the active tip of the RF electrode and liver temperature around the electrode was measured concurrently. The RF current was cut off when the temperature reached 60°C or after 5 min at ≥50°C. Porcine livers and rabbit back muscles were then cut along a plane passing through the axes of the electrode and the TNS. In rabbit livers, contrast-enhanced CT was performed to evaluate ablation areas. Ablation areas in cut surfaces of porcine livers exhibited well-defined discoloured regions and the TNS tip precisely pinpointed the margin of the ablation area. Contrast-enhanced CT of rabbit livers showed the TNS tip accurately located at the margin of areas without contrast enhancement. These results indicate that the TNS can accurately show ablation margins and that placing the TNS tip at the intended ablation margin permits exact thermal ablation. PMID:21937618

  17. Short communication. Development of a fine thermocouple-needle system for real-time feedback of thermal tumour ablation margin.

    PubMed

    Ishizaka, H; Shiraishi, A; Awata, S; Shimizu, A; Hirasawa, S

    2011-12-01

    Thermal tumour ablation techniques such as radiofrequency (RF) ablation are applied for radical removal of local tumours as an easier, less invasive alternative to surgical resection. A serious drawback of thermal ablation, however, is that the ablation area cannot be accurately assessed during the procedure. To achieve real-time feedback and exact and safe ablation, a superfine thermocouple-needle system (TNS) comprising a 0.25-mm diameter thermocouple embedded in a 22-G, 15-cm-long needle was devised and efficacy was tested in vitro using porcine livers (n = 15) and in vivo using rabbit back muscles (n = 2) and livers (n = 3). A 17-gauge RF electrode with a 2 cm active tip was used for ablation. The TNS was inserted 1 cm from the active tip of the RF electrode and liver temperature around the electrode was measured concurrently. The RF current was cut off when the temperature reached 60°C or after 5 min at ≥50°C. Porcine livers and rabbit back muscles were then cut along a plane passing through the axes of the electrode and the TNS. In rabbit livers, contrast-enhanced CT was performed to evaluate ablation areas. Ablation areas in cut surfaces of porcine livers exhibited well-defined discoloured regions and the TNS tip precisely pinpointed the margin of the ablation area. Contrast-enhanced CT of rabbit livers showed the TNS tip accurately located at the margin of areas without contrast enhancement. These results indicate that the TNS can accurately show ablation margins and that placing the TNS tip at the intended ablation margin permits exact thermal ablation.

  18. Radiofrequency thermo-ablation of PVNS in the knee: initial results.

    PubMed

    Lalam, Radhesh K; Cribb, Gillian L; Cassar-Pullicino, Victor N; Cool, Wim P; Singh, Jaspreet; Tyrrell, Prudencia N M; Tins, Bernhard J; Winn, Naomi

    2015-12-01

    Pigmented villonodular synovitis (PVNS) is normally treated by arthroscopic or open surgical excision. We present our initial experience with radiofrequency thermo-ablation (RF ablation) of PVNS located in an inaccessible location in the knee. Review of all patients with histologically proven PVNS treated with RF ablation and with at least 2-year follow-up. Three patients met inclusion criteria and were treated with RF ablation. Two of the patients were treated successfully by one ablation procedure. One of the three patients had a recurrence which was also treated successfully by repeat RF ablation. There were no complications and all patients returned to their previous occupations following RF ablation. In this study we demonstrated the feasibility of performing RF ablation to treat PVNS in relatively inaccessible locations with curative intent. We have also discussed various post-ablation imaging appearances which can confound the assessment for residual/recurrent disease.

  19. Monitoring of tissue ablation using time series of ultrasound RF data.

    PubMed

    Imani, Farhad; Wu, Mark Z; Lasso, Andras; Burdette, Everett C; Daoud, Mohammad; Fitchinger, Gabor; Abolmaesumi, Purang; Mousavi, Parvin

    2011-01-01

    This paper is the first report on the monitoring of tissue ablation using ultrasound RF echo time series. We calcuate frequency and time domain features of time series of RF echoes from stationary tissue and transducer, and correlate them with ablated and non-ablated tissue properties. We combine these features in a nonlinear classification framework and demonstrate up to 99% classification accuracy in distinguishing ablated and non-ablated regions of tissue, in areas as small as 12mm2 in size. We also demonstrate significant improvement of ablated tissue classification using RF time series compared to the conventional approach of using single RF scan lines. The results of this study suggest RF echo time series as a promising approach for monitoring ablation, and capturing the changes in the tissue microstructure as a result of heat-induced necrosis.

  20. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  1. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results.

    PubMed

    Bruners, P; Schmitz-Rode, T; Günther, R W; Mahnken, A

    2008-03-01

    To evaluate the clinical feasibility and safety of hepatic radiofrequency (RF) ablation using a multipolar RF system permitting the simultaneous use of up to six electrodes. Ten patients (3 female, 7 male, mean age 61) suffering from 29 hepatic metastases (range: 1 - 5) of different tumors were treated with a modified multipolar RF system (CelonLab Power, Celon Medical Instruments, Teltow, Germany) operating four to six needle-shaped internally cooled RF applicators. The procedure duration, applied energy and generator output were recorded during the intervention. The treatment result and procedure-related complications were analyzed. The achieved coagulation volume was calculated on the basis of contrast-enhanced CT scans 24 hours after RF ablation. Complete tumor ablation was achieved in all cases as determined by the post-interventional lack of contrast enhancement in the target region using four applicators in five patients, five applicators in one patient and six applicators in four patients. A mean energy deposition of 353.9 +/- 176.2 kJ resulted in a mean coagulation volume of 115.9 +/- 79.5 cm (3). The mean procedure duration was 74.9 +/- 21.2 minutes. Four patients showed an intraabdominal hemorrhage which necessitated further interventional treatment (embolization; percutaneous histoacryl injection) in two patients. Multipolar RF ablation of hepatic metastasis with up to six applicators was clinically feasible. In our patient population it was associated with an increased risk of intraabdominal bleeding probably due to the multiple punctures associated with the use of multiple applicators.

  2. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or cryoablation. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  3. Combination of microneedle radiofrequency (RF), fractional RF skin resurfacing and multi-source non-ablative skin tightening for minimal-downtime, full-face skin rejuvenation.

    PubMed

    Kaplan, Haim; Kaplan, Lilach

    2016-12-01

    In the recent years, there is a growth in demand for radiofrequency (RF)-based procedures to improve skin texture, laxity and contour. The new generation of systems allow non-invasive and fractional resurfacing treatments on one platform. The aim of this study was to evaluate the safety and efficacy of a new treatment protocol using a multisource RF, combining 3 different modalities in each patient: [1] non-ablative RF skin tightening, [2] fractional skin resurfacing, and [3] microneedling RF for non-ablative coagulation and collagen remodelling. 14 subjects were enrolled in this study using EndyMed PRO ™ platform. Each patient had 8 non-ablative treatments and 4 fractional treatments (fractional skin resurfacing and Intensif). The global aesthetic score was used to evaluate improvement. All patients had improvement in skin appearance. About 43% had excellent or very good improvement above 50%, 18% had good improvement between 25 and 50%, and the rest 39% had a mild improvement of < 25%. Downtime was minimal and no adverse effect was reported. Our data show significant improvement of skin texture, skin laxity and wrinkle reduction achieved using RF treatment platform.

  4. Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation.

    PubMed

    Malcolme-Lawes, Louisa C; Lim, Phang Boon; Koa-Wing, Michael; Whinnett, Zachary I; Jamil-Copley, Shahnaz; Hayat, Sajad; Francis, Darrel P; Kojodjojo, Pipin; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa

    2013-01-01

    Recurrent arrhythmias after ablation procedures are often caused by recovery of ablated tissue. Robotic catheter manipulation systems increase catheter tip stability which improves energy delivery and could produce more transmural lesions. We tested this assertion using bipolar voltage attenuation as a marker of lesion quality comparing robotic and manual circumferential pulmonary vein ablation for atrial fibrillation (AF). Twenty patients were randomly assigned to robotic or manual AF ablation at standard radiofrequency (RF) settings for our institution (30 W 60 s manual, 25 W 30 s robotic, R30). A separate group of 10 consecutive patients underwent robotic ablation at increased RF duration, 25 W for 60 s (R60). Lesions were marked on an electroanatomic map before and after ablation to measure distance moved and change in bipolar electrogram amplitude during RF. A total of 1108 lesions were studied (761 robotic, 347 manual). A correlation was identified between voltage attenuation and catheter movement during RF (Spearman's rho -0.929, P < 0.001). The ablation catheter was more stable during robotic RF; 2.9 ± 2.3 mm (R30) and 2.6 ± 2.2 mm (R60), both significantly less than the manual group (4.3 ± 3.0 mm, P < 0.001). Despite improved stability, there was no difference in signal attenuation between the manual and R30 group. However, there was increased signal attenuation in the R60 group (52.4 ± 19.4%) compared with manual (47.7 ± 25.4%, P = 0.01). When procedures under general anaesthesia (GA) and conscious sedation were analysed separately, the improvement in signal attenuation in the R60 group was only significant in the procedures under GA. Robotically assisted ablation has the capability to deliver greater bipolar voltage attenuation compared with manual ablation with appropriate selection of RF parameters. General anaesthesia confers additional benefits of catheter stability and greater signal attenuation. These findings may have a significant impact on outcomes from AF ablation procedures.

  5. [Process-oriented cost calculation in interventional radiology. A case study].

    PubMed

    Mahnken, A H; Bruners, P; Günther, R W; Rasche, C

    2012-01-01

    Currently used costing methods such as cost centre accounting do not sufficiently reflect the process-based resource utilization in medicine. The goal of this study was to establish a process-oriented cost assessment of percutaneous radiofrequency (RF) ablation of liver and lung metastases. In each of 15 patients a detailed task analysis of the primary process of hepatic and pulmonary RF ablation was performed. Based on these data a dedicated cost calculation model was developed for each primary process. The costs of each process were computed and compared with the revenue for in-patients according to the German diagnosis-related groups (DRG) system 2010. The RF ablation of liver metastases in patients without relevant comorbidities and a low patient complexity level results in a loss of EUR 588.44, whereas the treatment of patients with a higher complexity level yields an acceptable profit. The treatment of pulmonary metastases is profitable even in cases of additional expenses due to complications. Process-oriented costing provides relevant information that is needed for understanding the economic impact of treatment decisions. It is well suited as a starting point for economically driven process optimization and reengineering. Under the terms of the German DRG 2010 system percutaneous RF ablation of lung metastases is economically reasonable, while RF ablation of liver metastases in cases of low patient complexity levels does not cover the costs.

  6. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla.

    PubMed

    Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F

    2011-02-01

    Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA

    PubMed Central

    Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.

    2011-01-01

    Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854

  8. Pneumothorax as a complication of percutaneous radiofrequency ablation for lung neoplasms.

    PubMed

    Yamagami, Takuji; Kato, Takeharu; Hirota, Tatsuya; Yoshimatsu, Rika; Matsumoto, Tomohiro; Nishimura, Tsunehiko

    2006-10-01

    The present study was performed to determine the frequency of the complication of pneumothorax after radiofrequency (RF) ablation for lung neoplasms and risk factors affecting such pneumothoraces. The study was based on 129 consecutive sessions of percutaneous RF ablation of lung neoplasms under real-time computed tomographic fluoroscopic guidance performed in a single institution between May 2003 and November 2005 in 41 patients (17 women, 24 men; mean age, 63 years; age range, 29-82 y). Correlation was determined between the incidence of pneumothorax after RF ablation and multiple factors: sex, age, presence of emphysema, lesion size, lesion depth, contact of tumor with pleura, number of punctures, maximum power of RF generator, period of ablation, tissue temperature at the end of the RF ablation session, and patient position during the procedure. Management of each case of iatrogenic pneumothorax was reviewed. Pneumothorax after RF ablation occurred in 38 of 129 RF ablation sessions (29.5%). Fourteen of the 38 cases were treated by manual aspiration, and 24 were simply observed. In five cases (3.9%), chest tube placement was required as therapy for pneumothorax. The risk of pneumothorax was significantly increased in patients with pulmonary emphysema. The frequency of pneumothorax after RF ablation in our experience is similar to the frequency of pneumothorax after lung biopsy reported in the literature. Various conditions for RF ablation did not influence the incidence of pneumothorax. Emphysema was the only individual factor that correlated significantly with the development of iatrogenic pneumothorax.

  9. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  10. Radiofrequency catheter ablation of Type 1 atrial flutter using a large-tip electrode catheter and high-power radiofrequency energy generator.

    PubMed

    Feld, Gregory K

    2004-11-01

    Recent studies have demonstrated a high degree of efficacy of 8 mm electrode-tipped or saline-irrigated-tip catheters for ablation of atrial flutter (AFL). These catheters have a theoretical advantage as they produce a large ablation lesion. However, large-tip ablation catheters have a larger surface area and require a higher power radiofrequency (RF) generator with up to 100 W capacity to produce adequate ablation temperatures (50-60 degrees C). The potential advantages of a large-tip ablation catheter and high-power RF generator include the need for fewer energy applications, shorter procedure and fluoroscopy times, and greater efficacy. Therefore, the safety and efficacy of AFL ablation using 8 or 10 mm electrode catheters and a 100-W RF generator was studied using the Boston Scientific, Inc., EPT-1000 XP cardiac ablation system. There were 169 patients, aged 61 +/- 12 years involved. Acute end points were bidirectional isthmus block and no inducible AFL. Following ablation, patients were seen at 1, 3 and 6 months, with event monitoring performed weekly and for any symptoms. Three quality of life surveys were completed during follow-up. Acute success was achieved in 158 patients (93%), with 12 +/- 11 RF energy applications. The efficacy of 8 and 10 mm electrodes did not differ significantly. The number of RF energy applications (10 +/- 8 vs. 14 +/- 8) and ablation time (0.5 +/- 0.4 vs. 0.8 +/- 0.6 h) were less with 10 mm compared with 8 mm electrodes (p < 0.01). Of 158 patients with acute success, 42 were not evaluated at 6 months due to study exclusions. Of the 116 patients evaluated at 6 months, 112 (97%) had no AFL recurrence. Of those without AFL recurrence at 6 months, 95 and 93% were free of symptoms at 12 and 24 months, respectively. Ablation of AFL improved quality of life scores (p < 0.05) and reduced anti-arrhythmic and rate control drug use (p < 0.05). Complications occurred in six out of 169 patients (3.6%) but there were no deaths. It was concluded that ablation of AFL with 8 or 10 mm electrode catheters and a high-power RF generator was safe, effective and improved quality of life. The number and duration of RF applications was lower with 10 mm compared with 8 mm electrode catheters.

  11. Radiofrequency ablation versus nephron-sparing surgery for small unilateral renal cell carcinoma: cost-effectiveness analysis.

    PubMed

    Pandharipande, Pari V; Gervais, Debra A; Mueller, Peter R; Hur, Chin; Gazelle, G Scott

    2008-07-01

    To evaluate the relative cost-effectiveness of percutaneous radiofrequency (RF) ablation versus nephron-sparing surgery (NSS) in patients with small (

  12. Radiofrequency Cauterization with Biopsy Introducer Needle

    PubMed Central

    Pritchard, William F.; Wray-Cahen, Diane; Karanian, John W.; Hilbert, Stephen; Wood, Bradford J.

    2014-01-01

    PURPOSE The principal risks of needle biopsy are hemorrhage and implantation of tumor cells in the needle tract. This study compared hemorrhage after liver and kidney biopsy with and without radiofrequency (RF) ablation of the needle tract. MATERIALS AND METHODS Biopsies of liver and kidney were performed in swine through introducer needles modified to allow RF ablation with the distal 2 cm of the needle. After each biopsy, randomization determined whether the site was to undergo RF ablation during withdrawal of the introducer needle. Temperature was measured with a thermistor stylet near the needle tip, with a target temperature of 70°C–100°C with RF ablation. Blood loss was measured as grams of blood absorbed in gauze at the puncture site for 2 minutes after needle withdrawal. Selected specimens were cut for gross examination. RESULTS RF ablation reduced bleeding compared with absence of RF ablation in liver and kidney (P < .01), with mean blood loss reduced 63% and 97%, respectively. Mean amounts of blood loss (±SD) in the liver in the RF and no-RF groups were 2.03 g ± 4.03 (CI, 0.53–3.54 g) and 5.50 g ± 5.58 (CI, 3.33–7.66 g), respectively. Mean amounts of blood loss in the kidney in the RF and no-RF groups were 0.26 g ± 0.32 (CI, −0.01 to 0.53 g) and 8.79 g ± 7.72 (CI, 2.34–15.24 g), respectively. With RF ablation, thermal coagulation of the tissue surrounding the needle tract was observed. CONCLUSION RF ablation of needle biopsy tracts reduced hemorrhage after biopsy in the liver and kidney and may reduce complications of hemorrhage as well as implantation of tumor cells in the tract. PMID:14963187

  13. Radiofrequency ablation for hepatic hemangiomas: A consensus from a Chinese panel of experts

    PubMed Central

    Gao, Jun; Fan, Rui-Fang; Yang, Jia-Yin; Cui, Yan; Ji, Jian-Song; Ma, Kuan-Sheng; Li, Xiao-Long; Zhang, Long; Xu, Chong-Liang; Kong, Xin-Liang; Ke, Shan; Ding, Xue-Mei; Wang, Shao-Hong; Yang, Meng-Meng; Song, Jin-Jin; Zhai, Bo; Nin, Chun-Ming; Guo, Shi-Gang; Xin, Zong-Hai; Lu, Jun; Dong, Yong-Hong; Zhu, Hua-Qiang; Sun, Wen-Bing

    2017-01-01

    Recent studies have shown that radiofrequency (RF) ablation therapy is a safe, feasible, and effective procedure for hepatic hemangiomas, even huge hepatic hemangiomas. RF ablation has the following advantages in the treatment of hepatic hemangiomas: minimal invasiveness, definite efficacy, high safety, fast recovery, relatively simple operation, and wide applicability. It is necessary to formulate a widely accepted consensus among the experts in China who have extensive expertise and experience in the treatment of hepatic hemangiomas using RF ablation, which is important to standardize the application of RF ablation for the management of hepatic hemangiomas, regarding the selection of patients with suitable indications to receive RF ablation treatment, the technical details of the techniques, therapeutic effect evaluations, management of complications, etc. A final consensus by a Chinese panel of experts who have the expertise of using RF ablation to treat hepatic hemangiomas was reached by means of literature review, comprehensive discussion, and draft approval. PMID:29093616

  14. Percutaneous Intraductal Radiofrequency Ablation Combined with Biliary Stent Placement for Nonresectable Malignant Biliary Obstruction Improves Stent Patency but not Survival.

    PubMed

    Wang, Jianfeng; Zhao, Lizhen; Zhou, Chuanguo; Gao, Kun; Huang, Qiang; Wei, Baojie; Gao, Jun

    2016-04-01

    Although radiofrequency (RF) ablation has been accepted as a curative treatment modality for solid organ tumors, intraductal RF ablation for malignant biliary obstruction has not been widely described. The aim of this study was to evaluate the feasibility, safety, and efficacy (in terms of stent patency and survival) of intraductal RF ablation combined with biliary stent placement for nonresectable malignant biliary obstruction. A search of the nonresectable malignant extrahepatic biliary obstruction database (179 patients) identified 18 consecutive patients who were treated with biliary intraluminal RF ablation during percutaneous transhepatic cholangiodrainage and inner stent placement (RF ablation group) and 18 patients who underwent inner stent placement without biliary intraluminal RF ablation (control group). The patients were matched for tumor type, location of obstruction, tumor stage, and Child-Pugh class status. Primary endpoints included safety, stent patency time, and survival rates. The secondary endpoint was effectiveness of the technique. The RF ablation and control groups were closely matched in terms of age, diagnosis, presence of metastases, presence of locally advanced tumor, American Society of Anesthesiologists (ASA) grade, and chemotherapy regimen (all P > 0.05). The technical success rate for both groups was 100%. The median time of stent patency in the RF ablation and control groups were 5.8 (2.8-11.5) months and 4.5 (2.4-8.0) months, respectively (Kaplan-Meier analysis: P = 0.03). The median survival times in the RF ablation and control groups were 6.1 (4.8-15.2) months and 5.8 (4.2-16.5) months, with no significant difference according to Kaplan-Meier analysis (P = 0.45). In univariate and multivariate analyses, poorer overall survival was associated with advanced age and presence of metastases (P < 0.05). Intraductal RF ablation combined with biliary stent placement for nonresectable malignant biliary obstruction is safe and feasible and effectively increases stent patency time. However, it does not improve patient survival.

  15. The Role Of Contact Force In Atrial Fibrillation Ablation.

    PubMed

    Nakagawa, Hiroshi; Jackman, Warren M

    2014-01-01

    During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These studies confirm that CF is a major determinant of RF lesion size and future systems combining CF, RF power and application time may provide real-time assessment of lesion formation.

  16. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results.

    PubMed

    Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain; Cool, Paul; Williams, David; Mangham, David

    2006-04-01

    The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually.

  17. Initial clinical experience with a remote magnetic catheter navigation system for ablation of cavotricuspid isthmus-dependent right atrial flutter.

    PubMed

    Arya, Arash; Kottkamp, Hans; Piorkowski, Christopher; Bollmann, Andreas; Gerdes-Li, Jin-Hong; Riahi, Sam; Esato, Masahiro; Hindricks, Gerhard

    2008-05-01

    A remote magnetic navigation system (MNS) is available and has been used with a 4-mm-tip magnetic catheter for radiofrequency (RF) ablation of some supraventricular and ventricular arrhythmias; however, it has not been evaluated for the ablation of cavotricuspid isthmus-dependent right atrial flutter (AFL). The present study evaluates the feasibility and efficiency of this system and the newly available 8-mm-tip magnetic catheter to perform RF ablation in patients with AFL. Twenty-six consecutive patients (23 men, mean age 64.6 +/- 9.6 years) underwent RF ablation using a remote MNS. RF ablation was performed with an 8-mm-tip magnetic catheter (70 degrees C, maximum power 70 W, 90 seconds). The endpoint of ablation was complete bidirectional isthmus block. To assess a possible learning curve, procedural data were compared between the first 14 (group 1) and the rest (group 2) of the patients. The initial rhythm during ablation was AFL in 20 (19 counterclockwise and 1 clockwise) and sinus rhythm in six patients. Due to technical issues, the ablation in the 18th patient could not be done with the MNS, and so we switched to conventional ablation. The remote magnetic navigation and ablation procedure was successful in 24 of the 25 (96%) remaining patients with AFL. In one patient (patient 2), conventional catheter was used to complete the isthmus block after termination of AFL. The procedure, preparation, ablation, and fluoroscopy times (median [range]) were 53 (30-130) minutes, 28 (10-65) minutes, 25 (12-78) minutes, and 7.5 (3.2-20.8) minutes, respectively. Patients in group 2 had shorter procedure (45 [30-70] min vs 80 [57-130] min, P = 0.0001), preparation (25 [10-30] min vs 42 [30-65] min, P = 0.0001), ablation (20 [12-40] min vs 31 [20-78] min, P = 0.002), and fluoroscopy (7.2 [3.2-12.2] min vs 11.0 [5.4-20.8] min, P = 0.014) times. No complication occurred during the procedure. Using a remote MNS and an 8-mm-tip magnetic catheter, ablation of AFL is feasible, safe, and effective. Our data suggest that there is a short learning curve for this procedure.

  18. Real-time iterative monitoring of radiofrequency ablation tumor therapy with 15O-water PET imaging.

    PubMed

    Bao, Ande; Goins, Beth; Dodd, Gerald D; Soundararajan, Anuradha; Santoyo, Cristina; Otto, Randal A; Davis, Michael D; Phillips, William T

    2008-10-01

    A method that provides real-time image-based monitoring of solid tumor therapy to ensure complete tumor eradication during image-guided interventional therapy would be a valuable tool. The short, 2-min half-life of (15)O makes it possible to perform repeated PET imaging at 20-min intervals at multiple time points before and after image-guided therapy. In this study, (15)O-water PET was evaluated as a tool to provide real-time feedback and iterative image guidance to rapidly monitor the intratumoral coverage of radiofrequency (RF) ablation therapy. Tumor RF ablation therapy was performed on head and neck squamous cell carcinoma (SCC) xenograft tumors (length, approximately 23 mm) in 6 nude rats. The tumor in each animal was ablated with RF (1-cm active size ablation catheter, 70 degrees C for 5 min) twice in 2 separate tumor regions with a 20-min separation. The (15)O-water PET images were acquired before RF ablation and after the first RF and second RF ablations using a small-animal PET scanner. In each PET session, approximately 100 MBq of (15)O-water in 1.0 mL of saline were injected intravenously into each animal. List-mode PET images were acquired for 7 min starting 20 s before injection. PET images were reconstructed by 2-dimensional ordered-subset expectation maximization into single-frame images and dynamic images at 10 s/frame. PET images were displayed and analyzed with software. Pre-RF ablation images demonstrate that (15)O-water accumulates in tumors with (15)O activity reaching peak levels immediately after administration. After RF ablation, the ablated region had almost zero activity, whereas the unablated tumor tissue continued to have a high (15)O-water accumulation. Using image feedback, the RF probe was repositioned to a tumor region with residual (15)O-water uptake and then ablated. The second RF ablation in this new region of the tumor resulted in additional ablation of the solid tumor, with a corresponding decrease in activity on the (15)O-water PET image. (15)O-water PET clearly demonstrated the ablated tumor region, whereas the unablated tumor continued to show high (15)O-water accumulation. (15)O-water imaging shows promise as a tool for on-site, real-time monitoring of image-guided interventional cancer therapy.

  19. Hepatic Radiofrequency Ablation–induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

    PubMed Central

    Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S. Nahum

    2016-01-01

    Purpose To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. Materials and Methods Rats were used in this institutional animal care and use committee–approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met–negative R3230 tumors for comparison with the native c-Met–positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. Results After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor VEGF levels. Compared with RF ablation alone, RF ablation combined with adjuvant PHA-665752 or semaxanib reduced distant tumor growth, proliferation, and microvascular density. For c-Met–negative tumors, hepatic RF ablation did not increase distant tumor growth, proliferation, or microvascular density compared with sham treatment. Conclusion RF ablation of normal liver can stimulate distant subcutaneous tumor growth mediated by HGF/c-Met pathway and VEGF activation. This effect was not observed in c-Met–negative tumors and can be blocked with adjuvant c-Met and VEGF inhibitors. © RSNA, 2015 PMID:26418615

  20. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation) on gross histologic examination. The laparoscopic IR camera is able to monitor the surface renal temperatures during RF treatment. Thermocouple measurements during RF ablation confirmed the thermographic findings and demonstrated that lethal temperatures at the margin of the intended treatment zone are routinely obtained and that a rapid decline in temperature occurs beyond the predicted ablation margin.

  1. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jonathan K., E-mail: jonathan.park09@gmail.com; Al-Tariq, Quazi Z., E-mail: qat200@gmail.com; Zaw, Taryar M., E-mail: taryar.zaw@gmail.com

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5more » patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.« less

  2. Chronological changes of radiofrequency ablation zone in rabbit liver: an in vivo correlation between gross pathology and histopathology

    PubMed Central

    Song, Kyoung D; Rhim, Hyunchul; Kang, Tae Wook; Cha, Dong Ik; Yang, Jehoon

    2017-01-01

    Objective: To examine the gross pathology and histopathology of ablation zones created from radiofrequency (RF) ablation and to correlate their chronological changes. Methods: A total of 48 in vivo ablation zones (16 rabbit livers) were obtained immediately after and also 30 min, 1 h and 2 h after RF ablation and were subjected to haematoxylin and eosin (H&E) staining, nicotinamide adenine dinucleotide (NADH) diaphorase staining, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. Chronological changes in gross pathology and histopathology were evaluated and correlated with each other. Results: Peripheral red zones on gross pathology correlated with peripheral zones on H&E staining, lightly stained peripheral zones on NADH staining and peripheral positive zones on TUNEL staining. Central white zones on gross pathology correlated with combined central and border zones on H&E staining, central negative zones on NADH staining and combined central-positive and middle-negative zones on TUNEL staining. Boundary visibility between central white and peripheral red zones on gross pathology was significantly higher at 1 and 2 h than immediately after RF ablation. As time increased after RF ablation, visibility of the border zone on H&E staining and the grade of positively stained hepatocytes in the peripheral zone on TUNEL staining increased. Conclusion: Chronological changes in gross pathology of RF ablation zones correlated well with histopathology. The boundary between the central white and peripheral red zones tended to become clear at 1 h after RF ablation. Advances in knowledge: (1) RF ablation zones show chronological changes on gross pathology and histopathology. (2) Gross pathology and histopathology correlate well with each other. PMID:28139942

  3. Science to Practice: The Changing Face of Local Tumor Therapies-Do We Have to Think Systemically When Treating Cancer Locally?

    PubMed

    Chapiro, Julius; Geschwind, Jean-François

    2015-08-01

    In this issue, Rozenblum et al ( 1 ) were able to demonstrate that radiofrequency (RF) ablation-induced liver regeneration promotes "off-target" tumorigenesis in a MDR2 knock-out mouse model of hepatocellular carcinoma (HCC) in the setting of chronic liver inflammation. In addition, the authors demonstrated that blocking liver regeneration with a c-met inhibitor might attenuate or eliminate potential tumorigenic effects. These results provide the rationale for combined therapeutic approaches of RF ablation followed by a systemic application of immunomodulatory drugs.

  4. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  5. Comparison of catheter ablation for paroxysmal atrial fibrillation between cryoballoon and radiofrequency: a meta-analysis.

    PubMed

    Chen, Chao-Feng; Gao, Xiao-Fei; Duan, Xu; Chen, Bin; Liu, Xiao-Hua; Xu, Yi-Zhou

    2017-04-01

    The present systematic review and meta-analysis aimed to assess and compare the safety and efficacy of radiofrequency (RF) and cryoballoon (CB) ablation for paroxysmal atrial fibrillation (PAF). RF and CB ablation are two frequently used methods for pulmonary vein isolation in PAF, but which is a better choice for PAF remains uncertain. A systematic review was conducted in Medline, PubMed, Embase, and Cochrane Library. All trials comparing RF and CB ablation were screened and included if the inclusion criteria were met. A total of 38 eligible studies, 9 prospective randomized or randomized controlled trials (RCTs), and 29 non- RCTs were identified, adding up to 15,496 patients. Pool analyses indicated that CB ablation was more beneficial in terms of procedural time [standard mean difference = -0.58; 95% confidence interval (CI), -0.85 to -0.30], complications without phrenic nerve injury (PNI) [odds ratio (OR) = 0.79; 95% CI, 0.67-0.93; I 2  = 16%], and recrudescence (OR = 0.83; 95% CI, 0.70-0.97; I 2  = 63%) for PAF; however, the total complications of CB was higher than RF. The subgroup analysis found that, compared with non-contact force radiofrequency (non-CF-RF), both first-generation cryoballoon (CB1) and second-generation cryoballoon (CB2) ablation could reduce complications with PNI, procedural time, and recrudescence. However, the safety and efficacy of CB2 was similar to those of CF-RF. Available overall and subgroup data suggested that both CB1 and CB2 were more beneficial than RF ablation, and the main advantages were reflected in comparing them with non-CF-RF. However, CF-RF and CB2 showed similar clinical benefits.

  6. Morphologic changes in the vein after different numbers of radiofrequency ablation cycles.

    PubMed

    Shaidakov, Evgeny V; Grigoryan, Arsen G; Korzhevskii, Dmitriy E; Ilyukhin, Evgeny A; Rosukhovski, Dmitriy A; Bulatov, Vasiliy L; Tsarev, Oleg I

    2015-10-01

    It has not yet been clarified whether it is possible to decrease the percentage of recurrences after radiofrequency (RF) ablation by way of increasing the number of RF ablation cycles. The aim of this study was to assess the morphologic changes in excised vein fragments after different durations of RF ablation exposure. In the first part of the study, we performed a morphologic analysis of eight cases of great saphenous vein (GSV) recanalization 6 months after RF ablation. The second part was performed on a suprafascial segment of the GSV with a length of >22 cm and a minimum diameter of 5 mm in 10 patients, who had given their consent to intraoperative excision of suprafascial GSV segments after RF ablation treatment through four 1-cm-long diametrical cuts. Prior ultrasound analysis had shown an average 6.9-mm diameter of the suprafascial segments. The segment was divided into three 7-cm-long subsegments and one control segment. The first, second, and third segments were treated with three, two, and one RF ablation cycles (ClosureFast; Covidien, Mansfield, Mass), respectively; the control segment was not exposed to RF ablation at all. Morphologic study of 160 sections of the vein (five sections of each segment and 10 control specimens) was carried out. The specimens were dyed with hematoxylin and orcein. The ensuing analysis was performed by an experienced expert with the blind study method (the specimens were numbered without any hint as to the quantity of RF ablation cycles performed on them). The intergroup comparison of the depth of venous wall damage was based on comparison of the coefficient of alteration, which is calculated as the relation of damage depth to thickness of the vein. After one RF ablation cycle, the depth of blurring of the structural elements only on some portions reached the middle of the muscle layer of the wall (coefficient of alteration, α = 26%). After two cycles, blurring of the structural elements on some portions extended to the adventitia (α = 53%). After three cycles, uniform blurring of the structural elements of all layers of the venous wall up to the adventitia was seen (α = 92%). The statistically significant difference in the alteration coefficient, depending on the number of cycles of RF ablation (P < .005), was established. The number of RF ablation cycles has an impact on the depth of vein wall damage. One and two cycles do not cause damage to all layers of the vein wall. Three cycles cause damage to all vein wall layers. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Outcomes after cryoballoon or radiofrequency ablation for persistent atrial fibrillation: a multicentric propensity-score matched study.

    PubMed

    Boveda, Serge; Providência, Rui; Defaye, Pascal; Pavin, Dominique; Cebron, Jean-Pierre; Anselme, Frederic; Halimi, Franck; Khoueiry, Ziad; Combes, Nicolas; Combes, Stephane; Jacob, Sophie; Albenque, Jean-Paul; Sousa, Pedro

    2016-11-01

    Recent data show no benefit of additional ablation beyond pulmonary vein isolation (PVI) in persistent atrial fibrillation (AF). Evidence suggests that radiofrequency energy (RF) and cryoballoon (CRYO) have comparable efficacy for PVI. We aimed to assess the outcomes after a single catheter ablation procedure, comparing PVI using CRYO vs. RF ablation for PVI plus additional ablation in a cohort of patients with persistent AF. In this prospective multicenter propensity score-matched comparison, 59 consecutive patients undergoing CRYO ablation of persistent AF were matched to 59 patients treated with RF from November 2010 to June 2012. During a mean follow-up of 15.6 ± 11.5 months, 43.2 % of patients presented atrial arrhythmia relapse after a blanking period of 3 months, which was comparable between the two groups (40.7 % in CRYO vs. 45.8 % in RF, Log rank P = 0.14; HR = 0.67, 95 %CI 0.38-1.16, P = 0.15), despite the fact that 52.5 % of RF patients add additional complex fractionated atrial electrogram ablation, as well as left atrial linear ablation in over two-thirds (roof line in 67.8 % and mitral isthmus in 32.2 %). On multivariate Cox regression, only AF duration in years (HR = 1.10, 95 %CI 1.01-1.10, P = 0.04) was a predictor of relapse. Patients undergoing RF ablation presented a numerically, but non-significantly, lower complication rate (6.8 vs 10.2 %, P = 0.51). In our multicenter experience, freedom from atrial arrhythmias was comparable among matched patients treated with CRYO and RF, despite non-significant trends in favor of RF in terms of complications, at the cost of longer procedure times.

  8. Automatic control of finite element models for temperature-controlled radiofrequency ablation.

    PubMed

    Haemmerich, Dieter; Webster, John G

    2005-07-14

    The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.

  9. Bipolar radiofrequency ablation with 2 × 2 electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling.

    PubMed

    Mulier, Stefaan; Jiang, Yansheng; Jamart, Jacques; Wang, Chong; Feng, Yuanbo; Marchal, Guy; Michel, Luc; Ni, Yicheng

    2015-01-01

    Size and geometry of the ablation zone obtained by currently available radiofrequency (RF) electrodes is highly variable. Reliability might be improved by matrix radiofrequency ablation (MRFA), in which the whole tumour volume is contained within a cage of x × y parallel electrodes. The aim of this study was to optimise the smallest building block for matrix radiofrequency ablation: a recently developed bipolar 2 × 2 electrode system. In ex vivo bovine liver, the parameters of the experimental set-up were changed one by one. In a second step, a finite element method (FEM) modelling of the experiment was performed to better understand the experimental findings. The optimal power to obtain complete ablation in the shortest time was 50-60 W. Performing an ablation until impedance rise was superior to ablation for a fixed duration. Increasing electrode diameter improved completeness of ablation due to lower temperature along the electrodes. A chessboard pattern of electrode polarity was inferior to a row pattern due to an electric field void in between the electrodes. Variability of ablation size was limited. The FEM correctly simulated and explained the findings in ex vivo liver. These experiments and FEM modelling allowed a better insight in the factors influencing the ablation zone in a bipolar 2 × 2 electrode RF system. With optimal parameters, complete ablation was obtained quickly and with limited variability. This knowledge will be useful to build a larger system with x × y electrodes for MRFA.

  10. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver

    PubMed Central

    Andreano, Anita; Brace, Christopher L

    2012-01-01

    Purpose To determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. Materials and Methods A total of sixty heating cycles (20 s at 90 W) were performed in normal, RF ablated and microwave ablated liver tissues (n=10 RF and n=10 microwave in each tissue type). Heating cycles were performed using a 480 kHz generator and 3 cm cooled-tip electrode (RF) or a 2.45 GHz generator and 14-gauge monopole (microwave) and designed to isolate direct heating from each energy type. Tissue temperatures were measured using fiberoptic thermosensors 5, 10 and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates and maximal temperatures were compared using mixed effects regression models. Results No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P>0.05). Microwaves produced significantly more rapid heating than RF at 5, 10 and 15mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21 and 0.17 vs. 0.09 °C/s; P<.05); and at 5 and 10mm in ablated tissues (2.3 ± 1.4 vs. 0.7 ± 0.3, 0.5 ± 0.3 vs. 0.2 ± 0.0 C/s, P<.05). The radial depth of heating was approximately 5mm greater for microwaves than RF. Conclusions Direct heating obtained with 2.45 GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480 kHz RF energy. Keywords: microwave ablation, direct heating, thermal ablation PMID:22572764

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.it; Lencioni, Riccardo; Bozzi, Elena

    The purpose of this study was to investigate the feasibility and safety of lung radiofrequency (RF) ablation by using low-perfusion-rate, expandable, multitined electrodes in an in vivo animal model. Ten New Zealand White rabbits underwent RF ablation using low-perfusion-rate, expandable, multitined electrodes (Starburst Talon; RITA Medical Systems, Mountain View, CA) and a 200-W RF generator. The electrode was positioned under fluoroscopy guidance and a single percutaneous RF ablation was performed. Saline perfusate was doped with nonionic iodinated contrast agent to render it visible on computed tomography (CT). The pump infused the saline doped with contrast agent into the lateral tinesmore » at a rate of 0.1ml/min. The planned ablation was of 3 min, with the hooks deployed to 2 cm at a target temperature of 105{sup o}C. An immediate posttreatment CT scan documented the distribution of the doped saline and the presence of immediate complications. The animals were monitored for delayed complications and sacrificed within 72 h (n = 4), 2 weeks (n = 3), or 4 weeks (n = 3). Assessment of ablation zone and adjacent structures was done at autopsy. Major complications consisted of pneumothorax requiring drainage (n = 2) and skin burn (n = 1). Immediately after the procedure the area of ablation was depicted at CT as a round, well-demarcated area, homogeneously opacified by iodinated contrast medium (mean size, 2.3 {+-} 0.8 cm). The presence of a sharply demarcated area of coagulation necrosis (mean size, 2.1 {+-} 0.4 cm) without severe damage to adjacent structures was confirmed at autopsy. In one case, euthanized at 4 weeks, in whom pneumothorax and pleural effusion were depicted, pleural fibrinous adhesions were demonstrated at autopsy. In conclusion, lung RF ablation performed in an in vivo animal model using low-perfusion-rate, expandable, multitined electrodes is feasible and safe. No severe damage to adjacent structures was demonstrated.« less

  12. Bipolar radiofrequency ablation of the kidney: comparison with monopolar radiofrequency ablation.

    PubMed

    Nakada, Stephen Y; Jerde, Travis J; Warner, Thomas F; Wright, Andrew S; Haemmerich, Dieter; Mahvi, David M; Lee, Fred T

    2003-12-01

    We report initial ex vivo and in vivo studies using bipolar radiofrequency (RF) ablation of porcine kidneys. An internal ground electrode is positioned in the kidney opposite the RF electrode, resulting in ablation of all the intervening renal tissue. Ex vivo preparations of 10 porcine kidneys were perfused continuously with Ringer's solution and treated with either standard external grounded RF (N = 3) or bipolar RF ablation with 1 (N = 2), 2 (N = 3), or 3 (N = 2) cm of separation between the ground probe and the RF probe using a Model 30 RITA generator (RITA, Mountain View, CA). Target temperatures were 90 degrees C for 8 minutes. Gross and histologic assessments were made acutely. Four domestic pigs were treated with monopolar RF ablation of the lower pole of one kidney and bipolar RF with a 12-mm separation between the probes of the contralateral lower pole. Animals were harvested 48 hours later to maximize tissue damage for gross measurements and histologic evaluation. Ex vivo studies revealed grossly monopolar lesions 1.5 cm in maximum diameter and 1.75 cm(3) in volume. In comparison, bipolar lesions were 2.8 cm in maximum diameter and 10.3 cm(3) in volume using 3 cm of electrode separation. There was histologic evidence of cell death in all specimens. In vivo studies showed two distinct gross lesions with RF: one blanched and one hemorrhagic. Using bipolar RF, larger blanched lesions were achievable than with monopolar RF (2.80 cm(3) v 1.63 cm(3)). Overall, the combinations of blanched and hemorrhagic lesions were similar with monopolar and bipolar RF (5.01 v 5.31 cm(3)). Histologic evaluation verified cell death in the blanched lesions and rare areas of normal tissue in the hemorrhagic lesions. As shown by ex vivo data, bipolar RF can create larger lesions than does monopolar RF. In vivo, at 48 hours, both blanched and hemorrhagic gross lesions were seen using RF. In this model, blanched lesions predominated when performing bipolar RF.

  13. Safe and rapid isolation of pulmonary veins using a novel circular ablation catheter and duty-cycled RF generator.

    PubMed

    Fredersdorf, Sabine; Weber, Stefan; Jilek, Clemens; Heinicke, Norbert; VON Bary, Christian; Jungbauer, Carsten; Riegger, Günter A; Hamer, Okka W; Jeron, Andreas

    2009-10-01

    Ablation of atrial fibrillation (AF) has been one of the most difficult and time-consuming electrophysiological procedures. Due to the rapidly increasing demand for ablation procedures, technical advances would be helpful to reduce complexity and procedure time in AF ablation. Therefore, we investigated the feasibility of a single-catheter technique for pulmonary vein (PV) isolation utilizing a decapolar catheter combined with a duty-cycled, unipolar-bipolar radiofrequency (RF) generator. AF mapping and ablation was performed in 21 consecutive patients (mean age 59 +/- 12 years, 9 males) with paroxysmal AF (n = 17) and persistent AF (n = 4). The ablation catheter was forwarded to the LA via single-transseptal puncture. All electrodes were energized in 2 to 5 applications per vein, followed by segmental RF applications, as needed, to achieve electrical isolation. To assess left atrial anatomy for purposes of catheter manipulation, and later evaluate the possibility of asymptomatic PV-stenosis, CT or MR imaging was performed both prior to ablation and at 6-month follow-up. Isolation could be achieved in 85/86 veins (99%). Procedure time for ablation was 81 +/- 13 minutes, and fluoroscopy time was 30 +/- 11 minutes. There were no procedural complications. Success rate at 6 months was 86% (18/21). MR or CT imaging excluded asymptomatic PV-stenosis. Mapping and ablation of PVs can be performed in a safe and efficient manner using a single-catheter technique, with short procedure times and minimal learning curve. Thus, this system may be of high interest not only for high volume but all centers performing AF ablation.

  14. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubienski, Andreas; Duex, Markus; Lubienski, Katrin

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance,more » and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.« less

  15. ANALYSIS OF FACTORS AFFECTING OUTCOME OF ULTRASOUND-GUIDED RADIOFREQUENCY HEAT ABLATION FOR TREATMENT OF PRIMARY HYPERPARATHYROIDISM IN DOGS.

    PubMed

    Bucy, Daniel; Pollard, Rachel; Nelson, Richard

    2017-01-01

    Radiofrequency (RF) parathyroid ablation is a noninvasive treatment for hyperparathyroidism in dogs. There are no published data assessing factors associated with RF parathyroid ablation success or failure in order to guide patient selection and improve outcome. The purpose of this retrospective analytical study was to determine whether imaging findings, biochemical data, or concurrent diseases were associated with RF heat ablation treatment failure. For inclusion in the study, dogs must have had a clinical diagnosis of primary hyperparathyroidism, undergone cervical ultrasound and RF ablation of abnormal parathyroid tissue, and must have had at least 3 months of follow-up information available following the date of ultrasound-guided parathyroid ablation. Dogs were grouped based on those with recurrent or persistent hypercalcemia and those without recurrent or persistent hypercalcemia following therapy. Parathyroid nodule size, thyroid lobe size, nodule location, and presence of concurrent disease were recorded. Recurrence of hypercalcemia occurred in 9/32 dogs that had ablation of abnormal parathyroid tissue (28%) and one patient had persistent hypercalcemia (3%) following parathyroid ablation. Nodule width (P = 0.036), height (P = 0.028), and largest cross-sectional area (P = 0.023) were larger in dogs that had recurrent or persistent hypercalcemia following ablation. Hypothyroidism was more common in dogs with recurrent disease (P = 0.044). Radiofrequency ablation was successful in 22/32 (69%) dogs. Larger parathyroid nodule size and/or concurrent hypothyroidism were associated with treatment failure in dogs that underwent ultrasound-guided RF parathyroid nodule ablation. © 2016 American College of Veterinary Radiology.

  16. Initial clinical experience of remote magnetic navigation system for catheter mapping and ablation of supraventricular tachycardias.

    PubMed

    Xu, Dongjie; Yang, Bin; Shan, Qijun; Zou, Jiangang; Chen, Minglong; Chen, Chun; Hou, Xiaofeng; Zhang, Fengxiang; Li, Wen-Qi; Cao, Kejiang; Tse, Hung-Fat

    2009-09-01

    A remote magnetic navigation system (MNS) has been developed for mapping and catheter ablation of cardiac arrhythmias. The present study evaluates the safety and feasibility of this system to perform radiofrequency (RF) ablation in patients with supraventricular tachycardias (SVT). A total of 32 patients (22 female; mean age 44 +/- 16 years) with documented SVT underwent mapping and ablation using Helios II (a 4-mm-tip magnetic catheter), under the guidance of the MNS (Niobe II, Stereotaxis, Inc.). Catheter ablation procedure with MNS was successful in 30/32 (94%) patients including all patients (27/27, 100%) with atrioventricular nodal reentrant tachycardia (AVNRT) and three of five patients (60%) with atrioventricular reentrant tachycardia (AVRT) without any complication. The procedural successful rate in patients with AVNRT was significantly higher than those in patients with AVRT (P < 0.001). Overall, the medium number of RF application using the MNS was 2 (mean 2.7 +/- 1.6, range 1 to 7), and the medium numbers of RF for AVNRT and AVRT were 2 and 3, respectively. There was no significant difference in the mean procedural time between patients with AVNRT and AVRT (126.3 +/- 38.6 vs. 138.0 +/- 40.3 min, P = 0.54). However, the mean fluoroscopy time was significantly shorter in patients with AVNRT than those with AVRT (5.7 +/- 3.0 vs. 16.5 +/- 2.5 min, P < 0.001). Among those patients with AVNRT, the mean procedural time (139.3 +/- 45.0 vs. 112.3 +/- 24.9 min, P = 0.07) and fluoroscopic time (3.2 +/- 1.0 vs. 8.0 +/- 2.2 min, P < 0.001) were shorter for the later 13 patients than the first 14 patients, suggesting a learning curve in using the MNS for RF ablation. The Niobe MNS is a new technique that can allow safe and effective remote-controlled navigation and minimize the need for fluoroscopic guidance for ablation catheter of AVNRT. However, further improvement is required to achieve a higher successful rate for treatment of AVRT.

  17. Simultaneous assessment of contact pressure and local electrical coupling index using robotic navigation.

    PubMed

    Dello Russo, Antonio; Fassini, Gaetano; Casella, Michela; Bologna, Fabrizio; Al-Nono, Osama; Colombo, Daniele; Biagioli, Viviana; Santangeli, Pasquale; Di Biase, Luigi; Zucchetti, Martina; Majocchi, Benedetta; Marino, Vittoria; Gallinghouse, Joseph J; Natale, Andrea; Tondo, Claudio

    2014-06-01

    Contact with cardiac tissue is a determinant of lesion efficacy during atrial fibrillation (AF) ablation. The Sensei®X Robotic Catheter System (Hansen Medical, CA) has been validated for contact force sensing. The electrical coupling index (ECI) from the EnSite Contact™ system (St. Jude Medical, MN) has been validated as an indicator of tissue contact. We aimed at analyzing ECI behavior during radiofrequency (RF) pulses maintaining a stable contact through the robotic navigation contact system. In 15 patients (age, 59 ± 12) undergoing AF ablation, pulmonary vein (PV) isolation was guided by the Sensei®X System, employing the Contact™ catheter. During the procedure, we assessed ECI changes associated with adequate contact based on the IntelliSense® force-sensing technology (Hansen Medical, CA. Baseline contact (27 ± 8 g/cm(2)) ECI value was 99 ± 13, whereas ECI values in a noncontact site (0 g/cm(2)) and in a light contact site (1-10 g/cm(2)) were respectively 66 ± 12 and 77 ± 10 (p < 0.0001). Baseline contact ECI values were not different depending on AF presentation (paroxysmal AF, 98 ± 9; persistent AF, 100 ± 9) or on cardiac rhythm (sinus rhythm, 97 ± 7; AF,101 ± 10). In all PVs, ECI was significantly reduced during and after ablation (ECI during RF, 56 ± 15; ECI after RF, 72 ± 16; p < 0.001). A mean reduction of 32.2% during RF delivery and 25.4% immediately after RF discontinuation compared with baseline ECI was observed. Successful PV isolation is associated with a significant decrease in ECI of at least 20 %. This may be used as a surrogate marker of effective lesion in AF ablation.

  18. Influence of large intrahepatic blood vessels on the gross and histological characteristics of lesions produced by radiofrequency ablation in a pig liver model.

    PubMed

    Tamaki, Katsuyoshi; Shimizu, Ichiro; Oshio, Atsuo; Fukuno, Hiroshi; Inoue, Hiroshi; Tsutsui, Akemi; Shibata, Hiroshi; Sano, Nobuya; Ito, Susumu

    2004-12-01

    To determine whether the presence of large intrahepatic blood vessels (>/=3 mm) affect radiofrequency (RF)-induced coagulation necrosis, the gross and histological characteristics of RF-ablated areas proximal to or around vessels were examined in normal pig livers. An RF ablation treatment using a two-stepwise extension technique produced 12 lesions: six contained vessels (Group A), and the other six were localized around vessels (Group B). Gross examination revealed that the longest and shortest diameters of the ablated lesions were significantly larger in Group B than in Group A. In Group A, patent vessels contiguous to the lesion were present in a tongue-shaped area, whereas the lesions in Group B were spherical. Staining with nicotinamide adenine dinucleotide diaphorase was negative within the ablated area; but, if vessels were present in the ablated area, the cells around the vessels in an opposite direction to the ablation were stained blue. Roll-off can be achieved with 100% cellular destruction within a lesion that does not contain large vessels. The ablated area was decreased in lesions that contained large vessels, suggesting that the presence of large vessels in the ablated area further increases the cooling effect and may require repeated RF ablation treatment to achieve complete coagulation necrosis.

  19. Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter.

    PubMed

    Rozen, Guy; Ptaszek, Leon; Zilberman, Israel; Cordaro, Kevin; Heist, E Kevin; Beeckler, Christopher; Altmann, Andres; Ying, Zhang; Liu, Zhenjiang; Ruskin, Jeremy N; Govari, Assaf; Mansour, Moussa

    2017-02-01

    Real-time radiofrequency (RF) ablation lesion assessment is a major unmet need in cardiac electrophysiology. The purpose of this study was to assess whether improved temperature measurement using a novel thermocoupling (TC) technology combined with information derived from impedance change, contact force (CF) sensing, and catheter orientation allows accurate real-time prediction of ablation lesion formation. RF ablation lesions were delivered in the ventricles of 15 swine using a novel externally irrigated-tip catheter containing 6 miniature TC sensors in addition to force sensing technology. Ablation duration, power, irrigation rate, impedance drop, CF, and temperature from each sensor were recorded. The catheter "orientation factor" was calculated using measurements from the different TC sensors. Information derived from all the sources was included in a mathematical model developed to predict lesion depth and validated against histologic measurements. A total of 143 ablation lesions were delivered to the left ventricle (n = 74) and right ventricle (n = 69). Mean CF applied during the ablations was 14.34 ± 3.55g, and mean impedance drop achieved during the ablations was 17.5 ± 6.41 Ω. Mean difference between predicted and measured ablation lesion depth was 0.72 ± 0.56 mm. In the majority of lesions (91.6%), the difference between estimated and measured depth was ≤1.5 mm. Accurate real-time prediction of RF lesion depth is feasible using a novel ablation catheter-based system in conjunction with a mathematical prediction model, combining elaborate temperature measurements with information derived from catheter orientation, CF sensing, impedance change, and additional ablation parameters. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Laparoscopic vs computerized tomography-guided radiofrequency ablation for large hepatic hemangiomas abutting the diaphragm

    PubMed Central

    Gao, Jun; Kong, Jian; Ding, Xue-Mei; Ke, Shan; Niu, Hai-Gang; Xin, Zong-Hai; Ning, Chun-Min; Guo, Shi-Gang; Li, Xiao-Long; Zhang, Long; Dong, Yong-Hong; Sun, Wen-Bing

    2015-01-01

    AIM: To compare safety and therapeutic efficacy of laparoscopic radiofrequency (RF) ablation vs computed tomography (CT)-guided RF ablation for large hepatic hemangiomas abutting the diaphragm. METHODS: We retrospectively reviewed our sequential experience of treating 51 large hepatic hemangiomas abutting the diaphragm in 51 patients by CT-guided or laparoscopic RF ablation due to either the presence of symptoms and/or the enlargement of hemangioma. Altogether, 24 hemangiomas were ablated via a CT-guided percutaneous approach (CT-guided ablation group), and 27 hemangiomas were treated via a laparoscopic approach (laparoscopic ablation group). RESULTS: The mean diameter of the 51 hemangiomas was 9.6 ± 1.8 cm (range, 6.0-12.0 cm). There was no difference in the diameter of hemangiomas between the two groups (P > 0.05). RF ablation was performed successfully in all patients. There was no difference in ablation times between groups (P > 0.05). There were 23 thoracic complications in 17 patients: 15 (62.5%, 15/24) in the CT-guided ablation group and 2 (7.4%, 2/27) in the laparoscopic ablation group (P < 0.05). According to the Dindo-Clavien classification, two complications (pleural effusion and diaphragmatic rupture grade III) were major in two patients. All others were minor (grade I). Both major complications occurred in the CT-guided ablation group. The minor complications were treated successfully with conservative measures, and the two major complications underwent treatment by chest tube drainage and thoracoscopic surgery, respectively. Complete ablation was achieved in 91.7% (22/24) and 96.3% (26/27) in the CT-guided and the laparoscopic ablation groups, respectively (P > 0.05). CONCLUSION: Laparoscopic RF ablation therapy should be used as the first-line treatment option for large hepatic hemangiomas abutting the diaphragm. It avoids thermal injury to the diaphragm and reduces thoracic complications. PMID:26019459

  1. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    PubMed

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions predictably occur before imminent steam popping during RF ablations. Such acoustic emissions can be carefully monitored during an ablation and may be useful to prevent serious complications during RF delivery. © 2014 Wiley Periodicals, Inc.

  2. Liver Resection versus Radiofrequency Ablation plus Transcatheter Arterial Chemoembolization in Cirrhotic Patients with Solitary Large Hepatocellular Carcinoma.

    PubMed

    Saviano, Antonio; Iezzi, Roberto; Giuliante, Felice; Salvatore, Lucia; Mele, Caterina; Posa, Alessandro; Ardito, Francesco; De Gaetano, Anna Maria; Pompili, Maurizio

    2017-11-01

    To compare liver resection (LR) with single-step, balloon-occluded radiofrequency (RF) ablation plus drug-eluting embolics transarterial chemoembolization in cirrhotic patients with single hepatocellular carcinoma (HCC) ≥ 3 cm. From 2010 to 2014, 25 patients with compensated cirrhosis and single HCC ≥ 3 cm (median size 4.5 cm; range, 3.0-6.8 cm) not suitable for LR or liver transplantation were treated with RF ablation plus transarterial chemoembolization in a prospective observational single-center pilot study; all patients had complete tumor necrosis after treatment. A retrospective control group included 29 patients (median HCC size 4.0 cm; range, 3.0-7.4 cm) who underwent LR. RF ablation plus transarterial chemoembolization group included more patients with severe portal hypertension (65.5% vs 35.0%, P = .017). Primary endpoints were overall survival (OS) and tumor recurrence (TR) rates. One death and 1 major complication (4%) were observed in LR group. No major complications were reported in RF ablation plus transarterial chemoembolization group (P = .463). OS rates at 1 and 3 years were 91.8% and 79.3% in LR group and 89.4% and 48.2% in RF ablation plus transarterial chemoembolization group (P = 0.117). TR rates at 1 and 3 years were 29.5% and 45.0% in LR group and 42.4% and 76.0% in RF ablation plus transarterial chemoembolization group (P = .034). Local tumor progression (LTP) rates at 3 years were significantly lower in LR group (21.8% vs 58.1%, P = .005). Similar results were found in patients with HCC ≤ 5 cm (TR rates 35.4% vs 75.1%, P = .016; LTP 16.0% vs 55.7%, P = .013). LR achieved lower TR and LTP rates than RF ablation plus transarterial chemoembolization, but 3-years OS rates were not statistically different between the 2 groups. RF ablation plus transarterial chemoembolization is an effective treatment option in patients with compensated cirrhosis and solitary HCC ≥ 3 cm unsuitable for LR. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  3. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    PubMed

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Automatic control of finite element models for temperature-controlled radiofrequency ablation

    PubMed Central

    Haemmerich, Dieter; Webster, John G

    2005-01-01

    Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811

  5. Three-dimension finite-element analyses of multiple electrodes bipolar RF global endometrial ablation

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Panhao, Tang; Xiao, Jiahua

    2015-03-01

    Radio-frequency ablation (RFA) is a minimally invasive surgical procedure to thermally ablate the targeted diseased tissue. There have been many finite-element method (FEM) studies of cardiac and hepatic RFA, but hardly find any FEM study on endometrial ablation for abnormal uterine bleeding. In this paper, a FEM model was generated to analyze the temperature distribution of bipolar RF global endometrial ablation with three pairs of bipolar electrodes placed at the perimeter of the uterine cavity. COMSOL was utilized to calculate the RF electric fields and temperature fields by numerically solving the bioheat equation in the triangle uterine cavity range. The 55°C isothermal surfaces show the shape of the ablation dimensions (depth and width), which reasonably matched the experimental results.

  6. Workflow oriented software support for image guided radiofrequency ablation of focal liver malignancies

    NASA Astrophysics Data System (ADS)

    Weihusen, Andreas; Ritter, Felix; Kröger, Tim; Preusser, Tobias; Zidowitz, Stephan; Peitgen, Heinz-Otto

    2007-03-01

    Image guided radiofrequency (RF) ablation has taken a significant part in the clinical routine as a minimally invasive method for the treatment of focal liver malignancies. Medical imaging is used in all parts of the clinical workflow of an RF ablation, incorporating treatment planning, interventional targeting and result assessment. This paper describes a software application, which has been designed to support the RF ablation workflow under consideration of the requirements of clinical routine, such as easy user interaction and a high degree of robust and fast automatic procedures, in order to keep the physician from spending too much time at the computer. The application therefore provides a collection of specialized image processing and visualization methods for treatment planning and result assessment. The algorithms are adapted to CT as well as to MR imaging. The planning support contains semi-automatic methods for the segmentation of liver tumors and the surrounding vascular system as well as an interactive virtual positioning of RF applicators and a concluding numerical estimation of the achievable heat distribution. The assessment of the ablation result is supported by the segmentation of the coagulative necrosis and an interactive registration of pre- and post-interventional image data for the comparison of tumor and necrosis segmentation masks. An automatic quantification of surface distances is performed to verify the embedding of the tumor area into the thermal lesion area. The visualization methods support representations in the commonly used orthogonal 2D view as well as in 3D scenes.

  7. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    PubMed Central

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  8. Continuous Cavitation Designed for Enhancing Radiofrequency Ablation via a Special Radiofrequency Solidoid Vaporization Process.

    PubMed

    Zhang, Kun; Li, Pei; Chen, Hangrong; Bo, Xiaowan; Li, Xiaolong; Xu, Huixiong

    2016-02-23

    Lowering power output and radiation time during radiofrequency (RF) ablation is still a challenge. Although it is documented that metal-based magnetothermal conversion and microbubbles-based inertial cavitation have been tried to overcome above issues, disputed toxicity and poor magnetothermal conversion efficiency for metal-based nanoparticles and violent but transient cavitation for microbubbles are inappropriate for enhancing RF ablation. In this report, a strategy, i.e., continuous cavitation, has been proposed, and solid menthol-encapsulated poly lactide-glycolide acid (PLGA) nanocapsules have been constructed, as a proof of concept, to validate the role of such a continuous cavitation principle in continuously enhancing RF ablation. The synthesized PLGA-based nanocapsules can respond to RF to generate menthol bubbles via distinctive radiofrequency solidoid vaporization (RSV) process, meanwhile significantly enhance ultrasound imaging for HeLa solid tumor, and further facilitate RF ablation via the continuous cavitation, as systematically demonstrated both in vitro and in vivo. Importantly, this RSV strategy can overcome drawbacks and limitations of acoustic droplet vaporization (ADV) and optical droplet vaporization (ODV), and will probably find broad applications in further cancer theranostics.

  9. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  10. Expression of TGFbeta1 in pulmonary vein stenosis after radiofrequency ablation in chronic atrial fibrillation of dogs.

    PubMed

    Li, Shufeng; Li, Hongli; Mingyan, E; Yu, Bo

    2009-02-01

    The development of pulmonary vein stenosis has recently been described after radiofrequency ablation (RF) to treat atrial fibrillation (AF). The purpose of this study was to examine expression of TGFbeta1 in pulmonary vein stenosis after radiofrequency ablation in chronic atrial fibrillation of dogs. About 28 mongrel dogs were randomly assigned to the sham-operated group (n = 7), the AF group (n = 7), AF + RF group (n = 7), and RF group (n = 7). In AF or AF + RF groups, dogs underwent chronic pulmonary vein (PV) pacing to induce sustained AF. RF application was applied around the PVs until electrical activity was eliminated. Histological assessment of pulmonary veins was performed using hematoxylin and eosin staining; TGFbeta1 gene expression in pulmonary veins was examined by RT-PCR analysis; expression of TGFbeta1 protein in pulmonary veins was assessed by Western blot analysis. Rapid pacing from the left superior pulmonary vein (LSPV) induced sustained AF in AF group and AF + RF group. Pulmonary vein ablation terminated the chronic atrial fibrillation in dogs. Histological examination revealed necrotic tissues in various stages of collagen replacement, intimal thickening, and cartilaginous metaplasia with chondroblasts and chondroclasts. Compared with sham-operated and AF group, TGFbeta1 gene and protein expressions was increased in AF + RF or RF groups. It was concluded that TGFbeta1 might be associated with pulmonary vein stenosis after radiofrequency ablation in chronic atrial fibrillation of dogs.

