NASA Astrophysics Data System (ADS)
Li Lam, Mui; Hafiz Abu Bakar, Muhammad; Lam, Wai