  11. Safety profile of multielectrode-phased radiofrequency pulmonary vein ablation catheter and irrigated radiofrequency catheter.

    PubMed

    Wasmer, K; Foraita, P; Leitz, P; Güner, F; Pott, C; Lange, P S; Eckardt, L; Mönnig, G

    2016-01-01

    Silent cerebral lesions with the multielectrode-phased radiofrequency (RF) pulmonary vein ablation catheter (PVAC(®)) have recently been investigated. However, comparative data on safety in relation to irrigated RF ablation are missing. One hundred and fifty consecutive patients (58 ± 12 years, 56 female) underwent first pulmonary vein isolation (PVI) for atrial fibrillation (61% paroxysmal) using PVAC(®) (PVAC). Procedure data as well as in-hospital complications were compared with 300 matched patients who underwent PVI using irrigated RF (iRF). Procedure duration (148 ± 63 vs. 208 ± 70 min; P < 0.001), RF duration (24 ± 10 vs. 49 ± 25 min; P < 0.001), and fluoroscopy time (21 ± 10 vs. 35 ± 13 min; P < 0.001) were significantly shorter using PVAC. Major complication rates [major bleeding, transitoric ischaemic attack (TIA), and pericardial tamponade] were not significantly different between groups (PVAC, n = 3; 2% vs. iRF n = 17; 6%). Overall complication rate, including minor events, was similar in both groups [n = 21 (14%) vs. n = 48 (16%)]. Most of these were bleeding complications due to vascular access [n = 8 (5.3%) vs. n = 22 (7.3%)], which required surgical intervention in five patients [n = 1 (0.7%) vs. n = 4 (1.3%)]. Pericardial effusion [n = 4 (2.7%) vs. n = 19 (6.3%); pericardial tamponade requiring drainage n = 0 vs. n = 6] occurred more frequently using iRF. Two patients in each group developed a TIA (1.3% vs. 0.6%). Of note, four of five thromboembolic events in the PVAC group (two TIAs and three transient ST elevations during ablation) occurred when all 10 electrodes were used for ablation. Pulmonary vein isolation using PVAC as a 'one-shot-system' has a comparable complication rate but a different risk profile. Pericardial effusion and tamponade occurred more frequently using iRF, whereas thromboembolic events were more prevalent using PVAC. Occurrence of clinically relevant thromboembolic events might be reduced by avoidance of electrode 1 and 10 interaction and uninterrupted anticoagulation, whereas contact force sensing for iRF might minimize pericardial effusion. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters.

    PubMed

    Winkle, Roger A; Moskovitz, Ryan; Hardwin Mead, R; Engel, Gregory; Kong, Melissa H; Fleming, William; Salcedo, Jonathan; Patrawala, Rob A; Tranter, John H; Shai, Isaac

    2018-06-01

    The optimal radiofrequency (RF) power and lesion duration using contact force (CF) sensing catheters for atrial fibrillation (AF) ablation are unknown. We evaluate 50 W RF power for very short durations using CF sensing catheters during AF ablation. We evaluated 51 patients with paroxysmal (n = 20) or persistent (n = 31) AF undergoing initial RF ablation. A total of 3961 50 W RF lesions were given (average 77.6 ± 19.1/patient) for an average duration of only 11.2 ± 3.7 s. As CF increased from < 10 to > 40 g, the RF application duration decreased from 13.7 ± 4.4 to 8.6 ± 2.5 s (p < 0.0005). Impedance drops occurred in all ablations, and for patients in sinus rhythm, there was loss of pacing capture during RF delivery suggesting lesion creation. Only 3% of the ablation lesions were at < 5 g and 1% at > 40 g of force. As CF increased, the force time integral (FTI) increased from 47 ± 24 to 376 ± 102 gs (p < 0.0005) and the lesion index (LSI) increased from 4.10 ± 0.51 to 7.63 ± 0.50 (p < 0.0005). Both procedure time (101 ± 19.7 min) and total RF energy time (895 ± 258 s) were very short. For paroxysmal AF, the single procedure freedom from AF was 86% at 1 and 2 years. For persistent AF, it was 83% at 1 year and 72% at 2 years. There were no complications. Short duration 50 W ablations using CF sensing catheters are safe and result in excellent long-term freedom from AF for both paroxysmal and persistent AF with short procedure times and small amounts of total RF energy delivery.

  13. Efficacy and Safety of Radiofrequency Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study

    PubMed Central

    Jung, So Lyung; Lee, Jeong Hyun; Shong, Young Kee; Sung, Jin Yong; Kim, Kyu Sun; Lee, Ducky; Kim, Ji-hoon; Baek, Seon Mi; Sim, Jung Suk; Na, Dong Gyu

    2018-01-01

    Objective To assess the efficacy and safety of thyroid radiofrequency (RF) ablation for benign thyroid nodules by trained radiologists according to a unified protocol in a multi-center study. Materials and Methods From 2010 to 2011, 345 nodules from 345 patients (M:F = 43:302; mean age ± SD = 46.0 ± 12.7 years, range = 15–79) who met eligibility criteria were enrolled from five institutions. At pre-ablation, the mean volume was 14.2 ± 13.2 mL (1.1–80.8 mL). For 12 months or longer after treatment, 276 lesions, consisting of 248 solid and 28 predominantly cystic nodules, were followed. All operators performed RF ablation with a cool-tip RF system and two standard techniques (a transisthmic approach and the moving-shot technique). Volume reduction at 12 months after RF ablation (the primary outcome), therapeutic success, improvement of symptoms as well as of cosmetic problems, and complications were evaluated. Multiple linear regression analysis was applied to identify factors that were independently predictive of volume reduction. Results The mean volume reduction at 12 months was 80.3% (n = 276) and at the 24-, 36-, 48-, and 60-month follow-ups 84.3% (n = 198), 89.2% (n = 128), 91.9% (n = 57), and 95.3% (n = 6), respectively. Our therapeutic success was 97.8%. Both mean symptom and cosmetic scores showed significant improvements (p < 0.001). The rate of major complications was 1.0% (3/276). Solidity and applied energy were independent factors that predicted volume reduction. Conclusion Radiofrequency ablation performed by trained radiologists from multiple institutions using a unified protocol and similar devices was effective and safe for treating benign thyroid nodules. PMID:29354014

  14. Image guided radiofrequency thermo-ablation therapy of chondroblastomas: should it replace surgery?

    PubMed

    Lalam, Radhesh K; Cribb, Gillian L; Tins, Bernard J; Cool, Wim P; Singh, Jaspreet; Tyrrell, Prudencia N M; Cassar-Pullicino, Victor N

    2014-04-01

    To assess the safety and effectiveness of image-guided radiofrequency ablation (RF ablation) in the treatment of chondroblastomas as an alternative to surgery. Twelve patients with histologically proven chondroblastoma at our institution from 2003 to date. We reviewed the indications, recurrences and complications in patients who underwent RF ablation. Twelve patients were diagnosed with chondroblastoma. Out of these, 8 patients (6 male, 2 female, mean age 17 years) with chondroblastoma (mean size 2.7 cm) underwent RF ablation. Multitine expandable electrodes were used in all patients. The number of probe positions needed varied from 1 to 4 and lesions were ablated at 90 °C for 5 min at each probe position. The tumours were successfully treated and all patients became asymptomatic. There were no recurrences. There were 2 patients with knee complications, 1 with minor asymptomatic infraction of the subchondral bone and a second patient with osteonecrosis/chondrolysis. Radiofrequency ablation appears to be a safe and effective alternative to surgical treatment with a low risk of recurrence and complications for most chondroblastomas. RF ablation is probably superior to surgery when chondroblastomas are small (less than 2.5 cm) with an intact bony margin with subchondral bone and in areas of difficult surgical access.

  15. Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling.

    PubMed

    Clasen, Stephan; Schmidt, Diethard; Boss, Andreas; Dietz, Klaus; Kröber, Stefan M; Claussen, Claus D; Pereira, Philippe L

    2006-03-01

    To evaluate the size and geometry of thermally induced coagulation by using multipolar radiofrequency (RF) ablation and to determine a mathematic model to predict coagulation volume. Multipolar RF ablations (n = 80) were performed in ex vivo bovine livers by using three internally cooled bipolar applicators with two electrodes on the same shaft. Applicators were placed in a triangular array (spacing, 2-5 cm) and were activated in multipolar mode (power output, 75-225 W). The size and geometry of the coagulation zone, together with ablation time, were assessed. Mathematic functions were fitted, and the goodness of fit was assessed by using r(2). Coagulation volume, short-axis diameter, and ablation time were dependent on power output and applicator distance. The maximum zone of coagulation (volume, 324 cm(3); short-axis diameter, 8.4 cm; ablation time, 193 min) was induced with a power output of 75 W at an applicator distance of 5 cm. Coagulation volume and ablation time decreased as power output increased. Power outputs of 100-125 W at applicator distances of 2-4 cm led to a reasonable compromise between coagulation volume and ablation time. At 2 cm (100 W), coagulation volume, short-axis diameter, and ablation time were 66 cm(3), 4.5 cm, and 19 min, respectively; at 3 cm (100 W), 90 cm(3), 5.2 cm, and 22 min, respectively; at 4 cm (100 W), 132 cm(3), 6.1 cm, and 27 min, respectively; at 2 cm (125 W), 56 cm(3), 4.2 cm, and 9 min, respectively; at 3 cm (125 W), 73 cm(3), 4.9 cm, and 12 min, respectively; and at 4 cm (125 W), 103 cm(3), 5.5 cm, and 16 min, respectively. At applicator distances of 4 cm (>125 W) and 5 cm (>100 W), the zones of coagulation were not confluent. Coagulation volume (r(2) = 0.80) and RF ablation time (r(2) = 0.93) were determined by using the mathematic model. Multipolar RF ablation with three bipolar applicators may produce large volumes of confluent coagulation ex vivo. A compromise is necessary between prolonged RF ablations at lower power outputs, which produce larger volumes of coagulation, and faster RF ablations at higher power outputs, which produce smaller volumes of coagulation. Copyright RSNA, 2006.

  16. Optimal contact forces to minimize cardiac perforations before, during, and/or after radiofrequency or cryothermal ablations.

    PubMed

    Quallich, Stephen G; Van Heel, Michael; Iaizzo, Paul A

    2015-02-01

    Catheter perforations remain a major clinical concern during ablation procedures for treatment of atrial arrhythmias and may lead to life-threatening cardiac tamponade. Radiofrequency (RF) ablation alters the biomechanical properties of cardiac tissue, ultimately allowing for perforation to occur more readily. Studies on the effects of cryoablation on perforation force as well as studies defining the perforation force of human tissue are limited. The purpose of this study was to investigate the required force to elicit perforation of cardiac atrial tissue after or during ablation procedures. Effects of RF or cryothermal ablations on catheter perforation forces for both swine (n = 83 animals, 530 treatments) and human (n = 8 specimens, 136 treatments) cardiac tissue were investigated. Overall average forces resulting in perforation of healthy unablated tissue were 406g ± 170g for swine and 591g ± 240g for humans. Post-RF ablation applications considerably reduced these forces to 246g ± 118g for swine and 362 ± 185g for humans (P <.001). Treatments with cryoablation did not significantly alter forces required to induce perforations. Decreasing catheter sizes resulted in a reduction in forces required to perforate the atrial wall (P <.001). Catheter perforations occurred over an array of contact forces with a minimum of 38g being observed. The swine model likely underestimates the required perforation forces relative to those of human tissues. We provide novel insights related to the comparative effects of RF and cryothermal ablations on the potential for inducing undesired punctures, with RF ablation reducing perforation force significantly. These data are insightful for physicians performing ablation procedures as well as for medical device designers. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Effects of Perfusion on Radiofrequency Ablation in Swine Kidneys1

    PubMed Central

    Chang, Isaac; Mikityansky, Igor; Wray-Cahen, Diane; Pritchard, William F.; Karanian, John W.; Wood, Bradford J.

    2008-01-01

    PURPOSE: To evaluate the effect of vascular occlusion on the size of radiofrequency (RF) ablation lesions and to evaluate embolization as an occlusion method. MATERIALS AND METHODS: The kidneys of six swine were surgically exposed. Fifteen RF ablation lesions were created in nine kidneys by using a 2-cm-tip single-needle ablation probe in varying conditions: Seven lesions were created with normal blood flow and eight were created with blood flow obstructed by means of vascular clamping (n = 5) or renal artery embolization (n = 3). The temperature, applied voltage, current, and impedance were recorded during RF ablation. Tissue-cooling curves acquired for 2 minutes immediately after the ablation were compared by using regression analysis. Lesions were bisected, and their maximum diameters were measured and compared by using analysis of variance. RESULTS: The mean diameter of ablation lesions created when blood flow was obstructed was 60% greater than that of lesions created when blood flow was normal (1.38 cm ± 0.05 [standard error of mean] vs 0.86 cm ± 0.07, P < .001). The two methods of flow obstruction yielded lesions of similar mean sizes: 1.40 cm ± 0.06 with vascular clamping and 1.33 cm ± 0.07 with embolization. The temperature at the probe tip when lesions were ablated with normal blood flow decreased more rapidly than did the temperature when lesions were ablated after flow obstruction (P < .001), but no significant differences in tissue-cooling curves between the two flow obstruction methods were observed. CONCLUSION: Obstruction of renal blood flow before and during RF ablation resulted in larger thermal lesions with potentially less variation in size compared with the lesions created with normal nonobstructed blood flow. Selective arterial embolization of the kidney vessels may be a useful adjunct to RF ablation of kidney tumors. PMID:15128994

  18. Advances in radio frequency tumor ablation therapy: technical considerations, strategies for increasing coagulation necrosis volume, and preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Goldberg, S. Nahum; Gazelle, G. Scott

    1998-04-01

    Radiofrequency (RF) tumor ablation has been demonstrated as a reliable method for creating thermally induced coagulation necrosis using either a percutaneous approach with image- guidance or direct surgical application of thin electrodes into treated tissues. Early clinical trials with this technology have studied the treatment of hepatic, cerebral, and bony malignancies. The extent of coagulation necrosis induced with conventional monopolar radiofrequency electrodes is dependent on overall energy deposition, the duration of RF application, and RF electrode tip length and gauge. This article will discuss these technical considerations with the goal of defining optimal parameters for RF ablation. Strategies to further increase induced coagulation necrosis including: multiprobe and bipolar arrays, and internally-cooled RF electrodes, with or without pulsed-RF or cluster technique will be presented. The development and laboratory results for many of these radiofrequency techniques, initial clinical results, and potential biophysical limitations to RF induced coagulation, such as perfusion mediated tissue cooling (vascular flow) will likewise be discussed.

  19. Comparison of resource utilization of pulmonary vein isolation: cryoablation versus RF ablation with three-dimensional mapping in the Value PVI Study.

    PubMed

    DeVille, J Brian; Svinarich, J Thomas; Dan, Dan; Wickliffe, Andrew; Kantipudi, Charan; Lim, Hae W; Plummer, Lisa; Baker, James; Kowalski, Marcin; Baydoun, Hassan; Jenkins, Mark; Chang-Sing, Peter

    2014-06-01

    Point-to-point focal radiofrequency (RF) catheter ablation for aberrant pulmonary vein triggers that manifest into atrial fibrillation (AF) is the traditional method for treating symptomatic drug-resistant paroxysmal AF (PAF) when an ablation procedure is warranted. More recently, pulmonary vein isolation (PVI) using the cryoballoon has been demonstrated to be safe and effective (STOP AF clinical trial). Currently, two small studies have reviewed the procedural efficiency when comparing cryoballoon to focal RF catheter ablation procedures; however, no multicenter study has yet reported on this comparison of the two types of ablation catheters. A multicenter retrospective chart extraction and evaluation was conducted at seven geographically mixed cardiac care centers. The study examined procedural variables during ablation for PVI in PAF patients. In several procedural measurements, the two modalities were comparable in efficiencies, including: acute PVI >96%; length of hospital stay at approximately 27 hours; and about 30% usage of adenosine after procedural testing. However, when compared to RF catheters, the cryoballoon procedure demonstrated a 13% reduction in laboratory occupancy time (247 min vs 283 min), a 13% reduction in procedure time (174 min vs 200 min), and a 21% reduction in fluoroscopy time (33 min vs 42 min). Additionally, when comparing the material usage of both cryoballoon and RF catheters, the cryoballoon used more radiopaque contrast agent (78 cc vs 29 cc) while using less intraprocedural saline (1234 cc vs 2386 cc), intracardiac echocardiography (88% vs 99%), three-dimensional electroanatomic mapping (30% vs 87%), and fewer transseptal punctures (1.5 vs 1.9). This study is the first United States multicenter examination to report the procedural comparisons between the cryoballoon and focal RF catheters when used for the treatment of PAF patients. In this hospital chart review study, potential advantages were found when operating the cryoballoon with regard to hospital resource allocation. There was no statistical difference between cryoballoon and RF catheters for acute PVI success during the ablation procedure.

  20. Loss of pace capture on the ablation line: a new marker for complete radiofrequency lesions to achieve pulmonary vein isolation.

    PubMed

    Steven, Daniel; Reddy, Vivek Y; Inada, Keiichi; Roberts-Thomson, Kurt C; Seiler, Jens; Stevenson, William G; Michaud, Gregory F

    2010-03-01

    Catheter ablation procedures for atrial fibrillation (AF) often involve circumferential antral isolation of pulmonary veins (PV). Inability to reliably identify conduction gaps on the ablation line necessitates placing additional lesions within the intended lesion set. This pilot study investigated the relationship between loss of pace capture directly along the ablation line and electrogram criteria for PV isolation (PVI). Using a 3-dimensional anatomic mapping system and irrigated-tip radiofrequency (RF) ablation catheter, lesions were placed in the PV antra to encircle ipsilateral vein pairs until pace capture at 10 mA/2 ms no longer occurred along the line. During ablation, a circular mapping catheter was placed in an ipsilateral PV, but the electrograms were not revealed until loss-of-pace capture. The procedural end point was PVI (entrance and exit block). Thirty patients (57 +/- 12 years; 15 male [50%]) undergoing PVI in 2 centers (3 primary operators) were included (left atrial diameter 40 +/- 4 mm, left ventricular ejection fraction 60 +/- 7%). All patients reached the end points of complete PVI and loss of pace capture. When PV electrograms were revealed after loss of pace capture along the line, PVI was present in 57 of 60 (95%) vein pairs. In the remaining 3 of 60 (5%) PV pairs, further RF applications achieved PVI. The procedure duration was 237 +/- 46 minutes, with a fluoroscopy time of 23 +/- 9 minutes. Analysis of the blinded PV electrograms revealed that even after PVI was achieved, additional sites of pace capture were present on the ablation line in 30 of 60 (50%) of the PV pairs; 10 +/- 4 additional RF lesions were necessary to fully achieve loss of pace capture. After ablation, the electrogram amplitude was lower at unexcitable sites (0.25 +/- 0.15 mV vs. 0.42 +/- 0.32 mV, P < .001), but there was substantial overlap with pace capture sites, suggesting that electrogram amplitude lacks specificity for identifying pace capture sites. Complete loss of pace capture directly along the circumferential ablation line correlates with entrance block in 95% of vein pairs and can be achieved without circular mapping catheter guidance. Thus, pace capture along the ablation line can be used to identify conduction gaps. Interestingly, more RF ablation energy was required to achieve loss of pace capture along the ablation line than for entrance block into PVs. Further study is warranted to determine whether this method results in more durable ablation lesions that reduce recurrence of AF. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter.

    PubMed

    Heidbüchel, H; Willems, R; van Rensburg, H; Adams, J; Ector, H; Van de Werf, F

    2000-05-09

    Gaining anatomic information about the posterior isthmus is not generally part of flutter ablation procedures. We postulated that right atrial (RA) angiography could rationalize the ablation approach by revealing the conformation of the isthmus. In 100 consecutive patients, biplane RA angiography was performed before ablation to guide catheter contact with the isthmus along its length. Angiography showed a wide variation in the width of the isthmus (17 to 54 mm; 31.3+/-7.9), its angle with the inferior vena cava in the right anterior oblique projection (68 degrees to 114 degrees; 90.3+/-9.0 degrees ), and its lateral position relative to the inferior vena cava in the left anterior oblique projection. A deep sub-Eustachian recess was revealed in 47%, with a mean depth of 4.3+/-2.1 mm (1.5 to 9.4). A Eustachian valve was visualized in 24%. Ablation resulted in bidirectional conduction block (which could be transient) in all, with a median of 2 dragging radiofrequency (RF) applications (2.3+/-2.5 RF applications; 57 degrees C, < or =99 seconds each). Permanent block was achieved in 99%, with a median of 3 RF applications (3.4+/-3.0). The presence of a Eustachian valve or concave isthmus was associated with statistically more RF applications; the same trend was seen for patients with deep pouches. The number of RF applications decreased statistically throughout the study, indicating a learning curve. No patient had a recurrence after a follow-up of 13+/-11 months. Right atrial angiography reveals a highly variable isthmus anatomy, often showing particular configurations that can make ablation more laborious. Rational adaptation of the ablation approach to these anatomic findings may contribute to successful ablation.

  2. Predictability of lesion durability for AF ablation using phased radiofrequency: Power, temperature, and duration impact creation of transmural lesions.

    PubMed

    Hocini, Mélèze; Condie, Cathy; Stewart, Mark T; Kirchhof, Nicole; Foell, Jason D

    2016-07-01

    Long-term clinical outcomes for atrial fibrillation ablation depend on the creation of durable transmural lesions during pulmonary vein isolation and on substrate modification. Focal conventional radiofrequency (RF) ablation studies have demonstrated that tissue temperature and power are important factors for lesion formation. However, the impact and predictability of temperature and power on contiguous, transmural lesion formation with a phased RF system has not been described. The purpose of this study was to determine the sensitivity, specificity, and predictability of power and temperature to create contiguous, transmural lesions with the temperature-controlled, multielectrode phased RF PVAC GOLD catheter. Single ablations with the PVAC GOLD catheter were performed in the superior vena cava of 22 pigs. Ablations from 198 PVAC GOLD electrodes were evaluated by gross examination and histopathology for lesion transmurality and contiguity. Lesions were compared to temperature and power data from the phased RF GENius generator. Effective contact was defined as electrodes with a temperature of ≥50°C and a power of ≥3 W. Eighty-five percent (168 of 198) of the lesions were transmural and 79% (106 of 134) were contiguous. Electrode analysis showed that >30 seconds of effective contact identified transmural lesions with 85% sensitivity (95% confidence interval [CI] 78%-89%), 93% specificity (95% CI 76%-99%), and 99% positive predictive value (95% CI 94%-100%). Sensitivity for lesion contiguity was 95% (95% CI 89%-98%), with 62% specificity (95% CI 42%-78%) and 90% positive predictive value (95% CI 83%-95%). No char or coagulum was observed on the catheter or tissue. PVAC GOLD safely, effectively, and predictably creates transmural and contiguous lesions. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Safety and feasibility of single-catheter ablation using remote magnetic navigation for treatment of slow-fast atrioventricular nodal reentrant tachycardia compared to conventional ablation strategies.

    PubMed

    Akca, Ferdi; Schwagten, Bruno; Theuns, Dominic A J; Takens, Marieke; Musters, Paul; Szili-Torok, Tamas

    2013-12-01

    Ablation of atrioventricular nodal re-entrant tachycardia (AVNRT) is a highly effective procedure both with radiofrequency (RF) and cryoenergy (CE). Conventionally, it requires several diagnostic catheters and hospital admission. This study assessed the safety and efficacy of a highly simplified approach using the magnetic navigation system (MNS) compared to CE and manual RF ablation (MAN). In the MNS group a single magnetic-guided quadripolar catheter was inserted through the internal jugular vein to perform ablation. In the CE group cryomapping preceded ablation and for MAN procedures conventional ablation was performed. The following parameters were analysed: success- and recurrence rate, procedure-, fluoroscopy- and total application time. In total 69 eligible patients were treated with MNS (n = 26), CE (n = 25) and MAN (n = 16). The success rates were 100%, 100% and 94%, respectively (p = ns). The mean procedural time was 83 +/- 25 min for MNS, 117 +/- 47 min for CE and 117 +/- 55 min for MAN (P < 0.01). Total radiation time was significantly lower for MNS [0.0 min (IQR 0.0-0.0)] compared to CE [15.1 min (IQR 9.1-23.8), P < 0.001] and MAN [17.5 min (IQR 7.0-31.3), P < 0.001]. The total application time was comparable for both RF groups: 357 +/- 315 s (MNS) vs 204 +/- 177 s (MAN) (P = 0.14). No major adverse events occurred. After 3 months follow-up similar PR intervals were recorded for all patients. During a follow-up of 26 +/- 5 months recurrence rates were 3.8%, 4.0% and 6.3%, respectively, for each group. The MNS-guided single-catheter approach is a feasible and safe technique for the treatment of patients with typical AVNRT.

  4. Long-term efficacy of single procedure remote magnetic catheter navigation for ablation of ischemic ventricular tachycardia: a retrospective study.

    PubMed

    Dinov, Borislav; Schönbauer, Robert; Wojdyla-Hordynska, Agnieska; Braunschweig, Frieder; Richter, Sergio; Altmann, David; Sommer, Philipp; Gaspar, Thomas; Bollmann, Andreas; Wetzel, Ulrike; Rolf, Sascha; Piorkowski, Christopher; Hindricks, Gerhard; Arya, Arash

    2012-05-01

    Remote magnetic navigation (RMN) aims to reduce some inherent limitations of manual radiofrequency (RF) ablation. However, data comparing the effectiveness of both methods are scarce. This study evaluated the acute and long-term success of RMN guided versus manual RF ablation in patients with ischemic sustained ventricular tachycardia (sVT). One hundred two consecutive patients (age 68 ± 10 years, LVEF 32 ± 12%, 88 men) with ischemic sVT were ablated with RMN (Stereotaxis; 49%) or manually (51%) using substrate and/or activation mapping (Carto) and open-irrigated-tip catheters. All received implantable defibrillators or loop recorders. Acute success was defined as noninducibility of any sVT at the end of the ablation procedure and long-term success as freedom from VT upon follow-up. There was no difference in the baseline characteristics between the groups. Three patients died in hospital. Acute success rate was similar for RMN and manual ablation (82% vs 71%, P = 0.246). RMN was associated with significantly shorter fluoroscopy time (13 ± 12 minutes vs 32 ± 17 minutes, P = 0.0001) and RF time (2337.59 ± 1248.22 seconds vs 1589.95 ± 1047.42 seconds, P = 0.049), although total procedure time was similar (157 ± 40 minutes vs 148 ± 50 minutes, P = 0.42). There was a nonsignificant trend toward better long-term success in RMN group: after a median of 13 (range 1-34) months, 63% in the RMN and 53% in the manual ablation group were free from VT recurrence (P = 0.206). RMN guided RF ablation of ischemic sustained VT is equally efficient compared with manual ablation in terms of acute and long-term success rate. These results are achieved with a significantly reduced fluoroscopy time and shorter RF time. © 2012 Wiley Periodicals, Inc.

  5. MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement

    PubMed Central

    Sheng, Jun; Desai, Jaydev P.

    2016-01-01

    Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation. PMID:28190945

  6. Atrial Fibrillation Radiofrequency Ablation: Safety Using Contact Force Catheter In A Low-Volume Centre.

    PubMed

    Vaccari Md, Diego; Giacopelli MSc, Daniele; Rocchetto MSc, Eros; Vittadello Md, Sabina; Mantovan Md, Roberto; Neri Md, Gianfilippo

    2014-01-01

    The tip-to-tissue contact force (CF) has been identified as a potential determinant of lesion quality during radiofrequency (RF) ablation. The aim of this paper is to report the experience of a single low-volume centre in the atrial fibrillation (AF) ablation procedure with an RF catheter capable of measuring this parameter. CF data and their possible implications on patient safety are presented. Thirty-nine consecutive patients suffering of paroxysmal or permanent AF received percutaneous ablation with the novel catheter studied. Procedural characteristics, CF applied and safety events related to the procedure were reported. During RF application the mean CF value was 17 ± 3 g, with a maximum mean value of 37 ± 8 g. CF value never exceeded 62 g and in the 74% of the RF applications ranged between 10 g and 30 g. No complication related to the catheter manipulation or to the energy delivered was observed. This study of a single centre with a low level of experience in AF ablation suggests that the ability to measure CF may provide additional useful information to the operator. It ensures uniform ablations, with little variability in the catheter manipulations, and it avoids excessive contact forces increasing the patient safety.

  7. Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation

    PubMed Central

    Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie

    2013-01-01

    Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542

  8. Nanobubble ultrasound contrast agents for enhanced delivery of thermal sensitizer to tumors undergoing radiofrequency ablation.

    PubMed

    Perera, Reshani H; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M; Broome, Ann-Marie; Exner, Agata A

    2014-06-01

    Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43 ºC) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation.

  9. [Percutaneous radiofrequency ablation of osteoid osteomas: technique and results].

    PubMed

    Bruners, P; Penzkofer, T; Günther, R W; Mahnken, A

    2009-08-01

    Osteoid osteoma is a benign primary bone tumor that typically occurs in children and young adults. Besides local pain, which is often worse at night, prompt relief due to medication with acetylsalicylic acid (ASS) is characteristic for this bone lesion. Because long-term medication with ASS does not represent an alternative treatment strategy due to its potentially severe side effects, different minimally invasive image-guided techniques for the therapy of osteoid osteoma have been developed. In this context radiofrequency (RF) ablation in particular has become part of the clinical routine. The technique and results of image-guided RF ablation are compared to alternative treatment strategies. Using this technique, an often needle-shaped RF applicator is percutaneously placed into the tumor under image guidance. Then a high-frequency alternating current is applied by the tip of the applicator which leads to ionic motion within the tissue resulting in local heat development and thus in thermal destruction of the surrounding tissue including the tumor. The published primary and secondary success rates of this technique are 87 and 83 %, respectively. Surgical resection and open curettage show comparable success rates but are associated with higher complication rates. In addition image-guided RF ablation of osteoid osteomas is associated with low costs. In conclusion image-guided RF ablation can be considered the gold standard for the treatment of osteoid osteoma.

  10. Pain control requirements for percutaneous ablation of renal tumors: cryoablation versus radiofrequency ablation--initial observations.

    PubMed

    Allaf, Mohamad E; Varkarakis, Ioannis M; Bhayani, Sam B; Inagaki, Takeshi; Kavoussi, Louis R; Solomon, Stephen B

    2005-10-01

    To retrospectively compare the pain control requirements of patients undergoing computed tomography (CT)-guided percutaneous radiofrequency (RF) ablation with those of patients undergoing CT-guided percutaneous cryoablation of small (< or = 4-cm) renal tumors. The study was HIPAA compliant and received institutional review board exemption; informed consent was not required. Medical and procedure records of patients who underwent RF ablation and cryoablation of renal tumors from June 19, 2003, to February 28, 2004, were retrospectively reviewed for clinical data, tumor characteristics, and anesthesia information. During the study period, 10 men (mean age, 66.5 years) underwent cryoablation of 11 renal lesions, and 14 patients (11 men, four women; mean age, 68.1 years) underwent RF ablation of 15 renal tumors. Analgesic and sedative requirements during the procedure were compared. Standard anesthesia consisted of 5 mL of 1% lidocaine injected locally, and conscious sedation consisted of 50 microg of fentanyl and 1 mg of midazolam administered intravenously. The Fisher exact test and Student t test were used to compare clinical factors and drug requirements between the two groups. There was no difference in terms of patient demographics, tumor diameter, or distribution of central versus noncentral lesions between the two groups. Cryoablation was associated with a significantly lower dose of fentanyl (165.0 microg [RF group] vs 75.0 microg [cryoablation group]; P < .001) and midazolam (2.9 mg [RF group] vs 1.6 mg [cryoablation group]; P = .026). In the RF group, one patient required general anesthesia, one patient required supplemental narcotics (5 mg of oxycodone) and sedatives (1 mg lorezapam), and one patient became apneic for a brief interval after receiving additional narcotics for pain during the procedure. An additional RF session was terminated early in one patient because of pain, and further medication could not be administered owing to bradycardia. No patients in the cryoablation group required any additional or alternate anesthetics. Image-guided percutaneous cryoablation of small (< or = 4-cm) renal lesions appears to require less analgesia than RF ablation. Prospective trials with validated pain scales are needed to examine this further. RSNA, 2005

  11. Radiofrequency ablation for hepatocellular carcinoma: a prospective comparison of four radiofrequency devices.

    PubMed

    Lin, Shi-Ming; Lin, Chen-Chun; Chen, Wei-Ting; Chen, Yi-Chen; Hsu, Chao-Wei

    2007-09-01

    To compare the effectiveness of ablation techniques for hepatocellular carcinoma (HCC) with the use of four radiofrequency (RF) devices. One hundred patients with 133 HCC lesions no larger than 4 cm were treated with one of four RF devices: RF 2000 (maximum power, 100 W) and RF 3000 generators (maximum power, 200 W) with LeVeen expandable electrodes with a maximum dimension of 3.5 cm or 4 cm, internally cooled single electrode with a thermal dimension of 3 cm, and a RITA RF generator with expandable electrodes with a maximum dimension of 5 cm. Numbers of RF sessions needed per HCC to achieve complete necrosis were 1.4 +/- 0.5 with the RF 2000 device and greater than 1.1 +/- 0.3 with the other three devices (P < .05). The RF 2000 device required a more interactive algorithm than the RF 3000 device. Session times per patient were 31.7 minutes +/- 13.2 in the RF 2000 group and longer than 16.6 minutes +/- 7.5 in the RF 3000 group, 28.3 minutes +/- 12 in the RITA device group, and 27.1 minutes +/- 12 with the internally cooled electrode device (P < .005 for RF 2000 vs other devices and for RF 3000 vs RITA or internally cooled electrode device). Complete necrosis and local tumor progression rates at 2 years in the RF 2000, RF 3000, RITA, and internally cooled electrode device groups were 91.1%, 97.1%, 96.7%, and 96.8% and 12%, 8%, 8.2%, and 8.3%, respectively (P = .37). Ablation with the RF 3000 device required a shorter time than the other three devices and required a less interactive algorithm than the RF 2000 device. However, complete necrosis and local tumor progression rates were similar among devices.

  12. Results of endocardial radiofrequency ablation of atrial fibrillation during mitral valve surgery.

    PubMed

    Demirkilic, U; Bolcal, C; Gunay, C; Doganci, S; Temizkan, V; Kuralay, E; Tatar, H

    2006-08-01

    The aim of the study is to evaluate the efficacy of thermocontrolled endocardial radiofrequency (RF) ablation for the patients with mitral valve disorder and associated chronic atrial fibrillation during mitral valve replacement operation. Between February 2002 and January 2004, 43 patients with mitral valve disease and associated chronic atrial fibrillation underwent mitral valve replacement and thermocontrolled endocardial RF ablation with Cobra RF system flexible probe at Gulhane Military Academy of Medicine, Department of Cardiovascular Surgery. Eighteen of the patients (41.8%) were males, while the remaining 25 (58.2%) were females. The average age of the patients was 44+/-14.21 (18-66) years. Functional capacity of the patients was class II in 15 (34. 9%), class III in 24 (55.8%), class IV in 4 (9.3%) according to the NYHA classification. At the preoperative period all of the patients were evaluated routinely by twelve-lead ECG, chest film and transthoracic echocardiography (TTE). For the patients over 40 years of age, we performed additional coronary angiography to delineate any coronary lesions. The patients were evaluated at months 1, 3, 6 and annually by twelve-lead ECG, TTE and holter monitoring after discharge. There were not any complications related to the performed technique. No operative and hospital mortality were recorded. At the follow-up period for 35 of 43 patients (81.4%) sinus rhythm was restored. The mean follow-up time was 24.3+/-11.2 (12-35) months. Endocardial RF ablation especially during mitral valve surgery is a simple technique to be performed. Early and midterm results of the cohort are satisfying.

  13. Radiofrequency and microwave energy sources in surgical ablation of atrial fibrillation: a comparative analysis.

    PubMed

    Topkara, Veli K; Williams, Mathew R; Barili, Fabio; Bastos, Renata; Liu, Judy F; Liberman, Elyse A; Russo, Mark J; Oz, Mehmet C; Argenziano, Michael

    2006-01-01

    Due to its complexity and risk of bleeding, the Maze III procedure has been largely replaced by surgical ablation for atrial fibrillation (AF) using alternative energy sources. Radiofrequency (RF) and microwave (MW) are the most commonly used energy forms. In this study, we sought to compare these energy modalities in terms of clinical outcomes. Two hundred five patients underwent surgical ablation of AF, from October 1999 to May 2004 at our institution via an endocardial approach. Patients were categorized into 2 groups: RF and MW. Baseline characteristics, operative details, and clinical outcomes were compared between the 2 groups. Rhythm success was defined as freedom from AF and atrial flutter as determined by postoperative electrocardiograms. One hundred twenty patients (58.5%) were ablated using RF, whereas 85 (41.5%) were ablated with MW. Most of the patients had persistent AF in both the RF and MW groups (85.7% versus 80.0%, respectively; P = .363). Intraoperative left atrial size was 6.4 +/- 1.7 cm for the RF group and 6.4 +/- 1.7 cm for the MW group (P = .820). Postoperative rhythm success at 6 and 12 months was 72.4% versus 71.4% (P +/- .611) and 75.0% versus 66.7% (P = .909) for the RF and MW groups, respectively. Hospital length of stay was comparable for both groups (15.4 +/- 14.0 versus 13.3 +/- 13.9 days; P = .307). Postoperative survival at 6 months, 1 year, and 3 years was 90.4%, 89.5%, and 86.1% for RF patients compared to 87.9%, 86.5%, and 84.4% for MW patients, respectively (log rank P = .490). RF and MW energy forms yield comparable postoperative rhythm success, hospital length of stay, and postoperative survival. Both sources are rapid, safe, and effective alternatives to "cut and sew" techniques for surgical treatment of AF.

  14. Numerical design of RF ablation applicator for hepatic cancer treatment

    NASA Astrophysics Data System (ADS)

    Rakhmadi, Aditya; Basari

    2017-02-01

    Currently, cancer has become one of health problems that is difficult to be overcomed. This disease is not only difficult to be cured, but also to be detected and may cause death. For this reason, RF ablation treatment method is proposed to cure cancer. RF ablation therapy is a method in which an applicator is inserted into the body to kill cancer cells by heating the cells. The cancer cells are exposed to the temperature more than 60°C in short duration (few second to few minutes) so thus cell destruction occurs locally. For the sake of the successful treatment, a minimally invasive method is selected in order for perfect local temperature distribution in cancer cells can be achieved. In this paper, a coax-fed dipole-type applicator with interstitial irradiation technique is proposed aimed at RF ablation into hepatic cells. Numerical simulation is performed to obtain a suitable geometric dimension at operating frequency around 2.45 GHz, in order to localize the ablation area. The proposed applicator is inserted into a simple phantom representing an adult human body model in which normal and cancerous liver cells. The simulated results show that the proposed applicator is able to operate at center frequency of 2.355 GHz with blood droplet-type ablation zone and the temperature around the cancer cell by 60°C can be achieved.

  15. Successful Radiofrequency Catheter Ablation for Wolff-Parkinson-White Syndrome Within the Neck of a Coronary Sinus Diverticulum

    PubMed Central

    Jang, Sung-Won; Kim, Dong-Bin; Kwon, Bum-Jun; Cho, Eun-Joo; Shin, Woo-Seung; Kim, Ji-Hoon; Jin, Seung-Won; Oh, Yong-Seog; Lee, Man-Young; Kim, Jae-Hyung

    2009-01-01

    Posteroseptal accessory pathways are often associated with coronary sinus diverticula. These diverticula contain myocardial coats which serve as a bypass tract. We report a 54-year-old woman who underwent radiofrequency (RF) catheter ablation for Wolff-Parkinson-White (WPW) syndrome. The surface electrocardiography (ECG) demonstrated pre-excitation, indicating a posteroseptal accessory pathway. A catheter ablation via a transaortic approach failed to ablate the accessory pathway. Coronary sinus venography revealed the presence of a diverticulum near the ostium. An electrogram in the neck of the diverticulum showed the coronary sinus myocardial extension potential, which was successfully ablated by delivery of RF energy. PMID:19949625

  16. Stereotactic Laser Ablation for Medically Intractable Epilepsy: The Next Generation of Minimally Invasive Epilepsy Surgery

    PubMed Central

    LaRiviere, Michael J.; Gross, Robert E.

    2016-01-01

    Epilepsy is a common, disabling illness that is refractory to medical treatment in approximately one-third of patients, particularly among those with mesial temporal lobe epilepsy. While standard open mesial temporal resection is effective, achieving seizure freedom in most patients, efforts to develop safer, minimally invasive techniques have been underway for over half a century. Stereotactic ablative techniques, in particular, radiofrequency (RF) ablation, were first developed in the 1960s, with refinements in the 1990s with the advent of modern computed tomography and magnetic resonance-based imaging. In the past 5 years, the most recent techniques have used MRI-guided laser interstitial thermotherapy (LITT), the development of which began in the 1980s, saw refinements in MRI thermal imaging through the 1990s, and was initially used primarily for the treatment of intracranial and extracranial tumors. The present review describes the original stereotactic ablation trials, followed by modern imaging-guided RF ablation series for mesial temporal lobe epilepsy. The developments of LITT and MRI thermometry are then discussed. Finally, the two currently available MRI-guided LITT systems are reviewed for their role in the treatment of mesial temporal lobe and other medically refractory epilepsies. PMID:27995127

  17. Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model.

    PubMed

    Izaaryene, Jean; Cohen, Frederic; Souteyrand, Philippe; Rolland, Pierre-Henri; Vidal, Vincent; Bartoli, Jean-Michel; Secq, Veronique; Gaubert, Jean-Yves

    2017-11-01

    The incidence of pneumothorax is 7 times higher after lung radiofrequency ablation (RFA) than after lung biopsy. The reasons for such a difference have never been objectified. The histopathologic changes in lung tissue are well-studied and established for RF in the ablation zone. However, it has not been previously described what the nature of thermal injury might be along the shaft of the RF electrode as it traverses through normal lung tissue to reach the ablation zone. The purpose of this study was to determine the changes occurring around the RF needle along the pathway between the ablated zone and the pleura. In 3 anaesthetised and ventilated swine, 6 RFA procedures (right and left lungs) were performed using a 14-gauge unipolar multi-tined retractable 3 cm radiofrequency LeVeen probe with a coaxial introducer positioned under CT fluoroscopic guidance. In compliance with literature guidelines, we implemented a gradually increasing thermo-ablation protocol using a RF generator. Helical CT images were acquired pre- and post-RFA procedure to detect and evaluate pneumothorax. Four percutaneous 19-gauge lung biopsies were also performed on the fourth swine under CT guidance. Swine were sacrificed for lung ex vivo examinations, scanning electron microscopy (SEM) and pathological analysis. Three severe (over 50 ml) pneumothorax were detected after RFA. In each one of them, pathological examination revealed a fistulous tract between ablation zone and pleura. No fistulous tract was observed after biopsies. In the 3 cases of severe pneumothorax, the tract was wide open and clearly visible on post procedure CT images and SEM examinations. The RFA tract differed from the needle biopsy tract. The histological changes that are usually found in the ablated zone were observed in the RFA tract's wall and were related to thermal lesions. These modifications caused the creation of a coagulated pulmonary parenchyma rim between the thermo-ablation zone and the pleural space. The structural properties of the damage can explain why the RFA tract is remains patent after needle withdrawal. Our study demonstrates for the first time that the changes around the RF needle are the same as in the ablated zone. The damage could create fistulous tracts along the needle path between thermo-ablation zone and pleural space. These fistulas could certainly be responsible for severe pneumothorax that occurs in many patients treated with lung RFA.

  18. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.

    PubMed

    Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong

    2014-09-01

    Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Radiofrequency ablation of retained placenta accreta after conservative management: preliminary evaluation in the pregnant ewe and in normal human placenta in vitro.

    PubMed

    Morel, O; Monceau, E; Tran, N; Malartic, C; Morel, F; Barranger, E; Côté, J F; Gayat, E; Chavatte-Palmer, P; Cabrol, D; Tsatsaris, V

    2009-06-01

    To evaluate radiofrequency (RF) efficiency and safety for the ablation of retained placenta in humans, using a pregnant sheep model. Experimental study. Laboratory of Surgery School, Nancy, France. Three pregnant ewes/ten human placentas. Various RF procedures were tested in pregnant ewes on 50 placentomes (individual placental units). Reproducibility of the best procedure was then evaluated in a further 20 placentomes and on ten human term placentas in vitro after delivery. Placental tissues destruction, lesions' size, myometrial lesions. Low power (100 W) and low target temperatures (60 degrees C) lead to homogenous tissue destruction, without myometrial lesion. No significant difference was observed in terms of lesion size and procedure duration for in the placentomes of pregnant ewe in vivo and in human placentas in vitro. The diameter of the ablation could be correlated with the tines deployment. The placental tissue structure is very permissive to RF energy, which suggests that RF could be used for the ablation of retained placenta, providing optimal control of tissue destruction. These results call for further experimental evaluations.

  20. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Pearson, Robert; Perez, Sarah; Nissenbaum, Yizhak; Mertyna, Pawel; Libson, Eugene; Goldberg, S Nahum

    2010-02-01

    To prospectively optimize multistep algorithms for largest available multitined radiofrequency (RF) electrode system in ex vivo and in vivo tissues, to determine best energy parameters to achieve large predictable target sizes of coagulation, and to compare these algorithms with manufacturer's recommended algorithms. Institutional animal care and use committee approval was obtained for the in vivo portion of this study. Ablation (n = 473) was performed in ex vivo bovine liver; final tine extension was 5-7 cm. Variables in stepped-deployment RF algorithm were interrogated and included initial current ramping to 105 degrees C (1 degrees C/0.5-5.0 sec), the number of sequential tine extensions (2-7 cm), and duration of application (4-12 minutes) for final two to three tine extensions. Optimal parameters to achieve 5-7 cm of coagulation were compared with recommended algorithms. Optimal settings for 5- and 6-cm final tine extensions were confirmed in in vivo perfused bovine liver (n = 14). Multivariate analysis of variance and/or paired t tests were used. Mean RF ablation zones of 5.1 cm +/- 0.2 (standard deviation), 6.3 cm +/- 0.4, and 7 cm +/- 0.3 were achieved with 5-, 6-, and 7-cm final tine extensions in a mean of 19.5 min +/- 0.5, 27.9 min +/- 6, and 37.1 min +/- 2.3, respectively, at optimal settings. With these algorithms, size of ablation at 6- and 7-cm tine extension significantly increased from mean of 5.4 cm +/- 0.4 and 6.1 cm +/- 0.6 (manufacturer's algorithms) (P <.05, both comparisons); two recommended tine extensions were eliminated. In vivo confirmation produced mean diameter in specified time: 5.5 cm +/- 0.4 in 18.5 min +/- 0.5 (5-cm extensions) and 5.7 cm +/- 0.2 in 21.2 min +/- 0.6 (6-cm extensions). Large zones of coagulation of 5-7 cm can be created with optimized RF algorithms that help reduce number of tine extensions compared with manufacturer's recommendations. Such algorithms are likely to facilitate the utility of these devices for RF ablation of focal tumors in clinical practice. (c) RSNA, 2010.

  1. Prospective evaluation of a simplified approach for common atrial flutter radio frequency ablation with only two catheters.

    PubMed

    Klug, D; Lacroix, D; Marquié, C; Mairesse, G; Alix, D; Dennetière, S; d'Hautefeuille, B; Zghal, N; Kacet, S

    2001-07-01

    Intra-atrial conduction block within the inferior vena cava-tricuspid annulus isthmus (IVCT) has been shown to predict successful common atrial flutter ablation. However, its demonstration requires the use of several electrode catheters and mapping of the line of block. The aim of this study was prospectively to test the feasibility of a simplified ablation procedure using only two catheters. Radio frequency (RF) ablation of common atrial flutter was performed in 30 patients with the sole use of a catheter for atrial pacing and a RF catheter. RF ablation lesions were created in the IVCT. Surface ECG criteria were used to monitor the conduction within the IVCT. The end point during low lateral atrial pacing was an increment in the interval between the pacing artefact and the peak of the R wave in surface lead II >50 ms and clockwise rotation of the P wave axis beyond -30 degrees and inferiorly. Then, the line of lesions was mapped during atrial pacing with the RF catheter. Additional RF lesions were applied if mapping disclosed a zone of residual conduction. Otherwise the procedure was stopped if mapping showed parallel double potentials all along the line. Finally, the block was reassessed with a 'Halo' catheter. Surface ECG criteria were met in 26 patients. Mapping the line of lesions showed a complete corridor of parallel double potentials in these 26 cases and in 3 of the 4 patients in whom ECG criteria were not met. Conduction evaluated with the Halo catheter showed bi-directional complete block in these 29 patients. After a follow-up of 16 +/- 4 months there was no recurrence of atrial flutter. Surface ECG criteria combined with mapping of the line of block demonstrate evidence of bi-directional IVCT block. This simplified RF ablation of common atrial flutter is feasible with a low recurrence rate.

  2. Right diaphragmatic paralysis following endocardial cryothermal ablation of inappropriate sinus tachycardia.

    PubMed

    Vatasescu, Radu; Shalganov, Tchavdar; Kardos, Attila; Jalabadze, Khatuna; Paprika, Dora; Gyorgy, Margit; Szili-Torok, Tamas

    2006-10-01

    Inappropriate sinus tachycardia (IST) is a rare disorder amenable to catheter ablation when refractory to medical therapy. Radiofrequency (RF) catheter modification/ablation of the sinus node (SN) is the usual approach, although it can be complicated by right phrenic nerve paralysis. We describe a patient with IST, who had symptomatic recurrences despite previous acutely successful RF SN modifications, including the use of electroanatomical mapping/navigation system. We decided to try transvenous cryothermal modification of the SN. We used 2 min applications at -85 degrees C at sites of the earliest atrial activation guided by activation mapping during isoprenaline infusion. Every application was preceded by high output stimulation to reveal phrenic nerve proximity. During the last application, heart rate slowly and persistently fell below 85 bpm despite isoprenaline infusion, but right diaphragmatic paralysis developed. At 6 months follow-up, the patient was asymptomatic and the diaphragmatic paralysis had partially resolved. This is the first report, we believe, of successful SN modification for IST by endocardial cryoablation, although this case also demonstrates the considerable risk of right phrenic nerve paralysis even with this ablation energy.

  3. Does periprocedural anticoagulation management of atrial fibrillation affect the prevalence of silent thromboembolic lesion detected by diffusion cerebral magnetic resonance imaging in patients undergoing radiofrequency atrial fibrillation ablation with open irrigated catheters? Results from a prospective multicenter study.

    PubMed

    Di Biase, Luigi; Gaita, Fiorenzo; Toso, Elisabetta; Santangeli, Pasquale; Mohanty, Prasant; Rutledge, Neal; Yan, Xue; Mohanty, Sanghamitra; Trivedi, Chintan; Bai, Rong; Price, Justin; Horton, Rodney; Gallinghouse, G Joseph; Beheiry, Salwa; Zagrodzky, Jason; Canby, Robert; Leclercq, Jean François; Halimi, Franck; Scaglione, Marco; Cesarani, Federico; Faletti, Riccardo; Sanchez, Javier; Burkhardt, J David; Natale, Andrea

    2014-05-01

    Silent cerebral ischemia (SCI) has been reported in 14% of cases after catheter ablation of atrial fibrillation (AF) with radiofrequency (RF) energy and discontinuation of warfarin before AF ablation procedures. The purpose of this study was to determine whether periprocedural anticoagulation management affects the incidence of SCI after RF ablation using an open irrigated catheter. Consecutive patients undergoing RF ablation for AF without warfarin discontinuation and receiving heparin bolus before transseptal catheterization (group I, n = 146) were compared with a group of patients who had protocol deviation in terms of maintaining the therapeutic preprocedural international normalized ratio (patients with subtherapeutic INR) and/or failure to receive pretransseptal heparin bolus infusion and/or ≥2 consecutive ACT measurements <300 seconds (noncompliant population, group II, n = 134) and with a group of patients undergoing RF ablation with warfarin discontinuation bridged with low molecular weight heparin (group III, n = 148). All patients underwent preablation and postablation (within 48 hours) diffusion magnetic resonance imaging. SCI was detected in 2% of patients (3/146) in group I, 7% (10/134) in group II, and 14% (21/148) in group III (P <.001). "Therapeutic INR" was strongly associated with a lower prevalence of postprocedural silent cerebral ischemia (SCI). Multivariable analysis demonstrated nonparoxysmal AF (odds ratio 3.8, 95% confidence interval 1.5-9.7, P = .005) and noncompliance to protocol (odds ratio 2.8, 95% confidence interval 1.5-5.1, P <.001] to be significant predictors of ischemic events. Strict adherence to an anticoagulation protocol significantly reduces the prevalence of SCI after catheter ablation of AF with RF energy. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. 3D ultrasound image guidance system used in RF uterine adenoma and uterine bleeding ablation system

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Luo, Xiaoan; Cai, Chao; Zhou, Chengping; Fenster, Aaron

    2006-03-01

    Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese women. Many women lose their fertility from these diseases. Currently, a minimally invasive ablation system using an RF button electrode is being used in Chinese hospitals to destroy tumor cells or stop bleeding. In this paper, we report on a 3D US guidance system developed to avoid accidents or death of the patient by inaccurate localization of the tumor position during treatment. A 3D US imaging system using a rotational scanning approach of an abdominal probe was built. In order to reduce the distortion produced when the rotational axis is not collinear with the central beam of the probe, a new 3D reconstruction algorithm is used. Then, a fast 3D needle segmentation algorithm is used to find the electrode. Finally, the tip of electrode is determined along the segmented 3D needle and the whole electrode is displayed. Experiments with a water phantom demonstrated the feasibility of our approach.

  5. Repeated Radiofrequency Ablation Combined With Ablated Lesion Elimination and Transarterial Chemoembolization Improves the Outcome of Solitary Huge Hepatocellular Carcinomas 10 cm or Larger

    PubMed Central

    Ke, Shan; Gao, Jun; Kong, Jian; Ding, Xue-Mei; Niu, Hai-Gang; Xin, Zong-Hai; Ning, Chun-Min; Guo, Shi-Gang; Li, Xiao-Long; Zhang, Long; Dong, Yong-Hong; Sun, Wen-Bing

    2016-01-01

    Abstract This study investigated the effectiveness of a new strategy, repeated radiofrequency (RF) ablation combined with ablated lesion elimination following transarterial chemoembolization (TACE)/transarterial embolization (TAE), for solitary huge hepatocellular carcinoma (SHHCC) 10 cm or larger. From July 2008 to October 2015, 39 consecutive patients with SHHCC were screened. Of these, 12 were treated with TACE/TAE and repeated RF ablation (TACE/TAE + RF ablation group) and the remaining 27 patients were treated with the aforementioned new strategy (new strategy group). Local tumor progression (LTP)-free survival, intrahepatic distant recurrence (IDR)-free survival, and overall survival (OS) rates were obtained using the Kaplan–Meier method. Univariate and multivariate analyses were performed on several clinicopathological variables to identify factors affecting long-term outcome and intrahepatic recurrence. Correlation analysis was also performed. The 1-, 2-, and 3-year LTP-free survival rates and OS rates were significantly higher in the new strategy group than in the TACE/TAE + RF ablation group (82.9% vs 58.3%, 73.9% vs 29.2%, 18.5% vs 9.7%, P = 0.002; 92.0% vs 75.0%, 84.0% vs 33.3%, 32.7% vs 16.7%, P = 0.025). However, there was no significant difference between the 2 groups in the 1-, 2-, and 3-year IDR-free survival rates (P = 0.108). Using univariate analysis, alpha-fetoprotein (AFP > 200 ng/mL), ablative margin (AM > 1.0 cm), and well-differentiated cells were found to be significant factors for predicting LTP, IDR, and OS. Surgical elimination was found to be a significant factor only for predicting OS. In multivariate analyses, AFP (>200 ng/mL), AM (>1.0 cm), and well-differentiated cells were found to be significant independent factors linked to LTP, IDR, and OS. Correlation analysis indicated that AM > 1.0 cm was strongly associated with surgical elimination (P < 0.001, correlation coefficient = 0.877). For patients with SHHCC who were initially excluded from surgery, the new strategy including repeated RF ablation combined with ablated lesion elimination following TACE/TAE should now be considered as an alternative treatment. PMID:27100425

  6. Image integration into 3-dimensional-electro-anatomical mapping system facilitates safe ablation of ventricular arrhythmias originating from the aortic root and its vicinity.

    PubMed

    Jularic, Mario; Akbulak, Ruken Özge; Schäffer, Benjamin; Moser, Julia; Nuehrich, Jana; Meyer, Christian; Eickholt, Christian; Willems, Stephan; Hoffmann, Boris A

    2018-03-01

    During ablation in the vicinity of the coronary arteries establishing a safe distance from the catheter tip to the relevant vessels is mandatory and usually assessed by fluoroscopy alone. The aim of the study was to investigate the feasibility of an image integration module (IIM) for continuous monitoring of the distance of the ablation catheter tip to the main coronary arteries during ablation of ventricular arrhythmias (VA) originating in the sinus of valsalva (SOV) and the left ventricular summit part of which can be reached via the great cardiac vein (GCV). Of 129 patients undergoing mapping for outflow tract arrhythmias from June 2014 till October 2015, a total of 39 patients (52.4 ± 18.1 years, 17 female) had a source of origin in the SOV or the left ventricular summit. Radiofrequency (RF) ablation was performed when a distance of at least 5 mm could be demonstrated with IIM. A safe distance in at least one angiographic plane could be demonstrated in all patients with a source of origin in the SOV, whereas this was not possible in 50% of patients with earliest activation in the summit area. However, using the IIM a safe position at an adjacent site within the GCV could be obtained in three of these cases and successful RF ablation performed safely without any complications. Ablation was successful in 100% of patients with an origin in the SOV, whereas VAs originating from the left ventricular summit could be abolished completely in only 60% of cases. Image integration combining electroanatomical mapping and fluoroscopy allows assessment of the safety of a potential ablation site by continuous real-time monitoring of the spatial relations of the catheter tip to the coronary vessels prior to RF application. It aids ablation in anatomically complex regions like the SOV or the ventricular summit providing biplane angiograms merged into the three-dimensional electroanatomical map. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  7. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni-Au core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Hopkins, Xiaoping; Gill, Waqas Amin; Kringel, Rosemarie; Wang, Guankui; Hass, Jamie; Acharya, Suresh; Park, Jungrae; Tak Jeon, In; An, Boo Hyun; Lee, Ji Sung; Ryu, Jong Eun; Hill, Rod; McIlroy, David; Kim, Young Keun; Choi, Daniel S.

    2017-01-01

    We present a novel method of radio frequency (RF)-mediated thermotherapy in tumors by remotely heating nickel (Ni)-gold (Au) core-shell nanowires (CSNWs). Ectopic pancreatic tumors were developed in nude mice to evaluate the thermotherapeutic effects on tumor progression. Tumor ablation was produced by RF-mediated thermotherapy via activation of the paramagnetic properties of the Ni-Au CSNWs. Histopathology demonstrated that heat generated by RF irradiation caused significant cellular death with pyknotic nuclei and nuclear fragmentation dispersed throughout the tumors. These preliminary results suggest that thermotherapy ablation induced via RF activation of nanowires provides a potential alternative therapy for cancer treatment.

  8. Novel multi-source phase-controlled radiofrequency technology for non-ablative and micro-ablative treatment of wrinkles, lax skin and acne scars.

    PubMed

    Elman, Monica; Harth, Yoram

    2011-01-01

    The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources "repel" or "attract" each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1-3 treatment sessions.

  9. Novel multi-source phase-controlled radiofrequency technology for non-ablative and micro-ablative treatment of wrinkles, lax skin and acne scars

    PubMed Central

    Elman, Monica; Harth, Yoram

    2011-01-01

    The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources “repel” or “attract” each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1–3 treatment sessions. PMID:24155523

  10. Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus

    2012-02-01

    Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.

  11. Remotely controlled steerable sheath improves result and procedural parameters of atrial fibrillation ablation with magnetic navigation.

    PubMed

    Errahmouni, Abdelkarim; Latcu, Decebal Gabriel; Bun, Sok-Sithikun; Rijo, Nicolas; Dugourd, Céline; Saoudi, Nadir

    2015-07-01

    The magnetic navigation (MN) system may be coupled with a new advancement system that fully controls both the catheter and a robotic deflectable sheath (RSh) or with a fixed-curve sheath and a catheter-only advancement system (CAS). We aimed to compare these approaches for atrial fibrillation (AF) ablation. Atrial fibrillation ablation patients (45, 23 paroxysmal and 22 persistent) performed with MN-RSh (RSh group) were compared with a control group (37, 18 paroxysmal and19 persistent) performed with MN-CAS (CAS group). Setup duration was measured from the procedure's start to operator transfer to control room. Ablation step duration was defined as the time from the beginning of the first radiofrequency (RF) pulse to the end of the last one and was separately acquired for the left and the right pulmonary vein (PV) pairs. Clinical characteristics, left atrial size, and AF-type distribution were similar between the groups. Setup duration as well as mapping times was also similar. Ablation step duration for the left PVs was similar, but was shorter for the right PVs in RSh group (46 ± 9 vs. 63 ± 12 min, P < 0.0001). Radiofrequency delivery time (34 ± 9 vs. 40 ± 11 min, P = 0.007) and procedure duration (227 ± 36 vs. 254 ± 62 min, P = 0.01) were shorter in RSh group. No complication occurred in RSh group. During follow-up, there were five recurrences (11%) in RSh group and 11 (29%) in CAS group (P = 0.027). The use of the RSh for AF ablation with MN is safe and improves outcome. Right PV isolation is faster, RF delivery time and procedure time are reduced. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  12. Remotely controlled steerable sheath improves result and procedural parameters of atrial fibrillation ablation with magnetic navigation

    PubMed Central

    Errahmouni, Abdelkarim; Latcu, Decebal Gabriel; Bun, Sok-Sithikun; Rijo, Nicolas; Dugourd, Céline; Saoudi, Nadir

    2015-01-01

    Aims The magnetic navigation (MN) system may be coupled with a new advancement system that fully controls both the catheter and a robotic deflectable sheath (RSh) or with a fixed-curve sheath and a catheter-only advancement system (CAS). We aimed to compare these approaches for atrial fibrillation (AF) ablation. Methods and results Atrial fibrillation ablation patients (45, 23 paroxysmal and 22 persistent) performed with MN–RSh (RSh group) were compared with a control group (37, 18 paroxysmal and19 persistent) performed with MN–CAS (CAS group). Setup duration was measured from the procedure's start to operator transfer to control room. Ablation step duration was defined as the time from the beginning of the first radiofrequency (RF) pulse to the end of the last one and was separately acquired for the left and the right pulmonary vein (PV) pairs. Clinical characteristics, left atrial size, and AF-type distribution were similar between the groups. Setup duration as well as mapping times was also similar. Ablation step duration for the left PVs was similar, but was shorter for the right PVs in RSh group (46 ± 9 vs. 63 ± 12 min, P < 0.0001). Radiofrequency delivery time (34 ± 9 vs. 40 ± 11 min, P = 0.007) and procedure duration (227 ± 36 vs. 254 ± 62 min, P = 0.01) were shorter in RSh group. No complication occurred in RSh group. During follow-up, there were five recurrences (11%) in RSh group and 11 (29%) in CAS group (P = 0.027). Conclusion The use of the RSh for AF ablation with MN is safe and improves outcome. Right PV isolation is faster, RF delivery time and procedure time are reduced. PMID:25662989

  13. Circuit Impedance Could Be a Crucial Factor Influencing Radiofrequency Ablation Efficacy and Safety: A Myocardial Phantom Study of the Problem and its Correction.

    PubMed

    Bhaskaran, Abhishek; Barry, M A; Pouliopoulos, Jim; Nalliah, Chrishan; Qian, Pierre; Chik, William; Thavapalachandran, Sujitha; Davis, Lloyd; McEwan, Alistair; Thomas, Stuart; Kovoor, Pramesh; Thiagalingam, Aravinda

    2016-03-01

    Circuit impedance could affect the safety and efficacy of radiofrequency (RF) ablation. To perform irrigated RF ablations with graded impedance to compare (1) lesion dimensions and overheated dimensions in fixed power ablations (2) and in power corrected ablations. Ablations were performed with irrigated Navistar Thermocool catheter and Stockert EP shuttle generator at settings of 40 W power for 60 seconds, in a previously validated myocardial phantom. The impedance of the circuit was set at 60 Ω, 80 Ω, 100 Ω, 120 Ω, 140 Ω, and 160 Ω. The lesion and overheated dimensions were measured at 53 °C and 80 °C isotherms, respectively. In the second set of ablations, power was corrected according to circuit impedance. In total, 70 ablations were performed. The lesion volume was 72.0 ± 4.8% and 44.7 ± 4.6% higher at 80 Ω and 100 Ω, respectively, compared to that at 120 Ω and it was 15.4 ± 1.2%, 28.1 ± 2.0%, and 38.0 ± 1.8% lower at 140 Ω, 160 Ω, and 180 Ω, respectively. The overheated volume was four times larger when impedance was reduced to 80 Ω from 100 Ω. It was absent at 120 Ω and above. In the power corrected ablations, the lesion volumes were similar to that of 40 W/120 Ω ablations and there was no evidence of overheating. The lesion and overheated dimensions were significantly larger with lower circuit impedance during irrigated RF ablation and the lesion size was smaller in high impedance ablations. Power delivery adjusted to impedance using a simple equation improved the consistency of lesion formation and prevented overheating. © 2015 Wiley Periodicals, Inc.

  14. Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.

    PubMed

    Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl

    2009-12-01

    Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.

  15. Using endometrial ablation as a treatment for abnormal bleeding: energy source comparisons and clinical results

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.

    2000-01-01

    A great number of women suffer from abnormal uterine bleeding. Most do not want to undergo a hysterectomy and have searched for an alternative treatment. Ablation of the endometrium has become a viable alternative. Initially, surgical applications utilized thermal ablation by passing a rolling electrode, energized by monopolar radiofrequency (RF) energy, to ablate the inner uterine lining. This procedure was done under visual guidance and required practiced surgical skills to perform the ablation. It was not possible to assess subsurface damage. More recently, various energy systems have been applied to the endometrium such as lasers, microwaves, monopolar and bipolar RF, hot fluid balloons, and cryotherapy. They are being used in computer controlled treatments that obviate the user's skill, and utilize a self-positioning device paired with a temperature monitored, thermal treatment. Finite element models have also been created to predict heating profiles with devices that either rely on conductive heating or that deposit power in tissue. This is a very active field in terms of innovation with creative solutions using contemporary technology to reduce or halt the bleeding. Devices and minimally invasive treatments will offer choices to women and will be able to replace a surgical procedure with an office-based procedure. They are very promising and are discussed at length herein.

  16. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    PubMed

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  17. Mexametric and cutometric assessment of the signs of aging of the skin area around the eyes after the use of non-ablative fractional laser, non-ablative radiofrequency and intense pulsed light.

    PubMed

    Kołodziejczak, Anna Maria; Rotsztejn, Helena

    2017-03-01

    The assessment of the signs of aging within eyes area in cutometric (skin elasticity) and mexametric (discoloration and severity of erythema) examination after the treatment with: non-ablative fractional laser, non-ablative radiofrequency (RF) and intense light source (IPL). This study included 71 patients, aged 33-63 years (the average age was 45.81) with Fitzpatrick skin type II and III. 24 patients received 5 successive treatment sessions with a 1,410-nm non-ablative fractional laser in two-week intervals, 23 patients received 5 successive treatment sessions with a non-ablative RF in one-week intervals and 24 patients received 5 successive treatment sessions with an IPL in two-week intervals. The treatment was performed for the skin in the eye area. The Cutometer and Mexameter (Courage + Khazaka electronic) reference test was used as an objective method for the assessment of skin properties: elasticity, skin pigmentation and erythema. Measurements of skin elasticity were made in three or four sites within eye area. The results of cutometric measurements for R7 showed the improvement in skin elasticity in case of all treatment methods. The largest statistically significant improvement (p < .0001) was observed in case of laser and RF, during treatment sessions, at sites at upper and lower eyelid. The smallest change in skin elasticity for the laser, RF and IPL - p = .017, p = .003 and p = .001, respectively-was observed in a site within the outer corner of the eye. In all sites of measurements and for all methods, the greatest improvement in skin elasticity was demonstrated between the first and second measurement (after 3rd procedures). The majority of the results of mexametric measurements-MEX (melanin level) and ERYT (the severity of erythema) are statistically insignificant. Fractional, non-ablative laser, non-ablation RF and intense light source can be considered as methods significantly affecting elasticity and to a lesser extent erythema and skin pigmentation around the eyes. Fractional non-ablative laser is a method which, in comparison to other methods, has the greatest impact on skin viscoelasticity. These procedures are well tolerated and are associated with a low risk of side effects. © 2017 Wiley Periodicals, Inc.

  18. The biophysics of renal sympathetic denervation using radiofrequency energy.

    PubMed

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  19. Influence of NaCl Concentrations on Coagulation, Temperature, and Electrical Conductivity Using a Perfusion Radiofrequency Ablation System: An Ex Vivo Experimental Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aube, Christophe, E-mail: ChAube@chu-angers.fr; Schmidt, Diethard; Brieger, Jens

    2007-02-15

    Purpose. To determine, by means of an ex vivo study, the effect of different NaCl concentrations on the extent of coagulation obtained during radiofrequency (RF) ablation performed using a digitally controlled perfusion device. Method. Twenty-eight RF ablations were performed with 40 W for 10 min using continuous NaCl infusion in fresh excised bovine liver. For perfusion, NaCl concentrations ranging from 0 (demineralized water) to 25% were used. Temperature, the amount of energy, and the dimensions of thermal-induced white coagulation were assessed for each ablation. These parameters were compared using the nonparametric Mann-Whitney test. Correlations were calculated according to the Spearmanmore » test. Results. RF ablation performed with 0.9% to 25% concentrations of NaCl produced a mean volume of coagulation of 30.7 {+-} 3.8 cm{sup 3}, with a mean short-axis diameter of 3.6 {+-} 0.2 cm. The mean amount of energy was 21,895 {+-} 1,674 W and the mean temperature was 85.4 {+-} 12.8 deg. C. Volume of coagulation, short-axis diameter, and amount of energy did not differ significantly among NaCl concentrations (p > 0.5). A correlation was found between the NaCl concentration and the short-axis diameter of coagulation (r = 0.64) and between the NaCl concentration and the mean temperature (r = 0.67), but not between the NaCl concentration and volume of coagulation. Conclusion. In an ex vivo model, continuous perfusion with high NaCl concentrations does not significantly improve the volume of thermal-induced coagulation. This may be because the use of a low-power generator cannot sufficiently exploit the potential advantage of better tissue conductivity provided by NaCl perfusion.« less

  20. Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Camp, Jon J.; Rettmann, Maryam E.; Holmes, David R.; Robb, Richard A.

    2013-03-01

    In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time. The ablation model has been calibrated and evaluated using ex vivo beef muscle tissue in a clinically relevant ablation protocol. To validate the model, the predicted temperature distribution was assessed against that measured directly using fiberoptic temperature probes inserted in the tissue. Moreover, the model-predicted lesions were compared to the lesions observed in the post-ablation digital images. Results showed an agreement within 5°C between the model-predicted and experimentally measured tissue temperatures, as well as comparable predicted and observed lesion characteristics and geometry. These results suggest that the proposed technique is capable of providing reasonably accurate and sufficiently fast representations of the created RF ablation lesions, to generate lesion maps in near real time. These maps can be used to guide the placement of successive lesions to ensure continuous and enduring suppression of the arrhythmic pathway.

  1. [Parahisian atrial tachycardia or atrioventricular nodal reentrant tachycardia with tendon of Todaro breakthrough?].

    PubMed

    Orczykowski, Michał; Jaworska-Wilczyńska, Maria; Urbanek, Piotr; Bodalski, Robert; Derejko, Paweł; Gajek, Jacek; Hryniewiecki, Tomasz; Szumowski, Lukasz; Walczak, Franciszek

    2010-08-01

    We present a case of a 61 year-old woman with tachycardia originating close to the His bundle where radiofrequency (RF) ablation may bear potential risk of atrioventricular (AV) block. In this case report we discuss the possibility of a AV nodal reciprocating tachycardia with tendon of Todaro breakthrough. Patient was safely and effectively treated with RF catheter ablation.

  2. Real-time monitoring of radiofrequency ablation and postablation assessment: accuracy of contrast-enhanced US in experimental rat liver model.

    PubMed

    Wu, Hanping; Wilkins, Luke R; Ziats, Nicholas P; Haaga, John R; Exner, Agata A

    2014-01-01

    To examine the accuracy of the unenhanced zone at contrast material-enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin-stained images were compared. The areas of DiI bubble-negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble-negative zone on fluorescence images was noted at all time points. The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013.

  3. Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures

    PubMed Central

    2012-01-01

    Background One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C. Conclusion Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner. PMID:22296883

  4. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    PubMed

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    PubMed

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  6. Renal Sympathetic Denervation System via Intraluminal Ultrasonic Ablation: Therapeutic Intravascular Ultrasound Design and Preclinical Evaluation.

    PubMed

    Chernin, Gil; Szwarcfiter, Iris; Bausback, Yvonne; Jonas, Michael

    2017-05-01

    To assess the safety and performance of a nonfocused and nonballooned ultrasonic (US) catheter-based renal sympathetic denervation (RDN) system in normotensive swine. RDN with the therapeutic intravascular US catheter was evaluated in 3 experiments: (i) therapeutic intravascular US RDN vs a control group of untreated animals with follow-up of 30, 45, and 90 days (n = 6; n = 12 renal arteries for each group); (ii) therapeutic intravascular US RDN vs radiofrequency (RF) RDN in the contralateral artery in the same animal (n = 2; n = 4 renal arteries); and (iii) therapeutic intravascular US RDN in a recently stent-implanted renal artery (n = 2; n = 4 renal arteries). In the first experiment, therapeutic intravascular US RDN was safe, without angiographic evidence of dissection or renal artery stenosis. Neuronal tissue vacuolization, nuclei pyknosis, and perineuronal inflammation were evident after RDN, without renal artery wall damage. Norepinephrine levels were significantly lower after therapeutic intravascular US RDN after 30, 45, and 90 days compared with the control group (200.17 pg/mg ± 63.35, 184.75 pg/mg ± 44.51, and 203.43 pg/mg ± 58.54, respectively, vs 342.42 pg/mg ± 79.97). In the second experiment, deeper neuronal ablation penetrance was found with therapeutic intravascular US RDN vs RF RDN (maximal penetrance from endothelium of 7.0 mm vs 3.5 mm, respectively). There was less damage to the artery wall after therapeutic intravascular US RDN than with RF RDN, after which edema and injured endothelium were seen. In the third experiment, denervation inside the stent-implanted segments was feasible without damage to the renal artery wall or stent. The therapeutic intravascular US system performed safely and reduced norepinephrine levels. Deeper penetrance and better preservation of vessel wall were observed with therapeutic intravascular US RDN vs RF RDN. Neuronal ablations were observed in stent-implanted renal arteries. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  7. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device.

    PubMed

    Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A

    2016-12-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.

  8. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  9. Utility of esophageal temperature monitoring during pulmonary vein isolation for atrial fibrillation using duty-cycled phased radiofrequency ablation.

    PubMed

    Deneke, Thomas; Bünz, Kathrin; Bastian, Annely; Päsler, Marcus; Anders, Helge; Lehmann, Rainer; Meuser, Wolfgang; de Groot, Joris R; Horlitz, Marc; Haberkorn, Ron; Mügge, Andreas; Shin, Dong-In

    2011-03-01

    A novel ablation system has been introduced for rapid treatment of atrial fibrillation (AF). This system delivers duty-cycled phased radiofrequency (RF) energy via an over-the-wire catheter (PVAC® , Medtronic) to achieve pulmonary vein (PV) isolation. Lower power and depth control suggests that collateral damage might be minimized. However, no studies have investigated the potential for thermal effect and damage to the esophagus. Ninety consecutive patients undergoing PV-isolation were evaluated. Group A (48 patients) had continuous luminal esophageal temperature (LET) monitoring using a temperature probe with 3 metal electrodes located in the vicinity of the targeted PV ostia. Ablation ceased when LET exceeded 40 °C. Only patients with LET ≥ 39 °C underwent endoscopic evaluation to assess esophageal damage. Group B (42 patients) excluded LET monitoring but all patients underwent endoscopy. In Group A, 27 (56%) patients showed LET ≥ 39 °C (mean LET 40.5 °C). Endoscopy revealed esophageal alterations in 5 (8%) (3 erythema and 2 intramural bleeding). One hundred eighty-nine out of 190 (99.5%) targeted PVs were successfully isolated, with 1 PV unsuccessful due to high LET. In Group B all 165 targeted PVs (100%) were successfully isolated. Endoscopy in Group 2 revealed no esophageal alterations. Using a duty-cycled, phased RF ablation system is safe and effective to isolate PVs. No Eso alteration was documented after ablation when LET was not monitored. This suggests that the LET probe may contribute to the thermal effect. Whether the documented increments in LET are due to direct tissue heating or possible interaction between the LET probe requires further investigation. © 2010 Wiley Periodicals, Inc.

  10. Effect of left atrial volume and pulmonary vein anatomy on outcome of nMARQ™ catheter ablation of paroxysmal atrial fibrillation.

    PubMed

    Stabile, Giuseppe; Anselmino, Matteo; Soldati, Ezio; De Ruvo, Ermengildo; Solimene, Francesco; Iuliano, Assunta; Sciarra, Luigi; Bongiorni, Maria Grazia; Calò, Leonardo; Gaita, Fiorenzo

    2017-03-01

    Left atrial volume (LA) and pulmonary vein (PV) anatomy may potentially relate to technical challenges in achieving stable and effective catheter position in case of atrial fibrillation (AF) ablation by means of "one-shot" catheters. The aim of this study was to investigate whether LA volume and PV anatomy, evaluated by computed tomography (CT) or magnetic resonance (MR) prior to ablation, predict acute and midterm outcome of AF ablation by nMARQ™. We included 75 patients (mean age 58 ± 11 years, 67 % male) with symptomatic paroxysmal AF. All patients underwent CT/MR scanning prior to catheter ablation to evaluate LA volume and PV anatomy. All the patients underwent PV isolation by nMARQ™, an open-irrigated mapping and radiofrequency (RF) decapolar ablation catheter. Ablation was guided by electroanatomic mapping allowing RF energy delivery in the antral region of PVs from ten irrigated electrodes simultaneously. Mean LA volume was 75 ± 40 ml. A normal anatomy (4 PVs) was documented in 40 (53 %) patients and abnormal anatomy (common truncus or accessory PVs) in 35 patients. Mean procedural and fluoroscopy times were 94 ± 55 and 8 ± 5 min, respectively, without significant differences among patients with normal or abnormal anatomy (92 ± 45 vs 95 ± 64 min, p = 0.85 and 6 ± 3 vs 8 ± 4 min, p = 0.65, respectively). Mean ablation time was 14 ± 3 min, and 99 % of the targeted veins were isolated with a mean of 23 ± 5 RF pulses per patient. After a mean follow-up of 17 ± 8 months, 23 (31 %) patients had an atrial arrhythmia recurrence. Neither LA volume nor PV anatomy was a predictor of outcome. LA volume and PV anatomy did not affect procedural data and outcome in patients who underwent PV isolation by an open-irrigated mapping and RF decapolar ablation catheter.

  11. Incidences of esophageal injury during esophageal temperature monitoring: a comparative study of a multi-thermocouple temperature probe and a deflectable temperature probe in atrial fibrillation ablation.

    PubMed

    Kuwahara, Taishi; Takahashi, Atsushi; Takahashi, Yoshihide; Okubo, Kenji; Takagi, Katsumasa; Fujino, Tadashi; Kusa, Shigeki; Takigawa, Masateru; Watari, Yuji; Yamao, Kazuya; Nakashima, Emiko; Kawaguchi, Naohiko; Hikita, Hiroyuki; Sato, Akira; Aonuma, Kazutaka

    2014-04-01

    The study aim was to compare the incidence of esophageal injuries between different temperature probes in the monitoring of esophageal temperature during atrial fibrillation (AF) ablation. One hundred patients with drug-resistant AF were prospectively and randomly assigned into two groups according to the esophageal temperature probe used: the multi-thermocouple probe group (n = 50) and the deflectable temperature probe group (n = 50). Extensive pulmonary vein (PV) isolation was performed with a 3.5-mm open irrigated tip ablation catheter by using a radiofrequency (RF) power of 25-30 W. In both groups, the esophageal temperature thermocouple was placed on the area of the esophagus adjacent to the ablation site. When the esophageal temperature reached 42 °C, the RF energy delivery was stopped. Esophageal endoscopy was performed 1 day after the catheter ablation. No differences existed between the two groups in terms of clinical background and various parameters related to the catheter ablation, including RF delivery time and number of RF deliveries at an esophageal temperature of >42 °C. Esophageal lesions, such as esophagitis and esophageal ulcers, occurred in 10/50 (20 %) and 15/50 (30 %) patients in the multi-thermocouple and deflectable temperature probe groups, respectively (P = 0.25). Most lesions were mild to moderate injuries, and all were cured using conservative treatment. The incidence of esophageal injury was almost equal between the multi-thermocouple temperature probe and the deflectable temperature probe during esophageal temperature monitoring. Most of the esophageal lesions that developed during esophageal temperature monitoring were mild to moderate and reversible.

  12. Radiofrequency ablation for single hepatocellular carcinoma 3 cm or less as first-line treatment

    PubMed Central

    Gao, Jun; Wang, Shao-Hong; Ding, Xue-Mei; Sun, Wen-Bing; Li, Xiao-Long; Xin, Zong-Hai; Ning, Chun-Min; Guo, Shi-Gang

    2015-01-01

    AIM: To evaluate long-term outcomes of radiofrequency (RF) ablation as first-line therapy for single hepatocellular carcinoma (HCC) ≤ 3 cm and to determine survival and prognostic factors. METHODS: We included all 184 patients who underwent RF ablation as a first-line treatment for single HCC ≤ 3 cm between April 2005 and December 2013. According to the criteria of Livraghi, the 184 patients were divided into two groups: those suitable for surgical resection (84 cases) and those unsuitable for surgical resection (100 cases). The primary endpoints were the overall survival (OS) rate and safety; the secondary endpoints were primary technique effectiveness and recurrence rate. RESULTS: There were 19 (10.3%) cases of ablation related minor complications. The complete tumor ablation rate after one RF session was 97.8% (180/184). The rate of local tumor progression, extrahepatic metastases and intrahepatic distant recurrence were 4.9% (9/184), 9.8% (18/184) and 37.5% (69/184), respectively. In the 184 patients, the 1-, 3-, and 5-year OS rates were 99.5%, 81.0%, and 62.5%, respectively. The 1-, 3-, and 5-year OS rates were 100%, 86.9%, and 71.4%, respectively, in those suitable for surgical resection and 99.0%, 76.0%, and 55.0%, respectively, in those unsuitable for surgical resection (P = 0.021). On univariate and multivariate analyses, poorer OS was associated with Child-Pugh B class and portal hypertension (P < 0.05). CONCLUSION: RF ablation is a safe and effective treatment for single HCC ≤ 3 cm. The OS rate of patients suitable for surgical resection was similar to those reported in surgical series. PMID:25954102

  13. Visualizing intramyocardial steam formation with a radiofrequency ablation catheter incorporating near-field ultrasound.

    PubMed

    Wright, Matthew; Harks, Erik; Deladi, Szabolcs; Fokkenrood, Steven; Zuo, Fei; Van Dusschoten, Anneke; Kolen, Alexander F; Belt, Harm; Sacher, Frederic; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2013-12-01

    Steam pops are a risk of irrigated RF ablation even when limiting power delivery. There is currently no way to predict gas formation during ablation. It would be useful to visualize intramyocardial gas formation prior to a steam pop occurring using near-field ultrasound integrated into a RF ablation catheter. In an in vivo open-chest ovine model (n = 9), 86 lesions were delivered to the epicardial surface of the ventricles. Energy was delivered for 15-60 seconds, to achieve lesions with and without steam pops, based on modeling data. The ultrasound image was compared to a digital audio recording from within the pericardium by a blinded observer. Of 86 lesions, 28 resulted in an audible steam pop. For lesions that resulted in a steam pop compared to those that did not (n = 58), the mean power delivered was 8.0 ± 1.8 W versus 6.7 ± 2.0 W, P = 0.006. A change in US contrast due to gas formation in the tissue occurred in all lesions that resulted in a steam pop. In 4 ablations, a similar change in US contrast was observed in the tissue and RF delivery was stopped; in these cases, no pop occurred. The mean depth of gas formation was 0.9 ± 0.8 mm, which correlated with maximal temperature predicted by modeling. Changes in US contrast occurred 7.6 ± 7.2 seconds before the impedance rise and 7.9 ± 6.2 seconds (0.1-17.0) before an audible pop. Integrated US in an RF ablation catheter is able to visualize gas formation intramyocardially several seconds prior to a steam pop occurring. This technology may help prevent complications arising from steam pops. © 2013 Wiley Periodicals, Inc.

  14. Radiofrequency catheter ablation of atrial fibrillation: Electrical modification suggesting transmurality is faster achieved with remote magnetic catheter in comparison with contact force use.

    PubMed

    Bun, Sok-Sithikun; Ayari, Anis; Latcu, Decebal Gabriel; Errahmouni, Abdelkarim; Saoudi, Nadir

    2017-07-01

    Remote magnetic navigation (RMN) and contact force (CF) sensing catheters are available technologies for radiofrequency (RF) catheter ablation of atrial fibrillation (AF). Our purpose was to compare time to electrogram (EGM) modification suggesting transmural lesions between RMN and CF-guided AF ablation. A total of 1,008 RF applications were analyzed in 21 patients undergoing RMN (n = 11) or CF-guided ablation (n = 10) for paroxysmal AF. All procedures were performed in sinus rhythm during general anesthesia. Time to EGM modification was measured until transmurality criteria were fulfilled: (1) complete disappearance of R if initial QR morphology; (2) diminution > 75% of R if initial QRS morphology; (3) complete disappearance of R' of initial RSR' morphology. Impedance drop as well as force time integral (FTI) were also assessed for each application. Mean CF at the beginning of each RF application in the CF group was 11 ± 2 g and mean FTI per application was 488 ± 163 gs. Time to EGM modification was significantly shorter in the RMN group (4.52 ± 0.1 seconds vs. 5.6 ± 0.09 seconds; P < 0.00001). There was no significant difference between other procedural parameters. Remote magnetic AF ablation is associated with faster EGM modification suggesting transmurality than optimized CF and FTI-guided catheter ablation. © 2017 Wiley Periodicals, Inc.

  15. Ablation of silicate particles in high-speed continuum and transition flow with application to the collection of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.; Miller, Wayne F.

    1991-01-01

    The ablative deceleration of spheres in the continuum and slip regimes is studied using spherical 7.1-micron-diam soda-lime glass particles launched from vacuum at about 4500 m/sec speed through a 13-micron-thick plastic film into a capture chamber containing Xe at 0.1 or 0.2 atm pressure and 295 K temperature. The results of SEM examinations of the collected ablated particles showed that the ratio of the ablated-particle radius (Rf) to the initial radius (R0) increased with gas pressure (from Rf/R0 about 0.67 at 0.1 atm, to about 0.88 at 0.2 atm). A model was developed to describe the ablation and deceleration of spheres in high-speed continuum and slip flow. The pressure dependence predicted by the model agreed with experimental results.

  16. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  17. Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Chen, Hui-jiuan; Chen, Xiaodong; Alfadhl, Yasir; Yu, Junsheng; Wen, Dongsheng

    2015-03-01

    In recent years, the application of nanomaterials to biological and biomedicine areas has attracted intensive interest. One of the hot topics is the nanomaterial mediated radiofrequency (RF) hyperthermia or ablation, i.e., using RF fields/waves to heat tumor tissues treated with nanomaterials to destroy cancerous cells while minimizing the side-heating effect. However, there are currently many contradictive results reported concerning the heating effect of nanomaterials under a RF field. This paper provided a comprehensive review to nanomaterial mediated RF ablation from both experimental and theoretical aspects. Three heating mechanisms were discussed, i.e., laser heating, magnetic field heating, and electric field heating in RF spectrum, with the focus on the last one. The results showed that while diluted pure metallic nanoparticles could be heated significantly by a laser through the surface plasmon resonance, they cannot be easily heated by a RF electric field. Further studies are proposed focusing on nanoparticle structure and morphology, electromagnetic frequency and localized heating effect to pave the way for future development.

  18. Real-time Monitoring of Radiofrequency Ablation and Postablation Assessment: Accuracy of Contrast-enhanced US in Experimental Rat Liver Model

    PubMed Central

    Wu, Hanping; Wilkins, Luke R.; Ziats, Nicholas P.; Haaga, John R.

    2014-01-01

    Purpose To examine the accuracy of the unenhanced zone at contrast material–enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Materials and methods Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin–stained images were compared. The areas of DiI bubble–negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. Results The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble–negative zone on fluorescence images was noted at all time points. Conclusion The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013 Online supplemental material is available for this article. PMID:23912621

  19. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial.

    PubMed

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J Christoph; Csanádi, Zoltan

    2016-05-01

    This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16-72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (<3 W) ablations (15 vs. 23%, 5 vs. 10% and 2 vs. 7% in 4:1, 2:1, and 1:1 bipolar:unipolar energy modes, respectively). Mini-Mental State Exam was unchanged in all patients. Atrial fibrillation ablation with PVAC GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. ClinicalTrials.gov NCT01767558. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  20. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial

    PubMed Central

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G.; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J. Christoph; Csanádi, Zoltan

    2016-01-01

    Abstract Aims This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. Methods and results A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16–72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (<3 W) ablations (15 vs. 23%, 5 vs. 10% and 2 vs. 7% in 4:1, 2:1, and 1:1 bipolar:unipolar energy modes, respectively). Mini-Mental State Exam was unchanged in all patients. Conclusion Atrial fibrillation ablation with PVAC GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. Trial registration ClinicalTrials.gov NCT01767558. PMID:26826134

  1. Randomised clinical trial of cryoballoon versus irrigated radio frequency catheter ablation for atrial fibrillation-the effect of double short versus standard exposure cryoablation duration during pulmonary vein isolation (CIRCA-DOSE): methods and rationale.

    PubMed

    Andrade, Jason G; Deyell, Marc W; Badra, Mariano; Champagne, Jean; Dubuc, Marc; Leong-Sit, Peter; Macle, Laurent; Novak, Paul; Roux, Jean-Francois; Sapp, John; Tang, Anthony; Verma, Atul; Wells, George A; Khairy, Paul

    2017-10-05

    Pulmonary vein isolation (PVI) is an effective therapy for paroxysmal atrial fibrillation (AF), but it has limitations. The two most significant recent advances have centred on the integration of real-time quantitative assessment of catheter contact force into focal radio frequency (RF) ablation catheters and the development of dedicated ablation tools capable of achieving PVI with a single ablation lesion (Arctic Front cryoballoon, Medtronic, Minneapolis, MN, USA). Although each of these holds promise for improving the clinical success of catheter ablation of AF, there has not been a rigorous comparison of these advanced ablation technologies. Moreover, the optimal duration of cryoablation (freezing time) has not been determined. Patients undergoing an initial PVI procedure for paroxysmal AF will be recruited. Patients will be randomised 1:1:1 between contact-force irrigated RF ablation, short duration cryoballoon ablation (2 min applications) and standard duration cryoballoon ablation (4 min applications). The primary outcome is time to first documented AF recurrence on implantable loop recorder. With a sample size of 111 per group and a two-sided 0.025 significance level (to account for the two main comparisons), the study will have 80% power (using a log-rank test) to detect a difference of 20% between contact force RF catheter ablation and either of the two cryoballoon ablation groups. Factoring in a 4% loss to follow-up, 116 patients per group should be randomised and followed for a year (total study population of 348). The study was approved by the University of British Columbia Office of Research (Services) Ethics Clinical Research Ethics Board. Results of the study will be submitted for publication in a peer-reviewed journal. NCT01913522; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Using Discrete Event Simulation to Model the Economic Value of Shorter Procedure Times on EP Lab Efficiency in the VALUE PVI Study.

    PubMed

    Kowalski, Marcin; DeVille, J Brian; Svinarich, J Thomas; Dan, Dan; Wickliffe, Andrew; Kantipudi, Charan; Foell, Jason D; Filardo, Giovanni; Holbrook, Reece; Baker, James; Baydoun, Hassan; Jenkins, Mark; Chang-Sing, Peter

    2016-05-01

    The VALUE PVI study demonstrated that atrial fibrillation (AF) ablation procedures and electrophysiology laboratory (EP lab) occupancy times were reduced for the cryoballoon compared with focal radiofrequency (RF) ablation. However, the economic impact associated with the cryoballoon procedure for hospitals has not been determined. Assess the economic value associated with shorter AF ablation procedure times based on VALUE PVI data. A model was formulated from data from the VALUE PVI study. This model used a discrete event simulation to translate procedural efficiencies into metrics utilized by hospital administrators. A 1000-day period was simulated to determine the accrued impact of procedure time on an institution's EP lab when considering staff and hospital resources. The simulation demonstrated that procedures performed with the cryoballoon catheter resulted in several efficiencies, including: (1) a reduction of 36.2% in days with overtime (422 days RF vs 60 days cryoballoon); (2) 92.7% less cumulative overtime hours (370 hours RF vs 27 hours cryoballoon); and (3) an increase of 46.7% in days with time for an additional EP lab usage (186 days RF vs 653 days cryoballoon). Importantly, the added EP lab utilization could not support the time required for an additional AF ablation procedure. The discrete event simulation of the VALUE PVI data demonstrates the potential positive economic value of AF ablation procedures using the cryoballoon. These benefits include more days where overtime is avoided, fewer cumulative overtime hours, and more days with time left for additional usage of EP lab resources.

  3. [Percutaneous ablation of malignant kidney tumors in rabbits by low frequency radio energy].

    PubMed

    Moskovitz, B; Nativ, O; Sabo, E; Barbara, Y; Mordohovich, D; Kaftori, Y; Shalhav, A; Goldwasser, B

    1998-01-01

    Radio-frequency (RF) current has been used successfully to ablate normal human tissue. To investigate further the clinical application of this modality in tumors, we studied the potential of using RF percutaneously to destroy experimental kidney tumors. 35 outbred albino rabbits underwent direct-implantation of renal VX2 tumor during open surgery. After 21 days, ultrasonography was performed to show tumor presence and size. A shielded RF needle was designed to be inserted percutaneously through an introduction needle. An electrical insulation shield covering the RF needle was retractable, controlling the length of exposure of the RF needle inside the tissue. 22 days after tumor implantation, RF was applied via this special needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery, while in another group treatment was percutaneous, the needle guided by palpation of the tumor. Rabbits were killed 3 days later and revealed 4-25 mm intra-tumoral RF-induced lesions. A direct relation was found between lesion size and the power and duration of RF applied (at 7.5 W, R = 0.48, and P = 0.32). Based on our preliminary results we can conclude that RF may have clinical applications in the near future for percutaneous local tumor control in parenchymal organs.

  4. Kinetics and tissue repair process following fractional bipolar radiofrequency treatment.

    PubMed

    Kokolakis, G; von Eichel, L; Ulrich, M; Lademann, J; Zuberbier, T; Hofmann, M A

    2018-05-15

    Fractionated radiofrequency (RF) tissue tightening is an alternative method to fractionated laser treatment of skin wrinkling, laxity and acne scars, with reduced risk of scarring or persistent pigmentation. The aim of this study was to evaluate and quantify the wound healing process after RF treatment. 12 patients were treated with a 64-pin fractional bipolar RF device with 60 mJ/pin applied energy. Confocal laser scanning microscopy (CLSM) examination was performed on day 1, day 2, day 7 and day 14 after treatment. Clinical wound healing process was measured and expressed as a percentage. All patients developed erythema, mild edema and crusts at the treated areas. Two weeks after treatment clinical symptoms resolved. During ablation patients reported moderate pain. Directly after ablation microscopic ablation zones could be detected in CLSM. Measurement of MAZ at epidermis, dermo-epidermal junction and papilary dermis showed a constant diameter until two weeks after treatment. Re-epithelization of the MAZ could be detected already 1 week after treatment. However, 2 weeks after ablation the honeycomb pattern of the epidermis was not yet completely restored. Bipolar fractionated RF treatment demonstrates clinically a rapid wound healing response. The subepidermal remodelling process still ongoing after 14 days, showing new granulation tissue. Therefore, treatment intervals of at least 14 days should be recommended to allow completion of the remodelling process.

  5. In vivo evaluation of virtual electrode mapping and ablation utilizing a direct endocardial visualization ablation catheter.

    PubMed

    Chik, William W B; Barry, M A; Malchano, Zach; Wylie, Bryan; Pouliopoulos, Jim; Huang, Kaimin; Lu, Juntang; Thavapalachandran, Sujitha; Robinson, David; Saadat, Vahid; Thomas, Stuart P; Ross, David L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2012-01-01

    Radiofrequency (RF) ablation utilizing direct endocardial visualization (DEV) requires a "virtual electrode" to deliver RF energy while preserving visualization. This study aimed to: (1) examine the virtual electrode RF ablation efficacy; (2) determine the optimal power and duration settings; and (3) evaluate the utility of virtual electrode unipolar electrograms. The DEV catheter lesions were compared to lesions formed using a 3.5 mm open irrigated tip catheter within the right atria of 12 sheep. Generator power settings for DEV were titrated from 12W, 14W and 16W for 20, 30 and 40 seconds duration with 25 mL/min saline irrigation. Standard irrigated tip catheter settings of 30W, 50°C for 30 seconds and 30 mL/min were used. The DEV lesions were significantly greater in surface area and both major and minor axes compared to irrigated tip lesions (surface area 19.43 ± 9.09 vs 10.88 ± 4.72 mm, P<0.01) with no difference in transmurality (93/94 vs 46/47) or depth (1.86 ± 0.75 vs 1.85 ± 0.57 mm). Absolute electrogram amplitude reduction was greater for DEV lesions (1.89 ± 1.31 vs 1.49 ± 0.78 mV, P = 0.04), but no difference in percentage reduction. Pre-ablation pacing thresholds were not different between DEV (0.79 ± 0.36 mA) and irrigated tip (0.73 ± 0.25 mA) lesions. There were no complications noted during ablation with either catheter. Virtual electrode ablation consistently created wider lesions at lower power compared to irrigated tip ablation. Virtual electrode electrograms showed a comparable pacing and sensing efficacy in detecting local myocardial electrophysiological changes. © 2011 Wiley Periodicals, Inc.

  6. Endo-epicardial ablation of ventricular arrhythmias in the left ventricle with the Remote Magnetic Navigation System and the 3.5-mm open irrigated magnetic catheter: results from a large single-center case-control series.

    PubMed

    Di Biase, Luigi; Santangeli, Pasquale; Astudillo, Vladimir; Conti, Sergio; Mohanty, Prasant; Mohanty, Sanghamitra; Sanchez, Javier E; Horton, Rodney; Thomas, Barbara; Burkhardt, J David; Natale, Andrea

    2010-08-01

    Remote magnetic navigation (RMN) has been reported as a feasible and safe mapping and ablation system for treatment of ventricular arrhythmias (VAs). However, the reported success rates have been limited with the 4- and 8-mm catheter tips. This study sought to report the results in a large series of consecutive patients undergoing radiofrequency (RF) catheter ablation of VAs using the RMN with the 3.5-mm magnetic open-irrigated-tip catheter (OIC). A total of 110 consecutive patients with a clinical history of left VA were included in the study. In all cases, an OIC was utilized for mapping and ablation. When ablation with the RMN catheters failed, a manual OIC was used to eliminate the VA. Postablation pacing maneuvers and isoproterenol were used to verify the inducibility of the VAs. Outcomes were compared with those of a group of 92 consecutive patients undergoing manual ablation by the same operator. Mapping and ablation with the magnetic OIC were performed in all 110 patients with VA. Ischemic cardiomyopathy was present in 33 (30%), nonischemic in 14 (13%), and in 63 (57%) patients no structural heart disease was present. Endocardial mapping was performed in all patients, whereas both endocardial and epicardial mapping were performed in 36 (33%) patients. Compared with manual ablation, RMN was associated with a longer procedural time (2.9 +/- 1.2 hours vs. 3.3 +/- 1.1 hours, P = 0.004) and RF time (24 +/- 12 minutes vs. 33 +/- 18 minutes, P = 0.005), whereas fluoroscopic time was significantly shorter (35 +/- 22 minutes vs. 26 +/- 14 minutes, P = 0.033). During the procedures, crossover to manual ablation was required in 15 patients (14%). At 11.7 +/- 2.1 months of follow-up in the study group and 18.7 +/- 3.7 months in the manual ablation group, 85% and 86% (P = 0.817) of patients, respectively, were free of VA. This large series of consecutive patients demonstrates that OIC ablation using RMN is effective for the treatment of left VAs. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Ex vivo human bile duct radiofrequency ablation with a bipolar catheter.

    PubMed

    Atar, Mustafa; Kadayifci, Abdurrahman; Daglilar, Ebubekir; Hagen, Catherine; Fernandez-Del Castillo, Carlos; Brugge, William R

    2018-06-01

    Management of the primary and secondary tumors of the bile ducts still remains as a major clinical challenge. Radiofrequency (RF) ablation (RFA) of these tumors is feasible but the effect of RF energy on the human common bile duct (CBD) and surrounding tissues has not been investigated. This pilot study aimed to determine the relationship between RF energy and the depth of ablation in the normal human CBD. The study was performed on fresh ex vivo human biliary-pancreatic tissue which had been resected for a pancreatic cyst or mass. The study was conducted within 15 min after resection. A bipolar Habib RFA catheter was placed into the middle of the intact CBD, and three different (5, 7, 10 W) power settings were applied over a 90-s period by an RF generator. Gross and histological examinations were performed. The depth of coagulation necrosis in CBD and the effect of RFA on CBD wall and surrounding pancreas tissue were determined by microscopic examination. The study included eight tissue samples. 5 W power was applied to three sites and RFA caused only focal epithelial necrosis limited to the CBD mucosa. 7 and 10 W were applied to five sites and coagulation necrosis occurred in all cases. Microscopically, necrosis was transmural, involved accessory bile duct glands, and extended to the surrounding pancreatic tissue in four of these cases. Macroscopically, RFA resulted in circumferential white-yellowish color change extending approximately 2 cm of the CBD. Bipolar RF energy application with 5 W resulted in limited ablation on CBD wall. However, 7 and 10 W generated tissue necrosis which extended through the CBD wall and into surrounding pancreas tissue. Endoscopic biliary RFA is an effective technique for local biliary tissue ablation but the use of high energy may injure surrounding tissue.

  8. Non-ablative skin tightening with radiofrequency in Asian skin.

    PubMed

    Kushikata, Nobuharu; Negishi, Kei; Tezuka, Yukiko; Takeuchi, Kaori; Wakamatsu, Shingo

    2005-02-01

    The recent successful application of radiofrequency (RF) in non-ablative skin tightening for skin laxity has attracted attention worldwide. The efficacy and clinical effect of RF were assessed in Asian skin, with additional study on the duration of the effect and any complications. Eighty-five Japanese females were enrolled in the study for treatment of nasolabial folds, marionette lines, and sagging jowls with 6-month follow-up. RF treatment was effective for nasolabial folds, marionette lines, and jowls. Objective physician evaluation found relatively good improvement at 3 months post-treatment, and even better improvement at the 6-month evaluation. RF treatment was very satisfactory for skin tightening in Asian facial skin. When compared with published literature from the United States, the results suggested that there might be race-related differences in the treatment parameters. (c) 2005 Wiley-Liss, Inc.

  9. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  10. Transepidermal drug delivery: a new treatment option for areata alopecia?

    PubMed

    Issa, Maria Claudia Almeida; Pires, Marianna; Silveira, Priscilla; Xavier de Brito, Esther; Sasajima, Cristiane

    2015-02-01

    Transepidermal drug delivery (TED) is a new potential method in dermatology. Permeability alterations induced by ablative fractional resurfacing have been described with the aim to increasing the delivery of different substances into the skin. To evaluate clinical response and side effects of TED in areata alopecia (AA) treatment using ablative fractional methods associated with acoustic pressure ultrasound (US) to deliver triamcinolone solution into the skin. Five cases of AA underwent treatment which comprised of 3 steps: 1) Ablative fractioned RF or CO2 laser 2) topical application of triamcinolone 3) acoustic pressure wave US. The number of sessions varied according to the clinical response, ranging from one to six sessions. All patients had complete recovery of the area treated. Two of them treated with ablative fractional RF + triamcinolone + US had complete response after three and six sessions. The other two treated with ablative fractional CO2 + triamcinolone + US had complete response after one session. Fractioned ablative resurfacing associated with acoustic pressure wave US is a new option to areata alopecia treatment with good clinical result and low incidence of side effects.

  11. Percutaneous Radiofrequency Ablation of Painful Spinal Tumors Adjacent to the Spinal Cord with Real-Time Monitoring of Spinal Canal Temperature: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuka, Atsuhiro, E-mail: nakatuka@clin.medic.mie-u.ac.jp; Yamakado, Koichiro; Takaki, Haruyuki

    2009-01-15

    PurposeTo prospectively evaluate the feasibility, safety, and clinical utility of bone radiofrequency (RF) ablation with real-time monitoring of the spinal canal temperature for the treatment of spinal tumors adjacent to the spinal cord.Materials and MethodsOur Institutional Review Board approved this study. Patients gave informed consent. The inclusion criteria were (a) a painful spinal metastasis and (b) a distance of 1 cm or less between the metastasis and the spinal cord. The thermocouple was placed in the spinal canal under CT fluoroscopic guidance. When the spinal canal temperature reached 45{sup o}C, RF application was immediately stopped. RF ablation was considered technicallymore » successful when the procedure was performed without major complications. Clinical success was defined as a fall in the visual analogue scale score of at least 2 points.ResultsTen patients with spinal tumors measuring 3-8 cm (mean, 4.9 {+-} 1.5 cm) were enrolled. The distance between the tumor and the spinal cord was 1-6 mm (mean, 2.4 {+-} 1.6 mm). All procedures were judged technically successful (100%). The spinal canal temperature did not exceed 45{sup o}C in 9 of the 10 patients (90%). In the remaining patient, the temperature rose to 48{sup o}C, resulting in transient neural damage, although RF application was immediately stopped when the temperature reached 45{sup o}C. Clinical success was achieved within 1 week in all patients (100%).ConclusionBone RF ablation with real-time monitoring of the spinal canal temperature is feasible, safe, and clinically useful for the treatment of painful spinal metastases adjacent to the spinal cord.« less

  12. Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon.

    PubMed

    Gaita, Fiorenzo; Leclercq, Jean François; Schumacher, Burghard; Scaglione, Marco; Toso, Elisabetta; Halimi, Franck; Schade, Anja; Froehner, Steffen; Ziegler, Volker; Sergi, Domenico; Cesarani, Federico; Blandino, Alessandro

    2011-09-01

    Silent cerebral ischemic lesions have recently emerged as the most frequent complications after pulmonary vein isolation (PVI). To reduce thromboembolic complications, new types of catheters and energy source have been introduced in clinical practice. The study purpose is to compare the incidence of new silent cerebral ischemic events in patients with paroxysmal atrial fibrillation (PAF) undergoing PVI with different ablation technologies. One hundred and eight patients (67% men; age 56 ± 9 years) with PAF were enrolled in a consecutive manner to undergo PVI performed with irrigated radiofrequency (RF) catheter (Group 1, 36 patients), multielectrode catheter (PVAC) associated with duty-cycled RF generator (Group 2, 36 patients) and cryoballoon (Group 3, 36 patients). The protocol included a cerebral magnetic resonance imaging before and after the procedure. After PVI, the following patients showed new silent cerebral ischemic lesions at postprocedural cerebral MRI: 3 patients in Group 1 (8.3%), 14 patients in Group 2 (38.9%), 2 patients in Group 3 (5.6%). PVAC related to higher incidence of silent cerebral ischemic events compared to irrigated RF (P = 0.002) and cryoballoon (P = 0.001), whereas no statistical differences were found between irrigated RF catheter and cryoballoon groups (8.3% vs 5.6%, P = 0.5). At the multivariate analysis, the only independent predictor of new ischemic asymptomatic cerebral lesions after PVI was ablation performed with PVAC (OR 1.48 95% CI 1.19-1.62, P < 0.001). The incidence of silent cerebral lesions after PVI is different depending on technologies used: PVAC increases the risk of 1.48 times compared to irrigated RF and cryoballoon ablation.  © 2011 Wiley Periodicals, Inc.

  13. Percutaneous ablation of malignant liver tumor in rabbits using low radio frequency energy.

    PubMed

    Nativ, O; Moskovitz, B; Sabo, E; Shalhav, A; Kaftori, J; Barbara, Y; Mordohovich, D; Goldwasser, B

    1996-09-01

    Radio frequency (RF) current has been used successfully to ablate normal human tissue. To further investigate the clinical application of this modality in tumors we studied the potential of using RF percutaneously to destroy experimental liver tumors. Thirty five outbred albino rabbits underwent liver VX2 tumor direct-implantation during open surgery. After 21 days ultrasonography was performed revealing tumor presence and size. A shielded RF needle was designed so that it could be inserted percutaneously through an introducing needle, and an electrical insulation shield covering the RF needle could be retracted to control the length of the exposed RF needle inside the tissue. Twenty two days after tumor implantation RF was applied via the aforementioned needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery and on the other group treatment was applied percutaneously, guiding the needle by tumor palpation. Rabbits were killed 3 days later and pathology revealed 4 to 25 mm intratumoral RF induced lesions. A direct relation was found between lesion size, power and duration of RF application (At 7.5 W, r = 0.48, p = 0.032). Based on our preliminary results we may conclude that RF may have clinical application in the near future for percutaneous local tumor control in parenchymal organs.

  14. Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation

    PubMed Central

    Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.

    2011-01-01

    Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with conventional image guidance. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101985/-/DC1 PMID:21734159

  15. The benefit of tissue contact monitoring with an electrical coupling index during ablation of typical atrial flutter--a prospective randomised control trial.

    PubMed

    Jones, Michael A; Webster, David; Wong, Kelvin C K; Hayes, Christopher; Qureshi, Norman; Rajappan, Kim; Bashir, Yaver; Betts, Timothy R

    2014-12-01

    We sought to investigate the use of tissue contact monitoring by means of the electrical coupling index (ECI) in a prospective randomised control trial of patients undergoing cavotricuspid isthmus (CTI) ablation for atrial flutter. Patients with ECG-documented typical flutter undergoing their first CTI ablation were randomised to ECI™-guided or non-ECI™-guided ablation. An irrigated-tip ablation catheter was used in all cases. Consecutive 50-W, 60-s radiofrequency lesions were applied to the CTI, from the tricuspid valve to inferior vena cava, with no catheter movement permitted during radiofrequency (RF) delivery. The ablation endpoint was durable CTI block at 20 min post-ablation. Patients underwent routine clinic follow-up post-operatively. A total of 101 patients (79 male), mean age 66 (+/-11), 50 ECI-guided and 51 control cases were enrolled in the study. CTI block was achieved in all. There were no acute complications. All patients were alive at follow-up. CTI block was achieved in a single pass in 36 ECI-guided and 30 control cases (p = 0.16), and at 20 min post-ablation, re-conduction was seen in 5 and 12 cases, respectively (p = 0.07). There was no significant difference in total procedure time (62.7 ± 33 vs. 62.3 ± 33 min, p = 0.92), RF requirement (580 ± 312 vs. 574 ± 287 s, p = 0.11) or fluoroscopy time (718 ± 577 vs. 721 ± 583 s, p = 0.78). After 6 ± 4 months, recurrence of flutter had occurred in 1 (2 %) ECI vs. 8 (16 %) control cases (OR 0.13, 95 % CI 0.01-1.08, p = 0.06). ECI-guided CTI ablation demonstrated a non-statistically significant reduction in late recurrence of atrial flutter, at no cost to procedural time, radiation exposure or RF requirement.

  16. Microwave, irrigated, pulsed, or conventional radiofrequency energy source: which energy source for which catheter ablation?

    PubMed

    Erdogan, Ali; Grumbrecht, Stephan; Neumann, Thomas; Neuzner, Joerg; Pitschner, Heinz F

    2003-01-01

    The aim of the study was to compare the diameter of endomyocardial lesions induced with the delivery of microwave, cooled, or pulsed energy versus conventional RF energy. In vitro tests were performed in fresh endomyocardial preparations of pig hearts in a 10-L bath of NaCl 0.9% solution at 37 degrees C and constant 1.5 L/min flow. Ablation 7 Fr catheters with 4-mm tip electrodes were used, except for the delivery of microwave energy. Energy delivery time was set to 60 s/50 W in all experiments. Cooled energy delivery was performed with a closed irrigation catheter. Pulsed energy delivery was performed using a special controller with a duty-cycle of 5 ms. Microwave energy was delivered with a 2.5-GHz generator and 10-mm antenna. Electrode temperature and impedance were measured simultaneously. After ablation, lesion length, width, and depth were measured with microcalipers, and volume calculated by a formula for ellipsoid bodies. Each energy delivery mode was tested in ten experiments. The deepest lesions were created with cooled energy delivery, and the largest volume by microwave energy delivery. Pulsed RF produced significantly deeper lesions than conventional RF energy delivery. Cooled or pulsed RF energy delivery created deeper transmural lesions than conventional RF. To create linear lesions at anatomically complex sites (isthmus), microwave energy seemed superior by rapidly creating deep and long lesions.

  17. Lung Radiofrequency Ablation for the Treatment of Unresectable Recurrent Non-Small-Cell Lung Cancer After Surgical Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, Hiroshi, E-mail: h-kodama@clin.medic.mie-u.ac.jp; Yamakado, Koichiro; Takaki, Haruyuki

    Purpose: A retrospective evaluation was done of clinical utility of lung radiofrequency (RF) ablation in recurrent non-small-cell lung cancer (NSCLC) after surgical intervention. Methods: During May 2003 to October 2010, 44 consecutive patients (26 male and 18 female) received curative lung RF ablation for 51 recurrent NSCLC (mean diameter 1.7 {+-} 0.9 cm, range 0.6 to 4.0) after surgical intervention. Safety, tumor progression rate, overall survival, and recurrence-free survival were evaluated. Prognostic factors were evaluated in multivariate analysis. Results: A total of 55 lung RF sessions were performed. Pneumothorax requiring pluerosclerosis (n = 2) and surgical suture (n = 1)more » were the only grade 3 or 4 adverse events (5.5%, 3 of 55). During mean follow-up of 28.6 {+-} 20.3 months (range 1 to 98), local tumor progression was found in 5 patients (11.4%, 5 of 44). The 1-, 3-, and 5-year overall survival rates were 97.7, 72.9, and 55.7%, respectively. The 1- and 3-year recurrence-free survival rates were 76.7 and 41.1%, respectively. Tumor size and sex were independent significant prognostic factors in multivariate analysis. The 5-year survival rates were 73.3% in 18 women and 60.5% in 38 patients who had small tumors measuring {<=}3 cm. Conclusion: Our results suggest that lung RF ablation is a safe and useful therapeutic option for obtaining long-term survival in treated patients.« less

  18. Reduction of electronic noise from radiofrequency generator during radiofrequency ablation in interventional MRI.

    PubMed

    Oshiro, Thomas; Sinha, Usha; Lu, David; Sinha, Shantanu

    2002-01-01

    MRI has been used increasingly in the recent past for the guidance and monitoring of minimally invasive interventional procedures, using typically radiofrequency (RF) and laser energy, cryoablation, and percutaneous ethanol. RF energy has been used over the last 30 years for the ablation of tissues. Its use in conjunction with MRI for monitoring is limited, however, because of the electronic noise produced by the RF generators, which can significantly deteriorate image quality. The objective of this work was to devise methods by which this noise can be reduced to an acceptable level to allow simultaneous acquisition of MR images for monitoring purposes with the application of RF energy. Three different methods of noise reduction were investigated in a 0.2 T MR scanner: filtration using external hardware circuitry, MR scanner software-controlled filtration, and keyholing. The last two methods were unable by themselves to suppress the noise to an acceptable degree. Hardware filtration, however, provides excellent suppression of RF noise and is able to withstand up to 12 W of RF energy. When all the three approaches are combined, significant reduction of RF noise is achieved. The feasibility of creating an RF lesion of about 1.2 cm diameter in vivo in a porcine model simultaneously with temperature-sensitive MRI with adequate noise suppression is demonstrated.

  19. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver.

    PubMed

    Cockburn, J F; Maddern, G J; Wemyss-Holden, S A

    2007-03-01

    To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Omega or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p<0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone.

  20. Role of Contact Force Sensing in Catheter Ablation of Cardiac Arrhythmias: Evolution or History Repeating Itself?

    PubMed

    Ariyarathna, Nilshan; Kumar, Saurabh; Thomas, Stuart P; Stevenson, William G; Michaud, Gregory F

    2018-06-01

    Adequate catheter-tissue contact facilitates efficient heat energy transfer to target tissue. Tissue contact is thus critical to achieving lesion transmurality and success of radiofrequency (RF) ablation procedures, a fact recognized more than 2 decades ago. The availability of real-time contact force (CF)-sensing catheters has reinvigorated the field of ablation biophysics and optimized lesion formation. The ability to measure and display CF came with the promise of dramatic improvement in safety and efficacy; however, CF quality was noted to have just as important an influence on lesion formation as absolute CF quantity. Multiple other factors have emerged as key elements influencing effective lesion formation, including catheter stability, lesion contiguity and continuity, lesion density, contact homogeneity across a line of ablation, spatiotemporal dynamics of contact governed by cardiac and respiratory motion, contact directionality, and anatomic wall thickness, in addition to traditional ablation indices of power and RF duration. There is greater appreciation of surrogate markers as a guide to lesion formation, such as impedance fall, loss of pace capture, and change in unipolar electrogram morphology. In contrast, other surrogates such as tactile feedback, catheter motion, and electrogram amplitude are notably poor predictors of actual contact and lesion formation. This review aims to contextualize the role of CF sensing in lesion formation with respect of the fundamental principles of biophysics of RF ablation and summarize the state-of-the-art evidence behind the role of CF in optimizing lesion formation. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Laser Guidance in C-Arm Cone-Beam CT-Guided Radiofrequency Ablation of Osteoid Osteoma Reduces Fluoroscopy Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Maarten W., E-mail: Maarten.Kroes@radboudumc.nl; Busser, Wendy M. H.; Hoogeveen, Yvonne L.

    PurposeTo assess whether laser guidance can reduce fluoroscopy and procedure time of cone-beam computed tomography (CBCT)-guided radiofrequency (RF) ablations of osteoid osteoma compared to freehand CBCT guidance.Materials and Methods32 RF ablations were retrospectively analyzed, 17 laser-guided and 15 procedures using the freehand technique. Subgroup selection of 18 ablations in the hip–pelvic region with a similar degree of difficulty was used for a direct comparison. Data are presented as median (ranges).ResultsComparison of all 32 ablations resulted in fluoroscopy times of 365 s (193–878 s) for freehand and 186 s (75–587 s) for laser-guided procedures (p = 0.004). Corresponding procedure times were 56 min (35–97 min) and 52 min (30–85 min) (p = 0.355).more » The subgroup showed comparable target sizes, needle path lengths, and number of scans between groups. Fluoroscopy times were lower for laser-guided procedures, 215 s (75–413 s), compared to 384 s (193–878 s) for freehand (p = 0.012). Procedure times were comparable between groups, 51 min (30–72 min) for laser guidance and 58 min (35–79 min) for freehand (p = 0.172).ConclusionAdding laser guidance to CBCT-guided osteoid osteoma RF ablations significantly reduced fluoroscopy time without increasing procedure time.Level of EvidenceLevel 4, case series.« less

  2. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  3. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver.

    PubMed

    Petrusca, Lorena; Viallon, Magalie; Breguet, Romain; Terraz, Sylvain; Manasseh, Gibran; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana; Gross, Patrick; Sekins, K Michael; Becker, Christoph D; Salomir, Rares

    2014-01-16

    Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. At the end of the procedure, no ultrasound indication of the marker's presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.

  4. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver

    PubMed Central

    2014-01-01

    Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique. PMID:24433332

  5. Atrial fibrillation ablation using cryoballoon technology: Recent advances and practical techniques.

    PubMed

    Chen, Shaojie; Schmidt, Boris; Bordignon, Stefano; Bologna, Fabrizio; Perrotta, Laura; Nagase, Takahiko; Chun, K R Julian

    2018-04-16

    Atrial fibrillation (AF) affects 1-2% of the population, and its prevalence is estimated to double in the next 50 years as the population ages. AF results in impaired patients' life quality, deteriorated cardiac function, and even increased mortality. Antiarrhythmic drugs frequently fail to restore sinus rhythm. Catheter ablation is a valuable treatment approach for AF, even as a first-line therapy strategy in selected patients. Effective electrical pulmonary vein isolation (PVI) is the cornerstone of all AF ablation strategies. Use of radiofrequency (RF) catheter in combination of a three-dimensional electroanatomical mapping system is the most established ablation approach. However, catheter ablation of AF is challenging even sometimes for experienced operators. To facilitate catheter ablation of AF without compromising the durability of the pulmonary vein isolation, "single shot" ablation devices have been developed; of them, cryoballoon ablation, is by far the most widely investigated. In this report, we review the current knowledge of AF and discuss the recent evidence in catheter ablation of AF, particularly cryoballoon ablation. Moreover, we review relevant data from the literature as well as our own experience and summarize the key procedural practical techniques in PVI using cryoballoon technology, aiming to shorten the learning curve of the ablation technique and to contribute further to reduction of the disease burden. © 2018 Wiley Periodicals, Inc.

  6. An approach to ablate and pace:AV junction ablation and pacemaker implantation performed concurrently from the same venous access site.

    PubMed

    Issa, Ziad F

    2007-09-01

    Atrioventricular junction (AVJ) ablation combined with permanent pacemaker implantation (the "ablate and pace" approach) remains an acceptable alternative treatment strategy for symptomatic, drug-refractory atrial fibrillation (AF) with rapid ventricular response. This case series describes the feasibility and safety of catheter ablation of the AVJ via a superior vena caval approach performed during concurrent dual-chamber pacemaker implantation. A total of 17 consecutive patients with symptomatic, drug-refractory, paroxysmal AF underwent combined AVJ ablation and dual-chamber pacemaker implantation procedure using a left axillary venous approach. Two separate introducer sheaths were placed into the axillary vein. The first sheath was used for implantation of the pacemaker ventricular lead, which was then connected to the pulse generator. Subsequently, a standard ablation catheter was introduced through the second axillary venous sheath and used for radiofrequency (RF) ablation of the AVJ. After successful ablation, the catheter was withdrawn and the pacemaker atrial lead was advanced through that same sheath and implanted in the right atrium. Catheter ablation of the AVJ was successfully achieved in all patients. The median number of RF applications required to achieve complete AV block was three (range 1-10). In one patient, AV conduction recovered within the first hour after completion of the procedure, and AVJ ablation was then performed using the conventional femoral venous approach. There were no procedural complications. Catheter ablation of the AVJ can be performed successfully and safely via a superior vena caval approach in patients undergoing concurrent dual-chamber pacemaker implantation.

  7. Does artificial ascites induce the heat-sink phenomenon during percutaneous radiofrequency ablation of the hepatic subcapsular area?: an in vivo experimental study using a rabbit model.

    PubMed

    Kim, Young Sun; Rhim, Hyunchul; Choi, Dongil; Lim, Hyo K

    2009-01-01

    To evaluate the effect of the heat-sink phenomenon induced by artificial ascites on the size of the ablation zone during percutaneous radiofrequency (RF) ablation of the hepatic subcapsular area in an in vivo rabbit model. A total of 21 percutaneous rabbit liver RF ablations were performed with and without artificial ascites (5% dextrose aqueous solution). The rabbits were divided into three groups: a) control group (C, n = 7); b) room temperature ascites group (R, n = 7); and c) warmed ascites group (W, n = 7). The tip of a 1 cm, internally cooled electrode was placed on the subcapsular region of the hepatic dome via ultrasound guidance, and ablation was continued for 6 min. Changes in temperature of the ascites were monitored during the ablation. The size of the ablation zones of the excised livers and immediate complications rates were compared statistically between the groups (Mann-Whitney U test, Kruskal-Wallis test, linear-by-linear association, p = 0.05). One rabbit from the "W" group expired during the procedure. In all groups, the ascites temperatures approached their respective body temperatures as the ablations continued; however, a significant difference in ascites temperature was found between groups "W" and "R" throughout the procedures (39.2+/-0.4 degrees C in group W and 33.4+/-4.3 degrees C in group R at 6 min, p = 0.003). No significant difference was found between the size of the ablation zones (782.4+/-237.3 mL in group C, 1,172.0+/-468.9 mL in group R, and 1,030.6+/-665.1 mL in group W, p = 0.170) for the excised liver specimens. Diaphragmatic injury was identified in three of seven cases (42.9%) upon visual inspection of group "C" rabbits (p = 0.030). Artificial ascites are not likely to cause a significant heat-sink phenomenon in the percutaneous RF ablation of the hepatic subcapsular region.

  8. Phrenic nerve injury: An underrecognized and potentially preventable complication of pulmonary vein isolation using a wide-area circumferential ablation approach.

    PubMed

    Yong Ji, Sang; Dewire, Jane; Barcelon, Bernadette; Philips, Binu; Catanzaro, John; Nazarian, Saman; Cheng, Alan; Spragg, David; Tandri, Harikrishna; Bansal, Sandeep; Ashikaga, Hiroshi; Rickard, Jack; Kolandaivelu, Aravindan; Sinha, Sunil; Marine, Joseph E; Calkins, Hugh; Berger, Ronald

    2013-10-01

    Phrenic nerve injury (PNI) is a well-known, although uncommon, complication of pulmonary vein isolation (PVI) using radiofrequency energy. Currently, there is no consensus about how to avoid or minimize this injury. The purpose of this study was to determine how often the phrenic nerve, as identified using a high-output pacing, lies along the ablation trajectory of a wide-area circumferential lesion set. We also sought to determine if PVI can be achieved without phrenic nerve injury by modifying the ablation lesion set so as to avoid those areas where phrenic nerve capture (PNC) is observed. We prospectively enrolled 100 consecutive patients (age 61.7 ± 9.2 years old, 75 men) who underwent RF PVI using a wide-area circumferential ablation approach. A high-output (20 mA at 2 milliseconds) endocardial pacing protocol was performed around the right pulmonary veins and the carina where a usual ablation lesion set would be made. A total of 30% of patients had PNC and required modification of ablation lines. In the group of patients with PNC, the carina was the most common site of capture (85%) followed by anterior right superior pulmonary vein (RSPV) (70%) and anterior right inferior pulmonary vein (RIPV) (30%). A total of 25% of PNC group had capture in all 3 (RSPV, RIPV, and carina) regions. There was no difference in the clinical characteristics between the groups with and without PNC. RF PVI caused no PNI in either group. High output pacing around the right pulmonary veins and the carina reveals that the phrenic nerve lies along a wide-area circumferential ablation trajectory in 30% of patients. Modification of ablation lines to avoid these sites may prevent phrenic nerve injury during RF PVI. © 2013 Wiley Periodicals, Inc.

  9. Assessment of Atrial Fibrillation and Vulnerability in Patients with Wolff-Parkinson-White Syndrome Using Two-Dimensional Speckle Tracking Echocardiography

    PubMed Central

    Li, Jing-Jie; Wei, Fang; Chen, Ju-Gang; Yu, Yan-Wei; Gu, Hong-Yue; Jiang, Rui; Wu, Xiu-Li; Sun, Qian

    2014-01-01

    Purpose The aim was to assess atrial fibrillation (AF) and vulnerability in Wolff-Parkinson-White (WPW) syndrome patients using two-dimensional speckle tracking echocardiography (2D-STE). Methods All patients were examined via transthoracic echocardiography and 2D-STE in order to assess atrial function 7 days before and 10 days after RF catheter ablation. A postoperative 3-month follow-up was performed via outpatient visit or telephone calls. Results Results showed significant differences in both body mass index (BMI) and supraventricular tachycardia (SVT) duration between WPW patients and DAVNP patients (both P<0.05). Echocardiography revealed that the maximum left atrial volume (LAVmax) and the left ventricular mass index (LVMI) in diastole increased noticeably in patients with WPW compared to patients with DAVNP both before and after ablation (all P<0.05). Before ablation, there were obvious differences in the levels of SRs, SRe, and SRa from the 4-chamber view (LA) in the WPW patients group compared with patients in the DAVNP group (all P<0.05). In the AF group, there were significant differences in the levels of systolic strain rate (SRs), early diastolic strain rate (SRe), and late diastolic strain rate (SRa) from the 4-chamber view (LA) both before and after ablation (all P<0.05). In the non-AF group, there were decreased SRe levels from the 4-chamber view (LA/RA) pre-ablation compared to post-ablation (all P<0.05). Conclusion Our findings provide convincing evidence that WPW syndrome may result in increased atrial vulnerability and contribute to the development of AF. Further, RF catheter ablation of AAV pathway can potentially improve atrial function in WPW syndrome patients. Two-dimensional speckle tracking echocardiography imaging in WPW patients would be necessary in the evaluation and improvement of the overall function of RF catheter ablation in a long-term follow-up period. PMID:25397668

  10. Assessment of atrial fibrillation and vulnerability in patients with Wolff-Parkinson-White syndrome using two-dimensional speckle tracking echocardiography.

    PubMed

    Li, Jing-Jie; Wei, Fang; Chen, Ju-Gang; Yu, Yan-Wei; Gu, Hong-Yue; Jiang, Rui; Wu, Xiu-Li; Sun, Qian

    2014-01-01

    The aim was to assess atrial fibrillation (AF) and vulnerability in Wolff-Parkinson-White (WPW) syndrome patients using two-dimensional speckle tracking echocardiography (2D-STE). All patients were examined via transthoracic echocardiography and 2D-STE in order to assess atrial function 7 days before and 10 days after RF catheter ablation. A postoperative 3-month follow-up was performed via outpatient visit or telephone calls. Results showed significant differences in both body mass index (BMI) and supraventricular tachycardia (SVT) duration between WPW patients and DAVNP patients (both P<0.05). Echocardiography revealed that the maximum left atrial volume (LAVmax) and the left ventricular mass index (LVMI) in diastole increased noticeably in patients with WPW compared to patients with DAVNP both before and after ablation (all P<0.05). Before ablation, there were obvious differences in the levels of SRs, SRe, and SRa from the 4-chamber view (LA) in the WPW patients group compared with patients in the DAVNP group (all P<0.05). In the AF group, there were significant differences in the levels of systolic strain rate (SRs), early diastolic strain rate (SRe), and late diastolic strain rate (SRa) from the 4-chamber view (LA) both before and after ablation (all P<0.05). In the non-AF group, there were decreased SRe levels from the 4-chamber view (LA/RA) pre-ablation compared to post-ablation (all P<0.05). Our findings provide convincing evidence that WPW syndrome may result in increased atrial vulnerability and contribute to the development of AF. Further, RF catheter ablation of AAV pathway can potentially improve atrial function in WPW syndrome patients. Two-dimensional speckle tracking echocardiography imaging in WPW patients would be necessary in the evaluation and improvement of the overall function of RF catheter ablation in a long-term follow-up period.

  11. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.

    PubMed

    Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N

    2005-05-01

    This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.

  12. Histologic comparison of microscopic treatment zones induced by fractional lasers and radiofrequency.

    PubMed

    Shin, Min-Kyung; Choi, Jeong Hwee; Ahn, Soo Beom; Lee, Mu Hyoung

    2014-12-01

    Fractional photothermolysis induces microscopic, localized thermal injury in the skin surrounded by undamaged viable tissue in order to promote wound healing. This study evaluated acute histologic changes following each single pass of various fractional lasers and radiofrequency (RF). Three male domestic swine were used. We used fractional Erbium:glass (Er:glass), Erbium:yttrium-aluminum-garnet (Er:YAG), CO2 lasers, and fractional ablative microplasma RF. We analyzed features and average values of the diameter, depth, and vertical sectional areas treated with each kind of laser and RF. The microscopic treatment zone (MTZ) of fractional Er:glass resulted in separation of dermoepidermal junction with no ablative zone. Fractional Er:YAG provided the most superficial and broad MTZ with little thermal collateral damage. Fractional CO2 resulted in a narrow and deep "cone"-like MTZ. Fractional RF resulted in a superficial and broad "crater"-like MTZ. This study provides the first comparison of MTZs induced by various fractional lasers and RF. These data provide basic information on proper laser and RF options. We think that these findings could be a good reference for information about fractional laser-assisted drug delivery.

  13. Effects of tissue impedance on heat generation during RF delivery with the Thermage system

    NASA Astrophysics Data System (ADS)

    Tomkoria, Sara; Pope, Karl

    2005-04-01

    The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.

  14. Study of the damage rate caused by intervertebral foramen type inside and outside and the pass of the intervertebral DRG RF puncture way.

    PubMed

    Sun, Jiashu; Zhang, Haitao

    2014-09-01

    This paper was to analyze and contrast the damage rate on the thoracic segment different position of the dorsal root ganglion(dorsal root ganglion, DRG) caused by different puncture path in radiofrequency ablation, thus the best RF target way for the thoracic segment of different types of DRG was confirmed. According to the difference of puncture and ablation damage way, 14 segmental spinal specimens were randomly divided into three groups, and then conducted DRG radiofrequency damage on percutaneous puncture path according to the type of DRG position.The damage effect of different puncture path by the judgment standard of the result of pathology analyzed. The experiment showed that RF damage of group A were 72.58 ± 18.88%, 54.16 ± 24.84% and 32.85 ± 28.11%; that of group B were 771.86 ± 15.15% and 72.02 ± 17.86%, 57.14 ± 18.02% and 52.47 ± 20.64%, 68.75 ± 14.63% and 71.78 ± 16.00%; and that of group C were 82.46 ± 14.10%, 81.53 ± 11.81% and 80.83 ± 13.33%. It was concluded that the singleness of DRG puncture route is one of the important reasons for the poor thoracic segments DRG radiofrequency (RF) ablation effect. While according to the type of DRG different positions with double joint puncture path can significantly improve the rate of DRG RF damage.

  15. A comparative analysis of clinical outcomes and disposable costs of different catheter ablation methods for the treatment of atrioventricular nodal reentrant tachycardia.

    PubMed

    Berman, Adam E; Rivner, Harold; Chalkley, Robin; Heboyan, Vahé

    2017-01-01

    Catheter ablation of atrioventricular nodal reentrant tachycardia (AVNRT) is a commonly performed electrophysiology (EP) procedure. Few data exist comparing conventional (CONV) versus novel ablation strategies from both clinical and direct cost perspectives. We sought to investigate the disposable costs and clinical outcomes associated with three different ablation methodologies used in the ablation of AVNRT. We performed a retrospective review of AVNRT ablations performed at Augusta University Medical Center from 2006 to 2014. A total of 183 patients were identified. Three different ablation techniques were compared: CONV manual radiofrequency (RF) (n=60), remote magnetic navigation (RMN)-guided RF (n=67), and cryoablation (CRYO) (n=56). Baseline demographics did not differ between the three groups except for a higher prevalence of cardiomyopathy in the RMN group ( p <0.01). The clinical end point of interest was recurrent AVNRT following the index ablation procedure. A significantly higher number of recurrent AVNRT cases occurred in the CRYO group as compared to CONV and RMN ( p =0.003; OR =7.75) groups. Cost-benefit analysis showed both CONV and RMN to be dominant compared to CRYO. Cost-minimization analysis demonstrated the least expensive ablation method to be CONV (mean disposable catheter cost = CONV US$2340; CRYO US$3515; RMN US$5190). Despite comparable clinical outcomes, the incremental cost of RMN over CONV averaged US$3094 per procedure. AVNRT ablation using either CONV or RMN techniques is equally effective and associated with lower AVNRT recurrence rates than CRYO. CONV ablation carries significant disposable cost savings as compared to RMN, despite similar efficacy.

  16. Impact of catheter ablation with remote magnetic navigation on procedural outcomes in patients with persistent and long-standing persistent atrial fibrillation.

    PubMed

    Jin, Qi; Pehrson, Steen; Jacobsen, Peter Karl; Chen, Xu

    2015-11-01

    The objectives of this study were to assess the procedural outcomes of persistent and long-standing persistent atrial fibrillation (PsAF and L-PsAF) ablation guided by remote magnetic navigation (RMN), and to detect factors predicting acute restoration of sinus rhythm (SR) by ablation with RMN. A total of 313 patients (275 male, age 59 ± 9.5 years) with PsAF (187/313) or L-PsAF (126/313) undergoing ablation using RMN were included. Patients' disease history, pulmonary venous anatomy, left atrial (LA) volume, procedure time, mapping plus ablation time, radiofrequency (RF) ablation time, fluoroscopy time, radiation dose, and complications were assessed. Stepwise regression was used to predict which variable could best predict acute restoration from AF to SR by ablation. Compared to PsAF, procedure time and RF ablation time were significantly increased in patients with L-PsAF (P = 0.01 and P < 0.001, respectively). No major complications occurred during the procedures in either PsAF or L-PsAF patients. Fifty five of 313 patients converted directly to SR by ablation. Compared to L-PsAF, the rate of SR restoration was significantly higher in PsAF (21 vs 12%, P = 0.03). Stepwise regression analysis showed LA volume was the primary parameter affecting SR restoration (P = 0.01). The LA volume of patients without direct SR restoration by ablation was 24% greater than that of patients with SR restoration (P < 0.001). Catheter ablation using RMN is a safe and effective method for PsAF and L-PsAF. LA volume could be a predictor of direct restoration of SR from sustaining AF by ablation using RMN.

  17. Ablation of "Background Tachycardia" in Long Standing Atrial Fibrillation: Improving the Outcomes by Unmasking a Residual Atrial Fibrillation Perpetuator.

    PubMed

    Pachón-M, José Carlos; Pachón-M, Enrique I; Santillana P, Tomas G; Lobo, Tasso Julio; Pachón, Carlos Thiene C; Pachón-M, Juán Carlos; Albornoz V, Remy Nelson; Zerpa A, Juán Carlos; Ortencio, Felipe; Arruda, Mauricio

    2017-01-01

    Catheter ablation of long-standing persistent AF (LSAF) remains challenging. Since AF-Nest (AFN) description, we have observed that a stable, protected, fast source firing, namely "Background Tachycardia"(BT), could be hidden beneath the chaotic AF. Following pulmonary vein isolation (PVI)+AFN ablation one or more BT may arise or be induced in 30-40% of patients, which could be the culprit forAF maintenance and ablation recurrences. We studied 114 patients, from 322 sequential LSAF regular ablations, having spontaneous or induced residual BT after EGM-guided PVI+AFN ablation of LSAF; 55.6±11y/o, 97males (85.1%), EF=65.5±8%, LA=42.8±6.7mm. Macroreentrant tachycardias were excluded. Pre-ablationAF 12-leads ECG Digital processing(DP) and spectral analysis(SA) was performed searching for BT before AF ablation and its correlation with BT during ablation.After PVI, 38.1±9 AFN sites/patient and 135 sustained BTs (1-3, 1.2±0.5/patient) were ablated. BT cycle length(CL) was 246.3±37.3ms. In 79 patients presenting suitable DP for SA, the BT-CL was 241.6±34.3ms with intra procedure BT-CL correlation r=0.83/p<0.01. Following BT ablation, AF could not be induced. During FU of 13→60 months(22.8±12m), AF freedom for BT RF(+) vs. BT RF(-) groups were 77.9% vs. 56.4% (p=0.009), respectively. There was no significant complication. BT ablation following PVI and AFN ablation improved long-term outcomes ofLSAF ablation. BT is likely due to sustained microreentry, protected during AF by entry block. BT can be suspected by spectral analysis of the pre-ablation ECG and is likely one important AF perpetuator by causing electrical resonance of the AFN. This ablation strategy warrants randomized, multicenter investigation.

  18. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules.

    PubMed

    Deandrea, Maurilio; Limone, Paolo; Basso, Edoardo; Mormile, Alberto; Ragazzoni, Federico; Gamarra, Elena; Spiezia, Stefano; Faggiano, Antongiulio; Colao, Annamaria; Molinari, Filippo; Garberoglio, Roberto

    2008-05-01

    The aim of the study was to define the effectiveness and safety of ultrasound-guided percutaneous radiofrequency (RF) thermal ablation in the treatment of compressive solid benign thyroid nodules. Thirty-one patients not eligible for surgery or radioiodine (131I) treatment underwent RF ablation for benign nodules; a total of 33 nodules were treated (2 patients had 2 nodules treated in the same session): 10 cold nodules and 23 hyperfunctioning. Fourteen patients complained of compressive symptoms. Nodule volume, thyroid function and compressive symptoms were evaluated before treatment and at 1, 3 and 6 mo. Ultrasound-guided RF ablation was performed using a Starbust RITA needle, with nine expandable prongs; total exposure time was 6 to 10 min at 95 degrees C in one area or more of the nodule. Baseline volume (measured at the time of RF ablation) was 27.7 +/- 21.5 mL (mean +/- SD), but significantly decreased during follow-up: 19.2 +/- 16.2 at 1 mo (-32.7%; p < 0.001), 15.9 +/- 14.1 mL at 3 mo (-46.4 %; p < 0.001) and 14.6 +/- 12.6 mL at 6 mo (-50.7%; p < 0.001). After treatment, all patients with cold nodules remained euthyroid: five patients with hot nodules normalized thyroid function, and the remaining sixteen showed a partial remission of hyperthyroidism. Besides a sensation of heat and mild swelling of the neck, no major complications were observed. Improvement in compressive symptoms was reported by 13 patients, with a reduction on severity scale from 6.1 +/- 1.4 to 2.2 +/- 1.9 (p < 0.0001). Radiofrequency was effective and safe in reducing volume by about 50% and compressive symptoms in large benign nodules. Hyperfunction was fully controlled in 24% of patients and partially reduced in the others.

  19. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    PubMed

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  20. Non-ablative radiofrequency associated or not with low-level laser therapy on the treatment of facial wrinkles in adult women: A randomized single-blind clinical trial.

    PubMed

    Pereira, Thalita Rodrigues Christovam; Vassão, Patrícia Gabrielli; Venancio, Michele Garcia; Renno, Ana Cláudia Muniz; Aveiro, Mariana Chaves

    2017-06-01

    The objective of this study was to evaluate the effects of Non-ablative Radiofrequency (RF) associated or not with low-level laser therapy (LLLT) on aspect of facial wrinkles among adult women. Forty-six participants were randomized into three groups: Control Group (CG, n = 15), RF Group (RG, n = 16), and RF and LLLT Group (RLG, n = 15). Every participant was evaluated on baseline (T0), after eight weeks (T8) and eight weeks after the completion of treatment (follow-up). They were photographed in order to classify nasolabial folds and periorbital wrinkles (Modified Fitzpatrick Wrinkle Scale and Fitzpatrick Wrinkle Classification System, respectively) and improvement on appearance (Global Aesthetic Improvement Scale). Photograph analyses were performed by 3 blinded evaluators. Classification of nasolabial and periorbital wrinkles did not show any significant difference between groups. Aesthetic appearance indicated a significant improvement for nasolabial folds on the right side of face immediately after treatment (p = 0.018) and follow-up (p = 0.029) comparison. RG presented better results than CG on T8 (p = 0.041, ES = -0.49) and on follow-up (p = 0.041, ES = -0.49) and better than RLG on T8 (p = 0.041, ES = -0.49). RLG presented better results than CG on follow-up (p = 0.007, ES = -0.37). Nasolabial folds and periorbital wrinkles did not change throughout the study; however, some aesthetic improvement was observed. LLLT did not potentiate RF treatment.

  1. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    PubMed

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  2. A comparative analysis of clinical outcomes and disposable costs of different catheter ablation methods for the treatment of atrioventricular nodal reentrant tachycardia

    PubMed Central

    Berman, Adam E; Rivner, Harold; Chalkley, Robin; Heboyan, Vahé

    2017-01-01

    Background Catheter ablation of atrioventricular nodal reentrant tachycardia (AVNRT) is a commonly performed electrophysiology (EP) procedure. Few data exist comparing conventional (CONV) versus novel ablation strategies from both clinical and direct cost perspectives. We sought to investigate the disposable costs and clinical outcomes associated with three different ablation methodologies used in the ablation of AVNRT. Methods We performed a retrospective review of AVNRT ablations performed at Augusta University Medical Center from 2006 to 2014. A total of 183 patients were identified. Three different ablation techniques were compared: CONV manual radiofrequency (RF) (n=60), remote magnetic navigation (RMN)-guided RF (n=67), and cryoablation (CRYO) (n=56). Results Baseline demographics did not differ between the three groups except for a higher prevalence of cardiomyopathy in the RMN group (p<0.01). The clinical end point of interest was recurrent AVNRT following the index ablation procedure. A significantly higher number of recurrent AVNRT cases occurred in the CRYO group as compared to CONV and RMN (p=0.003; OR =7.75) groups. Cost-benefit analysis showed both CONV and RMN to be dominant compared to CRYO. Cost-minimization analysis demonstrated the least expensive ablation method to be CONV (mean disposable catheter cost = CONV US$2340; CRYO US$3515; RMN US$5190). Despite comparable clinical outcomes, the incremental cost of RMN over CONV averaged US$3094 per procedure. Conclusion AVNRT ablation using either CONV or RMN techniques is equally effective and associated with lower AVNRT recurrence rates than CRYO. CONV ablation carries significant disposable cost savings as compared to RMN, despite similar efficacy. PMID:29138585

  3. Percutaneous intraductal radiofrequency ablation for clearance of occluded metal stent in malignant biliary obstruction: feasibility and early results.

    PubMed

    Pai, Madhava; Valek, Vlastimil; Tomas, Andrasina; Doros, Attila; Quaretti, Pietro; Golfieri, Rita; Mosconi, Cristina; Habib, Nagy

    2014-02-01

    The major complication occurring with biliary stents is stent occlusion, frequently seen because of tumour in-growth, epithelial hyperplasia, and sludge deposits, resulting in recurrent jaundice and cholangitis. We report a prospective study with the results of first in man percutaneous intraductal radiofrequency (RF) ablation to clear the blocked metal stents in patients with malignant biliary obstruction using a novel bipolar RF catheter. Nine patients with malignant biliary obstruction and blocked metal stents were included. These patients underwent intraductal biliary RF ablation through the blocked metal stent following external biliary decompression with an internal-external biliary drainage. All nine patients had their stent patency restored successfully without the use of secondary stents. Following this intervention, there was no 30-day mortality, haemorrhage, bile duct perforation, bile leak, or pancreatitis. Of the nine patients, six are alive and three patients are dead with a median follow-up of 122 (range 50-488) days and a median stent patency of 102.5 (range 50-321) days. Six patients had their stent patent at the time of last follow-up or death. Three patients with stent blockage at 321, 290, and 65 days postprocedure underwent percutaneous transhepatic drain insertion and repeat ablation. In this selective group of patients, it appears that this new approach is safe and feasible. Efficacy remains to be proven in future, randomized, prospective studies.

  4. Percutaneous transhepatic cholangiography and intraductal radiofrequency ablation combined with biliary stent placement for malignant biliary obstruction.

    PubMed

    Li, Teng-Fei; Huang, Guo-Hao; Li, Zhen; Hao, Chang-Fu; Ren, Jian-Zhuang; Duan, Xu-Hua; Zhang, Kai; Chen, Chen; Han, Xin-Wei; Jiao, De-Chao; Zhang, Meng-Fan; Wang, Yan-Li

    2015-05-01

    To determine the safety and feasibility of percutaneous transhepatic cholangiography (PTC) and intraductal radiofrequency (RF) ablation combined with biliary stent placement for malignant biliary obstruction. Data from patients with unresectable malignant biliary obstruction who underwent PTC, intraductal RF ablation, and biliary stent placement (n = 12) or PTC and biliary stent placement only (control group; n = 14) were reviewed. Postoperative complications, jaundice remission, and stent patency were assessed. All procedures were successful. No severe complications (eg, biliary bleeding, perforation) occurred. Two experimental group patients developed cholangitis, which resolved with conservative treatment. The 1-week jaundice remission and 3-month stent patency rates were similar in both groups, but the 6-month stent patency rate was higher in the experimental group (P < .05). In the experimental group, one death occurred as a result of gastrointestinal hemorrhage (unrelated to stent placement) by 3 months, and there were two cases of recurrent jaundice by 6 months. The latter two patients underwent repeat PTC, ablation, and stent placement. In the control group, one death occurred as a result of hepatic failure caused by progressive jaundice at 3 months, and another death resulted from disseminated intravascular coagulation caused by jaundice recurrence at 138 days after stent placement. In addition, seven patients developed jaundice recurrence (50-151 d after stent placement). PTC and repeat stent placement were performed in these patients. Percutaneous transhepatic cholangiography and intraductal RF ablation combined with biliary stent placement for malignant biliary obstruction is safe and feasible and effectively prolongs stent patency time. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  5. Phrenic nerve injury after radiofrequency ablation of lung tumors: retrospective evaluation of the incidence and risk factors.

    PubMed

    Matsui, Yusuke; Hiraki, Takao; Gobara, Hideo; Uka, Mayu; Masaoka, Yoshihisa; Tada, Akihiro; Toyooka, Shinichi; Mitsuhashi, Toshiharu; Mimura, Hidefumi; Kanazawa, Susumu

    2012-06-01

    To retrospectively investigate the incidence of and risk factors for phrenic nerve injury after radiofrequency (RF) ablation of lung tumors. The study included 814 RF ablation procedures of lung tumors. To evaluate the development of phrenic nerve injury, chest radiographs obtained before and after the procedure were examined. Phrenic nerve injury was assumed to have developed if the diaphragmatic level was elevated after the procedure. To identify risk factors for phrenic nerve injury, multiple variables were compared between cases of phrenic nerve injury and randomly selected controls by using univariate analyses. Multivariate analysis was then performed to identify independent risk factors. Evaluation of phrenic nerve injury from chest radiographs was possible after 786 procedures. Evidence of phrenic nerve injury developed after 10 cases (1.3%). Univariate analysis revealed that larger tumor size (≥ 20 mm; P = .014), proximity of the phrenic nerve to the tumor (< 10 mm; P < .001), the use of larger electrodes (array diameter or noninsulated tip length ≥ 3 cm; P = .001), and higher maximum power applied during ablation (≥ 100 W; P < .001) were significantly associated with the development of phrenic nerve injury. Multivariate analysis demonstrated that the proximity of the phrenic nerve to the tumor (< 10 mm; P < .001) was a significant independent risk factor. The incidence of phrenic nerve injury after RF ablation was 1.3%. The proximity of the phrenic nerve to the tumor was an independent risk factor for phrenic nerve injury. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  6. Real-time temperature monitoring during radiofrequency treatments on ex-vivo animal model by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Palumbo, Giovanna; Tosi, Daniele; Schena, Emiliano; Massaroni, Carlo; Ippolito, Juliet; Verze, Paolo; Carlomagno, Nicola; Tammaro, Vincenzo; Iadicicco, Agostino; Campopiano, Stefania

    2017-05-01

    Fiber Bragg Grating (FBG) sensors applied to bio-medical procedures such as surgery and rehabilitation are a valid alternative to traditional sensing techniques due to their unique characteristics. Herein we propose the use of FBG sensor arrays for accurate real-time temperature measurements during multi-step RadioFrequency Ablation (RFA) based thermal tumor treatment. Real-time temperature monitoring in the RF-applied region represents a valid feedback for the success of the thermo-ablation procedure. In order to create a thermal multi-point map around the tumor area to be treated, a proper sensing configuration was developed. In particular, the RF probe of a commercial medical instrumentation, has been equipped with properly packaged FBGs sensors. Moreover, in order to discriminate the treatment areas to be ablated as precisely as possible, a second array 3.5 cm long, made by several FBGs was used. The results of the temperature measurements during the RFA experiments conducted on ex-vivo animal liver and kidney tissues are presented herein. The proposed FBGs based solution has proven to be capable of distinguish different and consecutive discharges and for each of them, to measure the temperature profile with a resolution of 0.1 °C and a minimum spatial resolution of 5mm. Based upon our experiments, it is possible to confirm that the temperature decreases with distance from a RF peak ablation, in accordance with RF theory. The proposed solution promises to be very useful for the surgeon because a real-time temperature feedback allows for the adaptation of RFA parameters during surgery and better delineates the area under treatment.

  7. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  8. Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fleming, Christine P.; Quan, Kara J.; Rollins, Andrew M.

    2010-07-01

    Radiofrequency ablation (RFA) is the standard of care to cure many cardiac arrhythmias. Epicardial ablation for the treatment of ventricular tachycardia has limited success rates due in part to the presence of epicardial fat, which prevents proper rf energy delivery, inadequate contact of ablation catheter with tissue, and increased likelihood of complications with energy delivery in close proximity to coronary vessels. A method to directly visualize the epicardial surface during RFA could potentially provide feedback to reduce complications and titrate rf energy dose by detecting critical structures, assessing probe contact, and confirming energy delivery by visualizing lesion formation. Currently, there is no technology available for direct visualization of the heart surface during epicardial RFA therapy. We demonstrate that optical coherence tomography (OCT) imaging has the potential to fill this unmet need. Spectral domain OCT at 1310 nm is employed to image the epicardial surface of freshly excised swine hearts using a microscope integrated bench-top scanner and a forward imaging catheter probe. OCT image features are observed that clearly distinguish untreated myocardium, ablation lesions, epicardial fat, and coronary vessels, and assess tissue contact with catheter-based imaging. These results support the potential for real-time guidance of epicardial RFA therapy using OCT imaging.

  9. Microwave tumor ablation: cooperative academic-industry development of a high-power gas-cooled system with early clinical results

    NASA Astrophysics Data System (ADS)

    Brace, Christopher L.; Ziemlewicz, Timothy J.; Schefelker, Rick; Hinshaw, J. L.; Lubner, Meghan G.; Lee, Fred T.

    2013-02-01

    Microwave tumor ablation continues to evolve into a viable treatment option for many cancers. Current systems are poised to supplant radiofrequency ablation as the dominant percutaneous thermal therapy. Here is provided an overview of technical details and early clinical results with a high-powered, gas-cooled microwave ablation system. The system was developed with academic-industry collaboration using federal and private funding. The generator comprises three synchronous channels that each produce up to 140W at 2.45GHz. A mountable power distribution module facilitates CT imaging guidance and monitoring and reduces clutter in the sterile field. Cryogenic carbon-dioxide cools the coaxial applicator, permitting a thin applicator profile (~1.5 mm diameter) and high power delivery. A total of 106 liver tumors were treated (96 malignant, 10 benign) from December 2010 to June 2012 at a single academic institution. Mean tumor size +/- standard deviation was 2.5+/-1.3cm (range 0.5-13.9cm). Treatment time was 5.4+/-3.3min (range 1-20min). Median follow-up was 6 months (range 1-16 months). Technical success was reported in 100% of cases. Local tumor progression was noted in 4/96 (4.3%) of malignancies. The only major complication was a pleural effusion that was treated with thoracentesis. Microwave ablation with this system is an effective treatment for liver cancer. Compared to previous data from the same institution, these results suggest an increased efficacy and equivalent safety to RF ablation. Additional data from the lung and kidney support this conclusion.

  10. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study.

    PubMed

    Winkler, Itai; Adam, Dan

    2011-05-01

    The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is similar in size to a measurement of the lesion from gross pathology, with a correlation coefficient of 0.743. Copyright © 2011. Published by Elsevier Inc.

  11. [Analysis of corneal biomechanical changes after femtosecond laser-assisted laser in situ keratomileusis in children with hyperopic anisometropia].

    PubMed

    Kulikova, I L; Shlenskaya, O V; Chapurin, N V

    to analyze corneal hysteresis (CH) and corneal resistance factor (RF) readings obtained with the Reichert Ocular Response Analyzer (ORA) before and after hyperopic femtolaser-assisted laser in situ keratomileusis (FS-LASIK) in children with anisometropia as well as to establish factors that may cause changes in these parameters. CH and RF were evaluated before and 1.5 years after FS-LASIK performed on amblyopic eyes of 28 patients aged 6-14 years. Preoperatively, there was a correlation between CH and RF (r=0.41, p=0.03). No correlation was found between CH and age (r=-0.02, p=0.82) or between CH (r=0.00, p=0.98), RF (r=0.04, p=0.83), and cornea thickness. The mean preoperative CH was 12.56±1.21 mmHg, RF 12.31±1.57 mmHg. Postoperatively, a statistically significant change occurred to both CH (by 0.97±1.51 mmHg, p=0.002) and RF (by 1.42±1.55 mmHg, p=0.000). No correlation was found between CH before and after surgery (r=0.11, p=0.57) as well as between the ablation depth and changes in CH (r=0,04, p=0.83) and RF (r=0.21, p=0.28). Regression analysis showed that the extent of CH (r2=0.52, p=0.00) and RF (r2=0,48, p=0.00) changes was closely related to their preoperative values. The statistically significant relative change in CH and RF after hyperopic FS-LASIK was 8% and 12%, respectively. CH and RF changes correlated with their preoperative values, but not with the ablation depth or cornea thickness.

  12. Terminology and reporting criteria for radiofrequency ablation of tumors in the scientific literature: systematic review of compliance with reporting standards.

    PubMed

    Kang, Tae Wook; Rhim, Hyunchul; Lee, Min Woo; Kim, Young-sun; Choi, Dongil; Lim, Hyo Keun

    2014-01-01

    To perform a systematic review of compliance with standardized terminology and reporting criteria for radiofrequency (RF) tumor ablation, proposed by the International Working Group on Image-Guided Tumor Ablation in 2003, in the published reports. Literature search in the PubMed database was performed using index keywords, PubMed limit system, and eligibility criteria. The entire content of each article was reviewed to assess the terminology used for procedure terms, imaging findings, therapeutic efficacy, follow-up, and complications. Accuracy of the terminology and the use of alternative terms instead of standard terminology were analyzed. In addition, disparities in accuracy of terminology in articles according to the medical specialty and the type of radiology journal were evaluated. Among the articles (n = 308) included in this study, the accuracy of the terms 'procedure or session', 'treatment', 'index tumor', 'ablation zone', 'technical success', 'primary technique effectiveness rate', 'secondary technique effectiveness rate', 'local tumor progression', 'major complication', and 'minor complication' was 97% (298/307), 97% (291/300), 8% (25/307), 65% (103/159), 55% (52/94), 33% (42/129), 94% (17/18), 45% (88/195), 99% (79/80), and 100% (77/77), respectively. The overall accuracy of each term showed a tendency to improve over the years. The most commonly used alternative terms for 'technical success' and 'local tumor progression' were 'complete ablation' and 'local (tumor) recurrence', respectively. The accuracy of terminology in articles published in radiology journals was significantly greater than that of terminology in articles published in non-radiology journals, especially in Radiology and The Journal of Vascular and Interventional Radiology. The proposal for standardization of terminology and reporting criteria for RF tumor ablation has been gaining support according to the recently published scientific reports, especially in the field of radiology. However, more work is still needed for the complete standardization of terminology.

  13. Terminology and Reporting Criteria for Radiofrequency Ablation of Tumors in the Scientific Literature: Systematic Review of Compliance with Reporting Standards

    PubMed Central

    Kang, Tae Wook; Lee, Min Woo; Kim, Young-sun; Choi, Dongil; Lim, Hyo Keun

    2014-01-01

    Objective To perform a systematic review of compliance with standardized terminology and reporting criteria for radiofrequency (RF) tumor ablation, proposed by the International Working Group on Image-Guided Tumor Ablation in 2003, in the published reports. Materials and Methods Literature search in the PubMed database was performed using index keywords, PubMed limit system, and eligibility criteria. The entire content of each article was reviewed to assess the terminology used for procedure terms, imaging findings, therapeutic efficacy, follow-up, and complications. Accuracy of the terminology and the use of alternative terms instead of standard terminology were analyzed. In addition, disparities in accuracy of terminology in articles according to the medical specialty and the type of radiology journal were evaluated. Results Among the articles (n = 308) included in this study, the accuracy of the terms 'procedure or session', 'treatment', 'index tumor', 'ablation zone', 'technical success', 'primary technique effectiveness rate', 'secondary technique effectiveness rate', 'local tumor progression', 'major complication', and 'minor complication' was 97% (298/307), 97% (291/300), 8% (25/307), 65% (103/159), 55% (52/94), 33% (42/129), 94% (17/18), 45% (88/195), 99% (79/80), and 100% (77/77), respectively. The overall accuracy of each term showed a tendency to improve over the years. The most commonly used alternative terms for 'technical success' and 'local tumor progression' were 'complete ablation' and 'local (tumor) recurrence', respectively. The accuracy of terminology in articles published in radiology journals was significantly greater than that of terminology in articles published in non-radiology journals, especially in Radiology and The Journal of Vascular and Interventional Radiology. Conclusion The proposal for standardization of terminology and reporting criteria for RF tumor ablation has been gaining support according to the recently published scientific reports, especially in the field of radiology. However, more work is still needed for the complete standardization of terminology. PMID:24497798

  14. Left Atrial Size and Left Ventricular End-Systolic Dimension Predict the Progression of Paroxysmal Atrial Fibrillation After Catheter Ablation.

    PubMed

    Liao, Ying-Chieh; Liao, Jo-Nan; Lo, Li-Wei; Lin, Yenn-Jiang; Chang, Shih-Lin; Hu, Yu-Feng; Chao, Tze-Fan; Chung, Fa-Po; Tuan, Ta-Chuan; Te, Abigail Louise D; Walia, Rohit; Yamada, Shinya; Lin, Chung-Hsing; Lin, Chin-Yu; Chang, Yao-Ting; Allamsetty, Suresh; Yu, Wen-Chung; Huang, Jing-Long; Wu, Tsu-Juey; Chen, Shih-Ann

    2017-01-01

    Although rare, some paroxysmal atrial fibrillations (AF) still progress despite radiofrequency (RF) ablation. In the study, we evaluated the long-term efficacy of RF ablation and the predictors of AF progression. A total of 589 paroxysmal AF patients (404 men and 185 women; aged 54 ± 12 years) who received 3-dimensional mapping and ablation were enrolled. Their clinical parameters and electrophysiological characteristics were collected. They were divided into Group 1 (N = 13, with AF progression) and Group 2 (N = 576, no AF progression). AF progression was defined as recurrence of persistent AF. Group 1 patients had larger left atrial (LA) diameter, larger left ventricle (LV) end-systolic and end-diastolic diameters, poorer LV systolic function, and more amiodarone use at baseline. After 1.2 ± 0.5 procedures, 123 (21%) patients experienced recurrence during 56 ± 29 months' follow-up. In the multivariate analysis, LA diameter (P = 0.018, HR = 1.12, 95% CI = 1.02-1.24) and LV end-systolic diameter (P = 0.005, HR = 1.10, 95% CI = 1.03-1.17) independently predicted AF progression. LA diameter >43 mm and LV end-systolic diameter >31 mm were the best cut-off values for predicting AF progression by ROC analysis. AF progression rate achieved 19% if they had both larger LA diameter (>43 mm) and LV end-systolic diameter (>31 mm). RF ablation prevents the progression of paroxysmal AF effectively, except in patients with increased LA diameter and LV end-systolic diameter on echocardiogram, suggesting more aggressive rhythm control therapies should be considered in these patients. © 2016 Wiley Periodicals, Inc.

  15. An ex-vivo experimental study on optimization of bipolar radiofrequency liver ablation using perfusion-cooled electrodes.

    PubMed

    Lee, J M; Han, J K; Kim, S H; Lee, J Y; Shin, K S; Choi, B I

    2005-08-01

    To determine optimal parameters for bipolar radiofrequency ablation (RFA) using perfusion-cooled electrodes to create a large ablation volume in ex vivo bovine liver. Three sets of RF experiments were performed using a 200-Watt generator and two 15-gauge perfusion-cooled or internally cooled electrodes in ex vivo bovine livers. In the first set of experiments, to find the ideal inter-electrode distance for creating large coagulation necrosis, 30 ablation lesions were created by bipolar RFAs at inter-electrode spacings of 3 cm, 4 cm, and 5 cm. In the second set of experiments, to explore the ideal duration of RF application, bipolar RFAs were performed for 10 min and 20 min. In the first and second experiments, 10 lesions were made for each condition with infusion of 6% hypertonic saline (HS) at 2 ml/min. In the third set of experiments, 10 ablation lesions were created by bipolar RFAs using internally cooled electrodes without HS infusion. The mean volume of those ablation lesions was then compared to that of the lesions created by bipolar RFA using perfusion-cooled electrodes in the second experiments. Tissue impedance, dimension, and shape of the ablated areas were compared in each condition. In the first set of experiments, bipolar RFA created a homogeneous oval or spherical-shaped ablation area between the electrodes at 3-5 cm spacing, but showed a more spherical-shaped lesion at 3 cm inter-electrode spacing than at 4 cm and 5 cm spacing. In the second set of experiments, RF energy delivered for 20 min created a larger dimension of coagulation necrosis than energy delivered for 10 min: 107.6 +/- 34 cm3 versus 59.5 +/- 27 cm3 (P<0.05). In addition, the mean volume of ablation regions obtained with bipolar RFA using the internally cooled electrode was 47.5+/- 17 cm3, which was significantly less than that with bipolar RFA using perfusion-cooled electrodes (P <0.05). Bipolar RFA using perfusion-cooled electrodes achieves homogeneous areas of coagulation necrosis between two electrodes, preferably at 3 or 4 cm inter-electrode distance for 20 min, and is better in creating large coagulation necrosis than bipolar RFA using internally cooled electrodes.

  16. Outcome of stand-alone thoracoscopic epicardial left atrial posterior box isolation with bipolar radiofrequency energy for longstanding persistent atrial fibrillation.

    PubMed

    Compier, M G; Braun, J; Tjon, A; Zeppenfeld, K; Klautz, R J M; Schalij, M J; Trines, S A

    2016-02-01

    Catheter ablation of longstanding (> 1 year) persistent atrial fibrillation (AF) is associated with poor outcome. This might be due to remodelling and fibrosis formation, mainly located in the posterior left atrial (LA) wall. Therefore, we adopted a thoracoscopic epicardial box isolation of the posterior left atrium using bipolar RF energy with intraoperative testing of conduction block. Bilateral thoracoscopic box isolation was performed with a bipolar RF clamp. Entrance block was defined as absence of a conducted electrogram within the box, while exit block was confirmed by pacing at 10.0 V/2 ms. Ablation outcome was evaluated after 3, 6, 12 and 24 months with 12-lead ECGs and 24-hour Holter recordings. Twenty-five consecutive patients were included (58 ± 7 years, persistent AF duration 1.8 ± 0.9 years). Entrance block was achieved in all patients and exit block confirmed if sinus rhythm was achieved. After 17 ± 7 months, 76 % of the patients (n = 19) were free of AF recurrence. One patient died within 1 month and was considered an ablation failure. Four patients with AF recurrences regained sinus rhythm with additional catheter ablation or antiarrhythmic drugs. Treatment of longstanding persistent AF with thoracoscopic epicardial LA posterior box isolation using bipolar RF energy with intraoperative testing of conduction block is feasible and highly effective.

  17. The Role of Engineering Principles in the Medical Utilization of Electromagnetic Energies from kHz to Visible Light - Examples

    NASA Astrophysics Data System (ADS)

    Rosen, Arye; Rosen, Harel D.

    2009-12-01

    The use of RF/microwaves in medicine has increased dramatically over the last ten years. RF and microwave therapies for the treatment of cancer in humans are well documented, and are presently used in many cancer centers. RF treatment for supra ventricular arrhythmias, and more recently for the treatment of ventricular tachycardia, are currently employed by major hospitals. RF/microwave are also used in human subjects for the treatment of benign prostatic hyperplasia (BPH). In the last few years, several otolaryngological centers have been utilizing RF to treat upper airway obstruction and to alleviate sleep apnea. Many centers also utilize RF for the treatment of gastro-esophageal disease (GERD), for pain management, and for endometrial ablation. Balloon microwave catheters for ablating solid tumors, then forming cavities in those tumors for the local delivery of therapeutic agents, are currently being investigated. New modalities are being studied, such as RF/microwave for the enhancement of drug absorption and microwave septic wound treatment, microwave imaging for the detection of breast cancer, epidemiological studies on the effects of rats’ exposure to microwave, as well as tissue regeneration using electromagnetic fields. In addition, technology is presently being developed that allows for permanent implantation of microwave wireless sensors in humans. A permanently implantable intra-cranial pressure monitor is one such application of the latter technology. Many more areas of research are currently being investigated, a partial list of which is summarized here.

  18. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  19. Contact force sensing for ablation of persistent atrial fibrillation: A randomized, multicenter trial.

    PubMed

    Conti, Sergio; Weerasooriya, Rukshen; Novak, Paul; Champagne, Jean; Lim, Hong Euy; Macle, Laurent; Khaykin, Yaariv; Pantano, Alfredo; Verma, Atul

    2018-02-01

    Impact of contact force sensing (CFS) on ablation of persistent atrial fibrillation (PeAF) is unknown. The purpose of the TOUCH AF (Therapeutic Outcomes Using Contact force Handling during Ablation of Persistent Atrial Fibrillation) randomized trial was to compare CFS-guided ablation to a CFS-blinded strategy. Patients (n = 128) undergoing first-time ablation for persistent AF were randomized to a CFS-guided vs CFS-blinded strategy. In the CFS-guided procedure, operators visualized real-time force data. In the blinded procedure, force data were hidden. Wide antral pulmonary vein isolation plus a roof line were performed. Patients were followed at 3, 6, 9, and 12 months with clinical visit, ECG, and 48-hour Holter monitoring. The primary endpoint was cumulative radiofrequency (RF) time for all procedures. Atrial arrhythmia >30 seconds after 3 months was a recurrence. PeAF was continuous for 26 weeks (interquartile range [IQR] 13-52), and left atrial size was 45 ± 5 mm. Force in the CFS-blinded and CFS-guided arms was 12 g [IQR 6-20] and 14 g [IQR 9-20] (P = .10), respectively. Total RF time did not differ between CFS-guided and CFS-blinded groups (49 ± 14 min vs 50 ± 20 min, respectively; P = .70). Single procedure freedom from atrial arrhythmia was 60% in the CFS-guided arm and 63% in the CFS-blinded arm off drugs. Lesions with gaps were associated with significantly less force (11.4 g [IQR 6-19] vs 13.2 g [IQR 8-20], respectively; P = .0007) and less force-time integral (174 gs [IQR 91-330] vs 210 gs [IQR 113-388], respectively; P <.001). CFS-guided ablation resulted in no difference to RF time or 12-month outcome. Lower force/force-time integral was associated with significantly more gaps. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Dual Switching Monopolar Radiofrequency Ablation Using a Separable Clustered Electrode: Comparison with Consecutive and Switching Monopolar Modes in Ex Vivo Bovine Livers

    PubMed Central

    Yoon, Jeong-Hee; Han, Joon Koo; Choi, Byung Ihn

    2013-01-01

    Objective To compare the in-vitro efficiency of dual-switching monopolar (DSM) radiofrequency ablation (RFA) using a separable clustered electrode (Octopus® electrodes) with consecutive monopolar (CM) and switching monopolar (SM) RFA techniques to create an ablative zone in the explanted bovine liver. Materials and Methods For DSM-RFA, we used a prototype, three-channel, dual generator RFA Unit and Octopus® electrodes with three, 17 gauge internally cooled electrodes. The RFA Unit allowed simultaneous radiofrequency (RF) energy delivery to two electrodes of the Octopus® electrodes as well as automatic switching among the three electrode pairs according to the impedance changes. RF energy was sequentially applied to one of the three electrodes for 24 minutes (group A; CM mode, n = 10) or alternatively applied for 12 minutes (group B; SM mode, n = 10) or concurrently applied to a pair of electrodes for 12 minutes (group C; DSM mode, n = 10) in explanted bovine livers. Changes in the impedance and current during RFA as well as the dimensions of the thermal ablative zones were compared among the three groups. Results The mean, delivered RF energy amounts in groups A, B, and C were 63.15 ± 8.6 kJ, 72.13 ± 5.4 kJ, and 106.08 ± 13.4 kJ, respectively (p < 0.001). The DSM mode created a significantly larger ablation volume than did the other modes, i.e., 68.1 ± 10.2 cm3 (group A), 92.0 ± 19.9 cm3 (group B), and 115.1 ± 14.0 cm3 (group C) (p < 0.001). The circularity in groups A, B, and C were 0.84 ± 0.06, 0.87 ± 0.04 and 0.90 ± 0.03, respectively (p = 0.03). Conclusion DSM-RFA using Octopus® electrodes can help create large ablative zones within a relatively short time. PMID:23690705

  1. Contrast-enhanced cardiac C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle

    PubMed Central

    Girard, Erin E; Al-Ahmad, Amin A; Rosenberg, Jarrett; Luong, Richard; Moore, Teri; Lauritsch, Günter; Boese, Jan; Fahrig, Rebecca

    2011-01-01

    Objectives The purpose of this study was to evaluate use of cardiac C-arm computed tomography (CT) in the assessment of the dimensions and temporal characteristics of radiofrequency ablation (RFA) lesions. This imaging modality uses a standard C-arm fluoroscopy system rotating around the patient, providing CT-like images during the RFA procedure. Background Both magnetic resonance imaging (MRI) and CT can be used to assess myocardial necrotic tissue. Several studies have reported visualizing cardiac RF ablation lesions with MRI, however obtaining MR images during interventional procedures is not common practice. Direct visualization of RFA lesions using C-arm CT during the procedure may improve outcomes and circumvent complications associated with cardiac ablation procedures. Methods RFA lesions were created on the endocardial surface of the left ventricle of 9 swine using a 7-F RF ablation catheter. An ECG-gated C-arm CT imaging protocol was used to acquire projection images during iodine contrast injection and following the injection every 5 min for up to 30 min, with no additional contrast. Reconstructed images were analyzed offline. The mean and standard deviation of the signal intensity of the lesion and normal myocardium were measured in all images in each time series. Lesion dimensions and area were measured and compared in pathologic specimens and C-arm CT images. Results All ablation lesions (n=29) were visualized and lesion dimensions, as measured on C-arm CT, correlated well with postmortem tissue measurements (1D dimensions : concordance correlation = 0.87; area : concordance correlation = 0.90). Lesions were visualized as a perfusion defect on first-pass C-arm CT images with a signal intensity 95 HU lower than normal myocardium (95% confidence interval: -111 to -79 HU). Images acquired at 1 and 5 minutes exhibited an enhancing ring surrounding the perfusion defect in 24 (83%) lesions. Conclusions RFA lesion size, including transmurality, can be assessed using ECG-gated cardiac C-arm CT in the interventional suite. Visualization of RFA lesions using cardiac C-arm CT may facilitate the assessment of adequate lesion delivery and provide valuable feedback during cardiac ablation procedures. PMID:21414574

  2. Three-Catheter Technique for Ablation of Left-Sided Accessory Pathways in Wolff-Parkinson-White is Less Expensive and Equally Successful When Compared to a Five-Catheter Technique.

    PubMed

    Capone, Christine A; Ceresnak, Scott R; Nappo, Lynn; Gates, Gregory J; Schechter, Clyde B; Pass, Robert H

    2015-12-01

    To compare the efficacy, safety, and cost-effectiveness of a three-catheter approach with a conventional five-catheter approach for the mapping and ablation of supraventricular tachycardia in pediatric patients with Wolff-Parkinson-White Syndrome (WPW) and concealed accessory pathways (APs). A retrospective review from 2008 to 2012 of patients less than 21 years with WPW who underwent a three-catheter radiofrequency (RF) ablation of a left-sided AP (ablation, right ventricular [RV] apical, and coronary sinus [CS] decapolar catheters) was performed. The three-catheter group was compared to a control group who underwent a standard five-catheter (ablation, RV apical, CS decapolar, His catheter, and right atrial catheter) ablation for the treatment of left-sided WPW or concealed AP. Demographics, ablation outcomes, and costs were compared between groups. Twenty-eight patients met inclusion criteria with 28 control patients. The groups did not differ in gender, age, weight, or body surface area. Locations of the AP on the mitral annulus were similar between the groups. All patients were ablated via transseptal approach. Note that 28 of 28 in the three-catheter group (100%) and 27 of 28 (96%) controls were acutely successfully ablated (P = 0.31). No complications were encountered. There was no difference in procedural time, time to loss of AP conduction, or number of RF applications. Use of the three-catheter technique resulted in a total savings of $2,465/case, which includes the $680 savings from using fewer catheters as well as the savings from a shortened procedure time. Ablation in patients with WPW and a left-sided AP can be performed using three catheters with similar efficacy and safety while offering significant cost savings compared to a conventional five-catheter approach. © 2015 Wiley Periodicals, Inc.

  3. Characterization of tissue response to radiofrequency ablation using 3D model-based analysis of interventional MR images

    NASA Astrophysics Data System (ADS)

    Weinberg, Brent D.; Lazebnik, Roee S.; Breen, Michael S.; Lewin, Jonathan S.; Wilson, David L.

    2003-05-01

    Using magnetic resonance imaging (MRI), real-time guidance is feasible for radiofrequency (RF) current ablation of pathologic tissue. Lesions have a characteristic two-zone appearance: an inner core (Zone I) surrounded by a hyper-intense rim (Zone II). A better understanding of both the immediate (hyper-acute) and delayed (sub-acute) physiological response of the target tissue will aid development of minimally invasive tumor treatment strategies. We performed in vivo RF ablations in a rabbit thigh model and characterized the tissue response to treatment through contrast enhanced (CE) T1 and T2 weighted MR images at two time points. We measured zonal grayscale changes as well as zone volume changes using a 3D computationally fitted globally deformable parametric model. Comparison over time demonstrated an increase in the volume of both the inner necrotic core (mean 56.5% increase) and outer rim (mean 16.8% increase) of the lesion. Additionally, T2 images of the lesion exhibited contrast greater than or equal to CE T1 (mean 35% improvement). This work establishes a foundation for the clinical use of T2 MR images coupled with a geometric model of the ablation for noninvasive lesion monitoring and characterization.

  4. Surgical RF ablation of atrial fibrillation in patients undergoing mitral valve repair for Barlow disease.

    PubMed

    Rostagno, Carlo; Droandi, G; Gelsomino, S; Carone, E; Gensini, G F; Stefàno, P L

    2013-01-01

    At present, limited experience exists on the treatment of atrial fibrillation (AF) in patients undergoing mitral valve repair (MVR) for Barlow disease. The aim of this investigation was to prospectively evaluate the radiofrequency ablation of AF in patients undergoing MVR for severe regurgitation due to Barlow disease. From January 1, 2007 to December 31, 2010, out of 85 consecutive patients with Barlow disease, 27 with AF underwent RF ablation associated with MVR. They were examined every 4 months in the first year after surgery and thereafter twice yearly. At follow-up, AF was observed in 4/25 (16.0%). NYHA (New York Heart Association) functional class improved significantly, with no patients in class III or IV (before surgery, 81.5% had been). Otherwise, among 58 patients in sinus rhythm, 6 (11%) developed AF during follow-up. No clinical or echocardiographic predictive factor was found in this subgroup. Results from our investigation suggest that radiofrequency ablation of AF in patients with Barlow disease undergoing MVR for severe regurgitation is effective and should be considered in every patient with Barlow disease and AF undergoing valve surgical repair. Copyright © 2013 S. Karger AG, Basel.

  5. Novel Percutaneous Radiofrequency Ablation of Portal Vein Tumor Thrombus: Safety and Feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizandari, Malkhaz; Ao, Guokun; Zhang Yaojun

    2013-02-15

    We report our experience of the safety of partial recanalization of the portal vein using a novel endovascular radiofrequency (RF) catheter for portal vein tumor thrombosis. Six patients with liver cancer and tumor thrombus in the portal vein underwent percutaneous intravascular radiofrequency ablation (RFA) using an endovascular bipolar RF device. A 0.035-inch guidewire was introduced into a tributary of the portal vein and through which a 5G guide catheter was introduced into the main portal vein. After manipulation of the guide catheter over the thrombus under digital subtraction angiography, the endovascular RF device was inserted and activated around the thrombus.more » There were no observed technique specific complications, such as hemorrhage, vessel perforation, or infection. Post-RFA portography showed partial recanalization of portal vein. RFA of portal vein tumor thrombus in patients with hepatocellular carcinoma is technically feasible and warrants further investigation to assess efficacy compared with current recanalization techniques.« less

  6. Peri-procedural interrupted oral anticoagulation for atrial fibrillation ablation: comparison of aspirin, warfarin, dabigatran, and rivaroxaban

    PubMed Central

    Winkle, Roger A.; Mead, R. Hardwin; Engel, Gregory; Kong, Melissa H.; Patrawala, Rob A.

    2014-01-01

    Aims Atrial fibrillation ablation requires peri-procedural oral anticoagulation (OAC) to prevent thromboembolic events. There are several options for OAC. We evaluate peri-procedural AF ablation complications using a variety of peri-procedural OACs. Methods and results We examined peri-procedural OAC and groin, bleeding, and thromboembolic complications for 2334 consecutive AF ablations using open irrigated-tip radiofrequency (RF) catheters. Pre-ablation OAC was warfarin in 1113 (47.7%), dabigatran 426 (18.3%), rivaroxaban 187 (8.0%), aspirin 472 (20.2%), and none 136 (5.8%). Oral anticoagulation was always interrupted and intraprocedural anticoagulation was unfractionated heparin (activated clotting time, ACT = 237 ± 26 s). Pre- and post-OAC drugs were the same for 1591 (68.2%) and were different for 743 (31.8%). Following ablation, 693 (29.7%) were treated with dabigatran and 291 (12.5%) were treated with rivaroxaban. There were no problems changing from one OAC pre-ablation to another post-ablation. Complications included 12 (0.51%) pericardial tamponades [no differences for dabigatran (P = 0.457) or rivaroxaban (P = 0.163) compared with warfarin], 12 (0.51%) groin complications [no differences for rivaroxaban (P = 0.709) and fewer for dabigatran (P = 0.041) compared with warfarin]. Only 5 of 2334 (0.21%) required blood transfusions. There were two strokes (0.086%) and no transient ischaemic attacks (TIAs) in the first 48 h post-ablation. Three additional strokes (0.13%), and two TIAs (0.086%) occurred from 48 h to 30 days. Only one stroke had a residual deficit. Compared with warfarin, the neurologic event rate was not different for dabigatran (P = 0.684) or rivaroxaban (P = 0.612). Conclusion Using interrupted OAC, low target intraprocedural ACT, and irrigated-tip RF, the rate of peri-procedural groin, haemorrhagic, and thromboembolic complications was extremely low. There were only minimal differences between OACs. Low-risk patients may remain on aspirin/no OAC pre-ablation. There are no problems changing from one OAC pre-ablation to another post-ablation. PMID:25115168

  7. Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application.

    PubMed

    Borisyuk, Petr V; Derevyashkin, Sergey P; Khabarova, Ksenia Y; Kolachevsky, Nikolay N; Lebedinsky, Yury Y; Poteshin, Sergey S; Sysoev, Alexey A; Tkalya, Evgeny V; Tregubov, Dmitry O; Troyan, Viktor I; Vasiliev, Oleg S; Yakovlev, Valery P; Yudin, Valery I

    2017-08-01

    We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th + , Th 2+ and Th 3+ ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm 2 . Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of 232 Th + , 232 Th 2+ , 232 Th 3+ ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.

  8. Volume comparison of radiofrequency ablation at 3- and 5-cm target volumes for four different radiofrequency generators: MR volumetry in an open 1-T MRI system versus macroscopic measurement.

    PubMed

    Rathke, Hendrik; Hamm, Bernd; Guettler, Felix; Lohneis, Philipp; Stroux, Andrea; Suttmeyer, Britta; Jonczyk, Martin; Teichgräber, Ulf; de Bucourt, Maximilian

    2015-12-01

    In a patient, it is usually not macroscopically possible to estimate the non-viable volume induced by radiofrequency ablation (RFA) after the procedure. The purpose of this study was to use an ex vivo bovine liver model to perform magnetic resonance (MR) volumetry of the visible tissue signal change induced by RFA and to correlate the MR measurement with the actual macroscopic volume measured in the dissected specimens. Sixty-four liver specimens cut from 16 bovine livers were ablated under constant simulated, close physiological conditions with target volumes set to 14.14 ml (3-cm lesion) and 65.45 ml (5-cm lesion). Four commercially available radiofrequency (RF) systems were tested (n=16 for each system; n=8 for 3 cm and n=8 for 5 cm). A T1-weighted turbo spin echo (TSE) sequence with inversion recovery and a proton-density (PD)-weighted TSE sequence were acquired in a 1.0-T open magnetic resonance imaging (MRI) system. After manual dissection, actual macroscopic ablation diameters were measured and volumes calculated. MR volumetry was performed using a semiautomatic software tool. To validate the correctness and feasibility of the volume formula in macroscopic measurements, MR multiplanar reformation diameter measurements with subsequent volume calculation and semiautomatic MR volumes were correlated. Semiautomatic MR volumetry yielded smaller volumes than manual measurement after dissection, irrespective of RF system used, target lesion size, and MR sequence. For the 3-cm lesion, only 43.3% (T1) and 41.5% (PD) of the entire necrosis are detectable. For the 5-cm lesion, only 40.8% (T1) and 37.2% (PD) are visualized in MRI directly after intervention. The correlation between semiautomatic MR volumes and calculated MR volumes was 0.888 for the T1-weighted sequence and 0.875 for the PD sequence. After correlation of semiautomatic MR volumes and calculated MR volumes, it seems reasonable to use the respective volume formula for macroscopic volume calculation. Hyperacute MRI after ex vivo intervention may result in the underestimation of the real expansion of the produced necrosis zone. This must be kept in mind when using MRI for validating ablation success directly after RFA. One reason for the discrepancy between macroscopic and MRI appearance immediately after RFA may be that the transitional zone shows no or only partially visible MR signal change.

  9. Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom.

    PubMed

    Bhaskaran, Abhishek; Barry, M A Tony; Al Raisi, Sara I; Chik, William; Nguyen, Doan Trang; Pouliopoulos, Jim; Nalliah, Chrishan; Hendricks, Roger; Thomas, Stuart; McEwan, Alistair L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-10-01

    Magnetic navigation system (MNS) ablation was suspected to be less effective and unstable in highly mobile cardiac regions compared to radiofrequency (RF) ablations with manual control (MC). The aim of the study was to compare the (1) lesion size and (2) stability of MNS versus MC during irrigated RF ablation with and without simulated mechanical heart wall motion. In a previously validated myocardial phantom, the performance of Navistar RMT Thermocool catheter (Biosense Webster, CA, USA) guided with MNS was compared to manually controlled Navistar irrigated Thermocool catheter (Biosense Webster, CA, USA). The lesion dimensions were compared with the catheter in inferior and superior orientation, with and without 6-mm simulated wall motion. All ablations were performed with 40 W power and 30 ml/ min irrigation for 60 s. A total of 60 ablations were performed. The mean lesion volumes with MNS and MC were 57.5 ± 7.1 and 58.1 ± 7.1 mm(3), respectively, in the inferior catheter orientation (n = 23, p = 0.6), 62.8 ± 9.9 and 64.6 ± 7.6 mm(3), respectively, in the superior catheter orientation (n = 16, p = 0.9). With 6-mm simulated wall motion, the mean lesion volumes with MNS and MC were 60.2 ± 2.7 and 42.8 ± 8.4 mm(3), respectively, in the inferior catheter orientation (n = 11, p = <0.01*), 74.1 ± 5.8 and 54.2 ± 3.7 mm(3), respectively, in the superior catheter orientation (n = 10, p = <0.01*). During 6-mm simulated wall motion, the MC catheter and MNS catheter moved 5.2 ± 0.1 and 0 mm, respectively, in inferior orientation and 5.5 ± 0.1 and 0 mm, respectively, in the superior orientation on the ablation surface. The lesion dimensions were larger with MNS compared to MC in the presence of simulated wall motion, consistent with greater catheter stability. However, similar lesion dimensions were observed in the stationary model.

  10. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.

    PubMed

    Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum

    2008-11-01

    To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation could not be achieved at higher inner/outer perfusions (>4 kg/m(3)-s). For varied electrical conductivities in the setting of varied perfusion, greatest RF heating occurred for inner electrical conductivities simulating injection of saline around the electrode with an outer electrical conductivity of soft tissue, and the least amount of heating occurring while simulating renal cell carcinoma in normal kidney. Characterization of these scenarios demonstrated the role of electrical and thermal conductivity interactions, with the greatest differences in effect seen in the 3-4 cm tumor range, as almost all 2 cm tumors and almost no 5 cm tumors could be treated. Optimal combinations of thermal and electrical conductivity can partially negate the effect of perfusion. For clinically relevant tumor sizes, thermal and electrical conductivity impact which tumors can be successfully ablated even in the setting of almost non-existent perfusion.

  11. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  12. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    PubMed Central

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  13. Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes

    PubMed Central

    Yoon, J H; Woo, S; Hwang, E J; Hwang, I; Choi, W; Han, J K; Choi, B I

    2015-01-01

    Objective: To evaluate whether switching bipolar radiofrequency ablation (SB-RFA) using three internally cooled wet (ICW) electrodes can induce coagulations >5 cm in porcine livers with better efficiency than consecutive monopolar (CM) or switching monopolar (SM) modes. Methods: A total of 60 coagulations were made in 15 in vivo porcine livers using three 17-gauge ICW electrodes and a multichannel radiofrequency (RF) generator. RF energy (approximately 200 W) was applied in CM mode (Group A, n = 20) for 24 min, SM mode for 12 min (Group B, n = 20) or switching bipolar (SB) mode for 12 min (Group C, n = 20) in in vivo porcine livers. Thereafter, the delivered RFA energy, as well as the shape and dimension of coagulations were compared among the groups. Results: Spherical- or oval-shaped ablations were created in 30% (6/20), 85% (17/20) and 90% (18/20) of coagulations in the CM, SM and SB groups, respectively (p = 0.003). SB-RFA created ablations >5 cm in minimum diameter (Dmin) in 65% (13/20) of porcine livers, whereas SM- or CM-RFA created ablations >5 cm in only 25% (5/20) and 20% (4/20) of porcine livers, respectively (p = 0.03). The mean Dmin of coagulations was significantly larger in Group C than in Groups A and B (5.1 ± 0.9, 3.9 ± 1.2 and 4.4 ± 1.0 cm, respectively, p = 0.002) at a lower delivered RF energy level (76.8 ± 14.3, 120.9 ± 24.5 and 114.2 ± 18.3 kJ, respectively, p < 0.001). Conclusion: SB-RFA using three ICW electrodes can create coagulations >5 cm in diameter with better efficiency than do SM- or CM-RFA. Advances in knowledge: SB-RFA can create large, regular ablation zones with better time–energy efficiency than do CM- or SM-RFA. PMID:25873479

  14. Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain

    NASA Astrophysics Data System (ADS)

    Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain

    2012-11-01

    The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.

  15. New vision in fractional radiofrequency technology with switching, vacuum and cooling.

    PubMed

    Elman, Monica; Gauthier, Nelly; Belenky, Inna

    2015-04-01

    Since the introduction of fractional technology, various systems were launched to the market. The first generation of fractional RF systems created epidermal ablation with coagulative/necrosis of the dermis with sufficient clinical outcomes, but with some limitations. The aim of this study was to evaluate the efficacy and safety of SVC technology, based on the principle of separate biological responses. Fifty-two patients were treated for 3-6 sessions using fractional RF handpiece and eight patients received combination treatments with non-invasive RF handpiece. All volunteers showed notable to significant improvement in the photoageing symptoms, without any significant complications or adverse events. Due to its wide spectrum of parameters, the SVC technology can promote different biological responses. Owing to the "Switching" technology, the control of energy depth penetration enables delivery of the necessary thermal dose to the targeted skin layer. In addition, this novel technology includes the "Vacuum" and "Cooling" mechanisms, each contributing to the safety of the treatment. The Smart Heat function reduces the necessary energy levels and thereby reduces the pain level and risks for side effects.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Madhava, E-mail: madhava.pai@imperial.ac.uk; Valek, Vlastimil; Tomas, Andrasina

    PurposeThe major complication occurring with biliary stents is stent occlusion, frequently seen because of tumour in-growth, epithelial hyperplasia, and sludge deposits, resulting in recurrent jaundice and cholangitis. We report a prospective study with the results of first in man percutaneous intraductal radiofrequency (RF) ablation to clear the blocked metal stents in patients with malignant biliary obstruction using a novel bipolar RF catheter.MethodsNine patients with malignant biliary obstruction and blocked metal stents were included. These patients underwent intraductal biliary RF ablation through the blocked metal stent following external biliary decompression with an internal–external biliary drainage.ResultsAll nine patients had their stent patencymore » restored successfully without the use of secondary stents. Following this intervention, there was no 30-day mortality, haemorrhage, bile duct perforation, bile leak, or pancreatitis. Of the nine patients, six are alive and three patients are dead with a median follow-up of 122 (range 50–488) days and a median stent patency of 102.5 (range 50–321) days. Six patients had their stent patent at the time of last follow-up or death. Three patients with stent blockage at 321, 290, and 65 days postprocedure underwent percutaneous transhepatic drain insertion and repeat ablation.ConclusionsIn this selective group of patients, it appears that this new approach is safe and feasible. Efficacy remains to be proven in future, randomized, prospective studies.« less

  17. Protection of skin with subcutaneous administration of 5% dextrose in water during superficial radiofrequency ablation in a rabbit model.

    PubMed

    Guo, Hui; Liu, Xia-Lei; Wang, Yu-Ling; Li, Jing-Yi; Lu, Wu-Zhu; Xian, Jian-Zhong; Zhang, Bai-Meng; Li, Jian

    2014-06-01

    This study was to evaluate the efficacy of subcutaneous administration of 5% dextrose in water (D5W), to prevent skin injury during radiofrequency (RF) ablation. Twenty-four rabbits were divided into three groups: a pre-injection group, a perfusion group, and a control group. Ablative zones were created in the superficial part of the thigh muscle for 6 min. A needle was placed subcutaneously for injection of D5W, and a thermal sensor was positioned nearby for real-time temperature monitoring. The sizes of the ablative zones were measured by contrast-enhanced ultrasonography, and severity of the observed skin injury were scored semi-quantitatively and compared. The highest temperature, the duration of the temperature above 50 °C, and the rise time of the post-procedure temperature were all highest in the control group (p < 0.001), while these values were lower in the perfusion group than those in the pre-injection group (p < 0.001). Post-procedure skin injury was most severe in the control group (p < 0.001). On post-procedure day 1, no significant difference was found between the skin injury of the pre-injection group and the perfusion group (p = 0.091), while the skin injury of the perfusion group was less severe than that of the pre-injection group on post-procedure day 14 (p = 0.004). No significant difference was found in the sizes of the ablative zones among the groups (p = 0.720). Subcutaneous perfusion with D5W is effective in protecting the skin against burns during RF ablation without compromising the effect of ablation.

  18. Remote magnetic navigation for circumferential pulmonary vein ablation: single-catheter technique or additional use of a circular mapping catheter?

    PubMed

    Vollmann, Dirk; Lüthje, Lars; Seegers, Joachim; Sohns, Christian; Sossalla, Samuel; Sohns, Jan; Röver, Christian; Hasenfuß, Gerd; Zabel, Markus

    2014-10-01

    Remote magnetic navigation (RMN) is utilized for catheter guidance during pulmonary vein ablation (PVA). We aimed to determine whether the additional use of a circular mapping catheter (CMC) influences efficacy and outcome of RMN-guided PVA. A total of 80 consecutive subjects (65 % male, age 62 ± 9 years) underwent circumferential PVA with a 3D mapping system and an RMN-guided irrigated catheter. Procedural endpoint was complete PV isolation (PVI), total radiofrequency (RF) time >60 min, or procedure duration >5 h. PVI was defined as an entrance and/or exit block, diagnosed with a CMC within the PV ostium or by pacing via the roving RMN-guided catheter (single-catheter technique). Prolonged Holter monitoring after 3 and 6 months was used to detect atrial tachyarrhythmia (AT/AF) recurrences. Complete PVI was achieved in 56 % (45/80) of all subjects (isolated PVs per patient, 3.1 ± 1.2; RF time, 56.3 ± 17.2 min; procedure duration, 3.8 ± 0.8 h). Prospective validation of the single-catheter technique for diagnosing PVI demonstrated high concordance (94 %) with blinded CMC results. CMC use in first-time PVA was associated with similar total RF and procedure times but higher PV isolation rate. Upon multivariate analysis, CMC use, female gender, left PV, smaller PV ostium and repeat PVA predicted PVI during RMN-guided ablation. Persistent AF and mitral regurgitation at baseline and the number of non-isolated PVs predicted AT/AF recurrence during follow-up. Concomitant CMC use for first-time, RMN-guided PVA is associated with similar procedure duration but higher PV isolation rates as compared to a single-catheter approach. Since the number of isolated PVs predicts freedom from AT/AF, CMC utilization appears advisable for first-time, RMN-guided PVA.

  19. MR imaging guidance for minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.

    1998-04-01

    Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.

  20. Development of a 3D ultrasound-guided system for thermal ablation of liver tumors

    NASA Astrophysics Data System (ADS)

    Neshat, Hamid R. S.; Cool, Derek W.; Barker, Kevin; Gardi, Lori; Kakani, Nirmal; Fenster, Aaron

    2013-03-01

    Two-dimensional ultrasound (2D US) imaging is commonly used for diagnostic and intraoperative guidance of interventional abdominal procedures including percutaneous thermal ablation of focal liver tumors with radiofrequency (RF) or microwave (MW) induced energy. However, in many situations 2D US may not provide enough anatomical detail and guidance information. Therefore, intra-procedural CT or MR imaging are used in many centers for guidance purposes. These modalities are costly and are mainly utilized to confirm tool placement rather than guiding the insertion. Three-dimensional ultrasound (3D US) has been introduced to address these issues. In this paper, we present our integrated solution to provide 3D US images using a newly developed mechanical transducer with a large field-ofview and without the need for external tracking devices to combine diagnostic and planning information of different modalities for intraoperative guidance. The system provides tools to segment the target(s), plan the treatment, and detect the ablation applicators during the procedure for guiding purposes. We present experimental results used to ensure that our system generates accurate measurements and our early clinical evaluation results. The results suggest that 3D US used for focal liver ablation can provide a more reliable planning and guidance tool compared to 2D US only, and in many cases offers comparable measurements to other alternatives at significantly lower cost, faster time and with no harmful radiation.

  1. Long-term outcomes of the current remote magnetic catheter navigation technique for ablation of atrial fibrillation.

    PubMed

    Yuan, Shiwen; Holmqvist, Fredrik; Kongstad, Ole; Jensen, Steen M; Wang, Lingwei; Ljungström, Erik; Hertervig, Eva; Borgquist, Rasmus

    2017-12-01

    Comparisons between remote magnetic (RMN) and manual catheter navigation for atrial fibrillation (AF) ablation have earlier been reported with controversial results. However, these reports were based on earlier generations of the RMN system. To evaluate the outcomes of the most current RMN system for AF ablation in a larger patient population with longer follow-up time, 112 patients with AF (78 paroxysmal, 34 persistent) who underwent AF ablation utilizing RMN (RMN group) were compared to 102 AF ablation patients (72 paroxysmal, 30 persistent) utilizing manual technique (Manual group). The RMN group was associated with significantly shorter fluoroscopy time (10.4 ± 6.4 vs. 16.3 ± 10.9 min, p < .001) but used more RF energy (64.1 ± 19.4KJ vs. 54.3 ± 24.1 KJ, p < .05), while total procedure time showed no significant difference (201 ± 35 vs. 196 ± 44 min, NS). After 39 ± 9/44 ± 10 months of follow-up, AF-free rates at 1year, 2 years and 3.5 years post ablation were 63%, 46% and 42% in the RMN group vs. 60%, 32% and 30% (survival analysis p < .05) in the Manual group, whereas clinically effective rates were 82%, 73% and 70% for the former vs. 70%, 56% and 49% for the latter (survival analysis p < .005). Differing from previous reports, our data from a larger patient population and longer follow-up time demonstrates that compared to manual technique, the most current RMN technique is associated with better procedural and clinical outcomes for AF ablation.

  2. Radiofrequency ablation of two femoral head chondroblastomas.

    PubMed

    Petsas, Theodore; Megas, Panagiotis; Papathanassiou, Zafiria

    2007-07-01

    Chondroblastoma is a rare benign cartilaginous bone tumor. Surgical resection is the treatment of choice for pain relief and prevention of further growth. Open surgical techniques are associated with complications, particularly when the tumors are located in deep anatomical sites. The authors performed RF ablation in two cases of subarticular femoral head chondroblastomas and emphasize its positive impact. The clinical course, the radiological findings and the post treatment results are discussed.

  3. Pathological autopsy of a patient that underwent a successful ablation of an electrical storm from the left ventricular summit.

    PubMed

    Hori, Yuichi; Nakahara, Shiro; Mine, Sohtaro; Anjo, Naofumi; Fujii, Akiko; Ueda, Yoshihiko; Taguchi, Isao

    2016-12-01

    A 65-year-old man with non-ischemic cardiomyopathy, underwent an autopsy 2 months after the successful ablation of a sustained left ventricular (LV) summit ventricular tachycardia (VT). The patient died due to interstitial pneumonia from amiodarone use. The earliest activation sites of the VT were documented from both inside the anterior interventricular vein (AIV) and epicardial surface. The diameter of the AIV was 3-4 mm, and the radiofrequency (RF) lesion inside the AIV was a slight lesion due to high impedance with a high temperature. The lesion from the epicardial surface was also superficial and insufficient due to neighboring coronary arteries and the existence of epicardial fat. A successful application was performed from the LV endocardium, and diffuse myocardial fibrosis was observed in the mid-myocardium including inside the RF lesions. The actual relationship between the myocardial fibrosis and LV summit VT remains unclear, but this case showed the difficulty of achieving a successful ablation from the epicardial side, when the focus exists in the mid-myocardium around the LV summit.

  4. Impact of esophageal temperature monitoring guided atrial fibrillation ablation on preventing asymptomatic excessive transmural injury

    PubMed Central

    Kiuchi, Kunihiko; Okajima, Katsunori; Shimane, Akira; Kanda, Gaku; Yokoi, Kiminobu; Teranishi, Jin; Aoki, Kousuke; Chimura, Misato; Toba, Takayoshi; Oishi, Shogo; Sawada, Takahiro; Tsukishiro, Yasue; Onishi, Tetsuari; Kobayashi, Seiichi; Taniguchi, Yasuyo; Yamada, Shinichiro; Yasaka, Yoshinori; Kawai, Hiroya; Yoshida, Akihiro; Fukuzawa, Koji; Itoh, Mitsuaki; Imamura, Kimitake; Fujiwara, Ryudo; Suzuki, Atsushi; Nakanishi, Tomoyuki; Yamashita, Soichiro; Hirata, Ken-ichi; Tada, Hiroshi; Yamasaki, Hiro; Naruse, Yoshihisa; Igarashi, Miyako; Aonuma, Kazutaka

    2015-01-01

    Background Even with the use of a reduced energy setting (20–25 W), excessive transmural injury (ETI) following catheter ablation of atrial fibrillation (AF) is reported to develop in 10% of patients. However, the incidence of ETI depends on the pulmonary vein isolation (PVI) method and its esophageal temperature monitor setting. Data comparing the incidence of ETI following AF ablation with and without esophageal temperature monitoring (ETM) are still lacking. Methods This study was comprised of 160 patients with AF (54% paroxysmal, mean: 24.0±2.9 kg/m2). Eighty patients underwent ablation accompanied by ETM. The primary endpoint was defined as the occurrence of ETI assessed by endoscopy within 5 d after the AF ablation. The secondary endpoint was defined as AF recurrence after a single procedure. If the esophageal temperature probe registered >39 °C, the radiofrequency (RF) application was stopped immediately. RF applications could be performed in a point-by-point manner for a maximum of 20 s and 20 W. ETI was defined as any injury that resulted from AF ablation, including esophageal injury or periesophageal nerve injury (peri-ENI). Results The incidence of esophageal injury was significantly lower in patients whose AF ablation included ETM compared with patients without ETM (0 [0%] vs. 6 [7.5%], p=0.028), but not the incidence of peri-ENI (2 [2.5%] vs. 3 [3.8%], p=1.0). AF recurrence 12 months after the procedure was similar between the groups (20 [25%] in the ETM group vs. 19 [24%] in the non-ETM group, p=1.00). Conclusions Catheter ablation using ETM may reduce the incidence of esophageal injury without increasing the incidence of AF recurrence but not the incidence of peri-ENI. PMID:26949429

  5. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  6. Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept.

    PubMed

    Ritz, Joerg-Peter; Lehmann, Kai S; Reissfelder, Christoph; Albrecht, Thomas; Frericks, Bernd; Zurbuchen, Urte; Buhr, Heinz J

    2006-01-01

    Radiofrequency ablation (RFA) is a promising method for local treatment of liver malignancies. Currently available systems for radiofrequency ablation use monopolar current, which carries the risk of uncontrolled electrical current paths, collateral damages and limited effectiveness. To overcome this problem, we used a newly developed internally cooled bipolar application system in patients with irresectable liver metastases undergoing laparotomy. The aim of this study was to clinically evaluate the safety, feasibility and effectiveness of this new system with a novel multipolar application concept. Patients with a maximum of five liver metastases having a maximum diameter of 5 cm underwent laparotomy and abdominal exploration to control resectability. In cases of irresectability, RFA with the newly developed bipolar application system was performed. Treatment was carried out under ultrasound guidance. Depending on tumour size, shape and location, up to three applicators were simultaneously inserted in or closely around the tumour, never exceeding a maximum probe distance of 3 cm. In the multipolar ablation concept, the current runs alternating between all possible pairs of consecutively activated electrodes with up to 15 possible electrode combinations. Post-operative follow-up was evaluated by CT or MRI controls 24-48 h after RFA and every 3 months. In a total of six patients (four male, two female; 61-68 years), ten metastases (1.0-5.5 cm) were treated with a total of 14 RF applications. In four metastases three probes were used, and in another four and two metastases, two and one probes were used, respectively. During a mean ablation time of 18.8 min (10-31), a mean energy of 48.8 kJ (12-116) for each metastases was applied. No procedure-related complications occurred. The patients were released from the hospital between 7 and 12 days post-intervention (median 9 days). The post-interventional control showed complete tumour ablation in all cases. Bipolar radiofrequency using the novel multipolar ablation concept permits a safe and effective therapy for the induction of large volumes of coagulation in the local treatment of liver metastases.

  7. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.

    PubMed

    Cao, Hong; Tungjitkusolmun, Supan; Choy, Young Bin; Tsai, Jang-Zern; Vorperian, Vicken R; Webster, John G

    2002-03-01

    During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.

  8. How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off.

    PubMed

    Irastorza, Ramiro M; Trujillo, Macarena; Berjano, Enrique

    2017-11-01

    All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5 mm long and 17G in diameter) with a constant temperature protocol (70°C) and a cooled electrode (30 mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15 mm for the dry electrode and 1.5 mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3 mm for the dry electrode and 30 mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. Copyright © 2017 John Wiley & Sons, Ltd.

  9. An in-vitro animal experiment on metal implants’ thermal effect on radiofrequency ablation

    PubMed Central

    2013-01-01

    Background To explore metal implants’ thermal effect on radiofrequency ablation (RFA) and ascertain distance-thermal relationship between the metal implants and radiofrequency (RF) electrode. Methods Metal implants models were established in seven in-vitro porcine livers using silver clips or 125I seeds. RFA were conducted centering the RF electrode axis1 cm away from them, with one side containing a metal implants model the test group and the other side the control group. The thermometric needles were used to measure multi-point temperatures in order to compare the time-distance-temperature difference between the two groups. The gross scopes of the ablation of the two groups were measured and the tissues were analyzed for microscopic histology. Results At the ablation times of 8, 12, and 15 min, the average multi-point temperatures of the test group and the control group were 48.2±18.07°C, 51.5±19.57°C, 54.6±19.75°C, and 48.6±17.69°C, 52.2±19.73°C, 54.9±19.24°C, respectively, and the differences were not statistically significant (n=126, P>0.05). At the ablation times of 12 and 15 min, the ablation scopes of the test group and the control group were (horizontal/longitudinal diameter) 1.55/3.48 cm, 1.89/3.72 cm, and 1.56/3.48 cm, 1.89/3.72 cm, respectively, and the differences were not statistically significant (n=14, P>0.05). The two groups had the same manifestations in microscopy. Conclusions Metal implants do not cause significant thermal effect on RFA. PMID:23799942

  10. Formation of thermal coagulum on multielectrode catheters during phased radiofrequency energy ablation of persistent atrial fibrillation.

    PubMed

    Debruyne, Philippe; Rossenbacker, Tom; Vankelecom, Bart; Charlier, Filip; Roosen, John; Ector, Bavo; Janssens, Luc

    2014-02-01

    Radiofrequency ablation (RFA) can unfavorably cause coagulum on the ablation electrode. The aim of this study was to assess this phenomenon on three different multielectrode catheters used to treat persistent atrial fibrillation with duty-cycled RFA. Twenty-six consecutive patients have been treated with the pulmonary vein ablation catheter (PVAC) and the multiarray ablation catheter (MAAC). In 13 patients, additional ablation with the multiarray septal catheter (MASC) has been performed. The multichannel RF generator GENius™ (Medtronic Inc., Minneapolis, MN, USA) independently delivered energy in a bipolar and unipolar mode (ratio of 4/1, 2/1, or 1/1) to any of the electrodes. Versions 14.2, 14.3, and 14.4 of the generator were used. Coagulum presence was determined postablation by careful visual inspection of the catheter electrodes. No coagulum formation was visualized on the PVACs. Coagulum formation was visualized in 59% of the electrodes of the MAACs using a 2/1 mode and the 14.2 software version versus 69% using the 14.4 version and a 2/1 mode (P = 0.7) versus 14% of the electrodes applying a 1/1 ratio and the 14.4 software version (P < 0.001). Duty-cycled RFA in 2/1 bipolar/unipolar ratio generates a substantial frequency of coagulum formation on the multielectrode catheters MAAC and MASC. The use of the 14.4 version of the software to drive the RF generator and the use of energy in the default 1/1 bipolar/unipolar ratio could significantly reduce the frequency of coagulum formation, but so far, could not completely overcome it. The PVAC did not form coagulum, regardless of generator version or energy ratio used. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  11. Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation.

    PubMed

    Lüthje, Lars; Vollmann, Dirk; Seegers, Joachim; Dorenkamp, Marc; Sohns, Christian; Hasenfuss, Gerd; Zabel, Markus

    2011-11-01

    Only limited data exist on the clinical utility of remote magnetic navigation (RMN) for pulmonary vein (PV) ablation. Aim of this prospective study was to evaluate the safety and efficacy of RMN for PV isolation as compared to the manual (CON) approach. A total of 161 consecutive patients undergoing circumferential PV isolation were included. Open-irrigated 3.5 mm ablation catheters under the guidance of a mapping system were used. The catheter was navigated with the Stereotaxis Niobe II system in the RMN group (n = 107) and guided manually in the CON group (n = 54). Electrical isolation of all PVs was achieved in 90% of the patients in the RMN group and in 87% in the CON group (p = 0.6). All subjects were followed every 3 months by 7d Holter-ECG. At 12 months of follow-up, 53.5% (RMN) and 55.5% (CON) of the patients were free of any left atrial tachycardia/atrial fibrillation (AF) episode (p = 0.57). Free of symptomatic AF recurrence were 66.3% (RMN) and 62.1% (CON) of the subjects (p = 0.80). Use of RMN was associated with longer procedure duration (p < 0.0001), ablation times (p < 0.0001), and RF current application duration (p < 0.05). In contrast, fluoroscopy time was lower in the RMN group (p < 0.0001). Major complications occurred in 6 of 161 procedures (3.7%), with no significant difference between groups (p = 0.75). RMN-guided PV ablation provides comparable acute and long-term success rates as compared to manual navigation. Procedural complication rates are similar. The use of RMN is associated with markedly reduced fluoroscopy time, but prolonged ablation and procedure duration.

  12. Electrophysiological markers predicting impeding AV-block during ablation of atrioventricular nodal reentry tachycardia.

    PubMed

    Fragakis, Nikolaos; Krexi, Lydia; Kyriakou, Panagiota; Sotiriadou, Melani; Lazaridis, Charalambos; Karamanolis, Athanasios; Dalampyras, Panagiotis; Tsakiroglou, Stelios; Skeberis, Vassilios; Tsalikakis, Dimitrios; Vassilikos, Vassilios

    2018-01-01

    Radiofrequency (RF) ablation of the slow pathway (SP) in atrioventricular nodal reentry tachycardia (AVNRT) is occasionally complicated with atrioventricular block (AVB) often predicted by junctional beats (JB) with loss of ventriculo-atrial (VA) conduction. We analyzed retrospectively 153 patients undergoing ablation of SP for typical AVNRT. Patients were divided into two age groups: 127 ≤ 70 years and 26 > 70 years. We analyzed the interval between the atrial electrogram in the His-bundle position and the distal ablation catheter [A(H)-A(RFd)] and between the distal ablation catheter and the proximal coronary sinus catheter [A(RFd)-A(CS)] before RF applications with and without JB. We evaluated if these intervals can be used as predictors of JB incidence and also of JB with loss of VA conduction. We also assessed if age influences the risk of loss of VA conduction. The A(H)-A(RFd) and A(RFd)-A(CS) intervals were significantly shorter in RF applications causing JB than those without JB (33 ± 11 ms vs 39 ± 9 ms, P < 0.001, 14 ± 9 ms vs 20 ± 7 ms, P < 0.001, respectively). The A(H)-A(RFd) and A(RFd)-A(CS) intervals were also significantly shorter in RFs causing JB with VA block than those with VA conduction (29 ± 11 ms vs 35 ± 11 ms, P < 0.001, 8 ± 8 ms vs 17 ± 8 ms, P < 0.001, respectively). Patients > 70 years had shorter intervals (36 ± 11 ms vs 29 ± 8 ms, P  =  0.012, 17 ± 8 ms vs 13 ± 7 ms, P  =  0.027, respectively), while VA block was more common in this age group. The A(H)-A(RFd) and A(RFd)-A(CS) intervals can be used as markers for predicting JB occurrence as well as impending AVB. JB with loss of VA conduction occur more often in older patients possibly due to a higher position of SP. © 2017 Wiley Periodicals, Inc.

  13. Radio Frequency Ultrasound Time Series Signal Analysis to Evaluate High-intensity Focused Ultrasound Lesion Formation Status in Tissue.

    PubMed

    Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan

    2016-01-01

    High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.

  14. Ways of Noninvasive Facial Skin Tightening and Fat Reduction.

    PubMed

    Fritz, Klaus; Salavastru, Carmen

    2016-06-01

    For skin tightening, ablative and nonablative lasers have been used with various parameters full or fractionated. Currently, other energy-based technologies have been developed such as radiofrequency (RF) from mono- to multipolar, microneedling RF, and high-intensity focused ultrasound. They heat up the tissue to a clinical endpoint. Temperatures above 42°C stimulate fibroblasts to produce more collagen and some technologies produce small coagulation points that allow to shrink and to tighten the tissue with less downtime or side effects. Alternative treatments not based on heat can be chemical peels from light to deep and microneedling without RF. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Low Rates of Major Complications for Radiofrequency Ablation of Atrial Fibrillation Maintained Over 14 Years: A Single Centre Experience of 2750 Consecutive Cases.

    PubMed

    Voskoboinik, Aleksandr; Sparks, Paul B; Morton, Joseph B; Lee, Geoffrey; Joseph, Stephen A; Hawson, Joshua J; Kistler, Peter M; Kalman, Jonathan M

    2018-02-03

    Despite technological advances, studies continue to report high complication rates for atrial fibrillation (AF) ablation. We sought to review complication rates for AF ablation at a high-volume centre over a 14-year period and identify predictors of complications. We reviewed prospectively collected data from 2750 consecutive AF ablation procedures at our institution using radiofrequency energy (RF) between January 2004 and May 2017. All cases were performed under general anaesthetic with transoesophageal echocardiography (TEE), 3D-mapping and an irrigated ablation catheter. Double transseptal puncture was performed under TEE guidance. All patients underwent wide antral circumferential isolation of the pulmonary veins (30W anteriorly, 25W posteriorly) with substrate modification at operator discretion. Of 2255 initial and 495 redo procedures, ablation strategies were: pulmonary vein isolation (PVI) only 2097 (76.3%), PVI+lines 368 (13.4%), PVI+posterior wall 191 (6.9%), PVI+cavotricuspid isthmus 277 (10.1%). There were 23 major (0.84%) and 20 minor (0.73%) complications. Cardiac tamponade (five cases - 0.18%) and phrenic nerve palsy (one case - 0.04%) rates were very low. Major vascular complications necessitating surgery or blood transfusion occurred in five patients (0.18%). There were no cases of death, permanent disability, atrio-oesophageal fistulae or symptomatic pulmonary vein (PV) stenosis, although there were five TEE probe-related complications (0.18%). Female gender (OR 2.14; 95% CI 1.07-4.26) but not age >70 (OR 1.01) was the only multivariate predictor of complications. Atrial fibrillation ablation performed at a high-volume centre using RF can be achieved with a low major complication rate in a representative AF population over a sustained period of time. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  16. Origin and ablation of the adenosine triphosphate induced atrial fibrillation after circumferential pulmonary vein isolation: effects on procedural success rate.

    PubMed

    Zhang, Jinlin; Tang, Cheng; Zhang, Yonghua; Su, X I

    2014-04-01

    Adenosine triphosphate (ATP) has been used to provoke dormant pulmonary vein (PV) conduction after circumferential PV isolation (CPVI). However, there have been no systematic studies examining the incidence and the mechanism of ATP-induced atrial fibrillation (AF) following CPVI in paroxysmal AF. In this study, we explore the mechanism of ATP-induced AF and assess the feasibility of eliminating this response by additional radiofrequency (RF) ablation. A total of 300 consecutive patients with paroxysmal AF underwent CPVI. After all PVs were isolated, intravenous ATP (40 mg) was administered during an intravenous isoproterenol (ISP) infusion (5 μg/min). AF was reproducibly induced by ATP in 39 patients. Non-PV foci were confirmed and located in 29 of these patients at the onset of AF, including 27 foci in the superior vena cava (SVC), 1 focus in the crista terminalis, and 1 focus near the antrum of the PV. In all these cases, ATP-induced AF was eliminated after the non-PV foci were successfully ablated. For the other 10 patients, the foci triggering AF could not be confirmed or located due to the transient effect of ATP, thus no further ablation was performed. After a mean follow-up period of 18.7 ± 6.4 (8-24) months, the success rate in the ATP-induced AF group was not significantly different compared with the conventional treatment group who did not exhibit ATP-induced AF (76.9% vs 67.3%; P = 0.25). But in the subgroup of which the ATP-induced AF could be eliminated by additional RF ablation, the success rate was significantly higher than the non-ATP inducible group (86.2% vs 67.3%; P = 0.04). A large proportion of the ATP-induced AF post CPVI were initiated by rapid firing in the SVC. Eliminating this response by additional ablation may have an influence on clinical results of paroxysmal AF ablation. © 2014 Wiley Periodicals, Inc.

  17. Consensus for the Treatment of Varicose Vein with Radiofrequency Ablation

    PubMed Central

    Joh, Jin Hyun; Kim, Woo-Shik; Jung, In Mok; Park, Ki-Hyuk; Lee, Taeseung; Kang, Jin Mo

    2014-01-01

    The objective of this paper is to introduce the schematic protocol of radiofrequency (RF) ablation for the treatment of varicose veins. Indication: anatomic or pathophysiologic indication includes venous diameter within 2–20 mm, reflux time ≥0.5 seconds and distance from the skin ≥5 mm or subfascial location. Access: it is recommended to access at or above the knee joint for great saphenous vein and above the mid-calf for small saphenous vein. Catheter placement: the catheter tip should be placed 2.0 cm inferior to the saphenofemoral or saphenopopliteal junction. Endovenous heat-induced thrombosis ≥class III should be treated with low-molecular weight heparin. Tumescent solution: the composition of solution can be variable (e.g., 2% lidocaine 20 mL+500 mL normal saline+bicarbonate 2.5 mL with/without epinephrine). Infiltration can be done from each direction. Ablation: two cycles’ ablation for the first proximal segment of saphenous vein and the segment with the incompetent perforators is recommended. The other segments should be ablated one time. During RF energy delivery, it is recommended to apply external compression. Concomitant procedure: It is recommended to do simultaneously ambulatory phlebectomy. For sclerotherapy, it is recommended to defer at least 2 weeks. Post-procedural management: post-procedural ambulation is encouraged to reduce the thrombotic complications. Compression stocking should be applied for at least 7 days. Minor daily activity is not limited, but strenuous activities should be avoided for 2 weeks. It is suggested to take showers after 24 hours and tub baths, swimming, or soaking in water after 2 weeks. PMID:26217628

  18. Fractional ablative and nonablative radiofrequency for skin resurfacing and rejuvenation of Thai patients.

    PubMed

    Thanasarnaksorn, Wilai; Siramangkhalanon, Vorapot; Duncan, Diane Irvine; Belenky, Inna

    2018-04-01

    Fractional radiofrequency (RF) technology is often the preferable skin resurfacing treatment, especially among Asian patients. Second generation fractional RF technology has exclusive capability to produce separate biological responses (ablation, coagulation, or a combination of both) with 3 distinguished penetration depth programs. The aim of this study was to evaluate the efficacy and safety of a fractional RF handpiece such as this, on the Thai population. Fifty-five Thai patients were treated with a fractional RF handpiece. The clinical assessment included a pain score, satisfaction survey, physician assessment, a combined patient and physician's assessment of skin condition, and clinical photographic assessments. The wound healing response was evaluated according to 5-time points: immediately after applying a pulse, post 24 hours, post 7 days, post 1 month and post 8 weeks. The obtained patient satisfaction score was "very satisfied" among 74% of the patients, post 3 sessions. Positive correlation was found between patient satisfaction and the physician's assessment. The skin condition assessment showed an increase from an average of 4.2 to 7.9. All treated symptoms improved after each treatment and the clinical outcome lasted at least up to 3-5 months. No significant adverse events were recorded. The in vivo prospective study showed a dose-related response in the deepness of the coagulation injury. In addition, there was evidence for a progressive healing process beginning shortly after exposure and completed within a week. This study clinically and histologically supports the efficacy of fractional RF handpiece in question with a high safety profile. © 2017 Wiley Periodicals, Inc.

  19. Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.

    2012-01-01

    A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.

  20. Fluoroscopic-guided radiofrequency ablation of the basivertebral nerve: application and analysis with multiple imaging modalities in an ovine model (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Bergeron, Jeffrey A.; Eskey, Cliff J.; Attawia, Mohammed; Patel, Samit J.; Ryan, Thomas P.; Pellegrino, Richard; Sutton, Jeffrey; Crombie, John; Paul, B. T.; Hoopes, P. J.

    2005-04-01

    Pathologic involvement of the basivertebral nerve, an intraosseous vertebral nerve found in humans and most mammalian species, may play a role in some forms of back pain. This study was designed to assess the feasibility and effects of the percutaneous delivery of radiofrequency (RF) energy to thermally ablate the basivertebral nerve in the lumbar vertebrae of mature sheep. Using fluoroscopic guidance, a RF bipolar device was placed and a thermal dose delivered to lumbar vertebral bodies in sheep. Post-treatment assessment included multiple magnetic resonance imaging (MRI) techniques and computed tomography (CT). These data were analyzed and correlated to histopathology and morphometry findings to describe the cellular and boney structural changes resulting from the treatment. Imaging modalities MRI and CT can be implemented to non-invasively describe treatment region and volume, marrow cellular effects, and bone density alterations immediately following RF treatment and during convalescence. Such imaging can be utilized to assess treatment effects and refine the thermal dose to vertebral body volume ratio used in treatment planning. This information will be used to improve the therapeutic ratio and develop a treatment protocol for human applications.

  1. Si nanoparticles as sensitizers for radio frequency-induced cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Tamarov, K. P.; Ryabchikov, Yu. V.; Osminkina, L. A.; Zinovyev, S. V.; Kargina, J. V.; Gongalsky, M. B.; Al-Kattan, A.; Yakunin, V. G.; Sentis, M. L.; Ivanov, A. V.; Nikiforov, V. N.; Kanavin, A. P.; Zavestovskaya, I. N.; Timoshenko, V. Y.

    2016-03-01

    We review our recently obtained data on the employment of Si nanoparticles as sensitizers of radiofrequency (RF) - induced hyperthermia for mild cancer therapy tasks. Such an approach makes possible the heating of aqueous suspensions of Si nanoparticles by tens of degrees Celsius under relatively low intensities (1-5 W/cm2) of 27 MHz RF radiation. The heating effect is demonstrated for nanoparticles synthesized by laser ablation in water and mechanical grinding of porous silicon, while laser-ablated nanoparticles demonstrate a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations. The observed RF heating effect can be explained in the frame of a model considering the polarization of Si NPs and electrolyte in the external oscillating electromagnetic field and the corresponding release of heat by electric currents around the nanoparticles. Our tests evidence relative safety of Si nanostructures and their efficient dissolution in physiological solutions, suggesting potential clearance of nanoparticles from a living organism without any side effects. Profiting from Si nanoparticle-based heating, we finally demonstrate an efficient treatment of Lewis Lung carcinoma in vivo. The obtained data promise a breakthrough in the development of mild, non-invasive methods for cancer therapy.

  2. Comparative mRNA and MicroRNA Profiling during Acute Myocardial Infarction Induced by Coronary Occlusion and Ablation Radio-Frequency Currents

    PubMed Central

    Santana, Eduardo T.; Feliciano, Regiane dos Santos; Serra, Andrey J.; Brigidio, Eduardo; Antonio, Ednei L.; Tucci, Paulo J. F.; Nathanson, Lubov; Morris, Mariana; Silva, José A.

    2016-01-01

    The ligation of the left anterior descending coronary artery is the most commonly used experimental model to induce myocardial infarction (MI) in rodents. A high mortality in the acute phase and the heterogeneity of the size of the MI obtained are drawbacks recognized in this model. In an attempt to solve the problem, our group recently developed a new MI experimental model which is based on application of myocardial ablation radio-frequency currents (AB-RF) that yielded MI with homogeneous sizes and significantly reduce acute mortality. In addition, cardiac structural, and functional changes aroused by AB-RF were similar to those seen in animals with MI induced by coronary artery ligation. Herein, we compared mRNA expression of genes that govern post-MI milieu in occlusion and ablation models. We analyzed 48 mRNAs expressions of nine different signal transduction pathways (cell survival and metabolism signs, matrix extracellular, cell cycle, oxidative stress, apoptosis, calcium signaling, hypertrophy markers, angiogenesis, and inflammation) in rat left ventricle 1 week after MI generated by both coronary occlusion and AB-RF. Furthermore, high-throughput miRNA analysis was also assessed in both MI procedures. Interestingly, mRNA expression levels and miRNA expressions showed strong similarities between both models after MI, with few specificities in each model, activating similar signal transduction pathways. To our knowledge, this is the first comparison of genomic alterations of mRNA and miRNA contents after two different MI procedures and identifies key signaling regulators modulating the pathophysiology of these two models that might culminate in heart failure. Furthermore, these analyses may contribute with the current knowledge concerning transcriptional and post-transcriptional changes of AB-RF protocol, arising as an alternative and effective MI method that reproduces most changes seem in coronary occlusion. PMID:27932994

  3. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management

    PubMed Central

    Palea, Ovidiu; Granville, Michelle

    2017-01-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated. PMID:29119066

  4. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management.

    PubMed

    Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle

    2017-09-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.

  5. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    PubMed Central

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  6. In vivo animal histology and clinical evaluation of multisource fractional radiofrequency skin resurfacing (FSR) applicator.

    PubMed

    Sadick, Neil S; Sato, Masaki; Palmisano, Diana; Frank, Ido; Cohen, Hila; Harth, Yoram

    2011-10-01

    Acne scars are one of the most difficult disorders to treat in dermatology. The optimal treatment system will provide minimal downtime resurfacing for the epidermis and non-ablative deep volumetric heating for collagen remodeling in the dermis. A novel therapy system (EndyMed Ltd., Cesarea, Israel) uses phase-controlled multi-source radiofrequency (RF) to provide simultaneous one pulse microfractional resurfacing with simultaneous volumetric skin tightening. The study included 26 subjects (Fitzpatrick's skin type 2-5) with moderate to severe wrinkles and 4 subjects with depressed acne scars. Treatment was repeated each month up to a total of three treatment sessions. Patients' photographs were graded according to accepted scales by two uninvolved blinded evaluators. Significant reduction in the depth of wrinkles and acne scars was noted 4 weeks after therapy with further improvement at the 3-month follow-up. Our data show the histological impact and clinical beneficial effects of simultaneous RF fractional microablation and volumetric deep dermal heating for the treatment of wrinkles and acne scars.

  7. Towards optical spectroscopic anatomical mapping (OSAM) for lesion validation in cardiac tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.

    2017-02-01

    Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.

  8. Patients' and procedural characteristics of AV-block during slow pathway modulation for AVNRT-single center 10year experience.

    PubMed

    Wasmer, Kristina; Dechering, Dirk G; Köbe, Julia; Leitz, Patrick; Frommeyer, Gerrit; Lange, Phillip S; Kochhäuser, Simon; Reinke, Florian; Pott, Christian; Mönnig, Gerold; Breithardt, Günter; Eckardt, Lars

    2017-10-01

    Permanent AV-block is a recognized and feared complication of slow pathway modulation for AVNRT. We aimed to assess incidence of transient and permanent AV-block as well as consequences of transient AV-block in a large contemporary AVNRT ablation cohort. We searched our single center prospective ablation database for occurrence of transient and permanent AV-block during slow pathway modulation between January 2004 and October 2015. We analyzed patients' and procedural characteristics as well as outcome of patients in whom transient or permanent AV-block occurred. Of 9170 patients who underwent a catheter ablation at our institution between January 2004 and October 2015, 2101 patients (64% women, mean age 50±18years) underwent slow pathway modulation. In three patients, permanent AV-block occurred during RF application. Additional two patients had transient AV-block that recovered (after a few minutes and 25min), but recurred within two days of the procedure. All five patients underwent dual chamber pacemaker implantation (0.2%). Transient AV-block related to RF delivery occurred in 44 patients (2%). Transient mechanical AV-block occurred in additional 17 patients (0.8%). In 12 patients, ablation was continued despite transient AV-block. One of these patients developed permanent AV-block. Permanent AV-block following slow pathway modulation is a rare event, occurring in 0.2% of patients in a large contemporary single center cohort. Transient AV-block is more frequent (2%). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 3D Myocardial Elastography In Vivo.

    PubMed

    Papadacci, Clement; Bunting, Ethan A; Wan, Elaine Y; Nauleau, Pierre; Konofagou, Elisa E

    2017-02-01

    Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.

  10. Radiofrequency facial rejuvenation: evidence-based effect.

    PubMed

    el-Domyati, Moetaz; el-Ammawi, Tarek S; Medhat, Walid; Moawad, Osama; Brennan, Donna; Mahoney, My G; Uitto, Jouni

    2011-03-01

    Multiple therapies involving ablative and nonablative techniques have been developed for rejuvenation of photodamaged skin. Monopolar radiofrequency (RF) is emerging as a gentler, nonablative skin-tightening device that delivers uniform heat to the dermis at a controlled depth. We evaluated the clinical effects and objectively quantified the histologic changes of the nonablative RF device in the treatment of photoaging. Six individuals of Fitzpatrick skin type III to IV and Glogau class I to II wrinkles were subjected to 3 months of treatment (6 sessions at 2-week intervals). Standard photographs and skin biopsy specimens were obtained at baseline, and at 3 and 6 months after the start of treatment. We performed quantitative evaluation of total elastin, collagen types I and III, and newly synthesized collagen using computerized histometric and immunohistochemical techniques. Blinded photographs were independently scored for wrinkle improvement. RF produced noticeable clinical results, with high satisfaction and corresponding facial skin improvement. Compared with the baseline, there was a statistically significant increase in the mean of collagen types I and III, and newly synthesized collagen, while the mean of total elastin was significantly decreased, at the end of treatment and 3 months posttreatment. A limitation of this study is the small number of patients, yet the results show a significant improvement. Although the results may not be as impressive as those obtained by ablative treatments, RF is a promising treatment option for photoaging with fewer side effects and downtime. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Effects of Blood Flow and/or Ventilation Restriction on Radiofrequency Coagulation Size in the Lung: An Experimental Study in Swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anai, Hiroshi; Uchida, Barry T.; Pavcnik, Dusan, E-mail: pavcnikd@ohsu.edu

    2006-10-15

    The purpose of this study was to investigate how the restriction of blood flow and/or ventilation affects the radiofrequency (RF) ablation coagulation size in lung parenchyma. Thirty-one RF ablations were done in 16 normal lungs of 8 living swine with 2-cm LeVeen needles. Eight RF ablations were performed as a control (group G1), eight with balloon occlusion of the ipsilateral mainstem bronchus (G2), eight with occlusion of the ipsilateral pulmonary artery (G3), and seven with occlusion of both the ipsilateral bronchus and pulmonary artery (G4). Coagulation diameters and volumes of each ablation zone were compared on computed tomography (CT) andmore » gross specimen examinations. Twenty-six coagulation zones were suitable for evaluation: eight in G1, five in G2, seven in G3, and six in G4 groups. In G1, the mean coagulation diameter was 21.5 {+-} 3.5 mm on CT and 19.5 {+-} 1.78 mm on gross specimen examination. In G2, the mean diameters were 26.5 {+-} 5.1 mm and 23.0 {+-} 2.7 mm on CT and gross specimen examination, respectively. In G3, the mean diameters were 29.4 {+-} 2.2 mm and 27.4 {+-} 2.9 mm on CT and gross specimen examination, respectively, and in G4, they were 32.6 {+-} 3.33 mm and 28.8 {+-} 2.6 mm, respectively. The mean coagulation volumes were 3.39 {+-} l.52 cm{sup 3} on CT and 3.01 {+-} 0.94 cm{sup 3} on gross examinations in G1, 6.56 {+-} 2.47 cm{sup 3} and 5.22 {+-} 0.85 cm{sup 3} in G2, 10.93 {+-} 2.17 cm{sup 3} and 9.97 {+-} 2.91 cm{sup 3} in G3, and 13.81 {+-} 3.03 cm{sup 3} and 11.06 {+-} 3.27 cm{sup 3} in G4, respectively. The mean coagulation diameters on gross examination and mean coagulation volumes on CT and gross examination with G3 and G4 were significantly larger than those in G1 (p < 0.0001, p < 0.0001, p < 0.0001, respectively) or in G2 (p < 0.05, p < 0.005, p < 0.005, respectively). Pulmonary collapse occurred in one lung in G2 and pulmonary artery thrombus in two lungs of G3 and two lungs of G4. The coagulation size of RF ablation of the lung parenchyma is increased by ventilation and particularly by pulmonary artery blood flow restriction. The value of these restrictions for potential clinical use needs to be explored in experimentally induced lung tumors.« less

  12. Feasibility, Safety and Efficacy of a Novel Pre-Shaped Nitinol Esophageal Deviator to Successfully Deflect the Esophagus and Ablate Left Atrium without Esophageal Temperature Rise during Atrial Fibrillation Ablation - The DEFLECT GUT study.

    PubMed

    Parikh, Valay; Swarup, Vijay; Hantla, Jacob; Vuddanda, Venkat; Dar, Tawseef; Yarlagadda, Bharath; Di Biase, Luigi; Al-Ahmad, Amin; Natale, Andrea; Lakkireddy, Dhanunjaya

    2018-04-17

    Esophageal thermal injury is a feared complication of radiofrequency ablation (RFA) for atrial fibrillation (AF). Rise in luminal esophageal temperature (LET) limits the ability to deliver RF energy on posterior wall of LA. The aim of this registry was to evaluate feasibility, safety and efficacy of a mechanical esophageal deviation (ED) tool during AF ablation. We evaluated 687 patients who underwent RFA for AF. In 209 patients, EsoSure® was used to deflect esophagus away from ablation site. Propensity-score matching was performed to obtain 180 patients each in ED and non-ED arms. ED was used for LET rise seen in 61.7% (111/180) patients and was used if esophagus was in the line of ablation on fluoroscopy in 38.3% (69/180) patients. The mean deviation of trailing edge of esophagus with EsoSure® was 2.45 ± 0.9 cm (range: 1-4.5 cm). LET rise >1°C was significantly lower in ED than non-ED group (3% vs 79.4%, p<0.001). Mean LET rise (ED 0.34 ± 0.59 vs non-ED 1.66 ± 0.54, p<0.001). Intra-procedural success of PVAI, was slightly improved in ED arm than in non-ED arm without statistical significance. AF recurrence was lower in ED arm at 3-month, 6-month and 1-year follow-up than non-ED arm. No ED-related complications were noted. Mechanical displacement of esophagus with EsoSure® appears to be feasible, safe and efficacious in enabling adequate RF energy delivery to posterior wall of LA without significant LET rise and obvious clinical signs of esophageal injury. Copyright © 2018. Published by Elsevier Inc.

  13. Proposed Optimal Fluoroscopic Targets for Cooled Radiofrequency Neurotomy of the Sacral Lateral Branches to Improve Clinical Outcomes: An Anatomical Study.

    PubMed

    Stout, Alison; Dreyfuss, Paul; Swain, Nathan; Roberts, Shannon; Loh, Eldon; Agur, Anne

    2017-11-23

    Current sacroiliac joint (SIJ) cooled radiofrequency (RF) is based on fluoroscopic anatomy of lateral branches (LBs) in three specimens. Recent studies confirm significant variation in LB positions. To determine if common fluoroscopic needle placements for cooled SIJ RF are adequate to lesion all S1-3 LBs. If not, would different targets improve lesion accuracy? The LBs of 20 cadavers were dissected bilaterally (40 SIJs), and 26 G radiopaque wires were sutured to the LBs. With a 10-mm radius ruler centered at each foramen, standard targets were assessed, as judged by a clockface on the right, for S1 and S2 at 2:30, 4:00, and 5:30 positions and at S3 at 2:30 and 4:00. Mirror image targets were assessed on the left. Assuming an 8-mm lesion diameter, the percentage of LBs that would not be ablated for each level was determined. Imaging through the superior end plate of S1 was compared against segment specific (SS) imaging. Nine point four percent of LBs would not be ablated at S1 vs 0.99% at S2 vs 35% at S3, and 60% of the 40 SIJs would be completely denervated using current targets. SS imaging did not improve results. Alternate target locations could improve the miss rate to 2.8% at S1 and 0% at S3 and would ablate all LBs in 95% of SIJs. Using a conservative 8-mm lesion measurement, contemporary cooled RF needle targets are inadequate to lesion all target LBs. Modifications to current targets are recommended to increase the effectiveness of the procedure. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. High-power and short-duration ablation for pulmonary vein isolation: Safety, efficacy, and long-term durability.

    PubMed

    Barkagan, Michael; Contreras-Valdes, Fernando M; Leshem, Eran; Buxton, Alfred E; Nakagawa, Hiroshi; Anter, Elad

    2018-05-30

    PV reconnection is often the result of catheter instability and tissue edema. High-power short-duration (HP-SD) ablation strategies have been shown to improve atrial linear continuity in acute pre-clinical models. This study compares the safety, efficacy and long-term durability of HP-SD ablation with conventional ablation. In 6 swine, 2 ablation lines were performed anterior and posterior to the crista terminalis, in the smooth and trabeculated right atrium, respectively; and the right superior PV was isolated. In 3 swine, ablation was performed using conventional parameters (THERMOCOOL-SMARTTOUCH ® SF; 30W/30 sec) and in 3 other swine using HP-SD parameters (QDOT-MICRO™, 90W/4 sec). After 30 days, linear integrity was examined by voltage mapping and pacing, and the heart and surrounding tissues were examined by histopathology. Acute line integrity was achieved with both ablation strategies; however, HP-SD ablation required 80% less RF time compared with conventional ablation (P≤0.01 for all lines). Chronic line integrity was higher with HP-SD ablation: all 3 posterior lines were continuous and transmural compared to only 1 line created by conventional ablation. In the trabeculated tissue, HP-SD ablation lesions were wider and of similar depth with 1 of 3 lines being continuous compared to 0 of 3 using conventional ablation. Chronic PVI without stenosis was evident in both groups. There were no steam-pops. Pleural markings were present in both strategies, but parenchymal lung injury was only evident with conventional ablation. HP-SD ablation strategy results in improved linear continuity, shorter ablation time, and a safety profile comparable to conventional ablation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Numerical modeling of the SNS H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved inmore » order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report here on comparisons of simulated plasma parameters and code performance using more accurate physical models, such as two-temperature extended MHD models, for both a related benchmark system describing a inductively coupled plasma reactor, and for the SNS ion source. We also present results from scaling studies for mesh generation and solvers in the USim simulation code.« less

  16. RF heating of nanoclusters for cancer therapy

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Letfullin, Alla R.; George, Thomas F.

    2015-03-01

    Nanodrugs selectively delivered to a tumor site can be activated by radiation for drug release, or nanoparticles (NPs) can be used as a drug themselves by producing biological damage in cancer cells through thermal, mechanical ablations or charged particle emission. Radio-frequency (RF) waves have an excellent ability to penetrate into the human body without causing healthy tissue damage, which provides a great opportunity to activate/heat NPs delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of NPs in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of NPs in the RF range. To resolve these weaknesses in the RF activation of NPs and dramatically increase absorption of contrast agents in tumor, we suggest aggregating the nanoclusters inside or on the surface of the cancer cells. We simulate space distribution of temperature changes inside and outside metal and dielectric nanopraticles/nanoclusters, determine the number of nanoparticles needed to form a cluster, and estimate the thermal damage area produced in surrounding medium by nanopraticles/nanoclusters heated in the RF field.

  17. Value of percutaneous radiofrequency ablation with or without percutaneous vertebroplasty for pain relief and functional recovery in painful bone metastases.

    PubMed

    Clarençon, Frédéric; Jean, Betty; Pham, Hang-Phuong; Cormier, Evelyne; Bensimon, Gilbert; Rose, Michèle; Maksud, Philippe; Chiras, Jacques

    2013-01-01

    To evaluate the effectiveness of percutaneous radiofrequency (RF) ablation with or without percutaneous vertebroplasty (PV) on pain relief, functional recovery and local recurrence at 6 months' follow-up (FU), in patients with painful osseous metastases. Thirty RF ablations were performed in 24 patients (mean age: 61 years) with bone metastases. Half of the patients had an additional PV. The primary end point was pain relief evaluated by a visual analogue scale (VAS) before treatment, and at 1 and 6 months' FU. Functional outcome was assessed according to the evolution of their ability to walk at 6 months' FU. Imaging FU was available in 20 out of 24 patients with a mean delay of 4.7 months. Reduction of pain was obtained at 6 months FU in 81% of cases (15 out of 18). Mean pretreatment VAS was 6.4 (±2.7). Mean VAS was 1.9 (±2.4) at 1 month FU, and 2.3 (±2.9) at 6 months' FU. Pain was significantly reduced at 6 months FU (mean VAS reduction = 4.1; P < 0.00001). Functional improvement was obtained in 74% of the cases. Major complications rate was 12.5 % (3 out of 24) with 2 skin burns, and 1 case of myelopathy. Local tumour recurrence or progression was recorded in 5 cases. Radiofrequency ablation is an effective technique in terms of pain relief and functional recovery for the treatment of bone metastases, which provides a relatively low rate of local recurrence.

  18. High Voltage Guided Pulmonary Vein Isolation in Paroxysmal Atrial Fibrillation.

    PubMed

    Boles, Usama; Gul, Enes E; Enriquez, Andres; Lee, Howard; Riegert, Dave; Andres, Adrian; Baranchuk, Adrian; Redfearn, Damian; Glover, Benedict; Simpson, Chris; Abdollah, Hoshiar; Michael, Kevin

    2017-01-01

    Ablation of the pulmonary vein (PV) antrum using an electroanatomic mapping system is standard of care for point-by-point pulmonary vein isolation (PVI). Focused ablation at critical areas is more likely to achieve intra-procedural PV isolation and decrease the likelihood for reconnection and recurrence of atrial fibrillation (AF). Therefore this prospective pilot study is to investigate the short-term outcome of a voltage-guided circumferential PV ablation (CPVA) strategy. We recruited patients with a history of paroxysmal atrial fibrillation (AF). The EnSite NavX system (St. Jude Medical, St Paul, Minnesota, USA) was employed to construct a three-dimensional geometry of the left atrium (LA) and voltage map. CPVA was performed; with radiofrequency (RF) targeting sites of highest voltage first in a sequential clockwise fashion then followed by complete the gaps in circumferential ablation. Acute and short-term outcomes were compared to a control group undergoing conventional standard CPVA using the same 3D system. Follow-up was scheduled at 3, 6 and 12 months. Thirty-four paroxysmal AF patients with a mean age of 40 years were included. Fourteen patients (8 male) underwent voltage mapping and 20 patients underwent empirical, non-voltage guided standard CPVA. A mean of 54 ± 12 points per PV antrum were recorded. Mean voltage for right and left PVs antra were 1.7±0.1 mV and 1.9±0.2 mV, respectively. There was a trend towards reduced radiofrequency time (40.9±17.4 vs. 48.1±15.5 mins; p=0.22). Voltage-guided CPVA is a promising strategy in targeting critical points for PV isolation with a lower trend of AF recurrence compared with a standard CPVA in short-term period. Extended studies to confirm these findings are warranted.

  19. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation.

    PubMed

    Knuttel, Floortje M; Waaijer, Laurien; Merckel, Laura G; van den Bosch, Maurice A A J; Witkamp, Arjen J; Deckers, Roel; van Diest, Paul J

    2016-08-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This study aimed to compare histopathological features of breast cancer after MR-HIFU ablation and RFA. MR-HIFU ablation and RFA were performed in- and ex-vivo. Tumours in six mastectomy specimens were partially ablated with RFA or MR-HIFU. In-vivo MR-HIFU ablation was performed 3-6 days before excision; RFA was performed in the operation room. Tissue was fixed in formalin and processed to haematoxylin and eosin (H&E) and cytokeratin-8 (CK-8)-stained slides. Morphology and cell viability were assessed. Ex-vivo ablation resulted in clear morphological changes after RFA versus subtle differences after MR-HIFU. CK-8 staining was decreased or absent. H&E tended to underestimate the size of thermal damage. In-vivo MR-HIFU resulted in necrotic-like changes. Surprisingly, some ablated lesions were CK-8-positive. Histopathology after in-vivo RFA resembled ex-vivo RFA, with hyper-eosinophilic stroma and elongated nuclei. Lesion borders were sharp after MR-HIFU and indistinct after RFA. Histopathological differences between MR-HIFU-ablated tissue and RF-ablated tissue were demonstrated. CK-8 was more reliable for cell viability assessment than H&E when used directly after ablation, while H&E was more reliable in ablated tissue left in situ for a few days. Our results contribute to improved understanding of histopathological features in breast cancer lesions treated with minimally invasive ablative techniques. © 2016 John Wiley & Sons Ltd.

  20. Circumferential targeted renal sympathetic nerve denervation with preservation of the renal arterial wall using intra-luminal ultrasound

    NASA Astrophysics Data System (ADS)

    Roth, Austin; Coleman, Leslie; Sakakura, Kenichi; Ladich, Elena; Virmani, Renu

    2015-03-01

    An intra-luminal ultrasound catheter system (ReCor Medical's Paradise System) has been developed to provide circumferential denervation of the renal sympathetic nerves, while preserving the renal arterial intimal and medial layers, in order to treat hypertension. The Paradise System features a cylindrical non-focused ultrasound transducer centered within a balloon that circulates cooling fluid and that outputs a uniform circumferential energy pattern designed to ablate tissues located 1-6 mm from the arterial wall and protect tissues within 1 mm. RF power and cooling flow rate are controlled by the Paradise Generator which can energize transducers in the 8.5-9.5 MHz frequency range. Computer simulations and tissue-mimicking phantom models were used to develop the proper power, cooling flow rate and sonication duration settings to provide consistent tissue ablation for renal arteries ranging from 5-8 mm in diameter. The modulation of these three parameters allows for control over the near-field (border of lesion closest to arterial wall) and far-field (border of lesion farthest from arterial wall, consisting of the adventitial and peri-adventitial spaces) depths of the tissue lesion formed by the absorption of ultrasonic energy and conduction of heat. Porcine studies have confirmed the safety (protected intimal and medial layers) and effectiveness (ablation of 1-6 mm region) of the system and provided near-field and far-field depth data to correlate with bench and computer simulation models. The safety and effectiveness of the Paradise System, developed through computer model, bench and in vivo studies, has been demonstrated in human clinical studies.

  1. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    PubMed

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  2. Non-surgical radiofrequency facelift.

    PubMed

    Narins, David J; Narins, Rhoda S

    2003-10-01

    There has been considerable interest in using non-ablative methods to rejuvenate the skin. The ThermaCool TC (Thermage Inc.) is a radiofrequency (RF) device that has been introduced to induce tightening of the address the problem of skin via a uniform volumetric heating into the deep dermis tightening, resulting in a 'non-surgical facelift'. Radiofrequency produces a uniform volumetric heating into the deep dermis. Twenty treatment areas in 17 patients were treated to evaluate the efficacy and safety of RF treatment to the brow and jowls. The technique was found to produce gradual tightening in most patients, and there were no adverse effects.

  3. Study of the phosphine plasma decomposition and its formation by ablation of red phosphorus in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Losurdo, M.; Capezzuto, P.

    1995-03-01

    Mass spectrometry and optical emission spectroscopy have been used to study the chemistry of PH(sub 3) plasma decomposition as well as its formation by ablation of red phosphorus in hydrogen plasma. It has been shown that PH(sub 3) decomposition easily equilibrates at low levels of PH(sub 3) depletion (15%-30%), this depending mainly on the rf power. The ablation of red phosphorus in H(sub 2) plasma produces phosphine in significant amount, depending mainly on the total pressure but also on the rf power. It has also been found that H(sup *) and PH(sup *) emitting species originate not only by the dissociative excitation of H(sub 2) and PH(sub 3), respectively, but also by the direct excitation of the same species in the ground state. Considerations are developed on how to derive the H-atom and PH radical densities by actinometry, under specific experimental conditions. Besides, the linear dependence of PH(sub 3) formation rate, r(sub PH(3)), on H-atom density, (left bracket) H (right bracket), leads to the definition of the kinetic equation r(sub PH(3)) = k (left bracket) H (right bracket), and to the hypothesis that the formation of PH radical on the surface or its desorption is the dominant mechanism for PH(sub 3) production.

  4. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.

    PubMed

    Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming

    2014-12-01

    Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Ultrasound-Guided Radiofrequency Ablation Using a New Electrode with an Electromagnetic Position Sensor for Hepatic Tumors Difficult to Place an Electrode: A Preliminary Clinical Study.

    PubMed

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Rhim, Hyunchul; Lim, Hyo Keun; Kang, Wonseok; Kim, Kyunga

    2017-12-01

    To evaluate whether a new electrode embedded with an electromagnetic position sensor (EMPS) improves the technical feasibility of percutaneous radiofrequency ablation (RFA) in patients with hepatic tumors difficult to place an electrode under ultrasonography (US) guidance and to assess short-term therapeutic efficacy and safety. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Between January 2015 and December 2016, 10 patients (7 men and 3 women; age range 52-75 years) with a single hepatic tumor (median 1.4 cm; range 1.1-1.8 cm) difficult to place an electrode under US guidance were enrolled. The technical feasibility of targeting and overlapping ablation during the RFA procedure was graded using a four-point scale and analyzed using the Wilcoxon signed rank test according to the use of EMPS. In addition, the rates of technical success, local tumor progression (LTP), and major complications were assessed. The use of the new RF electrode with EMPS significantly improved the technical feasibility of targeting and overlapping ablation (p = 0.002 and p = 0.003, respectively). After treatment, the technical success rate was 100%. LTP was not found in any patient during the follow-up period (median 8 months; range 4-22 months). No major procedure-related complications occurred. The technical feasibility of percutaneous RFA improves with the use of this RF electrode embedded with an EMPS. Short-term therapeutic efficacy and safety after RFA using the electrode were promising in patients with hepatic tumors difficult to place an electrode under US guidance.

  6. Denervation (ablation) of nerve terminalis in renal arteries: early results of interventional treatment of arterial hypertension in Poland.

    PubMed

    Bartuś, Krzysztof; Sadowski, Jerzy; Kapelak, Bogusław; Zajdel, Wojciech; Godlewski, Jacek; Bartuś, Stanisław; Bochenek, Maciej; Bartuś, Magdalena; Żmudka, Krzysztof; Sobotka, Paul A

    2013-01-01

    Arterial hypertension is one of the main causes of cardiovascular disease morbidity and overall mortality. To report the single centre experiences with changes in arterial blood pressure (BP) in patients after intra-arterial application of radiofrequency (RF) energy to cause renal sympathetic efferent and somatic afferent nerve and report vascular and kidney safety in a six month follow up. Twenty-eight patients, with hypertension despite medical therapy (median age 52.02 years, range 42-72 years) consented to therapeutic renal nerve ablation. SIMPLICITY RF catheters and generator provided by Ardian (currently Medtronic Inc., USA) were used to perform renal artery angiography and ablation. The mean BP at baseline, and after one month, three months and six months were measured [mm Hg]: systolic 176.6; 162.3 (p = 0.004); 150.6 (p < 0.001); 147.2 (p < 0.001); diastolic 100.2; 90.3 (p < 0.001); 91.79 (p = 0.03); 88.5 (p < 0.001); pulse pressure 76.57; 75.18 (p = NS); 65.80 (p < 0.001); 62.15 (p < 0.001). Neither procedure-related nor therapy-related complications were reported in the six month follow up. In our cohort of patients, intra-arterial renal nerve denervation was not associated with either vascular or renal complications out to six months. Nerve ablation of renal arteries led to significant reduction of mean values of arterial systolic, diastolic BP and significant reduction of pulse pressure. The Polish experience is not significantly different compared to that reported in the Symplicity I and Symplicity II international cohorts. The long term durability of this therapy and its application to earlier stages of hypertension or other disease states will require further investigation.

  7. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    PubMed

    Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  8. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    PubMed Central

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  9. Renal denervation with standard radiofrequency ablation catheter is effective in 24-hour ambulatory blood pressure reduction - follow-up at 1/3/6/12 months.

    PubMed

    Prochnau, D; Otto, S; Figulla, H-R; Surber, R

    2016-07-01

    To examine the effect of renal denervation (RDN) on 24‑h ambulatory blood pressure (ABP) with a standard radiofrequency ablation catheter (RF catheter). Seventy-five patients with resistant hypertension received bilateral RDN with an RF catheter (6 RF applications, 1 minute each, 8-12 watts). Seventy patients fulfilled inclusion criteria with mean systolic ABP ≥140 mmHg (mean 165/89) despite treatment with ≥3 antihypertensive drugs (mean 5.9) including a diuretic, and were further analysed for ABP changes. Follow-up at 1/3/6/12 months comprised biochemical evaluations and ABP measurement. At 6/12 months, duplex sonography of the renal arteries was additionally performed. At 1/3/6/12 months we observed a significant reduction in systolic ABP of -15/-17/-18/-15 mmHg (n = 55/53/57/50; non-parametric Friedman test, p < 0.001) and diastolic ABP of -6/-9/-10/-7 mmHg (p < 0.001). Of the patients, 70 %/64 % showed a systolic ABP reduction of ≥10 mmHg, and 77 %/70 % of ≥5 mmHg at 6/12-month follow-up. Two patients (2.7 %) developed renal artery stenosis (>70 %) with subsequent stenting without complications. Logistic regression analysis with systolic ABP reduction ≥10 mmHg at 12 months follow-up as criterion revealed that only the mean baseline systolic ABP was significant, OR = 2.174. RDN with a standard RF catheter can be used safely to reduce mean ABP in resistant hypertension as shown in long-term follow-up.

  10. Apparatus for the laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  11. Thinking outside the Box: Rotor Modulation in the Treatment of Atrial Fibrillation.

    PubMed

    Sehra, Ruchir; Narayan, Sanjiv M; Hummel, John

    2013-01-01

    Ablation for atrial fibrillation (AF) is an important and exciting therapy whose results remain suboptimal. Although most clinical trials show that ablation eliminates AF more effectively than medications, it is disappointing that the continued single procedural success remains ≈50% despite the substantial advances that have taken place in imaging, catheter positioning and energy delivery. Focal impulse and rotor modulation (FIRM), on the other hand, offers the opportunity to precisely define and then ablate patient-specific sustaining mechanisms for AF, rather than trying to eliminate all possible AF triggers. For over a decade, electrophysiologists have described cases in which AF terminates after only limited ablation - usually that cannot be explained by 'random' meandering wavelets. Indeed, recent studies from several laboratories show that all forms of clinical AF are typically 'driven' by stable electrical rotors and focal sources, not by multiple meandering waves. FIRM mapping enables an operator to place a catheter at typically 1-3 predicted sites in the atria, and with <5-10 minutes of RF ablation, terminate AF and potentially render it non-inducible. Several independent laboratories have now shown that such FIRM ablation alone can terminate or substantially slow AF in >80% of patients with persistent and paroxysmal AF and increase the single procedure rate of AF elimination from 50% with PV isolation alone to >80%. Ongoing studies hint that FIRM only ablation, enabling ablation times in the range observed for typical atrial flutter, may also achieve these high success rates without subsequent trigger ablation. This review summarizes the current state-of-the-art on FIRM mapping and ablation.

  12. Sampling modulation technique in radio-frequency helium glow discharge emission source by use of pulsed laser ablation.

    PubMed

    Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-05-01

    An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.

  13. Radiofrequency multielectrode catheter ablation in the atrium.

    PubMed

    Panescu, D; Fleischman, S D; Whayne, J G; Swanson, D K; Mirotznik, M S; McRury, I; Haines, D E

    1999-04-01

    We developed a temperature-controlled radiofrequency (RF) system which can ablate by delivering energy to up to six 12.5 mm long coil electrodes simultaneously. Temperature feedback was obtained from temperature sensors placed at each end of coil electrodes, in diametrically opposite positions. The coil electrodes were connected in parallel, via a set of electronic switches, to a 150 W 500 kHz temperature-controlled RF generator. Temperatures measured at all user-selected coil electrodes were processed by a microcontroller which sent the maximum value to the temperature input of the generator. The generator adjusted the delivered power to regulate the temperature at its input within a 5 degrees C interval about a user-defined set point. The microcontroller also activated the corresponding electronic switches so that temperatures at all selected electrodes were controlled within a 5 degrees C interval with respect to each other. Physical aspects of tissue heating were first analysed using finite element models and current density measurements. Results from these analyses also constituted design input. The performance of this system was studied in vitro and in vivo. In vitro, at set temperatures of 70 degrees C, 85% of the lesions were contiguous. All lesions created at set temperatures of 80 and 90 degrees C were contiguous. The lesion length increased almost linearly with the number of electrodes. Power requirements to reach a set temperature were larger as more electrodes were driven by the generator. The system impedance decreased as more electrodes were connected in the ablation circuit and reached a low of 45.5 ohms with five coil electrodes in the circuit. In vivo, right atrial lesions were created in eight mongrel canines. The power needed to reach 70 degrees C set temperature varied between 15 and 114 W. The system impedance was 105+/-16 ohms, with one coil electrode in the circuit, and dropped to 75+/-12 ohms when two coil electrodes were simultaneously powered. The length and the width of the lesion set varied between 17.6+/-6.1 and 59.2+/-11.7 mm and 5.9+/-0.7 and 7.1+/-1.2 mm respectively. No sudden impedance rises occurred and 75% of the lesions were contiguous. From the set of contiguous lesions, 90% were potentially therapeutic as they were transmural and extended over the entire target region. The average total procedure and fluoroscopy times were 83.4 and 5.9 min respectively. We concluded that the system can safely perform long and contiguous lesions in canine right atria.

  14. Pancreatic adenocarcinoma response to chemotherapy enhanced with non-invasive radio frequency evaluated via an integrated experimental/computational approach.

    PubMed

    Ware, Matthew J; Curtis, Louis T; Wu, Min; Ho, Jason C; Corr, Stuart J; Curley, Steven A; Godin, Biana; Frieboes, Hermann B

    2017-06-13

    Although chemotherapy combined with radiofrequency exposure has shown promise in cancer treatment by coupling drug cytotoxicity with thermal ablation or thermally-induced cytotoxicity, limited access of the drug to tumor loci in hypo-vascularized lesions has hampered clinical application. We recently showed that high-intensity short-wave capacitively coupled radiofrequency (RF) electric-fields may reach inaccessible targets in vivo. This non-invasive RF combined with gemcitabine (Gem) chemotherapy enhanced drug uptake and effect in pancreatic adenocarcinoma (PDAC), notorious for having poor response and limited therapeutic options, but without inducing thermal injury. We hypothesize that the enhanced cytotoxicity derives from RF-facilitated drug transport in the tumor microenvironment. We propose an integrated experimental/computational approach to evaluate chemotherapeutic response combined with RF-induced phenotypic changes in tissue with impaired transport. Results show that RF facilitates diffusive transport in 3D cell cultures representing hypo-vascularized lesions, enhancing drug uptake and effect. Computational modeling evaluates drug vascular extravasation and diffusive transport as key RF-modulated parameters, with transport being dominant. Assessment of hypothetical schedules following current clinical protocol for Stage-IV PDAC suggests that unresponsive lesions may be growth-restrained when exposed to Gem plus RF. Comparison of these projections to experiments in vivo indicates that synergy may result from RF-induced cell phenotypic changes enhancing drug transport and cytotoxicity, thus providing a potential baseline for clinically-focused evaluation.

  15. RF induced energy for partially implanted catheters: a computational study

    PubMed Central

    Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.

    2018-01-01

    Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553

  16. A Freehand Ultrasound Elastography System with Tracking for In-vivo Applications

    PubMed Central

    Foroughi, Pezhman; Kang, Hyun-Jae; Carnegie, Daniel A.; van Vledder, Mark G.; Choti, Michael A.; Hager, Gregory D.; Boctor, Emad M.

    2012-01-01

    Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems. In this paper, we demonstrate the advantages of incorporating tracking information into ultrasound elastography for clinical applications. First, we address a common limitation of freehand palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically selecting pairs of radio frequency (RF) frames with minimal lateral and out-of-plane motions combined with a fast and robust displacement estimation technique greatly improves in-vivo elastography results. We also use tracking information and image quality measure to fuse multiple images with similar strain that are taken roughly from the same location to obtain a high quality elastography image. Finally, we show that tracking information can be used to give the user partial control over the rate of compression. Our methods are tested on tissue mimicking phantom and experiments have been conducted on intra-operative data acquired during animal and human experiments involving liver ablation. Our results suggest that in challenging clinical conditions, our proposed method produces reliable strain images and eliminates the need for a manual search through the ultrasound data in order to find RF pairs suitable for elastography. PMID:23257351

  17. Use of Oral Steroid and its Effects on Atrial Fibrillation Recurrence and Inflammatory Cytokines Post Ablation - The Steroid AF Study.

    PubMed

    Iskandar, Sandia; Reddy, Madhu; Afzal, Muhammad R; Rajasingh, Johnson; Atoui, Moustapha; Lavu, Madhav; Atkins, Donita; Bommana, Sudha; Umbarger, Linda; Jaeger, Misty; Pimentel, Rhea; Dendi, Raghuveer; Emert, Martin; Turagam, Mohit; Di Biase, Luigi; Natale, Andrea; Lakkireddy, Dhanunjaya

    2017-01-01

    Use of corticosteroids before and after atrial fibrillation (AF) ablation can decrease acute inflammation and reduce AF recurrence. To assess the efficacy of oral prednisone in improving the outcomes of pulmonary vein isolation with radiofrequency ablation and its effect on inflammatory cytokine. A total of 60 patients with paroxysmal AF undergoing radiofrequency ablation were randomized (1:1) to receive either 3 doses of 60 mg daily of oral prednisone or a placebo. Inflammatory cytokine levels (TNF-α, IL-1, IL6, IL-8) were measured at baseline, prior to ablation, immediately after ablation, and 24 hours post ablation. Patients underwent 30 day event monitoring at 3 months, 6 months and 12 months post procedure. Immediate post ablation levels of inflammatory cytokines were lower in the steroid group when compared to the placebo group; IL-6: 9.0 ±7 vs 15.8 ±13 p=0.031; IL-8: 10.5 ±9 vs 15.3 ±8; p=0.047 respectively. Acute PV reconnection rates during the procedure (7/23% vs 10/36%; p = 0.39), and RF ablation time (51±13 vs 56±11 min, p = 0.11) trended to be lower in the placebo group than the steroid group. There was no difference in the incidence of early recurrence of AF during the blanking period and freedom from AF off AAD at 12 months between both groups (5/17% vs 8/27%; p = 0.347 and 21/70% vs 18/60%; p=0.417 in placebo and steroid groups respectively). Although oral corticosteroids have significant effect in lowering certain cytokines, it did not impact the clinical outcomes of AF ablation.

  18. Measurement of fuel corrosion products using planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Wantuck, Paul J.; Sappey, Andrew D.; Butt, Darryl P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed.

  19. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management.

    PubMed

    Yamamoto, Naohito; Fujimoto, Hiroshi; Nakamura, Rikiya; Arai, Manabu; Yoshii, Atsushi; Kaji, Sachiko; Itami, Makiko

    2011-01-01

    There is increasing demand for minimally invasive treatments for small breast cancer mainly because of the desire for better cosmetic results. Although radiofrequency ablation (RFA) is an attractive approach as a local control method for small breast cancer, the problems of histological effectiveness and safety management remain. A total of 29 patients including one patient with bilateral breast cancer were enrolled in this study. The mean tumor size of 30 breasts was 12.8 mm (range 5-19 mm). Under general anesthesia, RFA was performed with a Cool-tip RF system (Valleylab, Boulder, CO, USA) after sentinel lymph node biopsy. Postoperative evaluation with magnetic resonance imaging (MRI) and vacuum-assisted core needle biopsy was done 3-4 weeks after RFA before radiotherapy. Ablated tumors were evaluated with hematoxylin-eosin (H&E) and nicotinamide adenine dinucleotide (NADH)-diaphorase staining. If needed, adjuvant chemo and/or endocrine therapy was performed. All patients except one completed one session of RFA. The mean temperature near the center of the tumors was 89.6°C (range 78-100°C). Postoperative MRI showed the ablated zone clearly in all patients. MRI revealed no hypervascularity of the tumors in the ablated zone. Evaluation with H&E staining of the tumors showed remarkable degenerative changes in only three patients. NADH-diaphorase staining showed no viable tumor tissue in 24 patients out of 26 examined. Three patients received small diameter grade 3 skin burns, two on the outside of the thigh from the grounding pad and one on the breast skin. One patient had a breast lesion like a chronic granulomatous mastitis resulting from overreaction of the ablated zone. RFA therapy appeared relevant and applicable for patients with small breast cancer. Because small skin burns were observed as adverse events, close attention should be paid in the course of the RFA procedure.

  20. TH-C-17A-11: Hyperthermia-Driven Immunotherapy Using Non-Invasive Radiowaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serda, R; Savage, D; Corr, S

    2014-06-15

    Purpose: The sad truth is that cancer is blamed for the death of nearly one in four people in the US. Immunotherapy offers hope for stimulating cancer immunity leading to targeted killing of cancer cells and a preventative measure for cancer recurrence. Unfortunately, the clinical efficacy of immunotherapy has not yet been established, however novel approaches are being developed, including combining immunotherapy with traditional chemotherapy, radiotherapy or thermal therapy. Therapeutics such as radiofrequency (RF) ablation and select chemotherapeutics induce mild anticancer immune responses. This project seeks to enhance the immune responses stimulated by these agents by co-delivery of nanoparticle-based chemotherapeuticsmore » and immune modulators in the presence of RF induced hyperthermia. Methods: A 4T1 mouse model of breast cancer is used to test the ability of RF waves to enhance accumulation of nanoparticles in tumor tissue by increasing blood flow and extravation of nanoparticles from hyperpermeable vessels. Images of particle and cell trafficking in the tumor are captured using an integrated RF and confocal imaging system, and tumor growth is monitored by tumor bioluminescence and caliper measurements. Results: Here we demonstrate enhanced intratumoral blood flow induced by non-invasive RF waves and an increase in nanoparticle accumulation in the tumor. IL-12 is shown to have powerful anti-tumor effects leading to tumor regression and the release of Th1-biased cytokines. Doxorubicin nanoparticles combined with adjuvant nanoparticles exhibited superior antitumor effects to single agent therapy. Conclusion: RF therapy combined with nanotherapeutics is a promising approach to enhance the delivery of therapeutics to the tumor and to stimulate a tumor microenvironment that supports the development of cancer-specific immune responses. This research was supported by the National Institute of Health grant numbers U54 CA143837 and U54 CA151668, and the Kanzius Foundation.« less

  1. Control of the permeability loss-peak frequency of Ni81Fe19 thin films through laser ablation of triangular and square cluster geometries

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Lumpp, J. K.

    2000-01-01

    Laser ablation arrays of triangular and square shaped clusters, comprised of 23 micrometers diam circular holes, are defined upon 100 nm thick Ni81Fe19 films used to control the rf permeability spectra. Cluster-to-cluster spacing is varied from 200 to 600 micrometers. For each geometry it is found that the loss peak frequency and permeability magnitude shift lower, in a step-wise fashion, at a cluster-to-cluster spacing between 275 and 300 micrometers. The nonlinear shift in the behavior of the permeability spectra correlates with a dramatic increase in domain wall density. c2000 American Institute of Physics.

  2. Pathological proof of cellular death in radiofrequency ablation therapy and correlation with flash echo imaging--an experiment study.

    PubMed

    Fujiki, Kei

    2004-01-01

    The aims of this study were to clarify the geographic distribution of complete cell death in the radiofrequency ablated area in a porcine liver experiment, and to evaluate the efficacy of ultrasonography using contrast media in detecting the area of Radiofrequency-induced cell death. Radiofrequency ablation was performed at 3 sites in each liver in seven swine with a RF2000TM radiofrequency generator using an expandable type needle electrode. The ablation area was investigated histologically by Hematoxylin-Eosin staining and NADH staining. The area of radiofrequency-induced cell death was correlated to the ultrasonographic findings using contrast media, by means of contrast harmonic imaging, flash echo imaging-subtraction and flash echo imaging-power Doppler. The ablation area showed three distinct regions. Although the HE staining did not indicate necrosis, the NADH staining showed a complete loss of cellular activity in the inner and middle layers of the ablation area. However, in the outer layer cells displaying cellular integrity were intermingled with the necrotic cells, indicating that some of the cells in this layer had a chance to survive. Further, in some cases the outer layer of the ablated area had irregular margins. The flash-echo power-doppler images were accurately correlated in size and shape to the pathologically proved region of complete cell death in the radiofrequency-induced lesions. In the marginal part of the radiofrequency ablation area, cell death was incomplete. Flash echo imaging-power doppler was a useful and sensitive real time imaging technique for accurate evaluation of the region of complete cell death.

  3. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).

    PubMed

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-07

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p < 0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.

  4. High Intensity Focused Ultrasound (HIFU) Focal Spot Localization Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-01-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of High-Intensity Focused Ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the −3 dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p<0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes. PMID:26184846

  5. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the  -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p  <  0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.

  6. Cone beam computed tomography images fusion in predicting lung ablation volumes: a feasibility study.

    PubMed

    Ierardi, Anna Maria; Petrillo, Mario; Xhepa, Genti; Laganà, Domenico; Piacentino, Filippo; Floridi, Chiara; Duka, Ejona; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2016-02-01

    Recently different software with the ability to plan ablation volumes have been developed in order to minimize the number of attempts of positioning electrodes and to improve a safe overall tumor coverage. To assess the feasibility of three-dimensional cone beam computed tomography (3D CBCT) fusion imaging with "virtual probe" positioning, to predict ablation volume in lung tumors treated percutaneously. Pre-procedural computed tomography contrast-enhanced scans (CECT) were merged with a CBCT volume obtained to plan the ablation. An offline tumor segmentation was performed to determine the number of antennae and their positioning within the tumor. The volume of ablation obtained, evaluated on CECT performed after 1 month, was compared with the pre-procedural predicted one. Feasibility was assessed on the basis of accuracy evaluation (visual evaluation [VE] and quantitative evaluation [QE]), technical success (TS), and technical effectiveness (TE). Seven of the patients with lung tumor treated by percutaneous thermal ablation were selected and treated on the basis of the 3D CBCT fusion imaging. In all cases the volume of ablation predicted was in accordance with that obtained. The difference in volume between predicted ablation volumes and obtained ones on CECT at 1 month was 1.8 cm(3) (SD ± 2, min. 0.4, max. 0.9) for MW and 0.9 cm(3) (SD ± 1.1, min. 0.1, max. 0.7) for RF. Use of pre-procedural 3D CBCT fusion imaging could be useful to define expected ablation volumes. However, more patients are needed to ensure stronger evidence. © The Foundation Acta Radiologica 2015.

  7. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  8. High-Frequency Ultrasound M-mode Imaging for Identifying Lesion and Bubble Activity during High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-01-01

    Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600 – 6100 W/cm2) was applied to ex-vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radiofrequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during, and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, as compared to macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies. PMID:22341055

  9. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis.

    PubMed

    Ji, Yongshuo; Hu, Kaimeng; Zhang, Yu; Gu, Lijun; Zhu, Junqiu; Zhu, Linglin; Zhu, Yanfei; Zhao, Hong

    2017-12-01

    High-intensity focused ultrasound (HIFU) is a non-invasive uterine-preserving treatment alternative to hysterectomy for women with fibroids. We performed this meta-analysis to evaluate the efficacy of HIFU in the treatment of women with symptomatic fibroids comparing it to other approaches including medical treatment with mifepristone (Mife), traditional surgery with myomectomy or hysterectomy (MYC/HRM), and radiofrequency ablation (RF). 16 studies with 1725 women were included. The pooled data of HIFU comparing it to other methods in terms of complete or partial response rate (CR/PR) was not significantly better, but in subgroup analysis, the response rate was significantly higher than Mife, significantly lower than RF and comparable to MYC/HRM, respectively. For the endpoints of safety, the superiority of HIFU compared to MYC/HMR or Mife was found to be significant in terms of pain/discomfort, fever, transfusion, genital tract, gastrointestinal tract, and anesthesia-related complications, while no superiority was identified for skin burn, urinary tract, and nervous system complications. These results suggest that HIFU treatment of uterine leiomyomas leads to clinical improvement with few significant clinical complications and adverse events.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, Juan J.; Pérez-Cajaraville, Juan J.; Muñoz, Víctor

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authorsmore » also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension.« less

  11. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief.

    PubMed

    Pérez, Juan J; Pérez-Cajaraville, Juan J; Muñoz, Víctor; Berjano, Enrique

    2014-07-01

    Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a "strip lesion" to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m(-1)) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension.

  12. Electrophysiologic and histologic observations of chronic atrioventricular block induced by closed-chest catheter desiccation with radiofrequency energy.

    PubMed

    Huang, S K; Bharati, S; Lev, M; Marcus, F I

    1987-07-01

    Direct-current or laser energy has been used to induce atrioventricular (AV) block, but certain complications associated with this type of energy have been reported. We have previously documented that radiofrequency (RF) energy can effectively and safely induce acute AV block in closed-chest dogs during the 4-7 days of follow-up. This study was undertaken to determine if the ablation was permanent and to define the chronic pathology and site of AV block. Complete AV block was successfully achieved in four dogs immediately after ablation with a bipolar "standard" RF output (750 kHz) delivered between the tip electrode of a standard 7F USCI catheter and an external patch electrode on the left lateral chest wall. During 2 months of follow-up, three dogs had persistent complete AV block with a stable escape rhythm; the other had persistent 2:1 AV block. Repeat His bundle recordings were performed at 2 months prior to sacrifice of the dogs. Supra-His AV block was noted in two dogs; His bundle potential could not be recorded in another two. Histologically, the damaged area was well delineated. In all animals, the AV node and, in some dogs, part of the His bundle were completely replaced by granulation tissue and/or cartilage. There was fatty infiltration and also chronic inflammatory cells around the lesions. Neither perforation, hemorrhage nor vacuolation was seen in the adjacent area. Thrombus was not present. It is concluded that RF energy can effectively achieve chronic AV block and produce well-circumscribed pathological lesions.

  13. Image-guided tumor ablation: standardization of terminology and reporting criteria.

    PubMed

    Goldberg, S Nahum; Grassi, Clement J; Cardella, John F; Charboneau, J William; Dodd, Gerald D; Dupuy, Damian E; Gervais, Debra A; Gillams, Alice R; Kane, Robert A; Lee, Fred T; Livraghi, Tito; McGahan, John; Phillips, David A; Rhim, Hyunchul; Silverman, Stuart G; Solbiati, Luigi; Vogl, Thomas J; Wood, Bradford J; Vedantham, Suresh; Sacks, David

    2009-07-01

    The field of interventional oncology with use of image-guided tumor ablation requires standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison between treatments that use different technologies, such as chemical (ethanol or acetic acid) ablation, and thermal therapies, such as radiofrequency (RF), laser, microwave, ultrasound, and cryoablation. This document provides a framework that will hopefully facilitate the clearest communication between investigators and will provide the greatest flexibility in comparison between the many new, exciting, and emerging technologies. An appropriate vehicle for reporting the various aspects of image-guided ablation therapy, including classification of therapies and procedure terms, appropriate descriptors of imaging guidance, and terminology to define imaging and pathologic findings, are outlined. Methods for standardizing the reporting of follow-up findings and complications and other important aspects that require attention when reporting clinical results are addressed. It is the group's intention that adherence to the recommendations will facilitate achievement of the group's main objective: improved precision and communication in this field that lead to more accurate comparison of technologies and results and, ultimately, to improved patient outcomes. The intent of this standardization of terminology is to provide an appropriate vehicle for reporting the various aspects of image-guided ablation therapy.

  14. Experimental results of a new system using microwaves for vision correction

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Pertaub, Radha; Meyers, Steven R.; Dresher, Russell P.; Scharf, Ronald

    2009-02-01

    Technology is in development to correct vision without the use of lasers or cutting of the eye. Many current technologies used to reshape the cornea are invasive, in that either RF needles are placed into the cornea or a flap is cut and then a laser used to ablate the cornea in the optical zone. Keraflex, a therapeutic microwave treatment, is a noninvasive, non-incisional refractive surgery procedure capable of treating myopia (nearsightedness). The goal is to create a predictable refractive change in the optical zone, while preserving the epithelium and deeper structures of the eye. A further goal is to avoid incisions and damage to the epithelium which both require a post-treatment healing period. Experimental work with fresh porcine eyes examined the following variables: duration of the RF pulse, RF power level, coolant amount and timing, electrode spacing, applanation force against the eye, initial eye temperature, and age of eye. We measured curvature changes of the eye with topography, Scheimpflug, Wavefront aberrometry or other means to characterize diopter change as an important endpoint. Other assessment includes evaluation of a fine white ring seen in the cornea following treatment. Dose studies have been done to correlate the treated region with energy delivered. The timing and dosing of energy and cooling were investigated to achieve the target diopter change in vision.

  15. Contact force with magnetic-guided catheter ablation.

    PubMed

    Bessière, Francis; Zikry, Christopher; Rivard, Lena; Dyrda, Katia; Khairy, Paul

    2018-05-01

    Achieving adequate catheter tip-tissue contact is essential for delivering robust radiofrequency (RF) ablation lesions. We measured the contact force generated by a remote magnetic-guided catheter navigation system. A plexiglass model with an integrated scale was fashioned to mimic transvenous and retrograde access to sites in the right atrium and right and left ventricles. An 8 Fr RF ablation catheter was steered by remote magnetic guidance at fields of 0.08 and 0.10 T, with and without a long sheath positioned at the entrance of the chamber. Ten contact force readings were taken at each setting, with the scale recalibrated prior to each measurement. Generalized estimating equations were used to compare contact force measurements while adjusting for the non-independent data structure. A total of 240 contact force measurements were taken. Without a long sheath, contact forces with magnetic fields of 0.10 T (n = 60) and 0.08 T (n = 60) were similar (6.1 ± 1.4 g vs. 6.0 ± 1.3 g, P = 0.089). Contact forces were not significantly different with simulated transvenous (n = 80) and retrograde aortic (n = 40) approaches (6.2 ± 1.4 g vs. 5.7 ± 1.2 g, P = 0.132). The contact force increased substantially with a long sheath (P < 0.001) and was significantly higher with 0.10 T (n = 60) vs. 0.08 T (n = 60) fields (20.4 ± 0.6 g vs. 18.0 ± 0.5 g, P < 0.001). Magnetic fields of 0.08 and 0.10 T provide stable catheter contact forces, as reflected by the small variability between measurements. The average contact force is approximately 6 g without a sheath and increases to 20 g with a long sheath positioned at the entrance of the chamber of interest.

  16. Radiofrequency ablation: importance of background tissue electrical conductivity--an agar phantom and computer modeling study.

    PubMed

    Solazzo, Stephanie A; Liu, Zhengjun; Lobo, S Melvyn; Ahmed, Muneeb; Hines-Peralta, Andrew U; Lenkinski, Robert E; Goldberg, S Nahum

    2005-08-01

    To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed. Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined by using the computer modeling data and correlated by using linear regression analysis. For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T2cm (R2= 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"]) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E-peak and heating at T2cm (R2= 0.98-1.00) and the 50 degrees C isotherm (R2= 0.99-1.00) were established. These results demonstrate the strong relationship between background tissue conductivity and RF heating and further explain electrical phenomena that occur in a two-compartment system.

  17. The effect of elastic modulus on ablation catheter contact area.

    PubMed

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  18. Ablation of atrial-ventricular junction tissues via the coronary sinus using cryo balloon technology.

    PubMed

    Avitall, Boaz; Lafontaine, Daniel; Rozmus, Grzegorz; Adoni, Naveed; Dehnee, Abed; Urbonas, Arvydas; Le, Khoi M; Aleksonis, Dinas

    2005-04-01

    The coronary sinus (CS) can provide access to targets across and within the atrioventricular (AV) junction. In 12 dogs (32 +/- 3 Kg), cryo balloons (10-19 mm) were applied to regions of the AV junction for 3 minutes at a temperature of -75.9( composite function) +/- 9(composite function)C (ranging -57 to -83). Electrical activity and pacing within the CS were assessed pre and post ablation and at least 3 months later in 9 dogs. In the 3 other dogs, hearts were examined immediately after cryo ablation. CS and circumflex angiography was performed pre and post ablation. The hearts, CS, and Cx were then examined for structural injury. The AV junction was sectioned and the hearts were immersed in Tetrazolium, and the lesions were inspected for transmurality across the AV groove. In 3/12 dogs the distal CS cryo lesions resulted in inferior ST segment depression that resolved within 5 minutes. There was no arrhythmia or hemodynamic changes. No CS electrical activity was noted post ablation. The pacing threshold increased from 2 +/- 2.3 mA to 7.4 +/- 3.6 mA (p < 0.001). Pathological examination of 3 acute hearts revealed hematomas. There was no pericardial effusion. No evidence of stenosis or thrombosis was seen within the CS and the circumflex artery. After 3 months of recovery, transmural lesions across the AV groove were present in all of the targeted AV regions. Intra-CS cryo balloon ablation is safe and can potentially replace endocardial RF ablation targeting the AV junction and the CS muscular sleeve.

  19. Ex Vivo Liver Experiment of Hydrochloric Acid-Infused and Saline-Infused Monopolar Radiofrequency Ablation: Better Outcomes in Temperature, Energy, and Coagulation.

    PubMed

    Jiang, Xiong-ying; Gu, Yang-kui; Huang, Jin-hua; Gao, Fei; Zou, Ru-hai; Zhang, Tian-qi

    2016-04-01

    To compare temperature, energy, and coagulation between hydrochloric acid-infused radiofrequency ablation (HAIRFA) and normal saline-infused radiofrequency ablation (NSIRFA) in ex vivo porcine liver model. 30 fresh porcine livers were excised in 60 lesions, 30 with HAIRFA and the other 30 with NSIRFA. Both modalities used monopolar perfusion electrode connected to a RF generator set at 103 °C and 30 W. In each group, ablation time was set at 10, 20, or 30 min (10 lesions from each group at each time). We compared tissue temperatures (at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 cm away from the electrode tip), average power, deposited energy, deposited energy per coagulation volume (DEV), coagulation diameters, coagulative volume, and spherical ratio between the two groups. Temperature-time curves showed that HAIRFA provided progressively greater heating than that of NSIRFA. At 30 min, mean average power, deposited energy, coagulation volumes (113.67 vs. 12.28 cm(3)) and diameters, and increasing in tissue temperature were much greater with HAIRFA (P < 0.001 for all), except DEV was lower (456 vs. 1396 J/cm(3), P < 0.001). The spherical ratio was closer to 1 with HAIRFA (1.23 vs. 1.46). Coagulation diameters, volume, and average power of HAIRFA increased significantly with longer ablation times. While with NSIRFA, these characteristics were stable till later 20 min, except the power decreased with longer ablation times. HAIRFA creates much larger and more spherical lesions by increasing overall energy deposition, modulating thermal conductivity, and transferring heat during ablation.

  20. Curative effects of two new endometrial ablation procedures using radiofrequency thermocoagulation for the treatment of severe abnormal uterine bleeding.

    PubMed

    Yin, Geping; Li, Juan; Zhu, Tongyu; Chen, Ming

    2013-07-01

    Severe Abnormal Uterine Bleeding (SAUB) is a common gynecological disorder. The clinical characteristics include disordered menstrual cycle and massive bleeding that can cause anemia or secondary infection. Current treatment mainly relies on drug therapy or surgical removal of the uterus, each having its significant disadvantages. How to preserve the uterus, reduce the pain from surgery, and achieve better treatment effects have been well known but remaining as unresolved issues. This study aims at evaluating two types of radiofrequency (RF) thermocoagulation procedures for the treatment of SAUB: the RF-A procedure group included 25 SAUB patients ≥45 years of age treated for amenorrhea; the RF-B procedure group included 51 patients at <45 years of age treated for the control of excessive bleeding. Post-treatment ratings of menstrual satisfaction and pre-/post-treatment menstrual scores-pictorial blood loss assessment chart (PBAC)-and hemoglobin levels were collected; and the mean length of follow-up was 72 months. Also, 38 SAUB patients treated with standard drug regimens served as a control group. The results of the study showed that following RF treatment, the average long-term patient menstrual satisfaction was greater than 92 %. In both the RF groups, PBAC scores and hemoglobin levels were significantly improved from baseline (p < .05). Compared with the control group, PBAC scores and hemoglobin levels were also significantly better for the RF groups at 6-24-month post-operation. Patients experienced no hysterectomy in association with the RF procedures. In conclusion, this pilot study suggests that the novel RF procedures are both safe and effective in treating patients with SAUB. Further investigation is necessary to evaluate their application in broader clinical indication.

  1. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.

    PubMed

    López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J

    2009-04-01

    The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.

  2. Interactive Volumetry Of Liver Ablation Zones.

    PubMed

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-20

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  3. Interactive Volumetry Of Liver Ablation Zones

    PubMed Central

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow. PMID:26482818

  4. Interactive Volumetry Of Liver Ablation Zones

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  5. Numerical simulation of RF catheter ablation for the treatment of arterial aneurysm.

    PubMed

    Guo, Xuemei; Nan, Qun; Qiao, Aike

    2015-01-01

    Considering the blood coagulation induced by the heating of radio frequency ablation (RFA) and the mechanism of aneurysm embolization, we proposed that RFA may be used to treat arterial aneurysm. But the safety of this method should be investigated. A finite element method (FEM) was used to simulate temperature and pressure distribution in aneurysm with different electrode position, electric field intensity and ablation time. When the electrode is in the middle of the artery aneurysm sac, temperature rose clearly in half side of artery aneurysm, which is not suitable for RFA. Temperature rose in the whole aneurysm when the electrode is under the artery aneurysm orifice, which is suitable for the ablation therapy. And in this way, the highest temperature was 69.585°C when power was 5.0 V/mm with 60 s. It can promote the coagulation and thrombosis generation in the aneurysm sac while the outside tissue temperature rises a little. Meanwhile, the pressure (10 Pa) at the top of aneurysm sac with electrode insertion is less than that (60 Pa) without electrode, so electrode implant may protect the aneurysm from rupture. The results can provide a theoretical basis for interventional treatment of aneurysm with RFA.

  6. Comparison of radiofrequency and transoral robotic surgery in obstructive sleep apnea syndrome treatment.

    PubMed

    Aynacı, Engin; Karaman, Murat; Kerşin, Burak; Fındık, Mahmut Ozan

    2018-05-01

    Radiofrequency tissue ablation (RFTA) and transoral robotic surgery (TORS) are the methods used in OSAS surgery. We also aimed to compare the advantages and disadvantages of RF and TORS as treatment methods applied in OSAS patients in terms of many parameters, especially apnea hypopnea index (AHI). Patients were classified by performing a detailed examination and evaluation before surgery. 20 patients treated with anterior palatoplasty and uvulectomy -/+ tonsillectomy + RFTA (17 males, 3 females) and 20 patients treated with anterior palatoplasty and uvulectomy -/+  tonsillectomy + TORS (16 males, 4 females) were included in the study. PSG was performed preoperatively and postoperatively in all patients and Epworth sleepiness questionnaire was applied. All operations were performed by the same surgeon and these surgical methods -RF and TORS- were compared in terms of many parameters. When the patients treated with RF and TORS were compared in operation time, length of hospitalization and duration of transition to oral feeding; all parameters were significantly greater in the patients treated with TORS. TORS technique was found to be more successful than RF in terms of reduction of AHI value, correcting minimum arterial oxygen saturation value and decreasing Epworth Sleepiness Scale score.

  7. Radiofrequency ablation for treatment of sporadic angiomyolipoma.

    PubMed

    Prevoo, Warner; van den Bosch, Maurice A A J; Horenblas, Simon

    2008-07-01

    Symptomatic angiomyolipoma (AML) and asymptomatic AML larger than 4 cm in size are usually treated with nephron-sparing surgery or arterial embolization. We used another technique, that is, radiofrequency ablation (RFA), for treatment of a sporadic AML in a patient with a solitary kidney, in whom maximal sparing of normal renal tissue was required. Contrast-enhanced computed tomography (CT) showed an enhancing well-defined mainly lipomatous tumor, with a maximum diameter of 4.5 cm in the upper pole of the left kidney. Diagnosis of AML was confirmed with fine-needle aspiration biopsy. RFA was performed with a RF 3000 system, consisting of a generator that supplied up to 200W of power, connected to a 15-gauge LeVeen multipolar array electrode that was placed under CT-guidance centrally in the AML. Initial power was set at low power and increased with increments of 10W, according to the algorithm provided by the manufacturer, resulting in a final tumor end temperature above 65 degrees C. No complications occurred and the patient was discharged home the day after. During follow-up (12 months) function of the solitary kidney of the patient was preserved and patient did not have any AML-related symptoms develop. Contrast-enhanced CT scan showed complete (100%) tumor ablation with absence of enhancement in the tumor and decreased tumor size from 4.5 cm to 2.9 cm at 12 months. CT-guided RFA is a minimally invasive ablation procedure that allowed successful treatment of a sporadic AML in a patient with a solitary kidney. No complications occurred and no AML recurrence was observed during the 12-month follow-up.

  8. Comparison of laser- and RF-based interstitial coagulation systems for the treatment of liver tumors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    de Jager, Arjan A.; van Trier, Bart N.; Veenendaal, Liesbeth M.; van Hillegersberg, Richard; Verdaasdonk, Rudolf M.

    2005-04-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Surgical treatments, including hepatic resection and liver transplantation are considered as the most effective treatment of HCC. However, less than 20% of HCC patients can be treated surgically because of: multi-focal diseases, proximity of tumor to key vascular or biliary structures and inadequate functional hepatic reserve related coexistent cirrhosis. In this unfortunate groups of patients various palliative treatments modalities are being performed to extend the time of survival and quality of life. These techniques include trans-catheter arterial chemoembolization (TACE), percutaneous ethanol injection (PEI) and Interstitial Thermal Therapy: laser-induced interstitial thermotherapy (LITT) and radio-frequency ablation (RFA).

  9. Endourethral MRI Guidance for Prostatic RF Ablation

    DTIC Science & Technology

    2005-06-01

    head (3 cm wide) attached to a 24-cm plastic handle,. Copper tape and then covered with a coat of protective plastic. In addition, bazooka baluns made...in the perineum , advanced posterior surface. This arrangement was used to mimic the into the prostatic urethra, and fixated in the prostate by...are inserted through the perineum placed in the left lateral decubitus position to maximize and into the prostate gland, commonly under ultrasound

  10. Thermal Versus Impedance-Based Ablation of Renal Cell Carcinoma: A Meta-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modabber, Milad, E-mail: mmodabber@gmail.com; Martin, Jason, E-mail: jason.martin@medportal.ca; Athreya, Sriharsha, E-mail: sathreya@stjosham.on.ca

    2013-10-04

    BackgroundPercutaneous radiofrequency ablation (RFA) of renal carcinoma has become an established treatment modality. However, thermal (TB) versus impedance-based (IB)-RF generators have not been previously compared.MethodsA literature search on the application of RFA for renal masses using TB or IB-RF generators was performed. The safety, efficacy, and long-term outcomes of TB versus IB-based RFA were assessed using the outcome measures of technical success, local recurrence rate, complications, and preservation of renal function.ResultsAcross the 27 included studies, pooled results suggested comparable results for technical success (TB-RFA 98.53 % vs. IB-RFA 98.78 %, P = 0.9813). Clinical efficacy results were also similar across both generators (91.0 % TB-RFAmore » vs. 91.5 % IB-RFA; P = 0.73). At follow-up, no differences in renal function (relative risk [RR] 0.5, 95 % confidence interval [CI] 0.45–5.48), and local recurrence (RR 0.717, 95 % CI 0.49–1.50) were observed. The pooled proportion of overall complication rates was 13.1 % for TB-RFA and 11.5 % for IB-RFA.ConclusionNo differences in the observed parameters were found either during surgery or at follow-up.« less

  11. The effect of two different renal denervation strategies on blood pressure in resistant hypertension: Comparison of full-length versus proximal renal artery ablation.

    PubMed

    Chen, Weijie; Ling, Zhiyu; Du, Huaan; Song, Wenxin; Xu, Yanping; Liu, Zengzhang; Su, Li; Xiao, Peilin; Yuan, Yuelong; Lu, Jiayi; Zhang, Jianhong; Li, Zhifeng; Shao, Jiang; Zhong, Bin; Zhou, Bei; Woo, Kamsang; Yin, Yuehui

    2016-11-01

    Renal denervation (RDN) is used to manage blood pressure (BP) in patients with resistant hypertension (rHT), but effectiveness is still a concern, and key arterial portion for successful RDN is not clear. The aim of this study was to investigate the efficacy and safety of proximal versus full-length renal artery ablation in patients with resistant hypertension (rHT). Forty-seven patients with rHT were randomly assigned to receive full-length ablation (n = 23) or proximal ablation (n = 24) of the renal arteries. All lesions were treated with radiofrequency energy via a saline-irrigated catheter. Office BP was measured during 12 months of follow-up and ambulatory BP at baseline and 6 months (n = 15 in each group). Compared with full-length ablation, proximal ablation reduced the number of ablation points in both the right (6.1 ± 0.7 vs. 3.3 ± 0.6, P < 0.001) and the left renal arteries (6.2 ± 0.7 vs. 3.3 ± 0.8, P < 0.001), with significantly shorter RF delivery time (P < 0.001), but higher RF power (P = 0.011). Baseline office BPs was 179.4 ± 13.7/102.8 ± 9.4 mm Hg in the full-length group and 181.9 ± 12.8/103.5 ± 8.9 mm Hg in the proximal group (P > 0.5). Similar office BPs was reduced by -39.4 ± 11.5/-20.9 ± 7.1 mm Hg at 6 months and -38.2 ± 10.3/-21.5 ± 5.8 mm Hg at 12 months in the full-length group (P < 0.001), -42.0 ± 11.6/-21.4 ± 7.9 mm Hg at 6 months and -40.9 ± 10.3/-22.1 ± 5.6 mm Hg at 12 months in the proximal group (P < 0.001), and progressive BP reductions were observed over the 6 months (P < 0.001) in both groups. The drop in ambulatory 24-hr SBP and DBP were significantly less than the drop in office BP (P < 0.001). No renovascular or other adverse complications were observed. The results indicate that proximal RDN has a similar efficacy and safety profile compared with full-length RDN, and propose the proximal artery as the key portion for RDN. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Efficacy and safety of the second-generation cryoballoons versus radiofrequency ablation for the treatment of paroxysmal atrial fibrillation: a systematic review and meta-analysis.

    PubMed

    Jiang, Jingbo; Li, Jinyi; Zhong, Guoqiang; Jiang, Junjun

    2017-01-01

    Currently, radiofrequency (RF) and cryoballoon are the most commonly used ablation technologies for atrial fibrillation (AF). We performed a meta-analysis to assess the efficacy and safety of the second-generation cryoballoons (CB-2) compared with RF for paroxysmal atrial fibrillation (PAF) ablation. The PubMed, Cochrane Library, and Embase databases were searched and qualified studies were identified. The primary clinical outcome was the recurrence rate of atrial tachyarrhythmia (AT), and the secondary clinical outcomes were procedure time, fluoroscopy time, and the complications that followed. Nine observational studies (2336 patients) with a mean follow-up period ranging from 8.8 to 16.8 months were included. The CB-2 group was associated with a significantly lower recurrence rate of ATs (20.8 versus 29.8 %, p = 0.01). In subgroup analysis, compared with non-contact force sensing (NCF) catheter, using CB-2 showed significantly reduced incidence of ATs (22.0 versus 38.5 %, p < 0.00001). However, the difference became negligible in contrast with contact force sensing (CF) catheter. Moreover, the CB-2 group had a tendency to decrease procedure time (weighted mean difference -39.72 min, p = 0.0003), whereas fluoroscopy time was similar between the two groups. The total complication rate showed no statistical difference (8.8 versus 4.4 %, p = 0.08). Almost all the cases of phrenic nerve palsy occurred in the CB-2 group, whereas pericardial tamponade was seldom manifested in the CB-2 group. CB-2 tended to be more effective in comparison to NCF catheter and at least non-inferior to CF catheter, with shorter procedure time and similar safety endpoint.

  13. Ex Vivo Liver Experiment of Hydrochloric Acid-Infused and Saline-Infused Monopolar Radiofrequency Ablation: Better Outcomes in Temperature, Energy, and Coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiong-ying; Gu, Yang-kui; Huang, Jin-hua, E-mail: huangjh@sysucc.org.cn

    ObjectiveTo compare temperature, energy, and coagulation between hydrochloric acid-infused radiofrequency ablation (HAIRFA) and normal saline-infused radiofrequency ablation (NSIRFA) in ex vivo porcine liver model.Materials and Methods30 fresh porcine livers were excised in 60 lesions, 30 with HAIRFA and the other 30 with NSIRFA. Both modalities used monopolar perfusion electrode connected to a RF generator set at 103 °C and 30 W. In each group, ablation time was set at 10, 20, or 30 min (10 lesions from each group at each time). We compared tissue temperatures (at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 cm away from the electrode tip), average power, deposited energy,more » deposited energy per coagulation volume (DEV), coagulation diameters, coagulative volume, and spherical ratio between the two groups.ResultsTemperature–time curves showed that HAIRFA provided progressively greater heating than that of NSIRFA. At 30 min, mean average power, deposited energy, coagulation volumes (113.67 vs. 12.28 cm{sup 3}) and diameters, and increasing in tissue temperature were much greater with HAIRFA (P < 0.001 for all), except DEV was lower (456 vs. 1396 J/cm{sup 3}, P < 0.001). The spherical ratio was closer to 1 with HAIRFA (1.23 vs. 1.46). Coagulation diameters, volume, and average power of HAIRFA increased significantly with longer ablation times. While with NSIRFA, these characteristics were stable till later 20 min, except the power decreased with longer ablation times.ConclusionsHAIRFA creates much larger and more spherical lesions by increasing overall energy deposition, modulating thermal conductivity, and transferring heat during ablation.« less

  14. BIOPHYSICAL PARAMETERS DURING RADIOFREQUENCY CATHETER ABLATION OF SCAR-MEDIATED VENTRICULAR TACHYCARDIA: EPICARDIAL AND ENDOCARDIAL APPLICATIONS VIA MANUAL AND MAGNETIC NAVIGATION

    PubMed Central

    Bourke, Tara; Buch, Eric; Mathuria, Nilesh; Michowitz, Yoav; Yu, Ricky; Mandapati, Ravi; Shivkumar, Kalyanam; Tung, Roderick

    2014-01-01

    Background There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT). Methods and Results Data was collected from consecutive patients undergoing VT ablation with open-irrigation. Complete data was available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: >10Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs 76%, p=0.002) and loss of capture (46% vs 27%, p<0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10Ω impedance drop (83% vs 71%, p=0.02) and an EGM reduction (71% vs 40%, p< 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed. Conclusions VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. PMID:24946895

  15. Biophysical parameters during radiofrequency catheter ablation of scar-mediated ventricular tachycardia: epicardial and endocardial applications via manual and magnetic navigation.

    PubMed

    Bourke, Tara; Buch, Eric; Mathuria, Nilesh; Michowitz, Yoav; Yu, Ricky; Mandapati, Ravi; Shivkumar, Kalyanam; Tung, Roderick

    2014-11-01

    There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT). Data were collected from consecutive patients undergoing VT ablation with open-irrigation. Complete data were available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: >10Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs. 76%, P = 0.002) and loss of capture (46% vs. 27%, P < 0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10Ω impedance drop (83% vs. 71%, P = 0.02) and an EGM reduction (71% vs. 40%, P < 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed. VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions, and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. © 2014 Wiley Periodicals, Inc.

  16. Percutaneous Radiofrequency Ablation with Multiple Electrodes for Medium-Sized Hepatocellular Carcinomas

    PubMed Central

    Lee, Jung; Yoon, Jung-Hwan; Lee, Jae Young; Kim, Se Hyung; Lee, Jeong Eun; Han, Joon Koo; Choi, Byung Ihn

    2012-01-01

    Objective To prospectively evaluate the safety and short-term therapeutic efficacy of switching monopolar radiofrequency ablation (RFA) with multiple electrodes to treat medium-sized (3.1-5.0 cm), hepatocellular carcinomas (HCC). Materials and Methods In this prospective study, 30 patients with single medium-sized HCCs (mean, 3.5 cm; range, 3.1-4.4 cm) were enrolled. The patients were treated under ultrasonographic guidance by percutaneous switching monopolar RFA with a multichannel RF generator and two or three internally cooled electrodes. Contrast-enhanced CT scans were obtained immediately after RFA, and the diameters and volume of the ablation zones were then measured. Follow-up CT scans were performed at the first month after ablation and every three months thereafter. Technical effectiveness, local progression and remote recurrence of HCCs were determined. Results There were no major immediate or periprocedural complications. However, there was one bile duct stricture during the follow-up period. Technical effectiveness was achieved in 29 of 30 patients (97%). The total ablation time of the procedures was 25.4 ± 8.9 minutes. The mean ablation volume was 73.8 ± 56.4 cm3 and the minimum diameter was 4.1 ± 7.3 cm. During the follow-up period (mean, 12.5 months), local tumor progression occurred in three of 29 patients (10%) with technical effectiveness, while new HCCs were detected in six of 29 patients (21%). Conclusion Switching monopolar RFA with multiple electrodes in order to achieve a sufficient ablation volume is safe and efficient. This method also showed relatively successful therapeutic effectiveness on short-term follow up for the treatment of medium-sized HCCs. PMID:22247634

  17. Outcomes of atrioesophageal fistula following catheter ablation of atrial fibrillation treated with surgical repair versus esophageal stenting.

    PubMed

    Mohanty, Sanghamitra; Santangeli, Pasquale; Mohanty, Prasant; Di Biase, Luigi; Trivedi, Chintan; Bai, Rong; Horton, Rodney; Burkhardt, J David; Sanchez, Javier E; Zagrodzky, Jason; Bailey, Shane; Gallinghouse, Joseph G; Hranitzky, Patrick M; Sun, Albert Y; Hongo, Richard; Beheiry, Salwa; Natale, Andrea

    2014-06-01

    Atrioesophageal fistula (AEF) is a rare but devastating complication of radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Surgical repair and esophageal stents are available treatment options for AEF. We report outcomes of these 2 management strategies. Nine patients with AEF post-RFCA for AF were included in this study. AEF was diagnosed based on symptoms and chest CT imaging. Of the 9 patients, 5 received stents and 4 underwent surgical repair of fistula. AF ablation was performed under general anesthesia (n = 4) or conscious sedation (n = 5). During ablation, RF power was maintained between 25 and 35 Watts in areas close to the esophagus and energy delivery discontinued when esophageal temperature reached 38 °C. Seven patients underwent ablation with 3.5-mm open-irrigated catheter, 1 with 8-mm nonirrigated catheter, and 1 had surgical epicardial ablation. Seven patients received proton pump inhibitor and sucralfate before and after procedure. AEF symptoms developed within 2–6 weeks from ablation. Esophageal stenting was performed in 5 patients (median age 58 years, median time from RFCA 4 weeks) and 4 underwent surgical repair (median age 54 years, median time from RFCA 4 weeks) within 2–4 hours from diagnosis. All 5 patients receiving stents died within 1 week of the procedure due to cerebral embolism, septic shock, or respiratory failure. On the other hand, the 4 patients that received surgical repair were alive at median follow-up of 2.1 years (P = 0.005). Esophageal stenting should be discouraged and prompt surgical repair is crucial for survival in patients with atrioesophageal fistula.

  18. Combined infrared light and bipolar radiofrequency for skin tightening in Asians.

    PubMed

    Yu, Carol S; Yeung, Chi K; Shek, Samantha Y; Tse, Raymond K; Kono, Taro; Chan, Henry H

    2007-07-01

    As the demand for non-invasive procedures for skin tightening is increasing, combined optical and radiofrequency (RF) devices have recently emerged. The purpose of this study is to evaluate the safety and efficacy of a device that combined broadband infrared (IR) light (700-2000 nm) and bipolar RF (electro-optical synergy [ELOS]) for non-ablative treatment of facial laxity. DESIGN/MATERIALS AND METHODS: Nineteen Chinese volunteers of skin types III-V, with facial laxity and periorbital rhytides, received three treatments at 3-week intervals with combined IR (700-2000 nm, 10 W/cm(2)) and RF energies (70-120 J/cm(3)). Standardized photographs were taken by the Canfield Visia CR system at baseline and serially for 3 months after the last treatment. Two masked assessors evaluated the photographs to assess the improvement in skin laxity. Patient satisfaction scores were also obtained. At 3 months after the last treatment, 89.5% of the subjects reported moderate to significant subjective improvement in skin laxity of cheek, jowl, periorbital area and upper neck, with a high overall satisfaction rating. Masked observers' assessments were less remarkable. Mild improvement in skin laxity was observed over mid and lower face. There was no serious complication. The combination of broadband infrared light and bipolar radiofrequency produces mild improvement of facial laxity in Asians with no serious adverse sequelae. A high patients' satisfaction is achieved. However, further studies are necessary to demonstrate the long-term effects of the procedure and to optimize treatment parameters. (c) 2007 Wiley-Liss, Inc.

  19. Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: Feasibility study on an agar phantom model.

    PubMed

    Blasco-Gimenez, Ramón; Lequerica, Juan L; Herrero, Maria; Hornero, Fernando; Berjano, Enrique J

    2010-04-01

    The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min(-1)). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 degrees C; (3) substantial errors (larger than 15 degrees C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 degrees C).

  20. Mathematical Modeling of Radiofrequency Ablation for Varicose Veins

    PubMed Central

    Choi, Sun Young; Kwak, Byung Kook

    2014-01-01

    We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one. PMID:25587351

  1. RF Ablation of Giant Hemangiomas Inducing Acute Renal Failure: A Report of Two Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl; Dresselaars, Helena F.; Scheffer, Hester J.

    ObjectiveIn patients that require treatment for hepatic giant cavernous hemangiomas (GCH), radiofrequency ablation (RFA) has been suggested to represent a safe and effective alternative to invasive surgery. In a recent report of bipolar RFA, using two expandable needle electrodes, was uneventfully performed in patients with large GCH (>10 cm). The objective of this report is to present two cases in which bipolar RFA of symptomatic GCH was complicated by acute kidney injury.Materials and methodsIn 2015 we treated two patients for very large symptomatic GCH (15.7 and 25.0 cm) with bipolar RFA during open laparotomy.ResultsIn both patients the urine showed a red–brown discolorationmore » directly after the ablation. They became anuric and presented with progressive dyspnea, tachypnea, and tachycardia, requiring hemodialysis for a period of 1 month in one case. Lab results revealed hemepigment-induced acute kidney. Both patients fully recovered and both showed a complete relief of symptoms at 3 months following the procedure.ConclusionRFA for large GCHs can cause hemepigment-induced acute kidney injury due to massive intravascular hemolysis. The presented cases suggest that caution is warranted and advocate an upper limit regarding the volume of GCHs that can be safely ablated.« less

  2. Radio frequency ablation of small renal tumors:: intermediate results.

    PubMed

    Hwang, J J; Walther, M M; Pautler, S E; Coleman, J A; Hvizda, J; Peterson, James; Linehan, W M; Wood, B J

    2004-05-01

    With evolving radio frequency technology, the clinical application of radio frequency ablation (RFA) has been actively investigated in the treatment for small renal tumors. We present our intermediate patient outcomes after RFA. Since January 2001, 17 patients with a total of 24 hereditary renal tumors ranging from 1.2 to 2.85 cm were treated with RFA using the 200 W Cool-tip RF System (Radionics, Burlington, Massachusetts) under laparoscopic (9) or percutaneous (8) guidance and had a minimum 1-year followup. A percutaneous approach was considered unsuitable if kidney tumors were contiguous to bowel, ureter or large vessels. Treatment eligibility criteria included an average tumor diameter of less than 3.0 cm, tumor growth during 1 year and solid appearance with contrast enhancement (HU change greater than 20) on computerized tomography (CT). Postoperative followup consisted of CT with and without intravenous contrast, and renal function assessment at regular intervals. Median patient age was 38 years (range 20 to 51). At a median followup of 385 days (range 342 to 691), median tumor or thermal lesion diameter decreased from 2.26 to 1.62 cm (p = 0.0013), and only 1 lesion (4%), which was located centrally near the hilum, exhibited contrast enhancement (HU change greater than 10) on CT at 12 months. Of the 15 renal tumors ablated laparoscopically, 13 were in direct contact with the bowel and 2 were abutting the ureter, necessitating mobilization before RFA. Laparoscopic ultrasound was used to guide radio frequency electrode placement and monitor the ablation process in these cases. Operative time and intraoperative blood loss (mean +/- standard mean of error) were 243 +/- 29 minutes and 67 +/- 9 cc, respectively. In 1 patient whose ureter was adherent to the tumor a ureteropelvic junction obstruction developed after laparoscopic RFA, requiring open repair. At the minimum 1-year followup 23 of 24 ablated tumors lacked contrast uptake on CT, meeting our radiographic criteria of successful RFA treatment. RFA treatment of small renal tumors using the Radionics system appears to result in superior treatment outcomes compared to those of earlier series with lower radio frequency power generators. A high wattage generator might attain more consistent energy deposition with subsequent cell death in the targeted tissue due to less convective heat loss.

  3. Numerical models of cell death in RF ablation with monopolar and bipolar probes

    NASA Astrophysics Data System (ADS)

    Bright, Benjamin M.; Pearce, John A.

    2013-02-01

    Radio frequency (RF) is used clinically to treat unresectible tumors. Finite element modeling has proven useful in treatment planning and applicator design. Typically isotherms in the middle 50s °C have been used as the parameter of assessment in these models. We compare and contrast isotherms for multiple known Arrhenius thermal damage predictors including collagen denaturation, vascular disruption, liver coagulation and cell death. Models for RITA probe geometries are included in the study. Comparison to isotherms is sensible when the activation time is held constant, but varies considerably when heating times vary. The purpose of this paper is to demonstrate the importance of looking at specific processes and keeping track of the methods used to derive the Arrhenius coefficients in order to study the extremely complex cell death processes due to thermal therapies.

  4. Accuracy of epicardial electroanatomic mapping and ablation of sustained ventricular tachycardia merged with heart CT scan in chronic Chagasic cardiomyopathy.

    PubMed

    Valdigem, Bruno Pereira; da Silva, Nilton José Carneiro; Dietrich, Cristiano Oliveira; Moreira, Dalmo; Sasdelli, Roberto; Pinto, Ibraim M; Cirenza, Claudio; de Paola, Angelo Amato Vincenzo

    2010-11-01

    As damage to coronary arteries is a potential complication of epicardial RF catheter ablation (EPRFCA), the procedure must be associated with coronary angiography. Chronic Chagasic cardiomiopathy (CCC) is a disease where epicardial VT are common. Eletroanatomic mapping merged with computed totmography (CT) scan data is a useful tool for mapping the endocardium, and its accuracy in guiding ablation on the epicardium was not adequately evaluated so far. Compare electronatomic map merged with Heart CT to fluoroscopy for epicardial ablation of CCC. Describe the distribution of the scars on CCC. We performed epicardial and endocardial mapping and ablation using CARTO XP V8 on eight patients and merged the map with coronary arteries CT scan using at least three landmarks. To compare the 3D image obtained with CARTO MERGE and the 2D fluoroscopic image obtained during the ablation procedure, we used computer graphic software (Inkscape™) in order to prove that the images were equivalent and to compare the distance between the catheter tip on fluoroscopy to catheter tip on 3D EA map. EPRFCA was successfully performed in all patients and they did not present recurrence for at least 3-month follow-up. The mean difference between the tip of the catheter on fluoroscopy and on the 3D model was 6.03 ± 2.09 mm. Scars were present in the epicardium and endocardium and most of patients presented with posterior wall scars and RV scar. The combination of electroanatomic map and CT coronary artery scan data is feasible and can be an important tool for EPRFCA in patients with CCC and VT.

  5. Flat-Panel Cone-Beam Ct-Guided Radiofrequency Ablation of Very Small (≤1.5 cm) Liver Tumors: Technical Note on a Preliminary Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Alberti, Nicolas, E-mail: nicoalbertibdx@gmail.com

    2015-02-15

    PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize themore » tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.« less

  6. Measured performance of the GTA rf systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, P.M.; Jachim, S.P.

    1993-06-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  7. Measured performance of the GTA rf systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  8. Rf Feedback free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  9. Wireless Medical Devices for MRI-Guided Interventions

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Madhav

    Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation. Quantitative performance metrics are successfully predicted and the role of simulation in geometric optimization is demonstrated. In a pig study, we demonstrate navigation of a catheter, with tip-tracking and high-resolution intravascular imaging, through the vasculature into the heart, followed by contextual visualization. A potentially significant application is in MRI-guided cardiac ablation procedures.

  10. Rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-11-02

    A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  11. Remote Magnetic versus Manual Navigation for Radiofrequency Ablation of Paroxysmal Atrial Fibrillation: Long-Term, Controlled Data in a Large Cohort.

    PubMed

    Kataria, Vikas; Berte, Benjamin; Vandekerckhove, Yves; Tavernier, Rene; Duytschaever, Mattias

    2017-01-01

    Purpose. We aimed to study long-term outcome after pulmonary vein isolation (PVI) guided by remote magnetic navigation (RMN) and provided comparative data to outcome after manual navigation (MAN). Methods. Three hundred thirty-six patients with symptomatic paroxysmal AF underwent PVI by irrigated point-by-point radiofrequency (RF) ablation (RMN, n = 114 versus MAN, n = 222). Patients were followed up with symptom guided rhythm monitoring for a period up to 43 months. The end point of the study was freedom from repeat ablation after a single procedure and without antiarrhythmic drug treatment (ADT). Results. At the end of follow-up (median 26.3 months), freedom from repeat ablation was comparable between RMN and MAN (70.9% versus 69.5%, p = 0.61). At repeat, mean number of reconnected veins was 2.4 ± 1.2 in RMN versus 2.6 ± 1.0 in MAN ( p = 0.08). The majority of repeat procedures occurred during the first year (82.1% in RMN versus 78.5% in MAN; p = 0.74). Conclusion. On the long term (up to 3 years) and in a large cohort of patients with paroxysmal AF, RMN-guided PVI is as effective as MAN guided PVI. In both strategies the majority of repeat procedures occurred during the first year after index procedure.

  12. Remote Magnetic versus Manual Navigation for Radiofrequency Ablation of Paroxysmal Atrial Fibrillation: Long-Term, Controlled Data in a Large Cohort

    PubMed Central

    Berte, Benjamin; Vandekerckhove, Yves; Tavernier, Rene

    2017-01-01

    Purpose. We aimed to study long-term outcome after pulmonary vein isolation (PVI) guided by remote magnetic navigation (RMN) and provided comparative data to outcome after manual navigation (MAN). Methods. Three hundred thirty-six patients with symptomatic paroxysmal AF underwent PVI by irrigated point-by-point radiofrequency (RF) ablation (RMN, n = 114 versus MAN, n = 222). Patients were followed up with symptom guided rhythm monitoring for a period up to 43 months. The end point of the study was freedom from repeat ablation after a single procedure and without antiarrhythmic drug treatment (ADT). Results. At the end of follow-up (median 26.3 months), freedom from repeat ablation was comparable between RMN and MAN (70.9% versus 69.5%, p = 0.61). At repeat, mean number of reconnected veins was 2.4 ± 1.2 in RMN versus 2.6 ± 1.0 in MAN (p = 0.08). The majority of repeat procedures occurred during the first year (82.1% in RMN versus 78.5% in MAN; p = 0.74). Conclusion. On the long term (up to 3 years) and in a large cohort of patients with paroxysmal AF, RMN-guided PVI is as effective as MAN guided PVI. In both strategies the majority of repeat procedures occurred during the first year after index procedure. PMID:28386560

  13. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.

  14. Revisiting pulmonary vein isolation alone for persistent atrial fibrillation: A systematic review and meta-analysis.

    PubMed

    Voskoboinik, Aleksandr; Moskovitch, Jeremy T; Harel, Nadav; Sanders, Prashanthan; Kistler, Peter M; Kalman, Jonathan M

    2017-05-01

    Early studies demonstrated relatively low success rates for pulmonary vein isolation (PVI) alone in patients with persistent atrial fibrillation (PeAF). However, the advent of new technologies and the observation that additional substrate ablation does not improve outcomes have created a new focus on PVI alone for treatment of PeAF. The purpose of this study was to systematically review the recent medical literature to determine current medium-term outcomes when a PVI-only approach is used for PeAF. An electronic database search (MEDLINE, Embase, Web of Science, PubMed, Cochrane) was performed in August 2016. Only studies of PeAF patients undergoing a "PVI only" ablation strategy using contemporary radiofrequency (RF) technology or second-generation cryoballoon (CB2) were included. A random-effects model was used to assess the primary outcome of pooled single-procedure 12-month arrhythmia-free survival. Predictors of recurrence were also examined and a meta-analysis performed if ≥4 studies examined the parameter. Fourteen studies of 956 patients, of whom 45.2% underwent PVI only with RF and 54.8% with CB2, were included. Pooled single-procedure 12-month arrhythmia-free survival was 66.7% (95% confidence interval [CI] 60.8%-72.2%), with the majority of patients (80.5%) off antiarrhythmic drugs. Complication rates were very low, with cardiac tamponade occurring in 5 patients (0.6%) and persistent phrenic nerve palsy in 5 CB2 patients (0.9% of CB2). Blanking period recurrence (hazard ratio 4.68, 95% CI 1.70-12.9) was the only significant predictor of recurrence. A PVI-only strategy in PeAF patients with a low prevalence of structural heart disease using contemporary technology yields excellent outcomes comparable to those for paroxysmal AF ablation. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Brachial Plexus Injury from CT-Guided RF Ablation Under General Anesthesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar, Sridhar, E-mail: shankars@ummhc.org; Sonnenberg, Eric van; Silverman, Stuart G.

    2005-06-15

    Brachial plexus injury in a patient under general anesthesia (GA) is not uncommon, despite careful positioning and, particularly, awareness of the possibility. The mechanism of injury is stretching and compression of the brachial plexus over a prolonged period. Positioning the patient within the computed tomography (CT) gantry for abdominal or chest procedures can simulate a surgical procedure, particularly when GA is used. The potential for brachial plexus injury is increased if the case is prolonged and the patient's arms are raised above the head to avoid CT image degradation from streak artifacts. We report a case of profound brachial plexusmore » palsy following a CT-guided radiofrequency ablation procedure under GA. Fortunately, the patient recovered completely. We emphasize the mechanism of injury and detail measures to combat this problem, such that radiologists are aware of this potentially serious complication.« less

  16. Real-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging

    NASA Astrophysics Data System (ADS)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa

    2006-05-01

    The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this method will include, ex vivo and in vivo, stiffness and temperature.

  17. Low temperature laser molecular beam epitaxy and characterization of AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Tyagi, Prashant; Ch., Ramesh; Kushvaha, S. S.; Kumar, M. Senthil

    2017-05-01

    We have grown AlGaN (0001) epitaxial layers on sapphire (0001) by using laser molecular beam epitaxy (LMBE) technique. The growth was carried out using laser ablation of AlxGa1-x liquid metal alloy under r.f. nitrogen plasma ambient. Before epilayer growth, the sapphire nitradation was performed at 700 °C using r.f nitrogen plasma followed by AlGaN layer growth. The in-situ reflection high energy electron diffraction (RHEED) was employed to monitor the substrate nitridation and AlGaN epitaxial growth. High resolution x-ray diffraction showed wurtzite hexagonal growth of AlGaN layer along c-axis. An absorption bandgap of 3.97 eV is obtained for the grown AlGaN layer indicating an Al composition of more than 20 %. Using ellipsometry, a refractive index (n) value of about 2.19 is obtained in the visible region.

  18. Simple coil-powering techniques for generating 10KA/m alternating magnetic field at multiple frequencies using 0.5KW RF power for magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Sun, Tengfei; Ranjan, Ashish

    2017-02-01

    Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.

  19. Radiofrequency Procedures to Relieve Chronic Knee Pain: An Evidence-Based Narrative Review.

    PubMed

    Bhatia, Anuj; Peng, Philip; Cohen, Steven P

    2016-01-01

    Chronic knee pain from osteoarthritis or following arthroplasty is a common problem. A number of publications have reported analgesic success of radiofrequency (RF) procedures on nerves innervating the knee, but interpretation is hampered by lack of clarity regarding indications, clinical protocols, targets, and longevity of benefit from RF procedures. We reviewed the following medical literature databases for publications on RF procedures on the knee joint for chronic pain: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Google Scholar up to August 9, 2015. Data on scores for pain, validated scores for measuring physical disability, and adverse effects measured at any timepoint after 1 month following the interventions were collected, analyzed, and reported in this narrative review. Thirteen publications on ablative or pulsed RF treatments of innervation of the knee joint were identified. A high success rate of these procedures in relieving chronic pain of the knee joint was reported at 1 to 12 months after the procedures, but only 2 of the publications were randomized controlled trials. There was evidence for improvement in function and a lack of serious adverse events of RF treatments. Radiofrequency treatments on the knee joint (major or periarticular nerve supply or intra-articular branches) have the potential to reduce pain from osteoarthritis or persistent postarthroplasty pain. Ongoing concerns regarding the quality, procedural aspects, and monitoring of outcomes in publications on this topic remain. Randomized controlled trials of high methodological quality are required to further elaborate role of these interventions in this population.

  20. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  1. Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined alphas and tritons on TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.; Duong, H.H.; Fisher, R.K.

    1996-05-01

    Radially-resolved energy and density distributions of the energetic confined alpha particles in D-T experiments on TFTR are being measured by active neutral particle analysis using low-Z impurity pellet injection. When injected into a high temperature plasma, an impurity pellet (e.g. Lithium or Boron) rapidly ablates forming an elongated cloud which is aligned with the magnetic field and moves with the pellet. This ablation cloud provides a dense target with which the alpha particles produced in D-T fusion reactions can charge exchange. A small fraction of the alpha particles incident on the pellet ablation cloud will be converted to helium neutralsmore » whose energy is essentially unchanged by the charge transfer process. By measuring the resultant helium neutrals escaping from the plasma using a mass and energy resolving charge exchange analyzer, this technique offers a direct measurement of the energy distribution of the incident high-energy alpha particles. Other energetic ion species can be detected as well, such as tritons generated in D-D plasmas and H or He{sup 3} RF-driven minority ion tails. The diagnostic technique and its application on TFTR are described in detail.« less

  2. Integrated RFA/OCT catheter for real-time guidance of cardiac RFA therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoyong; Blumenthal, Colin; Dosluoglu, Deniz; Wang, Yves T.; Jenkins, Michael W.; Souza, Rakesh; Snyder, Christopher; Arruda, Mauricio; Rollins, Andrew M.

    2016-03-01

    Currently, cardiac radiofrequency ablation is guided by indirect signals. We demonstrate an integrated radiofrequency ablation (RFA) and optical coherence tomography (OCT) probe for directly monitoring of the RFA procedure with OCT images in real time. The integrated RFA/OCT probe is modified from a standard commercial RFA catheter, and a newly designed and fabricated miniature forward-viewing cone-scanning OCT probe is integrated into the modified probe. The OCT system is verified with the human finger images, and the results show the integrated RFA/OCT probe can acquire high quality OCT images. The radiofrequency energy delivering function of the integrated probe is verified by comparing the RFA lesion sizes with standard commercial RFA probe. For the standard commercial probe, the average width and depth of the 10 lesions were 3.5 mm and 1.8 mm respectively. For the integrated RFA/OCT probe, the average width and depth of the 10 lesions were 3.6 mm and 1.7 mm respectively. The lesions created by the two probes are indistinguishable in size. This demonstrates that our glass window in the integrated probe has little effect on the RF energy delivery. And the integrated probe is used to monitoring the cardiac RFA procedure in real time. The results show that the RFA lesion formation can be confirmed by the loss of birefringence in the heart tissue. The system can potentially in vivo image of the cardiac wall to aid RFA therapy for cardiac arrhythmias.

  3. In vivo feasibility of real-time monitoring of focused ultrasound surgery (FUS) using harmonic motion imaging (HMI).

    PubMed

    Maleke, Caroline; Konofagou, Elisa E

    2010-01-01

    In this study, the Harmonic Motion Imaging for Focused Ultrasound (HMIFU) technique is applied to monitor changes in mechanical properties of tissues during thermal therapy in a transgenic breast cancer mouse model in vivo. An HMIFU system, composed of a 4.5-MHz focused ultrasound (FUS) and a 3.3-MHz phased-array imaging transducer, was mechanically moved to image and ablate the entire tumor. The FUS transducer was driven by an amplitude-modulated (AM) signal at 15 Hz. The acoustic intensity ( I(spta)) was equal to 1050 W/cm(2) at the focus. A digital low-pass filter was used to filter out the spectrum of the FUS beam and its harmonics prior to displacement estimation. The resulting axial displacement was estimated using 1-D cross-correlation on the acquired RF signals. Results from two mice with eight lesions formed in each mouse (16 lesions total) showed that the average peak-to-peak displacement amplitude before and after lesion formation was respectively equal to 17.34 +/- 1.34 microm and 10.98 +/- 1.82 microm ( p < 0.001). Cell death was also confirmed by hematoxylin and eosin histology. HMI displacement can be used to monitor the relative tissue stiffness changes in real time during heating so that the treatment procedure can be performed in a time-efficient manner. The HMIFU system may, therefore, constitute a cost-efficient and reliable alternative for real-time monitoring of thermal ablation.

  4. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  5. Radiofrequency Ablation Using a Multiple-Electrode Switching System for Lung Tumors with 2.0-5.0-cm Maximum Diameter: Phase II Clinical Study.

    PubMed

    Kodama, Hiroshi; Yamakado, Koichiro; Hasegawa, Takaaki; Fujimori, Masashi; Yamanaka, Takashi; Takaki, Haruyuki; Uraki, Junji; Nakatsuka, Atsuhiro; Sakuma, Hajime

    2015-12-01

    To prospectively evaluate the safety and effectiveness of radiofrequency ablation (RFA) by using a multiple-electrode switching system to treat 2.0-5.0-cm lung tumors. The institutional review board approved this prospective phase II study. Written informed consent was obtained from all patients. Between September 2009 and July 2011, RFA using two or three radiofrequency (RF) electrodes and a multiple-electrode switching system was performed for malignant lung tumors with a maximum tumor diameter of 2.0-5.0 cm in nonsurgical candidates. The primary endpoint was safety, as evaluated using the Common Terminology Criteria for Adverse Events. Patients were observed for at least 1 year. Local tumor progression and overall survival were analyzed with the Kaplan-Meier method. Thirty-three patients (26 men, seven women; mean age, 70.5 years ± 10.0; age range, 46-87 years) with 35 lung tumors with a mean maximum diameter of 3.0 cm ± 0.7 (standard deviation; range, 2.0-4.4 cm) underwent treatment in 35 sessions. No procedure-related death or grade 4 adverse events (AEs) occurred. Grade 3 AEs occurred in four patients (12%), with pleural effusion requiring chest tube placement in two patients, pneumothorax requiring pleural adhesion in one patient, and pulmonary hemorrhage requiring pulmonary artery coil embolization in one patient. Grade 2 AEs were detected in 13 patients (39%). The 1-year local tumor progression and overall survival rates were 12.7% (95% confidence interval [CI]: 1.0, 25.5) and 81.2% (95% CI: 67.6, 94.8). RFA with a multiple-electrode switching system may be a safe therapeutic option with which to treat 2.0-5.0-cm lung cancer tumors.

  6. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Arnegger, F.; Koch, V.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Signmore » C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.« less

  7. Radiofrequency tissue ablation of the inferior turbinates using a thermocouple feedback electrode.

    PubMed

    Smith, T L; Correa, A J; Kuo, T; Reinisch, L

    1999-11-01

    The objective of this clinical trial was to assess the safety and efficacy of radiofrequency (RF) tissue ablation of the inferior turbinates in the treatment of nasal obstruction using an RF energy delivery system with a thermocouple feedback electrode. A prospective, nonrandomized study of 11 patients (mean age, 47+/-12 y) with chronic nasal obstruction was conducted. Using patient-based visual analogue scales (VAS), symptom parameters were assessed. These included degree of nasal obstruction, frequency of nasal obstruction, and pain. Physician assessment of nasal obstruction was also collected by the principal investigator. Follow-up was conducted at 24 hours, 1 week, 4 weeks, 8 weeks, and 1 year. ANOVA was carried out to determine statistically significant differences in the data. Data were fit to a regression model, and confidence intervals were determined from a 95% confidence level. In patient-assessed degree of nasal obstruction, statistical significance was seen among baseline and 4 weeks, 8 weeks, and 1 year (P<.001, P<.0001, and P<.0008, respectively). There was no difference between 8 weeks and 1 year (P<.15). The data appeared to follow an exponential decay to a constant value. The pretreatment baseline average degree of obstruction was 7.5+/-0.5 on a scale of 0 to 10. The degree of obstruction after 8 weeks was 2.7+/-0.6. The time constant for this change was 21 days to reach 90% of the final value. At 1 year, degree of obstruction was 3.3+/-0.7. For frequency of nasal obstruction, statistical significance was seen among baseline and 4 weeks, 8 weeks, and 1 year (P<.0001, P<.0001, and P<.0001, respectively). There was no difference between 8 weeks and 1 year (P<.15). The pretreatment baseline average frequency of obstruction was 7.8+/-0.5. The remaining frequency of obstruction after 8 weeks was 2.9+/-0.6. The time constant was 18 days. At 1 year, frequency of obstruction was 3.3+/-0.6. Physician assessment of nasal obstruction revealed statistical significance among baseline and 4 weeks, and baseline and 8 weeks (P<.0055 and P<.0056, respectively). There was no difference between 4 weeks and 8 weeks (P<.24). The average initial obstruction was 83%+/-4%. The remaining obstruction after 8 weeks was 58% +/-5%. The time constant was 14 days. Mild pain was reported by 55% of patients during the procedure; the remaining 45% reported no pain. Only one patient required pain medication consisting of acetaminophen after the procedure. There were no significant complications. Degree and frequency of nasal obstruction, as reported by patients, decreased following RF tissue ablation of the inferior turbinates. This improvement in symptoms was still evident after 1 year (P<.001). Physician assessment of obstruction also correlated with patient reports for the initial 8-week study period. The procedure was safe and well tolerated. Thermocouples within the active electrode provided additional feedback to the operating surgeon allowing the use of relatively lower tissue temperatures, power, and energy as compared with traditional techniques. These results support the need for continued research to evaluate this modality as a treatment for chronic nasal obstruction.

  8. Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study.

    PubMed

    Irastorza, Ramiro M; d'Avila, Andre; Berjano, Enrique

    2018-02-01

    The use of ultra-short RF pulses could achieve greater lesion depth immediately after the application of the pulse due to thermal latency. A computer model of irrigated-catheter RF ablation was built to study the impact of thermal latency on the lesion depth. The results showed that the shorter the RF pulse duration (keeping energy constant), the greater the lesion depth during the cooling phase. For instance, after a 10-second pulse, lesion depth grew from 2.05 mm at the end of the pulse to 2.39 mm (17%), while after an ultra-short RF pulse of only 1 second the extra growth was 37% (from 2.22 to 3.05 mm). Importantly, short applications resulted in deeper lesions than long applications (3.05 mm vs. 2.39 mm, for 1- and 10-second pulse, respectively). While shortening the pulse duration produced deeper lesions, the associated increase in applied voltage caused overheating in the tissue: temperatures around 100 °C were reached at a depth of 1 mm in the case of 1- and 5-second pulses. However, since the lesion depth increased during the cooling period, lower values of applied voltage could be applied in short durations in order to obtain lesion depths similar to those in longer durations while avoiding overheating. The thermal latency phenomenon seems to be the cause of significantly greater lesion depth after short-duration high-power RF pulses. Balancing the applied total energy when the voltage and duration are changed is not the optimal strategy since short pulses can also cause overheating. © 2017 Wiley Periodicals, Inc.

  9. Stereo-EEG: Diagnostic and therapeutic tool for periventricular nodular heterotopia epilepsies.

    PubMed

    Mirandola, Laura; Mai, Roberto F; Francione, Stefano; Pelliccia, Veronica; Gozzo, Francesca; Sartori, Ivana; Nobili, Lino; Cardinale, Francesco; Cossu, Massimo; Meletti, Stefano; Tassi, Laura

    2017-11-01

    Periventricular nodular heterotopias (PNHs) are malformations of cortical development related to neuronal migration disorders, frequently associated with drug-resistant epilepsy (DRE). Stereo-electroencephalography (SEEG) is considered a very effective step of the presurgical evaluation, providing the recognition of the epileptogenic zone (EZ). At the same time, via the intracerebral electrodes it is possible to perform radiofrequency thermocoagulation (SEEG-guided RF-TC) with the aim of ablating and/or disrupting the EZ. The purpose of this study was to evaluate both the relationships between PNH and the EZ, and the efficacy of SEEG-guided RF-TC. Twenty patients with DRE related to PNHs were studied. Inclusion criteria were the following: (1) patients with epilepsy and PNHs (unilateral or bilateral, single or multiple nodules) diagnosed on brain magnetic resonance imaging (MRI); (2) SEEG recordings available as part of the presurgical investigations, with at least one intracerebral electrode inside the heterotopia; (3) complete surgical workup with SEEG-guided RF-TC and/or with traditional neurosurgery, with a follow-up of at least 12 months. Complex and heterogenic epileptic networks were found in these patients. SEEG-guided RF-TC both into the nodules and/or the cortex was efficacious in the 76% of patients. Single or multiple, unilateral or bilateral PNHs are the most suitable for this procedure, whereas patients with PNHs associated with complex cortical malformations obtained excellent outcome only with traditional resective surgery. Each patient had a specific epileptogenic network, independent from the number, size, or location of nodules and from the cortical malformation associated with. SEEG-guided RF-TC appears as a new and very effective diagnostic and therapeutic approach for DRE related to PNHs. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  10. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system.

    PubMed

    Qiu, Bensheng; El-Sharkawy, Abdel-Monem; Paliwal, Vaishali; Karmarkar, Parag; Gao, Fabao; Atalar, Ergin; Yang, Xiaoming

    2005-07-01

    Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.

  11. Application of radiofrequency energy in surgical and interventional procedures: are there interactions with ICDs?

    PubMed

    Fiek, Michael; Dorwarth, Uwe; Durchlaub, Ilka; Janko, Sabine; Von Bary, Christian; Steinbeck, Gerhard; Hoffmann, Ellen

    2004-03-01

    During surgical and interventional procedures, interference may occur between ICDs and electrical cautery or with the application of RF energy. This may lead to the false induction of ICD therapies or could even result in device malfunction, which represents a potential perioperative hazard for the patient. This study analyzed the intraoperative interactions in 45 consecutive ICD patients in reference to different surgical and interventional procedures. A total of 33 surgical operations (general surgery [n = 14], urologic [n = 5], abdominal [n = 10], gynecological [n = 2], thoracic [n = 1], neurosurgical [n = 1]) and 12 interventional therapies (RF catheter ablation [n = 10], endoscopic papillotomy [n = 2]) were performed. The ICD devices were all located in left pectoral position and consisted of 25 single and 20 dual chamber defibrillators. During the procedure, tachyarrhythmia detection (VF 296 +/- 20 ms, VT 376 +/- 49 ms) of the devices was maintained active (monitoring mode), only ICD therapies were inactivated. The indifferent electrode of the electrical cauter/RF generator was placed in standard positions (right/left mid-femoral position [n = 27/8], thoracic spine area [n = 10]). After the procedure, the ICD memory was checked for detections and for changes in the programming. There was no oversensing, reprogramming, or damage of any defibrillator caused by RF energy. Despite the lack of undesired interactions, ICDs should be inactivated preoperatively to assure maximum patient safety. However, should inactivation not be possible, or the achievement uncertain, electromagnetic interference is highly unlikely.

  12. Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.

  13. ACCELERATORS: RF system design and measurement of HIRF-CSRe

    NASA Astrophysics Data System (ADS)

    Xu, Zhe; Zhao, Hong-Wei; Wang, Chun-Xiao; Xia, Jia-Wen; Zhan, Wen-Long; Bian, Zhi-Bin

    2009-05-01

    An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.

  14. Safety of radiofrequency treatment over human skin previously injected with medium-term injectable soft-tissue augmentation materials: a controlled pilot trial.

    PubMed

    Alam, Murad; Levy, Ross; Pajvani, Urvi; Pavjani, Urvi; Ramierez, James A; Guitart, Joan; Veen, Heather; Gladstone, Hayes B

    2006-03-01

    Several soft-tissue augmentation materials are now available for reduction of nasolabial fold creases and perioral rhytides. Nasolabial folds and perioral rhytides can also be improved by skin tightening delivered by non-ablative radiofrequency (RF) treatment. The purpose of this study was to assess the safety of RF treatment over skin areas recently injected with medium-term injectable soft-tissue augmentation materials. Five subjects were assigned to the experimental arm (augmentation materials plus RF) and one to the control arm (augmentation materials alone). Each subject received injections of 0.3 mL of hyaluronic acid derivative (Restylane) and calcium hydroxylapatite (Radiesse) 3 cm apart on the upper inner arm. Two weeks later, two non-overlapping passes of RF (Thermage ThermaCool TC) were delivered at 63.5 setting with medium-fast 1.5 cm2 tip over injected sites in all of the experimental subjects. Punch skin biopsies were obtained 3 days later from each of the two injection sites on each subject. Light microscopy and digital photomicrographs obtained at low, medium, and high power showed no difference between filler materials in experimental and control subjects. In both cases filler was evident at the deep dermal-subcutaneous junction. Nodule formation, foreign body extravasation, or hemorrhage/clot was not observed grossly or histologically. Subjects and physicians did not report any difference in signs and symptoms between the experimental and control arms. Slightly increased transitory pain was noted when RF was delivered over filler versus over normal skin. Applying RF treatment over the same area 2 weeks after deep dermal injection with hyaluronic acid derivatives or calcium hydroxylapatite does not appear to cause gross morphological changes in the filler material or surrounding skin. Further studies with different parameters are necessary to confirm these findings. 2006 Wiley-Liss, Inc.

  15. Airborne RF Measurement System and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.

  16. High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation.

    PubMed

    Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X

    2012-08-01

    The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.

  17. Management of refractory trigeminal neuralgia using extended duration pulsed radiofrequency application.

    PubMed

    Thapa, Deepak; Ahuja, Vanita; Dass, Christopher; Verma, Parul

    2015-01-01

    Trigeminal neuralgia (TN) produces incapacitating facial pain that reduces quality of life in patients. Thermal radiofrequency (RF) ablation of gasserian ganglion (GG) is associated with masseter weakness and unpleasant sensations along the distribution of the ablated nerve. Pulsed radiofrequency (PRF) of GG has minimal side effects but literature is inconclusive regarding its benefit in refractory TN. Increasing the duration of PRF application to 6 minutes in TN produced encouraging results. PRF application to the saphenous nerve for 8 minutes reported improved pain relief and patient satisfaction. We report successful management of two patients of classic TN, which were refractory to medical management and interventional nerve blocks. The lesion site were confirmed with motor and sensory stimulation through a 22 G, 10 cm RF needle with 5 mm active tip. Both the patients received four cycles of PRF at 42 °C with each cycle of 120 seconds (8 minutes). The visual analogue scale (VAS) in case 1 reduced from pre-block score of 80 to score 10 post-block, while in case 2 the VAS reduced from pre-block score of 85 to score 15 post-block. During follow up both the patients are now pain free with minimal dose of carbamazepine at 12 and 6 months respectively. We used PRF for longer duration (8 minutes) in these patients, which resulted in improved VAS and WHOQOL-BREF score in these patients. PRF of mandibular division of GG for extended duration provided long-term effective pain relief and quality of life in patients of refractory classic TN.

  18. Impact of Atrial Fibrillation Ablation on Left Ventricular Filling Pressure and Left Atrial Remodeling

    PubMed Central

    dos Santos, Simone Nascimento; Henz, Benhur Davi; Zanatta, André Rodrigues; Barreto, José Roberto; Loureiro, Kelly Bianca; Novakoski, Clarissa; dos Santos, Marcus Vinícius Nascimento; Giuseppin, Fabio F.; Oliveira, Edna Maria; Leite, Luiz Roberto

    2014-01-01

    Background Left ventricular (LV) diastolic dysfunction is associated with new-onset atrial fibrillation (AF), and the estimation of elevated LV filling pressures by E/e' ratio is related to worse outcomes in patients with AF. However, it is unknown if restoring sinus rhythm reverses this process. Objective To evaluate the impact of AF ablation on estimated LV filling pressure. Methods A total of 141 patients underwent radiofrequency (RF) ablation to treat drug-refractory AF. Transthoracic echocardiography was performed 30 days before and 12 months after ablation. LV functional parameters, left atrial volume index (LAVind), and transmitral pulsed and mitral annulus tissue Doppler (e' and E/e') were assessed. Paroxysmal AF was present in 18 patients, persistent AF was present in 102 patients, and long-standing persistent AF in 21 patients. Follow-up included electrocardiographic examination and 24-h Holter monitoring at 3, 6, and 12 months after ablation. Results One hundred seventeen patients (82.9%) were free of AF during the follow-up (average, 18 ± 5 months). LAVind reduced in the successful group (30.2 mL/m2 ± 10.6 mL/m2 to 22.6 mL/m2 ± 1.1 mL/m2, p < 0.001) compared to the non-successful group (37.7 mL/m2 ± 14.3 mL/m2 to 37.5 mL/m2 ± 14.5 mL/m2, p = ns). Improvement of LV filling pressure assessed by a reduction in the E/e' ratio was observed only after successful ablation (11.5 ± 4.5 vs. 7.1 ± 3.7, p < 0.001) but not in patients with recurrent AF (12.7 ± 4.4 vs. 12 ± 3.3, p = ns). The success rate was lower in the long-standing persistent AF patient group (57% vs. 87%, p = 0.001). Conclusion Successful AF ablation is associated with LA reverse remodeling and an improvement in LV filling pressure. PMID:25590928

  19. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  20. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  1. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    NASA Astrophysics Data System (ADS)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  2. rf power system for thrust measurements of a helicon plasma source.

    PubMed

    Kieckhafer, Alexander W; Walker, Mitchell L R

    2010-07-01

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

  3. CEBAF Superconducting Cavity RF Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugitt, Jock; Moore, Thomas

    1987-03-01

    The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less

  4. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    NASA Astrophysics Data System (ADS)

    Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.

  5. Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems

    NASA Astrophysics Data System (ADS)

    Slotboom, J.

    1993-10-01

    This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.

  6. Design and Calibration of an RF Actuator for Low-Level RF Systems

    NASA Astrophysics Data System (ADS)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  7. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.

    PubMed

    Viallon, Magalie; Terraz, Sylvain; Roland, Joerg; Dumont, Erik; Becker, Christoph D; Salomir, Rares

    2010-04-01

    MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. RF heating in saline gels and in ex vivo tissues was performed with MR-compatible bipolar and monopolar electrodes inside a 1.5 T MR clinical scanner. Ultrasonography simultaneous to PRFS MRT was achieved using a MR-compatible phased-array ultrasonic transducer. PRFS MRT was performed interleaved in three orthogonal planes and compared to measurements from fluoroptic sensors, under low and, respectively, high RFA power levels. Control experiments were performed to isolate the main source of errors in standard PRFS thermometry. Ultrasonography, MRI and digital camera pictures clearly demonstrated generation of bubbles every time when operating the radio frequency equipment at therapeutic powers (> or = 30 W). Simultaneous bimodal (ultrasonography and MRI) monitoring of high power RF heating demonstrated a correlation between the onset of the PRFS-thermometry errors and the appearance of bubbles around the applicator. In an ex vivo study using a bipolar RF electrode under low power level (5 W), the MR measured temperature curves accurately matched the reference fluoroptic data. In similar ex vivo studies when applying higher RFA power levels (30 W), the correlation plots of MR thermometry versus fluoroptic data showed large errors in PRFS-derived temperature (up to 45 degrees C absolute deviation, positive or negative) depending not only on fluoroptic tip position but also on the RF electrode orientation relative to the B0 axis. Regions with apparent decrease in the PRFS-derived temperature maps as much as 30 degrees C below the initial baseline were visualized during RFA high power application. Ex vivo data were corrected assuming a Gaussian dynamic source of susceptibility, centered in the anode/cathode gap of the RF bipolar electrode. After correction, the temperature maps recovered the revolution symmetry pattern predicted by theory and matched the fluoroptic data within 4.5 degrees C mean offset. RFA induces dynamic changes in magnetic bulk susceptibility in biological tissue, resulting in large and spatially dependent errors of phase-subtraction-only PRFS MRT and unexploitable thermal dose maps. These thermometry artifacts were strongly correlated with the appearance of transient cavitation. A first-order dynamic model of susceptibility provided a useful method for minimizing these artifacts in phantom and ex vivo experiments.

  8. rf power system for thrust measurements of a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieckhafer, Alexander W.; Walker, Mitchell L. R.

    2010-07-15

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows goodmore » transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.« less

  9. High spatial resolution analysis of ferromanganese concretions by LA-ICP-MS†

    PubMed Central

    Axelsson, Mikael D; Rodushkin, Ilia; Baxter, Douglas C; Ingri, Johan; Öhlander, Björn

    2002-01-01

    A procedure was developed for the determination of element distributions in cross-sections of ferromanganese concretions using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The effects of carrier flow rates, rf forward power, ablation energy, ablation spot size, repetition rate and number of shots per point on analyte intensity were studied. It is shown that different carrier gas flow rates are required in order to obtain maximum sensitivities for different groups of elements, thus complicating the optimisation of ICP parameters. On the contrary, LA parameters have very similar effects on almost all elements studied, thus providing a common optimum parameter set for the entire mass range. However, for selected LA parameters, the use of compromise conditions was necessary in order to compensate for relatively slow data acquisition by ICP-MS and maintain high spatial resolution without sacrificing the multielemental capabilities of the technique. Possible variations in ablation efficiency were corrected for mathematically using the sum of Fe and Mn intensities. Quantification by external calibration against matrix-matched standards was successfully used for more than 50 elements. These standards, in the form of pressed pellets (no binder), were prepared in-house using ferromanganese concentrates from a deep-sea nodule reference material as well as from shallow-marine concretions varying in size and having different proportions of three major phases: aluminosilicates, Fe- and Mn-oxyhydroxides. Element concentrations in each standard were determined by means of conventional solution nebulisation ICP-MS following acid digestion. Examples of selected inter-element correlations in distribution patterns along the cross-section of a concretion are given.

  10. Cryo-balloon catheter position planning using AFiT

    NASA Astrophysics Data System (ADS)

    Kleinoeder, Andreas; Brost, Alexander; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2012-02-01

    Atrial fibrillation (AFib) is the most common heart arrhythmia. In certain situations, it can result in life-threatening complications such as stroke and heart failure. For paroxsysmal AFib, pulmonary vein isolation (PVI) by catheter ablation is the recommended choice of treatment if drug therapy fails. During minimally invasive procedures, electrically active tissue around the pulmonary veins is destroyed by either applying heat or cryothermal energy to the tissue. The procedure is usually performed in electrophysiology labs under fluoroscopic guidance. Besides radio-frequency catheter ablation devices, so-called single-shot devices, e.g., the cryothermal balloon catheters, are receiving more and more interest in the electrophysiology (EP) community. Single-shot devices may be advantageous for certain cases, since they can simplify the creation of contiguous (gapless) lesion sets around the pulmonary vein which is needed to achieve PVI. In many cases, a 3-D (CT, MRI, or C-arm CT) image of a patient's left atrium is available. This data can then be used for planning purposes and for supporting catheter navigation during the procedure. Cryo-thermal balloon catheters are commercially available in two different sizes. We propose the Atrial Fibrillation Planning Tool (AFiT), which visualizes the segmented left atrium as well as multiple cryo-balloon catheters within a virtual reality, to find out how well cryo-balloons fit to the anatomy of a patient's left atrium. First evaluations have shown that AFiT helps physicians in two ways. First, they can better assess whether cryoballoon ablation or RF ablation is the treatment of choice at all. Second, they can select the proper-size cryo-balloon catheter with more confidence.

  11. Bimodal electric tissue ablation (BETA): a study on ablation size when the anode is placed on the peritoneum and the liver.

    PubMed

    Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J

    2012-07-01

    In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the cathode and the anode of the DC circuit. Research so far has shown that BETA works best when the anode is placed deep to the skin as the stratum corneum consisted of a layer of a-nucleated cells, which have high electrical resistivity. The liver could be the ideal location to place the anode as it has excellent electrical conductivity, therefore ensuring maximum tissue hydration around the cathode to produce the largest ablations possible. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A trucut biopsy needle for bipolar radiofrequency ablation of needle tract: a proof-of-concept experiment.

    PubMed

    Bruners, Philipp; Penzkofer, Tobias; Isfort, Peter; Pfeffer, Jochen; Schmitz-Rode, Thomas; Günther, Rolf W; Mahnken, Andreas H

    2010-08-01

    To develop a trucut biopsy needle featuring two electrodes that allow for bipolar radiofrequency (RF) coagulation of the puncture tract. We modified a 14-G trucut biopsy needle to contain two insulated electrodes and connected the device to an RF generator. Biopsies in ex vivo porcine liver and kidney were performed. The puncture tract was coagulated by using different RF energy settings (5 W, 10 W, 20 W). Tissue specimens were dissected along the puncture tract and the coagulation area was macroscopically evaluated. CT-guided in vivo liver and kidney biopsies were performed in two domestic pigs. Lengths of specimens were measured. Post-biopsy contrast-enhanced CT examinations were performed to rule out biopsy-related bleeding. Animals were euthanised and coagulation areas macroscopically explored. The mean diameters of the coagulated area around the ex vivo biopsy tract were 4.2 +/- 1.1 mm (5 W), 6.0 +/- 2.0 mm (10 W) and 5.2 +/- 0.51 mm (20 W) in liver and 5.0 +/- 0.7 mm (5 W), 6.6 +/- 0.9 (10 W) and 6.0 +/- 2.0 mm (20 W) in kidney. After biopsies CT revealed no bleeding. Mean maximum coagulation diameters were 10.1 +/- 4.6 mm (10 W) in liver and 6.0 +/- 2.5 mm (10 W) in kidney. Mean length of the specimens was 12.2 +/- 4.4 mm in kidney and 11.1 +/- 3.6 mm in liver tissue. Bipolar RF biopsy is a promising tool for tract coagulation after percutaneous biopsy.

  13. Percutaneous intraductal radiofrequency ablation for treatment of biliary stent occlusion: A preliminary result.

    PubMed

    Xia, Ning; Gong, Ju; Lu, Jian; Chen, Zhi-Jin; Zhang, Li-Yun; Wang, Zhong-Min

    2017-03-14

    To assess the feasibility and effectiveness of a novel application of percutaneous intraductal radiofrequency (RF) for the treatment of biliary stent obstruction. We specifically report a retrospective study presenting the results of percutaneous intraductal RF in patients with biliary stent occlusion. A total of 43 cases involving biliary stent obstruction were treated by placing an EndoHPB catheter and percutaneous intraductal RF was performed to clean stents. The stent patency was evaluated by cholangiography and follow-up by contrast enhanced computed tomography or ultrasound after the removal of the drainage catheter. Following the procedures, of the 43 patients, 40 survived and 3 died with a median survival of 80.5 (range: 30-243) d. One patient was lost to follow-up. One patient had the stent patent at the time of last follow-up. Two patients with stent blockage at 35 d and 44 d after procedure underwent percutaneous transhepatic drain insertion only. The levels of bilirubin before and after the procedure were 128 ± 65 μmol/L and 63 ± 29 μmol/L, respectively. There were no related complications (haemorrhage, bile duct perforation, bile leak or pancreatitis) and all patients' stent patency was confirmed by cholangiography after the procedure, with a median patency time of 107 (range: 12-180) d. This preliminary clinical study demonstrated that percutaneous intraductal RF is safe and effective for the treatment of biliary stent obstruction, increasing the duration of stent patency, although randomized controlled trials are needed to confirm the effectiveness of this approach.

  14. A low cost solution for post-biopsy complications using available RFA generator and coaxial core biopsy needle.

    PubMed

    Azlan, C A; Mohd Nasir, N F; Saifizul, A A; Faizul, M S; Ng, K H; Abdullah, B J J

    2007-12-01

    Percutaneous image-guided needle biopsy is typically performed in highly vascular organs or in tumours with rich macroscopic and microscopic blood supply. The main risks related to this procedure are haemorrhage and implantation of tumour cells in the needle tract after the biopsy needle is withdrawn. From numerous conducted studies, it was found that heating the needle tract using alternating current in radiofrequency (RF) range has a potential to minimize these effects. However, this solution requires the use of specially designed needles, which would make the procedure relatively expensive and complicated. Thus, we propose a simple solution by using readily available coaxial core biopsy needles connected to a radiofrequency ablation (RFA) generator. In order to do so, we have designed and developed an adapter to interface between these two devices. For evaluation purpose, we used a bovine liver as a sample tissue. The experimental procedure was done to study the effect of different parameter settings on the size of coagulation necrosis caused by the RF current heating on the subject. The delivery of the RF energy was varied by changing the values for delivered power, power delivery duration, and insertion depth. The results showed that the size of the coagulation necrosis is affected by all of the parameters tested. In general, the size of the region is enlarged with higher delivery of RF power, longer duration of power delivery, and shallower needle insertion and become relatively constant after a certain value. We also found that the solution proposed provides a low cost and practical way to minimizes unwanted post-biopsy effects.

  15. Percutaneous intraductal radiofrequency ablation for treatment of biliary stent occlusion: A preliminary result

    PubMed Central

    Xia, Ning; Gong, Ju; Lu, Jian; Chen, Zhi-Jin; Zhang, Li-Yun; Wang, Zhong-Min

    2017-01-01

    AIM To assess the feasibility and effectiveness of a novel application of percutaneous intraductal radiofrequency (RF) for the treatment of biliary stent obstruction. METHODS We specifically report a retrospective study presenting the results of percutaneous intraductal RF in patients with biliary stent occlusion. A total of 43 cases involving biliary stent obstruction were treated by placing an EndoHPB catheter and percutaneous intraductal RF was performed to clean stents. The stent patency was evaluated by cholangiography and follow-up by contrast enhanced computed tomography or ultrasound after the removal of the drainage catheter. RESULTS Following the procedures, of the 43 patients, 40 survived and 3 died with a median survival of 80.5 (range: 30-243) d. One patient was lost to follow-up. One patient had the stent patent at the time of last follow-up. Two patients with stent blockage at 35 d and 44 d after procedure underwent percutaneous transhepatic drain insertion only. The levels of bilirubin before and after the procedure were 128 ± 65 μmol/L and 63 ± 29 μmol/L, respectively. There were no related complications (haemorrhage, bile duct perforation, bile leak or pancreatitis) and all patients’ stent patency was confirmed by cholangiography after the procedure, with a median patency time of 107 (range: 12-180) d. CONCLUSION This preliminary clinical study demonstrated that percutaneous intraductal RF is safe and effective for the treatment of biliary stent obstruction, increasing the duration of stent patency, although randomized controlled trials are needed to confirm the effectiveness of this approach. PMID:28348491

  16. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  17. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  18. Heart Rate Detection During Sleep Using a Flexible RF Resonator and Injection-Locked PLL Sensor.

    PubMed

    Kim, Sung Woo; Choi, Soo Beom; An, Yong-Jun; Kim, Byung-Hyun; Kim, Deok Won; Yook, Jong-Gwan

    2015-11-01

    Novel nonintrusive technologies for wrist pulse detection have been developed and proposed as systems for sleep monitoring using three types of radio frequency (RF) sensors. The three types of RF sensors for heart rate measurement on wrist are a flexible RF single resonator, array resonators, and an injection-locked PLL resonator sensor. To verify the performance of the new RF systems, we compared heart rates between presleep time and postsleep onset time. Heart rates of ten subjects were measured using the RF systems during sleep. All three RF devices detected heart rates at 0.2 to 1 mm distance from the skin of the wrist over clothes made of cotton fabric. The wrist pulse signals of a flexible RF single resonator were consistent with the signals obtained by a portable piezoelectric transducer as a reference. Then, we confirmed that the heart rate after sleep onset time significantly decreased compared to before sleep. In conclusion, the RF system can be utilized as a noncontact nonintrusive method for measuring heart rates during sleep.

  19. Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors

    PubMed Central

    Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin

    2014-01-01

    This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279

  20. Renal sympathetic denervation for treatment of resistant hypertension: Egyptian experience.

    PubMed

    Hamza, Mohamed; Khamis, Hazem

    2014-08-01

    Among the Egyptian population with essential hypertension, a minority are under control (systolic pressure <140 mmHg and diastolic pressure <90 mmHg), despite the use of multiple antihypertensive medications. In this article, we describe our experience with percutaneous treatment using renal artery radiofrequency (RF) ablation. To evaluate the feasibility, efficacy, and safety of catheter-based radiofrequency renal sympathetic denervation for treatment of resistant hypertension in Egyptian patients. Patients with essential hypertension unresponsive to at least 3 types of antihypertensive medical therapy (baseline office systolic blood pressure ≥160 mmHg) (n = 55) were enrolled between February 2012 and June 2013 and received percutaneous RF ablation. Patients were followed up for 6 months after treatment to detect any change in office-based measurement of blood pressure. Urine and blood samples were taken to evaluate the effects on renal function. A reduction of mean office blood pressure was seen from 174/103 ± 9/5 mmHg at baseline to 150/91 ± 8/5 mmHg at 6 months follow-up (P = 0.001). Also, we noted a significant decrease in plasma renin activity (3.66 ± 0.64 vs. 3.37 ± 0.47 ng/mL per hour; P = 0.003), and there were no periprocedural complications, no adverse events, and no change in renal function during the follow-up period. Also, no change was noted in the number of medications after 6 months (3.95 ± 1.64 vs. 3.67 ± 0.72; P = 0.27). In this observational study, catheter-based renal denervation causes sustained blood pressure reduction in patients with resistant hypertension, without serious adverse events. © 2014, Wiley Periodicals, Inc.

  1. Automated microwave ablation therapy planning with single and multiple entry points

    NASA Astrophysics Data System (ADS)

    Liu, Sheena X.; Dalal, Sandeep; Kruecker, Jochen

    2012-02-01

    Microwave ablation (MWA) has become a recommended treatment modality for interventional cancer treatment. Compared with radiofrequency ablation (RFA), MWA provides more rapid and larger-volume tissue heating. It allows simultaneous ablation from different entry points and allows users to change the ablation size by controlling the power/time parameters. Ablation planning systems have been proposed in the past, mainly addressing the needs for RFA procedures. Thus a planning system addressing MWA-specific parameters and workflows is highly desirable to help physicians achieve better microwave ablation results. In this paper, we design and implement an automated MWA planning system that provides precise probe locations for complete coverage of tumor and margin. We model the thermal ablation lesion as an ellipsoidal object with three known radii varying with the duration of the ablation and the power supplied to the probe. The search for the best ablation coverage can be seen as an iterative optimization problem. The ablation centers are steered toward the location which minimizes both un-ablated tumor tissue and the collateral damage caused to the healthy tissue. We assess the performance of our algorithm using simulated lesions with known "ground truth" optimal coverage. The Mean Localization Error (MLE) between the computed ablation center in 3D and the ground truth ablation center achieves 1.75mm (Standard deviation of the mean (STD): 0.69mm). The Mean Radial Error (MRE) which is estimated by comparing the computed ablation radii with the ground truth radii reaches 0.64mm (STD: 0.43mm). These preliminary results demonstrate the accuracy and robustness of the described planning algorithm.

  2. Robotic navigation and ablation.

    PubMed

    Malcolme-Lawes, L; Kanagaratnam, P

    2010-12-01

    Robotic technologies have been developed to allow optimal catheter stability and reproducible catheter movements with the aim of achieving contiguous and transmural lesion delivery. Two systems for remote navigation of catheters within the heart have been developed; the first is based on a magnetic navigation system (MNS) Niobe, Stereotaxis, Saint-Louis, Missouri, USA, the second is based on a steerable sheath system (Sensei, Hansen Medical, Mountain View, CA, USA). Both robotic and magnetic navigation systems have proven to be feasible for performing ablation of both simple and complex arrhythmias, particularly atrial fibrillation. Studies to date have shown similar success rates for AF ablation compared to that of manual ablation, with many groups finding a reduction in fluoroscopy times. However, the early learning curve of cases demonstrated longer procedure times, mainly due to additional setup times. With centres performing increasing numbers of robotic ablations and the introduction of a pressure monitoring system, lower power settings and instinctive driving software, complication rates are reducing, and fluoroscopy times have been lower than manual ablation in many studies. As the demand for catheter ablation for arrhythmias such as atrial fibrillation increases and the number of centres performing these ablations increases, the demand for systems which reduce the hand skill requirement and improve the comfort of the operator will also increase.

  3. Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.

    2011-03-01

    Numerous studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of renal and hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to accurately place the ablator device into the target. Irregularly shaped target volumes typically require multiple insertions and several sequential thermal ablation procedures. This study demonstrated feasibility of spatially tracked image-guided conformal ultrasound (US) ablation for percutaneous directional ablation of diseased tissue. Tissue was prepared by suturing the liver within a pig belly and 1mm BBs placed to serve as needle targets. The image guided system used integrated electromagnetic tracking and cone-beam CT (CBCT) with conformable needlebased high-intensity US ablation in the interventional suite. Tomographic images from cone beam CT were transferred electronically to the image-guided tracking system (IGSTK). Paired-point registration was used to register the target specimen to CT images and enable navigation. Path planning is done by selecting the target BB on the GUI of the realtime tracking system and determining skin entry location until an optimal path is selected. Power was applied to create the desired ablation extent within 7-10 minutes at a thermal dose (>300eqm43). The system was successfully used to place the US ablator in planned target locations within ex-vivo kidney and liver through percutaneous access. Targeting accuracy was 3-4 mm. Sectioned specimens demonstrated uniform ablation within the planned target zone. Subsequent experiments were conducted for multiple ablator positions based upon treatment planning simulations. Ablation zones in liver were 73cc, 84cc, and 140cc for 3, 4, and 5 placements, respectively. These experiments demonstrate the feasibility of combining real-time spatially tracked image guidance with directional interstitial ultrasound ablation. Interstitial ultrasound ablation delivered on multiple needles permit the size and shape of the ablation zone to be "sculpted" by modifying the angle and intensity of the active US elements in the array. This paper summarizes the design and development of the first system incorporating thermal treatment planning and integration of a novel interstitial acoustic ablation device with integrated 3D electromagnetic tracking and guidance strategy.

  4. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  5. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  6. Isolation of the posterior left atrium for patients with persistent atrial fibrillation: routine adenosine challenge for dormant posterior left atrial conduction improves long-term outcome.

    PubMed

    McLellan, Alex J A; Prabhu, Sandeep; Voskoboinik, Alex; Wong, Michael C G; Walters, Tomos E; Pathik, Bhupesh; Morris, Gwilym M; Nisbet, Ashley; Lee, Geoffrey; Morton, Joseph B; Kalman, Jonathan M; Kistler, Peter M

    2017-12-01

    Catheter ablation to achieve posterior left atrial wall (PW) isolation may be performed as an adjunct to pulmonary vein isolation (PVI) in patients with persistent atrial fibrillation (AF). We aimed to determine whether routine adenosine challenge for dormant posterior wall conduction improved long-term outcome. A total of 161 patients with persistent AF (mean age 59 ± 9 years, AF duration 6 ± 5 years) underwent catheter ablation involving circumferential PVI followed by PW isolation. Posterior left atrial wall isolation was performed with a roof and inferior wall line with the endpoint of bidirectional block. In 54 patients, adenosine 15 mg was sequentially administered to assess reconnection of the pulmonary veins and PW. Sites of transient reconnection were ablated and adenosine was repeated until no further reconnection was present. Holter monitoring was performed at 6 and 12 months to assess for arrhythmia recurrence. Posterior left atrial wall isolation was successfully achieved in 91% of 161 patients (procedure duration 191 ± 49 min, mean RF time 40 ± 19 min). Adenosine-induced reconnection of the PW was demonstrated in 17%. The single procedure freedom from recurrent atrial arrhythmia was superior in the adenosine challenge group (65%) vs. no adenosine challenge (40%, P < 0.01) at a mean follow-up of 19 ± 8 months. After multiple procedures, there was significantly improved freedom from AF between patients with vs. without adenosine PW challenge (85 vs. 65%, P = 0.01). Posterior left atrial wall isolation in addition to PVI is a readily achievable ablation strategy in patients with persistent AF. Routine adenosine challenge for dormant posterior wall conduction was associated with an improvement in the success of catheter ablation for persistent AF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  7. Stand alone totally endoscopic epimyocardial ablation in patients with persistent atrial fibrillation and significant atrial dilatation.

    PubMed

    Wagner, Florian Mathias; Pecha, Simon; Conradi, Lenard; Reichenspurner, Hermann

    2015-05-01

    To analyze safety and efficacy of surgical totally endoscopic epimyocardial ablation in patients (pts) turned down for interventional catheter therapy due to long-standing persistent atrial fibrillation (pAF) combined with significant atrial dilatation (> 5 cm). Since December 2010, 15 pts were referred for surgical ablation due to persistent AF combined with biatrial dilatation (left atrium [LA] 5.0 ± 0.6 cm). Mean age was 52 ± 6 years, body mass index (BMI) 38 ± 6, duration of AF 2.8 ± 1.2 years, left ventricular end diastolic diameter (LVEDD) 5.8 cm ± 0.6 cm. Ablation was performed via a bilateral endoscopic approach using bipolar RF energy application. Monitoring was achieved by an event recorder (Reveal XT Medtronic, Inc., Minneapolis, MN, USA) or repeated 24-hours Holter electrocardiogram. All pts successfully received bilateral pulmonary vein isolation + box lesion + trigonal lesion + left atrial appendage resection. Mean duration of procedure was 235 ± 70 minutes. There was no intraoperative complication; however, one patient had persistent left phrenic nerve palsy. Mean hospital stay was 4 ± 2 days, mean follow-up time was 21 ± 11 months. Incidence of sinus rhythm (SR) was 67, 73, and 80% at discharge, three months, and 12 months follow-up. Mean LA diameter was reduced from 58.1 mm ± 6.0 mm preoperative to 49.7 mm ± 5.4 mm (p = 0.004) at 12 months follow-up. Incidence of SR was 86% at latest follow-up (mean time 21 months). All pts currently in SR (13/15 = 86%) are of class I or III antiarrhythmic drugs. Totally endoscopic left atrial ablation including left atrial resection can safely be performed. It achieved excellent rates of SR restoration in patients with long-standing persistent AF combined with significant atrial dilatation. © 2015 Wiley Periodicals, Inc.

  8. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  9. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold either by using water spray or by decreasing the repetition rate. We demonstrate that CO2 laser pulses with pulse lengths in the regime of 10 μs can provide precise enamel tissue removal without introducing any unwanted thermal damage.

  10. Development of sub-100 femtosecond timing and synchronization system

    NASA Astrophysics Data System (ADS)

    Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John

    2018-01-01

    The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.

  11. Development of sub-100 femtosecond timing and synchronization system.

    PubMed

    Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John

    2018-01-01

    The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.

  12. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  13. Impact of a Novel Catheter Tracking System on Radiation Exposure during the Procedural Phases of Atrial Fibrillation and Flutter Ablation.

    PubMed

    Malliet, Nicolas; Andrade, Jason G; Khairy, Paul; Thanh, Hien Kiem Nguyen; Venier, Sandrine; Dubuc, Marc; Dyrda, Katia; Guerra, Peter; Mondésert, Blandine; Rivard, Léna; Tadros, Rafik; Talajic, Mario; Thibault, Bernard; Roy, Denis; Macle, Laurent

    2015-07-01

    Fluoroscopic guidance is used to position catheters during cardiac ablation. We evaluated the impact of a novel nonfluoroscopic sensor-guided electromagnetic navigation system (MG) on radiation exposure during catheter ablation of atrial fibrillation (AF) or atrial flutter (AFL). A total of 134 consecutive patients referred for ablation of AF (n = 44) or AFL (n = 90) ablation were prospectively enrolled. In one group the MG system was used for nonfluoroscopic catheter positioning, whereas in the conventional group standard fluoroscopy was utilized. Fluoroscopy times were assessed for each stage of procedure and total radiation exposure was quantified. Patient characteristics were similar between the groups. The procedural end point was achieved in all. Median (interquartile range [IQR]) fluoroscopy times were 12.5 minutes (7.6, 17.4) MG group versus 21.5 minutes (15.3, 23.0) conventional group (P < 0.0001) for AF ablation, and 0.8 minutes (0.4, 2.5) MG group versus 9.9 minutes (5.1, 22.5) conventional group (P < 0.0001) for AFL ablation. Median (IQR) total radiation exposure (μGy·m(2)) was 1,107 (906, 2,033) MG group versus 2,835 (1,688, 3,855) conventional group (P = 0.0001) for AF ablation, and 161 (65, 537) MG group versus 1,651 (796, 4,569) conventional group (P < 0.0001) for AFL ablation. No difference in total procedural time was seen. The use of a novel nonfluoroscopic catheter tracking system is associated with a significant reduction in radiation exposure during AF and AFL ablation (61% and 90% reduction, respectively). In the era of heightened awareness of the importance of radiation reduction, this system represents a safe and efficient tool to decrease radiation exposure during electrophysiological ablation procedures. ©2015 Wiley Periodicals, Inc.

  14. High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.

    2003-06-01

    Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.

  15. Microelectronic bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1976-01-01

    Progress was made in the development of an RF cage, a single channel RF powered ECG telemetry system, and a three channel RF powered ECG, aortic blood pressure, and body temperature telemetry system. Encapsulation materials for chronic implantation of electronic circuits in the body were also evaluated.

  16. Real-time optical monitoring of permanent lesion progression in radiofrequency ablated cardiac tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Hendon, Christine P.

    2016-02-01

    Despite considerable advances in guidance of radiofrequency ablation (RFA) therapies for atrial fibrillation, success rates have been hampered by an inability to intraoperatively characterize the extent of permanent injury. Insufficient lesions can elusively create transient conduction blockages that eventually reconduct. Prior studies suggest significantly greater met-myoglobin (Mmb) concentrations in the lesion core than those in the healthy myocardium and may serve as a marker for irreversible tissue damage. In this work, we present real-time monitoring of permanent injury through spectroscopic assessment of Mmb concentrations at the catheter tip. Atrial wedges (n=6) were excised from four fresh swine hearts and submerged under pulsatile flow of warm (37oC) phosphate buffered saline. A commercial RFA catheter inserted into a fiber optic sheath allowed for simultaneous measurement of tissue diffuse reflectance (DR) spectra (500-650nm) during application of RF energy. Optical measurements were continuously acquired before, during, and post-ablation, in addition to healthy neighboring tissue. Met-myoglobin, oxy-myoglobin, and deoxy-myoglobin concentrations were extracted from each spectrum using an inverse Monte Carlo method. Tissue injury was validated with Masson's trichrome and hematoxylin and eosin staining. Time courses revealed a rapid increase in tissue Mmb concentrations at the onset of RFA treatment and a gradual plateauing thereafter. Extracted Mmb concentrations were significantly greater post-ablation (p<0.0001) as compared to healthy tissue and correlated well with histological assessment of severe thermal tissue destruction. On going studies are aimed at integrating these findings with prior work on near infrared spectroscopic lesion depth assessment. These results support the use of spectroscopy-facilitated guidance of RFA therapies for real-time permanent injury estimation.

  17. Measurement of pleural temperature during radiofrequency ablation of lung tumors to investigate its relationship to occurrence of pneumothorax or pleural effusion.

    PubMed

    Tajiri, Nobuhisa; Hiraki, Takao; Mimura, Hidefumi; Gobara, Hideo; Mukai, Takashi; Hase, Soichiro; Fujiwara, Hiroyasu; Iguchi, Toshihiro; Sakurai, Jun; Aoe, Motoi; Sano, Yoshifumi; Date, Hiroshi; Kanazawa, Susumu

    2008-01-01

    The purpose of this study was to investigate the relationship between pleural temperature and pneumothorax or pleural effusion after radiofrequency (RF) ablation of lung tumors. The pleural temperature was measured immediately outside the lung surface nearest to the tumor with a fiber-type thermocouple during 25 ablation procedures for 34 tumors in 22 patients. The procedures were divided into two groups depending on the highest pleural temperature: P-group I and P-group II, with highest pleural temperatures of <40 degrees C and >/=40 degrees C, respectively. The incidence of pneumothorax or pleural effusion was compared between the groups. Multiple variables were compared between the groups to determine the factors that affect the pleural temperature. The overall incidence of pneumothorax and pleural effusion was 56% (14/25) and 20% (5/25), respectively. Temperature data in five ablation procedures were excluded from the analyses because these were affected by the pneumothorax. P-group I and P-group II comprised 10 procedures and 10 procedures, respectively. The incidence of pleural effusion was significantly higher in P-group II (4/10) than in P-group I (0/10) (p = 0.043). However, the incidence of pneumothorax did not differ significantly (p = 0.50) between P-group I (4/10) and P-group II (5/10). Factors significantly affecting the pleural temperature were distance between the electrode and the pleura (p < 0.001) and length of the lung parenchyma between the electrode and the pleura (p < 0.001). We conclude that higher pleural temperature appeared to be associated with the occurrence of pleural effusion and not with that of pneumothorax.

  18. Radiofrequency ablation of the basivertebral nerve as potential treatment of back pain: pathologic assessment in an ovine model (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Eskey, Cliff J.; Attawia, Mohammed; Patel, Samit J.; Ryan, T. P.; Pellegrino, Richard; Bergeron, Jeffrey A.

    2005-04-01

    Pathological involvement of the basivertebral nerve (BVN), an intraosseous vertebral nerve, may play a significant role in some forms of back pain. This study was designed to assess the feasibility and effects of thermal ablation of the lumbar basivertebral nerve in mature sheep. Sixteen adult female sheep weighing 65-80 kg were anesthetized and positioned for ventral recumbent surgery. Under fluoroscopic guidance, two bilarterally oposed 5mm active length rediofrequency (RF) electrodes (1.65mm diameter were perfutaneously placed in select lumbar vertebrae at a relative angle of 70 degrees with a 5 mm tip separation. The elctrodes were advanced to the region of the vertebral bodies which contained the BVN. A thermal dose of 95° C/720 seconds was administered. Animals were survived for 2, 14, 90, or 180 days post-treatment. Clinical, radiologic and pathologic investigations were performed to determine the effect of the heat on the BVN and associated tissues. Thermal damage to the basivertebral neurovascular bundle was characterized by early hemorrhage and necrosis, followed by inflammation and fibrosis. Although there wasa significant revascularization of the treated bone marow regions, there was no evidence of basivertebral nerve survival or regeneration regeneration. In addition to ablation of teh basivertebral nerovascular bundle, the areas receiving the greatest treatment demonstrated initial mild local osteolysis and demineralization of the vertebral body bone and regional depopulation of the vertebral bone marrow cellular elements. Significant bone remodeling in the affected areas had begun by 14 days post-treatment. Bone remodeling was characterized by conventional osteoblast proliferation, osteoid deposition, and mineralization. This study demonstrated the ability to accurately, reproducibly, and safely ablate the basivertebral nerve and neurovascular bundle in mature sheep using a fluoroscopically guided percutaneously delivered radiofrequency technique.

  19. Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes?

    PubMed

    González-Suárez, Ana; Pérez, Juan J; Berjano, Enrique

    2018-04-20

    Although accurate modeling of the thermal performance of irrigated-tip electrodes in radiofrequency cardiac ablation requires the solution of a triple coupled problem involving simultaneous electrical conduction, heat transfer, and fluid dynamics, in certain cases it is difficult to combine the software with the expertise necessary to solve these coupled problems, so that reduced models have to be considered. We here focus on a reduced model which avoids the fluid dynamics problem by setting a constant temperature at the electrode tip. Our aim was to compare the reduced and full models in terms of predicting lesion dimensions and the temperatures reached in tissue and blood. The results showed that the reduced model overestimates the lesion surface width by up to 5 mm (i.e. 70%) for any electrode insertion depth and blood flow rate. Likewise, it drastically overestimates the maximum blood temperature by more than 15 °C in all cases. However, the reduced model is able to predict lesion depth reasonably well (within 0.1 mm of the full model), and also the maximum tissue temperature (difference always less than 3 °C). These results were valid throughout the entire ablation time (60 s) and regardless of blood flow rate and electrode insertion depth (ranging from 0.5 to 1.5 mm). The findings suggest that the reduced model is not able to predict either the lesion surface width or the maximum temperature reached in the blood, and so would not be suitable for the study of issues related to blood temperature, such as the incidence of thrombus formation during ablation. However, it could be used to study issues related to maximum tissue temperature, such as the steam pop phenomenon.

  20. [The application of Atricure bipolar radiofrequency system in ablation of different parts and different times of pig heart atrium and the analysis of transmural lesions].

    PubMed

    Liu, Pei-sheng; Chen, Xin; Liu, Ming

    2010-12-15

    To analyze the transmural lesions of different parts of the pig heart atrium received different times of ablation applied with Atricure bipolar radiofrequency system. Six fresh (ex vivo time<20 min) pig hearts with atrium preserved intact were used as the experimental objects and experimental groups were divided according to the ablation position. The Atricure bipolar radiofrequency system was applied in the ablation of the parts of the atrium, such as posterior wall of left atrium, anterior wall of left atrium, anterior wall of right atrium and posterior wall of left atrium close to mitral posterior ring. Ablate the position of the atrium lengthened about 2.0 cm with the same thickness with an interval of 0.5 cm for 4 times respectively, also recording the time of every ablation. For each part and each time of ablation, the ablated atrial tissue was preserved with 4% formaldehyde and 5% glutaraldehyde, and was sent for observation under light microscope and transmission electron microscope. The ablation time and lesion were analyzed statistically. In the same position of the atrium, ablation time decreased with the times of the ablation, in different position of the atrium with same time of ablation, time showed a positive proportion with the thickness of the atrium. Atricure bipolar radiofrequency system is very safe and efficient, also convenient for manipulation. With regard to the relatively thinner part of the atrium, such as posterior wall and anterior wall of left atrium, at least two times of ablation can ensure transmural lesion of the atrial tissue, but to the position of the atrium such as anterior wall of right atrium and posterior wall of left atrium close to mitral posterior ring, 3 to 4 times of ablation can ensure transmural lesion of the atrial tissue.

  1. Laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  2. Booster Synchrotron RF System Upgrade for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sanghyun; /SLAC; Corbett, Jeff

    2012-07-06

    Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RFmore » systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.« less

  3. Histopomorphic Evaluation of Radiofrequency Mediated Débridement Chondroplasty

    PubMed Central

    Ganguly, Kumkum; McRury, Ian D; Goodwin, Peter M; Morgan, Roy E; Augé II, Wayne K

    2010-01-01

    The use of radiofrequency devices has become widespread for surgical ablation procedures. When ablation devices have been deployed in treatment settings requiring tissue preservation like débridement chondroplasty, adoption has been limited due to the collateral damage caused by these devices in healthy tissue surrounding the treatment site. Ex vivo radiofrequency mediated débridement chondroplasty was performed on osteochondral specimens demonstrating surface fibrillation obtained from patients undergoing knee total joint replacement. Three radiofrequency systems designed to perform débridement chondroplasty were tested each demonstrating different energy delivery methods: monopolar ablation, bipolar ablation, and non-ablation energy. Treatment outcomes were compared with control specimens as to clinical endpoint and histopomorphic characteristics. Fibrillated cartilage was removed in all specimens; however, the residual tissue remaining at the treatment site displayed significantly different characteristics attributable to radiofrequency energy delivery method. Systems that delivered ablation-based energies caused tissue necrosis and collateral damage at the treatment site including corruption of cartilage Superficial and Transitional Zones; whereas, the non-ablation system created a smooth articular surface with Superficial Zone maintenance and without chondrocyte death or tissue necrosis. The mechanism of radiofrequency energy deposition upon tissues is particularly important in treatment settings requiring tissue preservation. Ablation-based device systems can cause a worsened state of articular cartilage from that of pre-treatment. Non-ablation energy can be successful in modifying/preconditioning tissue during débridement chondroplasty without causing collateral damage. Utilizing a non-ablation radiofrequency system provides the ability to perform successful débridement chondroplasty without causing additional articular cartilage tissue damage and may allow for other cartilage intervention success. PMID:20721322

  4. New technologies in treatment of atrial fibrillation in cardiosurgical patients

    NASA Astrophysics Data System (ADS)

    Evtushenko, A. V.; Evtushenko, V. V.; Bykov, A. N.; Sergeev, V. S.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Kurlov, I. O.

    2015-11-01

    The article is devoted to the evaluation of the results of clinical application of penetrating radiofrequency ablation techniques on atrial myocardium. Total operated on 241 patients with valvular heart disease and coronary heart disease complicated with atrial fibrillation. All operations were performed under cardiopulmonary bypass and cardioplegia. The main group consists of 141 patients which were operated using penetrating technique radiofrequency exposure. The control group consisted of 100 patients who underwent surgery with the use of "classical" monopolar RF-ablation technique. Both groups were not significantly different on all counts before surgery. Patients with previous heart surgery were excluded during the selection of candidates for the procedure, due to the presence of adhesions in the pericardium, that do not allow good visualization of left atrium, sufficient to perform this procedure. Penetrating technique has significantly higher efficiency compared to the "classic" technique in the early and long-term postoperative periods. In the early postoperative period, its efficiency is 93%, and in the long term is 88%. The efficacy of "classical" monopolar procedure is below: 86% and 68% respectively.

  5. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    PubMed

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  6. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.

    PubMed

    Fan, Yingwei; Zhang, Boyu; Chang, Wei; Zhang, Xinran; Liao, Hongen

    2018-03-01

    Complete resection of diseased lesions reduces the recurrence of cancer, making it critical for surgical treatment. However, precisely resecting residual tumors is a challenge during operation. A novel integrated spectral-domain optical-coherence-tomography (SD-OCT) and laser-ablation therapy system for soft-biological-tissue resection is proposed. This is a prototype optical integrated diagnosis and therapeutic system as well as an optical theranostics system. We develop an optical theranostics system, which integrates SD-OCT, a laser-ablation unit, and an automatic scanning platform. The SD-OCT image of biological tissue provides an intuitive and clear view for intraoperative diagnosis and monitoring in real time. The effect of laser ablation is analyzed using a quantitative mathematical model. The automatic endoscopic scanning platform combines an endoscopic probe and an SD-OCT sample arm to provide optical theranostic scanning motion. An optical fiber and a charge-coupled device camera are integrated into the endoscopic probe, allowing detection and coupling of the OCT-aiming beam and laser spots. The integrated diagnostic and therapeutic system combines SD-OCT imaging and laser-ablation modules with an automatic scanning platform. OCT imaging, laser-ablation treatment, and the integration and control of diagnostic and therapeutic procedures were evaluated by performing phantom experiments. Furthermore, SD-OCT-guided laser ablation provided precision laser ablation and resection for the malignant lesions in soft-biological-tissue-lesion surgery. The results demonstrated that the appropriate laser-radiation power and duration time were 10 W and 10 s, respectively. In the laser-ablation evaluation experiment, the error reached approximately 0.1 mm. Another validation experiment was performed to obtain OCT images of the pre- and post-ablated craters of ex vivo porcine brainstem. We propose an optical integrated diagnosis and therapeutic system. The primary experimental results show the high efficiency and feasibility of our theranostics system, which is promising for realizing accurate resection of tumors in vivo and in situ in the future.

  7. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  8. A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.

    PubMed

    Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William C

    2016-01-01

    The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.

  9. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  10. The CEBAF RF Separator System Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Hovater; Mark Augustine; Al Guerra

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decidedmore » to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.« less

  11. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V.; Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes.more » The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.« less

  12. Fast shut-down protection system for radio frequency breakdown and multipactor testing.

    PubMed

    Graves, T P; Hanson, P; Michaelson, J M; Farkas, A D; Hubble, A A

    2014-02-01

    Radio frequency (RF) breakdown such as multipactor or ionization breakdown is a device-limiting phenomenon for on-orbit spacecraft used for communication, navigation, or other RF payloads. Ground testing is therefore part of the qualification process for all high power components used in these space systems. This paper illustrates a shut-down protection system to be incorporated into multipactor/ionization breakdown ground testing for susceptible RF devices. This 8 channel system allows simultaneous use of different diagnostic classes and different noise floors. With initiation of a breakdown event, diagnostic signals increase above a user-specified level, which then opens an RF switch to eliminate RF power from the high power amplifier. Examples of this system in use are shown for a typical setup, illustrating the reproducibility of breakdown threshold voltages and the lack of multipactor conditioning. This system can also be utilized to prevent excessive damage to RF components in tests with sensitive or flight hardware.

  13. Instrumentation and test methods of an automated radiated susceptibility system

    NASA Astrophysics Data System (ADS)

    Howard, M. W.; Deere, J.

    1983-09-01

    The instrumentation and test methods of an automated electromagnetic compatibility (EMC) system for performing radiated susceptibility tests from 14 kHz to 1000 MHz is described. Particular emphasis is given to the effectiveness of the system in the evaluation of electronic circuits for susceptibility to RF radiation. The system consists of a centralized data acquisition/control unit which interfaces with the equipment under test (EUT), the RF isolated field probes, and RF amplifier ALC output; four broadband linear RF amplifiers; and a frequency synthesizer with drive level increments in steps of 0.1 dB. Centralized control of the susceptibility test system is provided by a desktop computer. It is found that the system can reduce the execution time of RF susceptibility tests by as much as 70 percent. A block diagram of the system is provided.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorogushin, M.F.

    Principle and experimental analysis of RF power feed system, based on 3 db directional couplers, for undesirable modes eliminating, divided power coupling with the RFQ accelerating structure, endotron type RF power source matching, are presented. The structure fine tuning and the system adjustment results and high-speed RF autocontrol system design are considered also.

  15. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems.

    PubMed

    Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L

    2016-01-01

    To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.

  16. A noncontact RF-based respiratory sensor: results of a clinical trial.

    PubMed

    Madsen, Spence; Baczuk, Jordan; Thorup, Kurt; Barton, Richard; Patwari, Neal; Langell, John T

    2016-06-01

    Respiratory rate (RR) is a critical vital signs monitored in health care setting. Current monitors suffer from sensor-contact failure, inaccurate data, and limited patient mobility. There is a critical need for an accurate and reliable and noncontact system to monitor RR. We developed a contact-free radio frequency (RF)-based system that measures movement using WiFi signal diffraction, which is converted into interpretable data using a Fourier transform. Here, we investigate the system's ability to measure fine movements associated with human respiration. Testing was conducted on subjects using visual cue, fixed-tempo instruction to breath at standard RRs. Blinded instruction-based RRs were compared to RF-acquired data to determine measurement accuracy. The RF-based technology was studied on postoperative ventilator-dependent patients. Blinded ventilator capnographic RR data were collected for each patient and compared to RF-acquired data to determine measurement accuracy. Respiratory rate data collected from 10 subjects breathing at a fixed RR (14, 16, 18, or 20) demonstrated 95.5% measurement accuracy between the patient's actual rate and that measured by our RF technology. Ten patients were enrolled into the clinical trial. Blinded ventilator capnographic RR data were compared to RF-based acquired data. The RF-based data showed 88.8% measurement accuracy with ventilator capnography. Initial clinical pilot trials with our contact-free RF-based monitoring system demonstrate a high degree of RR measurement accuracy when compared to capnographic data. Based on these results, we believe RF-based systems present a promising noninvasive, inexpensive, and accurate tool for continuous RR monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. System integration of RF based negative ion experimental facility at IPR

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  18. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  19. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Rose, J.; Cupolo, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  20. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Troy; Diamond, J. S.; McDowell, D.

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less

  1. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  2. HIMAC RF system with a digital synthesizer

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Sato, K.; Itano, A.; Sudou, M.; Noda, K.; Takada, E.; Kumada, M.; Yamazaki, C.; Yamagishi, T.; Morii, Y.; Toyoda, E.; Tsuzuki, N.; Yagi, T.

    2000-04-01

    An RF acceleration system, in which digital control with a direct digital synthesizer (DDS) is applied, has been developed for the Heavy Ion Medical Accelerator in Chiba (HIMAC) synchrotron. This digital system allows us to obtain stable operation of the acceleration system over a wide frequency range from 1.04 to 7.9 MHz. In this paper the designed digital RF control system and its performance are described.

  3. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  4. Noninvasive Assessment of Tissue Heating During Cardiac Radiofrequency Ablation Using MRI Thermography

    PubMed Central

    Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.

    2010-01-01

    Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028

  5. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems

    PubMed Central

    Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy

    2016-01-01

    Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361

  6. Repetitively Pulsed High Power RF Solid-State System

    NASA Astrophysics Data System (ADS)

    Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan

    2017-10-01

    Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.

  7. In Vivo Arthroscopic Temperatures: A Comparison Between 2 Types of Radiofrequency Ablation Systems in Arthroscopic Anterior Cruciate Ligament Reconstruction-A Randomized Controlled Trial.

    PubMed

    Matthews, Brent; Wilkinson, Matthew; McEwen, Peter; Hazratwala, Kaushik; Doma, Kenji; Manoharan, Varaguna; Bahho, Zaid; McEwen, Shannon

    2017-01-01

    To compare a plasma ablation device with a standard ablation device in anterior cruciate ligament (ACL) reconstruction to determine which system is superior in terms of intra-articular heat generation and diathermy efficiency. This was a prospective, randomized controlled trial. The inclusion criteria were adult patients undergoing primary ACL reconstruction. Patients were randomized preoperatively to the standard ablation group or the plasma ablation group. A thermometer was inserted into the inferior suprapatellar pouch, and the temperature, time, and duration of radiofrequency ablation were measured continually. No significant differences were found between the standard ablation system and the plasma ablation system for maximum temperature (29.77°C and 29.34°C, respectively; P = .95), mean temperature (26.16°C and 26.99°C, respectively; P = .44), minimum temperature (22.66°C and 23.94°C, respectively; P = .54), and baseline temperature (26.80°C and 27.93°C, respectively; P = .35). Similarly, no significant differences were found for operative time (82.90 minutes and 80.50 minutes, respectively; P = .72) and mean diathermy activation times (2.6 minutes for both systems; P = .90). The between-system coefficient of variation for the measured parameters ranged from 0.12% to 3.69%. No intra-articular readings above the temperature likely to damage chondrocytes were recorded. The mean irrigation fluid temperature had a significant correlation with the maximum temperature reached during the procedure (Spearman rank correlation, r = 0.87; P < .01). No difference in temperature was observed between the standard ablation and plasma ablation probes during ACL reconstruction. Temperatures did not exceed critical temperatures associated with chondrocyte death. Level I, randomized controlled trial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Excimer laser calibration system.

    PubMed

    Gottsch, J D; Rencs, E V; Cambier, J L; Hall, D; Azar, D T; Stark, W J

    1996-01-01

    Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation profiles. The calibration system correctly predicted central islands after excimer photoablation in a treated monkey cornea and in two treated human subjects. Detection of excimer-laser-beam ablation profiles may be useful for precise calibration of excimer lasers before human photorefractive and therapeutic surgery.

  9. Enhanced full-face skin rejuvenation using synchronous intense pulsed optical and conducted bipolar radiofrequency energy (ELOS): introducing selective radiophotothermolysis.

    PubMed

    Sadick, Neil S; Alexiades-Armenakas, Macrene; Bitter, Patrick; Hruza, George; Mulholland, R Stephen

    2005-01-01

    The authors previously reported their experience achieving non-ablative skin enhancement with serial, full-face, intense pulsed light treatments in a large series of patients. A new method for skin renewal electro-optical synergy (ELOS), which combines intense pulsed optical energy and conducted bipolar radiofrequency (RF) energy into a single pulse, has been recently introduced. Intense pulsed optical energy and bipolar RF energy have been used in dermatologic surgery for many years; however, this study represents the therapeutic impact of the combined energies. The authors report their experience using an ELOS system (Aurora SR, Syneron, Yokneam, Israel) on 108 consecutive patients treated with a series of full-face procedures. Patients received 5 full-face treatments every 3 weeks. Each treatment consisted of 1 to 8 full-face and segmental passes. The number of passes, specific wavelength of pulsed optical energy, and RF energy were determined by the patient's skin type, dyschromia, wrinkle pathology, and presence of a tan. A total of 540 treatments were performed on 108 subjects. All patients had pre- and post-procedural photographs. Results were assessed by double-blinded physician photographic evaluation and patient satisfaction scales. Overall skin improvement was rated at 75.3%. Overall average wrinkle improvement was 41.2%, with an average Class 1 wrinkle improvement of 64.7%, Class 2 wrinkle improvement of 38.6%, and Class 3 wrinkle improvement of 20.4%. Improvement in skin laxity was rated at 62.9%. Skin texture was reported to improve 74.1%. Improvement in the appearance of pore size was rated at 65.1%. Average improvement in erythema and telangiectasia was 68.4%. Average improvement in hyperpigmentation and dyschromia was 79.3%. Overall patient satisfaction was 92%. The overall minor complication rate, including blistering, crusting, and stripping was 8.3%, and the major complication rate was less than 1%. One small, depressed nasal scar was observed in one patient. This study demonstrates the safety and efficacy of a new technology using combined optical and conducted bipolar RF energies for noninvasive skin rejuvenation. The results show improvement in wrinkle reduction and amelioration of erythema, telangiectasia, and hyperpigmentation comparable to that reported for other intense pulsed light technologies.

  10. Optical aberrations induced by subclinical decentrations of the ablation pattern

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo

    2000-06-01

    Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.

  11. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.

    2013-06-15

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with themore » results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.« less

  12. Rationale and design of the NO-PARTY trial: near-zero fluoroscopic exposure during catheter ablation of supraventricular arrhythmias in young patients.

    PubMed

    Casella, Michela; Dello Russo, Antonio; Pelargonio, Gemma; Bongiorni, Maria Grazia; Del Greco, Maurizio; Piacenti, Marcello; Andreassi, Maria Grazia; Santangeli, Pasquale; Bartoletti, Stefano; Moltrasio, Massimo; Fassini, Gaetano; Marini, Massimiliano; Di Cori, Andrea; Di Biase, Luigi; Fiorentini, Cesare; Zecchi, Paolo; Natale, Andrea; Picano, Eugenio; Tondo, Claudio

    2012-10-01

    Radiofrequency catheter ablation is the mainstay of therapy for supraventricular tachyarrhythmias. Conventional radiofrequency catheter ablation requires the use of fluoroscopy, thus exposing patients to ionising radiation. The feasibility and safety of non-fluoroscopic radiofrequency catheter ablation has been recently reported in a wide range of supraventricular tachyarrhythmias using the EnSite NavX™ mapping system. The NO-PARTY is a multi-centre, randomised controlled trial designed to test the hypothesis that catheter ablation of supraventricular tachyarrhythmias guided by the EnSite NavX™ mapping system results in a clinically significant reduction in exposure to ionising radiation compared with conventional catheter ablation. The study will randomise 210 patients undergoing catheter ablation of supraventricular tachyarrhythmias to either a conventional ablation technique or one guided by the EnSite NavX™ mapping system. The primary end-point is the reduction of the radiation dose to the patient. Secondary end-points include procedural success, reduction of the radiation dose to the operator, and a cost-effectiveness analysis. In a subgroup of patients, we will also evaluate the radiobiological effectiveness of dose reduction by assessing acute chromosomal DNA damage in peripheral blood lymphocytes. NO-PARTY will determine whether radiofrequency catheter ablation of supraventricular tachyarrhythmias guided by the EnSite NavX™ mapping system is a suitable and cost-effective approach to achieve a clinically significant reduction in ionising radiation exposure for both patient and operator.

  13. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  14. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  15. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  16. Synthesis of ultrafine Si3N4 powder in RF-RF plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Michitaka; Nishio, Hiroaki

    1991-10-01

    A newly designed plasma-CVD apparatus mounted with the RF-RF type plasma torch was introduced to synthesize ultrafine powders of silicon nitride (Si3N4). The RF-RF plasma system (the combination of a main (lower) and controlling (upper) RF plasma) improved the stability of simple RF plasma and solved the impurity problem of dc-RF hybrid plasma. The reaction of SiCl4 and NH3, which were radially injected into the tail flames of the upper and lower plasmas, respectively, yielded near-stoichiometric amorphous powders of Si3N4. The nitrogen content in the products largely depended on the flow rate of the quenching gas, a mixture of NH3more » (reactant) and H2. The oxygen content and metal impurities are 2-3 wt pct and less than 200 ppm, respectively. The powder particles had an average diameter of about 15 nm with a narrow size distribution, and showed extreme air sensitivity. Conspicuous crystallazation and particle growth occurred when heated at temperatures above 1400 C. These results suggested that the RF-RF system was a potential reactor for the synthesis of ultrafine powders with excellent sinterability at relatively low temperatures. 9 refs.« less

  17. The science of conventional and water-cooled monopolar lumbar radiofrequency rhizotomy: an electrical engineering point of view.

    PubMed

    Ball, Richard D

    2014-01-01

    Radiofrequency ablation (RFA) is a safe and effective pain therapy used to create sensory dysfunction in appropriate nerves via thermal damage. While commonly viewed as a simple process, RF heating is actually quite complex from an electrical engineering standpoint, and it is difficult for the non-electrical engineer to achieve a thorough understanding of the events that occur. RFA is highly influenced by the configuration and properties of the peri-electrode tissues. To rationally discuss the science of RFA requires that examples be procedure-specific, and lumbar RFA is the procedure selected for this review. Adequate heating of the lumbar medial branch has many potential failure points, and the underlying science is discussed with recommendations to reduce the frequency of failure in heating target tissues. Important technical details of the procedure that are not generally appreciated are discussed, and the status quo is challenged on several aspects of accepted technique. The rationale underlying electrode placement and the limitations of RF heating are, for the most part, commonly misunderstood, and there may even need to be significant changes in how lumbar radiofrequency rhizotomy (RFR) is performed. A new paradigm for heating target tissue may be of value. Foremost in developing best practices for this procedure is avoiding pitfalls. Good RF heating and medial branch lesioning are the rewards for understanding how the process functions, attention to detail, and meticulous attention to electrode positioning.

  18. 10 GHz dual loop opto-electronic oscillator without RF-amplifiers

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary

    2008-02-01

    We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.

  19. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  20. RF control at SSCL — an object oriented design approach

    NASA Astrophysics Data System (ADS)

    Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.

    1994-12-01

    The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.

  1. Fusion programs in applied plasma physics

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.

  2. Atrio-ventricular junction ablation and pacemaker treatment: a comparison between men and women.

    PubMed

    Carnlöf, Carina; Insulander, Per; Jensen-Urstad, Mats; Iwarzon, Marie; Gadler, Fredrik

    2018-06-01

    To explore sex differences regarding indication for atrio-ventricular junction ablation (AVJ), choice of pacing system, complications to pacemaker treatment, long-term outcome, and cause of death after AVJ ablation. 700 patients who had undergone AVJ ablation between January 1990 and December 2010 were included. Data were retrieved from the patients´ medical records and the Swedish Pacemaker and Implantable Cardioverter-Defibrillator Registry. Information about admission to hospital and cause of death was retrieved from the National Board of Health and Welfare. Mean follow-up was 90 ± 64 months. Indication for AVJ ablation, choice of pacing system, and outcome after AVJ ablation differed between the sexes. The men had more often permanent atrial fibrillation, p = .0001, and a VVIR pacemaker or cardiac resynchronization therapy (CRT) implanted prior to ablation, p = .0001. Heart failure was present in 44% of the men vs. 28% of the women, p = .0001. LVEF decreased slightly in the whole cohort after the AVJ ablation. There were no sex differences in complication rates due to the pacemaker/ICD treatment, p = .3 or mortality due to AVJ ablation. In this long-term follow-up in patients with atrial fibrillation treated with AVJ ablation and pacing, indication, choice of pacing system, and morbidity differed but there were no sex differences regarding survival or primary cause of death found. The main factor influencing survival was age at the time of ablation. Women less often received treatment with ICD and/or CRT when indication was present compared with men.

  3. Preclinical Assessment of a 980-nm Diode Laser Ablation System in a Large Animal Tumor Model

    PubMed Central

    Ahrar, Kamran; Gowda, Ashok; Javadi, Sanaz; Borne, Agatha; Fox, Matthew; McNichols, Roger; Ahrar, Judy U.; Stephens, Clifton; Stafford, R. Jason

    2010-01-01

    Purpose To characterize the performance of a 980-nm diode laser ablation system in an in vivo tumor model. Materials and Methods This study was approved by the Institutional Animal Care and Use Committee. The ablation system consisted of a 15-W, 980-nm diode laser, flexible diffusing tipped fiber optic, and 17-gauge internally cooled catheter. Ten immunosuppressed dogs were inoculated subcutaneously with canine transmissible venereal tumor fragments in eight dorsal locations. Laser ablations were performed at 79 sites where inoculations were successful (99%) using powers of 10 W, 12.5 W, and 15 W, with exposure times between 60 and 180 seconds. In 20 cases, multiple overlapping ablations were performed. After the dogs were euthanized, the tumors were harvested, sectioned along the applicator track, measured and photographed. Measurements of ablation zone were performed on gross specimen. Histopathology and viability staining was performed using hematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide hydrogen (NADH) staining. Results Gross pathology confirmed well-circumscribed ablation zone with sharp boundaries between thermally ablated tumor in the center surrounded by viable tumor tissue. When a single applicator was used, the greatest ablation diameters ranged from 12 mm at the lowest dose (10 W, 60 sec) to 26 mm at the highest dose (15 W, 180 sec). Multiple applicators created ablation zones of up to 42 mm in greatest diameter (with the lasers operating at 15 W for 120 sec). Conclusions The new 980-nm diode laser and internally cooled applicator effectively creates large ellipsoid thermal ablations in less than 3 minutes. PMID:20346883

  4. Simulation of the impact of refractive surgery ablative laser pulses with a flying-spot laser beam on intrasurgery corneal temperature.

    PubMed

    Shraiki, Mario; Arba-Mosquera, Samuel

    2011-06-01

    To evaluate ablation algorithms and temperature changes in laser refractive surgery. The model (virtual laser system [VLS]) simulates different physical effects of an entire surgical process, simulating the shot-by-shot ablation process based on a modeled beam profile. The model is comprehensive and directly considers applied correction; corneal geometry, including astigmatism; laser beam characteristics; and ablative spot properties. Pulse lists collected from actual treatments were used to simulate the temperature increase during the ablation process. Ablation efficiency reduction in the periphery resulted in a lower peripheral temperature increase. Steep corneas had lesser temperature increases than flat ones. The maximum rise in temperature depends on the spatial density of the ablation pulses. For the same number of ablative pulses, myopic corrections showed the highest temperature increase, followed by myopic astigmatism, mixed astigmatism, phototherapeutic keratectomy (PTK), hyperopic astigmatism, and hyperopic treatments. The proposed model can be used, at relatively low cost, for calibration, verification, and validation of the laser systems used for ablation processes and would directly improve the quality of the results.

  5. Visual Outcomes After LASIK Using Topography-Guided vs Wavefront-Guided Customized Ablation Systems.

    PubMed

    Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Tsubota, Kazuo

    2016-11-01

    To evaluate the visual performance of two customized ablation systems (wavefront-guided ablation and topography-guided ablation) in LASIK. In this prospective, randomized clinical study, 68 eyes of 35 patients undergoing LASIK were enrolled. Patients were randomly assigned to wavefront-guided ablation using the iDesign aberrometer and STAR S4 IR Excimer Laser system (Abbott Medical Optics, Inc., Santa Ana, CA) (wavefront-guided group; 32 eyes of 16 patients; age: 29.0 ± 7.3 years) or topography-guided ablation using the OPD-Scan aberrometer and EC-5000 CXII excimer laser system (NIDEK, Tokyo, Japan) (topography-guided group; 36 eyes of 19 patients; age: 36.1 ± 9.6 years). Preoperative manifest refraction was -4.92 ± 1.95 diopters (D) in the wavefront-guided group and -4.44 ± 1.98 D in the topography-guided group. Visual function and subjective symptoms were compared between groups before and 1 and 3 months after LASIK. Of seven subjective symptoms evaluated, four were significantly milder in the wavefront-guided group at 3 months. Contrast sensitivity with glare off at low spatial frequencies (6.3° and 4°) was significantly higher in the wavefront-guided group. Uncorrected and corrected distance visual acuity, manifest refraction, and higher order aberrations measured by OPD-Scan and iDesign were not significantly different between the two groups at 1 and 3 months after LASIK. Both customized ablation systems used in LASIK achieved excellent results in predictability and visual function. The wavefront-guided ablation system may have some advantages in the quality of vision. It may be important to select the appropriate system depending on eye conditions such as the pattern of total and corneal higher order aberrations. [J Refract Surg. 2016;32(11):727-732.]. Copyright 2016, SLACK Incorporated.

  6. Ablation of a resistant right atrial appendage tachycardia using a magnetic navigation system.

    PubMed

    Khan, Mohsin K; Elmouchi, Darryl

    2013-01-01

    The right atrial appendage is an uncommon site of origin for ectopic atrial tachycardia. Right atrial appendage tachycardia (RAAT) has been noted to be prevalent in young males and responds well to radiofrequency ablation. We report a case of RAAT resistant to multiple attempts of ablation that responded to ablation using Stereotaxis Niobe™ Magnetic Navigation System (RMN, Stereotaxis, St. Louis, MO, USA). ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  7. rf improvements for Spallation Neutron Source H- ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  8. rf improvements for Spallation Neutron Source H- ion source.

    PubMed

    Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  9. Analog Techniques in CEBAF's RF Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovater, J.; Fugitt, Jock

    1988-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology.Diode-related devices are being replaced by analog IC's in the CEBAF RF control system.Complex phase modulators and attenuators have been successfully tested at 70 MHz.They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity.RF signal conditioning components and how to implement the new analog IC's will be covered in this paper.

  10. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  11. Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems

    PubMed Central

    Kim, Jong-Wan; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto

    2007-01-01

    This paper presents the integration of an inductor by complementary metal-oxide-semiconductor (CMOS) compatible processes for integrated smart microsensor systems that have been developed to monitor the motion and vital signs of humans in various environments. Integration of radio frequency transmitter (RF) technology with complementary metal-oxide-semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize the wireless smart microsensors system. The essential RF components such as a voltage controlled RF-CMOS oscillator (VCO), spiral inductors for an LC resonator and an integrated antenna have been fabricated and evaluated experimentally. The fabricated RF transmitter and integrated antenna were packaged with subminiature series A (SMA) connectors, respectively. For the impedance (50 Ω) matching, a bonding wire type inductor was developed. In this paper, the design and fabrication of the bonding wire inductor for impedance matching is described. Integrated techniques for the RF transmitter by CMOS compatible processes have been successfully developed. After matching by inserting the bonding wire inductor between the on-chip integrated antenna and the VCO output, the measured emission power at distance of 5 m from RF transmitter was -37 dBm (0.2 μW).

  12. Design and simulation of novel laparoscopic renal denervation system: a feasibility study.

    PubMed

    Ye, Eunbi; Baik, Jinhwan; Lee, Seunghyun; Ryu, Seon Young; Yang, Sunchoel; Choi, Eue-Keun; Song, Won Hoon; Yuk, Hyeong Dong; Jeong, Chang Wook; Park, Sung-Min

    2018-05-18

    In this study, we propose a novel laparoscopy-based renal denervation (RDN) system for treating patients with resistant hypertension. In this feasibility study, we investigated whether our proposed surgical instrument can ablate renal nerves from outside of the renal artery safely and effectively and can overcome the depth-related limitations of the previous catheter-based system with less damage to the arterial walls. We designed a looped bipolar electrosurgical instrument to be used with laparoscopy-based RDN system. The tip of instrument wraps around the renal artery and delivers the radio-frequency (RF) energy. We evaluated the thermal distribution via simulation study on a numerical model designed using histological data and validated the results by the in vitro study. Finally, to show the effectiveness of this system, we compared the performance of our system with that of catheter-based RDN system through simulations. Simulation results were within the 95% confidence intervals of the in vitro experimental results. The validated results demonstrated that the proposed laparoscopy-based RDN system produces an effective thermal distribution for the removal of renal sympathetic nerves without damaging the arterial wall and addresses the depth limitation of catheter-based RDN system. We developed a novel laparoscope-based electrosurgical RDN method for hypertension treatment. The feasibility of our system was confirmed through a simulation study as well as in vitro experiments. Our proposed method could be an effective treatment for resistant hypertension as well as central nervous system diseases.

  13. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOEpatents

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  14. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOEpatents

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  15. Single frequency RF powered ECG telemetry system

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Hynecek, J.; Homa, J.

    1979-01-01

    It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.

  16. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  17. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less

  18. Microwave ablation in primary and secondary liver tumours: technical and clinical approaches.

    PubMed

    Meloni, Maria Franca; Chiang, Jason; Laeseke, Paul F; Dietrich, Christoph F; Sannino, Angela; Solbiati, Marco; Nocerino, Elisabetta; Brace, Christopher L; Lee, Fred T

    2017-02-01

    Thermal ablation is increasingly being utilised in the treatment of primary and metastatic liver tumours, both as curative therapy and as a bridge to transplantation. Recent advances in high-powered microwave ablation systems have allowed physicians to realise the theoretical heating advantages of microwave energy compared to other ablation modalities. As a result there is a growing body of literature detailing the effects of microwave energy on tissue heating, as well as its effect on clinical outcomes. This article will discuss the relevant physics, review current clinical outcomes and then describe the current techniques used to optimise patient care when using microwave ablation systems.

  19. Tunable Q-Factor RF Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcazar, Mario D.; Yonehara, Katsuya; Moretti, Alfred

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of themore » Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.« less

  20. Applications of laser ablation to microengineering

    NASA Astrophysics Data System (ADS)

    Gower, Malcolm C.; Rizvi, Nadeem H.

    2000-08-01

    Applications of pulsed laser ablation to the manufacture of micro- electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) devices are presented. Laser ablative processes used to manufacture a variety of microsystems technology (MST) components in the computer peripheral, sensing and biomedical industries are described together with a view of some future developments.

  1. [Cerebrovascular risk factors seen in a university hospital].

    PubMed

    Hernández Chávez, M; Samsó Zepeda, C; López Espejo, M; Escobar Henríquez, R; Mesa Latorre, T

    2014-09-01

    Risk factors (RF) in pediatric stroke differ from those of adults, and they include a wide range of diseases such as heart disease, infections, leukemias, and inborn errors of metabolism. To describe RF for ischemic stroke in a pediatric population, and to examine the relationship of RF with age, sex and type of stroke. An analysis was made of database of 114 children and adolescents with ischemic stroke from January 2003 to July 2012. Risk factors were stratified into 6 categories and ischemic strokes were classified as arterial and venous. We compared the RF with age, sex, and type of stroke (chi2 and OR). The median age was 2.5 years, with 74 (62.2%) males. No RF was identified in 7.9% of patients, and 67% had more than one RF. The most common RF were acute systemic diseases (56.1%), heart disease (35.1%), and chronic systemic diseases (29.8%). There was a statistically significant association between acute systemic disease and age less than 5 years (P<.001), and between chronic systemic disease and age 5 years or more (P<.02). The RF of heart disease was associated with arterial infarction (P<.05), and the acute head and neck disease RF was associated with venous infarction (P<.05). The RF for ischemic stroke are multiple in the pediatric population, and some of them are associated with a specific age and type of stroke. The detection of these factors may help in the primary prevention of people at risk, an early diagnosis, and treatment and prevention of recurrences. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. RF and Optical Communications: A Comparison of High Data Rate Returns From Deep Space in the 2020 Timeframe

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Boroson, Don M.; Lesh, James; Biswas, Abihijit; Orr, Richard; Schuchman, Leonard; Sands, O. Scott

    2007-01-01

    As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.

  3. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  4. Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.

    PubMed

    Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi

    2016-05-01

    MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.

  5. RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.

    PubMed

    Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan

    2018-03-15

    Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91  dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100  MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.

  6. An experimental system for symmetric capacitive rf discharge studies

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.

    1990-09-01

    An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.

  7. Clinical efficacy of low-temperature radiofrequency ablation of pharyngolaryngeal cyst in 84 Chinese infants.

    PubMed

    Wang, Zhinan; Zhang, Yamin; Ye, Yuhua; Yao, Wei; Xu, Zhongqiang; Xia, Zhongfang; Wang, Shufen; Zhou, Chengyong

    2017-11-01

    The aim of the study is to investigate the advantages and disadvantages of low-temperature radiofrequency ablation of pharyngolaryngeal cyst.The study population was composed of 84 children diagnosed with pharyngolaryngeal cyst who underwent surgical treatment at the Department of Otolaryngology, Wuhan Children's Hospital, Wuhan, China, between January 1984 and December 2013. All patients were operated using a self-retaining laryngoscope and were divided into 3 groups: traditional cystectomy group (N = 9), dynamic cutting system group (N = 18), and low-temperature radiofrequency ablation group (N = 57). Clinical outcomes were analyzed to assess the efficacy of low-temperature radiofrequency ablation in treatment of pharyngolaryngeal cyst.Compared with traditional cystectomy group or dynamic cutting system group, operation time was shorter, bleeding was less and one-year recurrence rate was much lower in low-temperature radiofrequency ablation group. However, operation time and bleeding was not statistically different between traditional cystectomy and dynamic cutting system group.Low-temperature radiofrequency ablation may be an effective substitute for treating pharyngolaryngeal cyst.

  8. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  9. An RF amplifier for ICRF studies in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, M. J.; Pribyl, P.; Gekelman, W.; Lucky, Z.

    2015-12-01

    An RF amplifier system was designed and is under construction at the UCLA Basic Plasma Science Facility. The system is designed to output 200 kW peak RMS power at 1% duty cycle with a 1 Hz rep rate at frequencies of 2-6 MHz. This paper describes the RF amplifier system with preliminary benchmarks. Current design challenges and future work are discussed.

  10. Iterative motion compensation approach for ultrasonic thermal imaging

    NASA Astrophysics Data System (ADS)

    Fleming, Ioana; Hager, Gregory; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad

    2015-03-01

    As thermal imaging attempts to estimate very small tissue motion (on the order of tens of microns), it can be negatively influenced by signal decorrelation. Patient's breathing and cardiac cycle generate shifts in the RF signal patterns. Other sources of movement could be found outside the patient's body, like transducer slippage or small vibrations due to environment factors like electronic noise. Here, we build upon a robust displacement estimation method for ultrasound elastography and we investigate an iterative motion compensation algorithm, which can detect and remove non-heat induced tissue motion at every step of the ablation procedure. The validation experiments are performed on laboratory induced ablation lesions in ex-vivo tissue. The ultrasound probe is either held by the operator's hand or supported by a robotic arm. We demonstrate the ability to detect and remove non-heat induced tissue motion in both settings. We show that removing extraneous motion helps unmask the effects of heating. Our strain estimation curves closely mirror the temperature changes within the tissue. While previous results in the area of motion compensation were reported for experiments lasting less than 10 seconds, our algorithm was tested on experiments that lasted close to 20 minutes.

  11. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  12. State-of-the-art and emerging technologies for atrial fibrillation ablation.

    PubMed

    Dewire, Jane; Calkins, Hugh

    2010-03-01

    Catheter ablation is an important treatment modality for patients with atrial fibrillation (AF). Although the superiority of catheter ablation over antiarrhythmic drug therapy has been demonstrated in middle-aged patients with paroxysmal AF, the role the procedure in other patient subgroups-particularly those with long-standing persistent AF-has not been well defined. Furthermore, although AF ablation can be performed with reasonable efficacy and safety by experienced operators, long-term success rates for single procedures are suboptimal. Fortunately, extensive ongoing research will improve our understanding of the mechanisms of AF, and considerable funds are being invested in developing new ablation technologies to improve patient outcomes. These technologies include ablation catheters designed to electrically isolate the pulmonary veins with improved safety, efficacy, and speed, catheters designed to deliver radiofrequency energy with improved precision, robotic systems to address the technological demands of the procedure, improved imaging and electrical mapping systems, and MRI-guided ablation strategies. The tools, technologies, and techniques that will ultimately stand the test of time and become the standard approach to AF ablation in the future remain unclear. However, technological advances are sure to result in the necessary improvements in the safety and efficacy of AF ablation procedures.

  13. Rf system for the NSLS coherent infrared radiation source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, W.; Biscardi, R.; Keane, J.

    1995-05-01

    The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less

  14. RF cavity using liquid dielectric for tuning and cooling

    DOEpatents

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  15. Optimization of a RF-generated CF4/O2 gas plasma sterilization process.

    PubMed

    Lassen, Klaus S; Nordby, Bolette; Grün, Reinar

    2003-05-15

    A sterilization process with the use of RF-generated (13.56 MHz) CF(4)/O(2) gas plasma was optimized in regards to power, flow rate, exposure time, and RF-system type. The dependency of the sporicidal effect on the spore inoculum positioning in the chamber of the RF systems was also investigated. Dried Bacillus stearothermophilus ATCC 7953 endospores were used as test organisms. The treatments were evaluated on the basis of survival curves and corresponding D values. The only parameter found to affect the sterilization process was the power of the RF system. Higher power resulted in higher kill. Finally, when the samples were placed more than 3-8 cm away from a centrally placed electrode in System 2, the sporicidal effect was reduced. The results are discussed and compared to results from the present literature. The RF excitation source is evaluated to be more appropriate for sterilization processes than the MW source. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 239-244, 2003

  16. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

    NASA Astrophysics Data System (ADS)

    Mosquera, Samuel Arba; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  17. Nifurpirinol: A more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations.

    PubMed

    Bergemann, David; Massoz, Laura; Bourdouxhe, Jordane; Carril Pardo, Claudio A; Voz, Marianne L; Peers, Bernard; Manfroid, Isabelle

    2018-04-17

    The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired. © 2018 by the Wound Healing Society.

  18. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system.

    PubMed

    Xie, Jian; Hu, Liangliang; Tang, Jianjun; Wu, Xue; Li, Nana; Yuan, Yongge; Yang, Haishui; Zhang, Jiaen; Luo, Shiming; Chen, Xin

    2011-12-13

    For centuries, traditional agricultural systems have contributed to food and livelihood security throughout the world. Recognizing the ecological legacy in the traditional agricultural systems may help us develop novel sustainable agriculture. We examine how rice-fish coculture (RF), which has been designated a "globally important agricultural heritage system," has been maintained for over 1,200 y in south China. A field survey demonstrated that although rice yield and rice-yield stability are similar in RF and rice monoculture (RM), RF requires 68% less pesticide and 24% less chemical fertilizer than RM. A field experiment confirmed this result. We documented that a mutually beneficial relationship between rice and fish develops in RF: Fish reduce rice pests and rice favors fish by moderating the water environment. This positive relationship between rice and fish reduces the need for pesticides in RF. Our results also indicate a complementary use of nitrogen (N) between rice and fish in RF, resulting in low N fertilizer application and low N release into the environment. These findings provide unique insights into how positive interactions and complementary use of resource between species generate emergent ecosystem properties and how modern agricultural systems might be improved by exploiting synergies between species.

  19. Use of a compact range approach to evaluate rf and dual-mode missiles

    NASA Astrophysics Data System (ADS)

    Willis, Kenneth E.; Weiss, Yosef

    2000-07-01

    This paper describes a hardware-in-the-loop (HWIL) system developed for testing Radio Frequency (RF), Infra-Red (IR), and Dual-Mode missile seekers. The system consists of a unique hydraulic five-axis (three seeker axes plus two target axes) Flight Motion Table (FMT), an off-axis parabolic reflector, and electronics required to generate the signals to the RF feeds. RF energy that simulates the target is fed into the reflector from three orthogonal feeds mounted on the inner target axis, at the focal point area of the parabolic reflector. The parabolic reflector, together with the three RF feeds (the Compact Range), effectively produces a far-field image of the target. Both FMT target axis motion and electronic control of the RF beams (deflection) modify the simulated line-of-sight target angles. Multiple targets, glint, multi-path, ECM, and clutter can be introduced electronically. To evaluate dual-mode seekers, the center section of the parabolic reflector is replaced with an IR- transparent, but RF-reflective section. An IR scene projector mounts to the FMT target axes, with its image focused on the intersection of the FMT seeker axes. The system eliminates the need for a large anechoic chamber and 'Target Wall' or target motion system used with conventional HWIL systems. This reduces acquisition and operating costs of the facility.

  20. Electromagnetic assessment of embedded micro antenna for a novel sphincter in the human body.

    PubMed

    Zan, Peng; Liu, Jinding; Ai, Yutao; Jiang, Enyu

    2013-05-01

    This paper presents a wireless, miniaturized, bi-directional telemetric artificial anal sphincter system that can be used for controlling patients' anal incontinence. The artificial anal sphincter system is mainly composed of an executive mechanism, a wireless power supply system and a wireless communication system. The wireless communication system consists of an internal RF transceiver, an internal RF antenna, a data transmission pathway, an external RF antenna and an external RF control transceiver. A micro NMHA (Normal Mode Helical Antenna) has been used for the transceiver of the internal wireless communication system and a quarter wave-length whip antenna of 7.75 cm has been used for the external wireless communication system. The RF carrier frequency of wireless communication is located in a license-free 433.1 MHz ISM (Industry, Science, and Medical) band. The radiation characteristics and SAR (Specific Absorption Rate) are evaluated using the finite difference time-domain method and 3D human body model. Results show that the SAR values of the antenna satisfy the ICNIRP (International Commission on Nonionizing Radiation Protection) limitations.

  1. The effects of radiofrequency electromagnetic radiation on sperm function.

    PubMed

    Houston, B J; Nixon, B; King, B V; De Iuliis, G N; Aitken, R J

    2016-12-01

    Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types. © 2016 Society for Reproduction and Fertility.

  2. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  3. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  4. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less

  5. Advanced electrophysiologic mapping systems: an evidence-based analysis.

    PubMed

    2006-01-01

    To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation has not been found to be effective for the treatment of complex arrhythmias such as chronic atrial fibrillation or ventricular tachycardia. Advanced nonfluoroscopic mapping systems have been developed for guiding the ablation of these complex arrhythmias. Four nonfluoroscopic advanced mapping systems have been licensed by Health Canada: CARTO EP mapping System (manufactured by Biosense Webster, CA) uses weak magnetic fields and a special mapping/ablation catheter with a magnetic sensor to locate the catheter and reconstruct a 3-dimensional geometry of the heart superimposed with colour-coded electric potential maps to guide ablation. EnSite System (manufactured by Endocardial Solutions Inc., MN) includes a multi-electrode non-contact catheter that conducts simultaneous mapping. A processing unit uses the electrical data to computes more than 3,000 isopotential electrograms that are displayed on a reconstructed 3-dimensional geometry of the heart chamber. The navigational system, EnSite NavX, can be used separately with most mapping catheters. The LocaLisa Intracardiac System (manufactured by Medtronics Inc, MN) is a navigational system that uses an electrical field to locate the mapping catheter. It reconstructs the location of the electrodes on the mapping catheter in 3-dimensional virtual space, thereby enabling an ablation catheter to be directed to the electrode that identifies abnormal electric potential. Polar Constellation Advanced Mapping Catheter System (manufactured by Boston Scientific, MA) is a multielectrode basket catheter with 64 electrodes on 8 splines. Once deployed, each electrode is automatically traced. The information enables a 3-dimensional model of the basket catheter to be computed. Colour-coded activation maps are reconstructed online and displayed on a monitor. By using this catheter, a precise electrical map of the atrium can be obtained in several heartbeats. A systematic search of Cochrane, MEDLINE and EMBASE was conducted to identify studies that compared ablation guided by any of the advanced systems to fluoroscopy-guided ablation of tachycardia. English-language studies with sample sizes greater than or equal to 20 that were published between 2000 and 2005 were included. Observational studies on safety of advanced mapping systems and fluoroscopy were also included. Outcomes of interest were acute success, defined as termination of arrhythmia immediately following ablation; long-term success, defined as being arrhythmia free at follow-up; total procedure time; fluoroscopy time; radiation dose; number of radiofrequency pulses; complications; cost; and the cost-effectiveness ratio. Quality of the individual studies was assessed using established criteria. Quality of the overall evidence was determined by applying the GRADE evaluation system. (3) Qualitative synthesis of the data was performed. Quantitative analysis using Revman 4.2 was performed when appropriate. Quality of the Studies Thirty-four studies met the inclusion criteria. These comprised 18 studies on CARTO (4 randomized controlled trials [RCTs] and 14 non-RCTs), 3 RCTs on EnSite NavX, 4 studies on LocaLisa Navigational System (1 RCT and 3 non-RCTs), 2 studies on EnSite and CARTO, 1 on Polar Constellation basket catheter, and 7 studies on radiation safety. The quality of the studies ranged from moderate to low. Most of the studies had small sample sizes with selection bias, and there was no blinding of patients or care providers in any of the studies. Duration of follow-up ranged from 6 weeks to 29 months, with most having at least 6 months of follow-up. There was heterogeneity with respect to the approach to ablation, definition of success, and drug management before and after the ablation procedure. Evidence is based on a small number of small RCTS and non-RCTS with methodological flaws.Advanced nonfluoroscopy mapping/navigation systems provided real time 3-dimensional images with integration of anatomic and electrical potential information that enable better visualization of areas of interest for ablationAdvanced nonfluoroscopy mapping/navigation systems appear to be safe; they consistently shortened the fluoroscopy duration and radiation exposure.Evidence suggests that nonfluoroscopy mapping and navigation systems may be used as adjuncts to rather than replacements for fluoroscopy in guiding the ablation of complex arrhythmias.Most studies showed a nonsignificant trend toward lower overall failure rate for advanced mapping-guided ablation compared with fluoroscopy-guided mapping.Pooled analyses of small RCTs and non-RCTs that compared fluoroscopy- with nonfluoroscopy-guided ablation of atrial fibrillation and atrial flutter showed that advanced nonfluoroscopy mapping and navigational systems:Yielded acute success rates of 69% to 100%, not significantly different from fluoroscopy ablation.Had overall failure rates at 3 months to 19 months of 1% to 40% (median 25%).Resulted in a 10% relative reduction in overall failure rate for advanced mapping guided-ablation compared to fluoroscopy guided ablation for the treatment of atrial fibrillation.Yielded added benefit over fluoroscopy in guiding the ablation of complex arrhythmia. The advanced systems were shown to reduce the arrhythmia burden and the need for antiarrhythmic drugs in patients with complex arrhythmia who had failed fluoroscopy-guided ablationBased on predominantly observational studies, circumferential PV ablation guided by a nonfluoroscopy system was shown to do the following:Result in freedom from atrial fibrillation (with or without antiarrhythmic drug) in 75% to 95% of patients (median 79%). This effect was maintained up to 28 months.Result in freedom from atrial fibrillation without antiarrhythmic drugs in 47% to 95% of patients (median 63%).Improve patient survival at 28 months after the procedure as compared with drug therapy.Require special skills; patient outcomes are operator dependent, and there is a significant learning curve effect.Complication rates of pulmonary vein ablation guided by an advanced mapping/navigation system ranged from 0% to 10% with a median of 6% during a follow-up period of 6 months to 29 months.The complication rate of the study with the longest follow-up was 8%.The most common complications of advanced catheter-guided ablation were stroke, transient ischemic attack, cardiac tamponade, myocardial infarction, atrial flutter, congestive heart failure, and pulmonary vein stenosis. A small number of cases with fatal atrial-esophageal fistula had been reported and were attributed to the high radiofrequency energy used rather than to the advanced mapping systems. An Ontario-based economic analysis suggests that the cumulative incremental upfront costs of catheter ablation of atrial fibrillation guided by advanced nonfluoroscopy mapping could be recouped in 4.7 years through cost avoidance arising from less need for antiarrhythmic drugs and fewer hospitalization for stroke and heart failure. Expert Opinion Expert consultants to the Medical Advisory Secretariat noted the following: Nonfluoroscopy mapping is not necessary for simple ablation procedures (e.g., typical flutter). However, it is essential in the ablation of complex arrhythmias including these:Symptomatic, drug-refractory atrial fibrillationArrhythmias in people who have had surgery for congenital heart disease (e.g., macro re-entrant tachycardia in people who have had surgery for congenital heart disease).Ventricular tachycardia due to myocardial infarctionAtypical atrial flutterAdvanced mapping systems represent an enabling technology in the ablation of complex arrhythmias. The ablation of these complex cases would not have been feasible or advisable with fluoroscopy-guided ablation and, therefore, comparative studies would not be feasible or ethical in such cases. (ABSTRACT TRUNCATED)

  6. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  7. Initial experience of a novel mapping system combined with remote magnetic navigation in the catheter ablation of atrial fibrillation.

    PubMed

    Lin, Changjian; Pehrson, Steen; Jacobsen, Peter Karl; Chen, Xu

    2017-12-01

    There have been advancements of sophisticated mapping systems used for ablation procedures over the last decade. Utilization of these novel mapping systems in combination with remote magnetic navigation (RMN) needs to be established. We investigated the new EnSite Precision mapping system (St. Jude Medical, Inc., St. Paul, MN, USA), which collects magnetic data for checking navigation field stability and is built on an open platform, allowing physicians to choose diagnostic and ablation catheters. We address its compatibility with RMN. To assess the clinical utility of a novel 3D mapping system (EnSite Precision mapping system) combined with RMN (Niobe ES, Stereotaxis, Inc., St. Louis, MO, USA) for atrial fibrillation (AF) ablation. In this prospective nonrandomized study, two groups of patients were treated in our center for drug refractory AF. Patients were consecutively enrolled in each group. Group A (n = 35, 14 persistent AF [PsAF]) was treated using the novel 3D mapping system combined with RMN. Group B (n = 38, 16 PsAF) was treated using Carto ® 3 (Biosense Webster, Inc., Diamond Bar, CA, USA) combined with RMN. In Group A, the left atrium (LA) was mapped with a circular magnetic catheter manually and was then replaced by a RMN ablation catheter. At the end of the procedures in Group A, the circular catheter was used for confirming field stability. In Group B, an ablation catheter was controlled by RMN to perform both LA mapping and ablation. All patients underwent pulmonary vein antrum isolation. Additional complex fractionated atrial electrograms (CFAEs) ablation was performed for PsAF. Procedural, ablation, and fluoroscopy times were recorded and complications were assessed. Electrophysiological end points were achieved in all patients. Using the novel mapping system, LA mapping time was fast (308 ± 60 seconds) with detailed anatomy points (178,831 ± 70,897) collected and magnetic points throughout LA. At the end of the procedures in Group A, the LA model was confirmed to be stable and its location was within the distance threshold (1 mm). Procedure time (117.9 ± 29.6 minutes vs. 119.2 ± 29.7 minutes, P = 0.89), fluoroscopy time (6.1 ± 2.4 minutes vs. 4.8 ± 2.2 minutes, P = 0.07), and ablation time (28.0 ± 12.9 minutes vs. 27.9 ± 15.8 minutes, P = 0.98) were similar in Group A versus Group B, respectively. No complications occurred in either group. LA mapped by the novel system is stable and reliable. Combined with RMN, it could be effectively used for AF ablation without impacting overall procedural times. © 2017 Wiley Periodicals, Inc.

  8. The design and implementation of a broadband digital low-level RF control system for the cyclotron accelerators at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Duckitt, W. D.; Conradie, J. L.; van Niekerk, M. J.; Abraham, J. K.; Niesler, T. R.

    2018-07-01

    iThemba LABS has successfully designed a new broadband digital low-level RF control system for cyclotrons, that operates over the wide frequency range of 2-100 MHz and can achieve peak-peak amplitude and phase stabilities of 0.01% and 0.01°, respectively. The presented system performs direct digital synthesis (DDS) to directly convert the digital RF signals to analog RF and local-oscillator (LO) signals with 16-bit amplitude accuracy, programmable in steps of 1 μHz and 0.0001°. Down-conversion of the RF pick-up signals to an optimal intermediate frequency (IF) of 1 MHz and sampling of the IF channels by 16-bit, single sample-latency 10 MHz ADCs was implemented to allow digital high-speed low-latency in-phase/quadrature (I/Q) demodulation of the IF channels within the FPGA. This in turn allows efficient real-time digital closed-loop control of the amplitude and phase of the RF drive-signal to be achieved. The systems have been successfully integrated at iThemba LABS into the K = 8 and K = 10 injector cyclotrons (SPC1, and SPC2), the K = 200 separated sector cyclotron (SSC), the SSC flat-topping system, the pulse-selector system and the AX , J, and K-line RF bunchers. The systems have led to a substantial improvement in the beam quality of the SSC at iThemba LABS with a reduction in beam losses by more than 90%. The design, implementation and performance is discussed.

  9. Up gradation of LHCD system for rf power level up to 2MW for SST1

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Ambulkar, K. K.; Parmar, P. R.; Virani, C. G.; Thakur, A. L.; Kulkarni, S. V.; Lhcd Group

    2010-02-01

    To operate superconducting steadystate tokamak (SST1) for 1000 seconds, lower hybrid current drive (LHCD) system has been designed at a frequency of 3.7 GHz., which would couple 1.0 MW CW of microwave power to the shaped plasma. The system consists of various rf passive components and transmission line, employing which the rf power from the source is transported to the antenna. During calibration of transmission line, it was observed that the losses in the transmission line is substantial and eventually would lead to less coupled power to the plasma. Further it is anticipated that more LH power would be required for advanced operation of SST1 machine. Thus it is decided to upgrade the existing LHCD system to 2 MW CW power level. The proposed up gradation would demand several infra structural changes and needs to be addressed. Due to lack of space, we have proposed a scheme in which additional two klystrons, along with existing two klystrons would be accommodated in the existing space. The low rf power requirements have also been increased to cater the new needs. Accordingly additional cooling requirements have been proposed to accommodate the two new klystrons. The DAC and auxiliary power supplies have been also designed. The new up graded LHCD system would address several key technological issues. Firstly it would establish the operation of four klystrons at rated power in parallel employing single RHVPS (80kV, 70A). Secondly it would establish the operation of two high power klystrons operation at rated power when their collectors are cooled in series. In this paper we would present the various requirements for up-gradation of LHCD system to 2MW. The main requirements like high power rf source, along with modified support structure, low power rf systems to drive the high power rf source, auxiliary power supplies required for high power rf source, DAC system improvement, cooling improvements, etc. would be discussed.

  10. Ablative Thermal Protection Systems Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2017-01-01

    This is a presentation of the fundamentals of ablative TPS materials for a short course at TFAWS 2017. It gives an overall description of what an ablator is, the equations that define it, and how to model it.

  11. Comparison of the levonorgestrel-releasing intrauterine system, hysterectomy, and endometrial ablation for heavy menstrual bleeding in a decision analysis model.

    PubMed

    Louie, Michelle; Spencer, Jennifer; Wheeler, Stephanie; Ellis, Victoria; Toubia, Tarek; Schiff, Lauren D; Siedhoff, Matthew T; Moulder, Janelle K

    2017-11-01

    A better understanding of the relative risks and benefits of common treatment options for abnormal uterine bleeding (AUB) can help providers and patients to make balanced, evidence-based decisions. To provide comparative estimates of clinical outcomes after placement of levonorgestrel-releasing intrauterine system (LNG-IUS), ablation, or hysterectomy for AUB. A PubMED search was done using combinations of search terms related to abnormal uterine bleeding, LNG-IUS, hysterectomy, endometrial ablation, cost-benefit analysis, cost-effectiveness, and quality-adjusted life years. Full articles published in 2006-2016 available in English comparing at least two treatment modalities of interest among women of reproductive age with AUB were included. A decision tree was generated to compare clinical outcomes in a hypothetical cohort of 100 000 premenopausal women with nonmalignant AUB. We evaluated complications, mortality, and treatment outcomes over a 5-year period, calculated cumulative quality-adjusted life years (QALYs), and conducted probabilistic sensitivity analysis. Levonorgestrel-releasing intrauterine system had the highest number of QALYs (406 920), followed by hysterectomy (403 466), non-resectoscopic ablation (399 244), and resectoscopic ablation (395 827). Ablation had more treatment failures and complications than LNG-IUS and hysterectomy. Findings were robust in probabilistic sensitivity analysis. Levonorgestrel-releasing intrauterine system and hysterectomy outperformed endometrial ablation for treatment of AUB. © 2017 International Federation of Gynecology and Obstetrics.

  12. Slow Pathway Radiofrequency Ablation Using Magnetic Navigation: A Description of Technique and Retrospective Case Analysis.

    PubMed

    Bhaskaran, Abhishek; Albarri, Maha; Ross, Neil; Al Raisi, Sara; Samanta, Rahul; Roode, Leonette; Nadri, Fazlur; Ng, Jeanette; Thomas, Stuart; Thiagalingam, Aravinda; Kovoor, Pramesh

    2017-12-01

    The Magnetic Navigation System (MNS) catheter was shown to be stable in the presence of significant cardiac wall motion and delivered more effective lesions compared to manual control. This stability could potentially make AV junctional re-entrant tachycardia (AVNRT) ablation safer. The aim of this study is to describe the method of mapping and ablation of AVNRT with MNS and 3-D electro-anatomical mapping system (CARTO, Biosense Webster, Diamond bar, CA, USA) anatomical mapping, with a view to improve the safety of ablation. The method of precise mapping and ablation with MNS is described. Consecutive AVNRT cases (n=30) from 2012 January to 2015 November, in which magnetic navigation was used, are analysed. Ablation was successful in 27 (90%) out of 30 patients. In three cases, ablation was abandoned due to the proximity of the three-dimensional His image to the potential ablation site. No complications, including AV nodal injury, occurred. The distance from the nearest His position to successful ablation site in both LAO and RAO projections of CARTO images was 26.4±8.8 and 27±7.7mm respectively. Only in two (9%) patients, ablation needed to be extended superior to the plane of coronary sinus ostium, towards the His bundle region, to achieve slow pathway modification. AVNRT ablation with MNS allows for accurate mapping of the AV node and stable ablation at a safe distance, which could help avoid AV nodal injury. We recommend this modality for younger patients with AVNRT. Copyright © 2017. Published by Elsevier B.V.

  13. Sensor-based laser ablation for tissue specific cutting: an experimental study.

    PubMed

    Rupprecht, Stephan; Tangermann-Gerk, Katja; Wiltfang, Joerg; Neukam, Friedrich Wilhelm; Schlegel, Andreas

    2004-01-01

    The interaction of laser light and tissue causes measurable phenomenons. These phenomenons can be quantified and used to control the laser drilling within a feedback system. Ten halves of dissected minipig jaws were treated with an Er:YAG laser system controlled via a feedback system. Sensor outputs were recorded and analyzed while osteotomy was done. The relative depth of laser ablation was calculated by 3D computed tomography and evaluated histologically. The detected signals caused by the laser-tissue interaction changed their character in a dramatic way after passing the cortical bone layer. The radiological evaluation of 98 laser-ablated holes in the ten halves showed no deeper ablation beyond the cortical layer (mean values: 97.8%). Histologically, no physical damage to the alveolar nerve bundle was proved. The feedback system to control the laser drilling was working exactly for cortical ablation of the bone based on the evaluation of detected and quantified phenomenon related to the laser-tissue interaction.

  14. The rf coil as a sensitive motion detector for magnetic resonance imaging.

    PubMed

    Buikman, D; Helzel, T; Röschmann, P

    1988-01-01

    A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.

  15. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajiri, Nobuhisa, E-mail: tombon@cc.okayama-u.ac.jp; Hiraki, Takao; Mimura, Hidefumi

    The purpose of this study was to investigate the relationship between pleural temperature and pneumothorax or pleural effusion after radiofrequency (RF) ablation of lung tumors. The pleural temperature was measured immediately outside the lung surface nearest to the tumor with a fiber-type thermocouple during 25 ablation procedures for 34 tumors in 22 patients. The procedures were divided into two groups depending on the highest pleural temperature: P-group I and P-group II, with highest pleural temperatures of <40 deg. C and {>=}40 deg. C, respectively. The incidence of pneumothorax or pleural effusion was compared between the groups. Multiple variables were comparedmore » between the groups to determine the factors that affect the pleural temperature. The overall incidence of pneumothorax and pleural effusion was 56% (14/25) and 20% (5/25), respectively. Temperature data in five ablation procedures were excluded from the analyses because these were affected by the pneumothorax. P-group I and P-group II comprised 10 procedures and 10 procedures, respectively. The incidence of pleural effusion was significantly higher in P-group II (4/10) than in P-group I (0/10) (p = 0.043). However, the incidence of pneumothorax did not differ significantly (p = 0.50) between P-group I (4/10) and P-group II (5/10). Factors significantly affecting the pleural temperature were distance between the electrode and the pleura (p < 0.001) and length of the lung parenchyma between the electrode and the pleura (p < 0.001). We conclude that higher pleural temperature appeared to be associated with the occurrence of pleural effusion and not with that of pneumothorax.« less

  17. Microwave ablation devices for interventional oncology.

    PubMed

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu; Chang, Randy O., E-mail: changr@wusm.wustl.edu

    BackgroundPercutaneous CT-guided radiofrequency ablation is a safe and effective minimally invasive treatment for osteoid osteomas. This technical case series describes the use of a recently introduced ablation system with a probe that can be curved in multiple directions, embedded thermocouples for real-time monitoring of the ablation volume, and a bipolar design that obviates the need for a grounding pad.MethodsMedical records of all patients who underwent radiofrequency ablation of an osteoid osteoma with the STAR Tumor Ablation System (DFINE; San Jose, CA) were reviewed. The location of each osteoid osteoma, nidus volume, and procedural details were recorded. Treatment efficacy and long-termmore » complications were assessed at clinical follow-up.ResultsDuring the study period, 18 osteoid osteomas were radiofrequency ablated with the multidirectional bipolar system. Lesion locations included the femur (50 %; 9/18), tibia (22 %; 4/18), cervical spine (11 %; 2/18), calcaneus (5.5 %; 1/18), iliac bone (5.5 %; 1/18), and fibula (5.5 %; 1/18). The median nidus volume of these cases was 0.33 mL (range 0.12–2.0 mL). All tumors were accessed via a single osseous channel. Median cumulative ablation time was 5 min and 0 s (range 1 min and 32 s–8 min and 50 s). All patients with clinical follow-up reported complete symptom resolution. No complications occurred.ConclusionSafe and effective CT-guided radiofrequency ablation of osteoid osteomas can be performed in a variety of locations using a multidirectional bipolar system.« less

  19. Pharmacological therapy in children with nodal reentry tachycardia: when, how and how long to treat the affected patients.

    PubMed

    Bouhouch, R; El Houari, T; Fellat, I; Arharbi, M

    2008-01-01

    Atrio-ventricular nodal reentrant tachycardia (AVNRT) is a rare supra-ventricular tachycardia (SVT) in children and becomes more frequent in adolescents. Most of children with an AVNRT have a healthy heart thus rarely experiencing severe symptoms. Because of haemodynamic instability or risk of complications, recurrences of SVT may require a chronic therapy. Interruption of dual atrio-ventricular nodal physiology is the basic mechanism to terminate AVNRT. This may be achieved by using anti-arrhythmic drugs or through Radiofrequency catheter ablation (RF). We aim to review the literature on the use of anti-arrhythmic drugs for the management of AVNRT in children aged more than 1 year and discuss the recommended dosages and the duration of a long term therapy. In the absence of comparative trials of risks and benefits between pharmacological therapy and RF and because of a greater clinical experience with anti-arrhythmic drugs, these last but not the least continue to be first-line therapy in the management of most SVT in children. Trials on pharmacotherapy in children with SVT in general and AVNRT in particular are lacking, use of anti-arrhythmic drugs being extrapolated from adult literature. Although Adenosine is becoming more used since it is the safest and effective drug in the acute setting, Digoxin continue to be the drug of first choice. Beta-blockers and Class I anti-arrhythmic are the second choice drugs with Flecainide being the preferred anti-arrhythmic drug for treatment failures. Amiodarone is rarely used as a chronic therapy in resistant cases. With the new advances in the RF technology, this therapy is becoming more safe and effective for AVNRT in children. Therefore, additional well-designed controlled trials are needed to further evaluate the comparative efficacy of anti-arrhythmic drugs in the management of AVNRT in children, as well as to evaluate dosing and toxicity in various age groups and determine the duration of a chronic therapy as compared to a potential RF.

  20. A new RF window designed for high-power operation in an S-band LINAC RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo

    2016-09-01

    A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.

Top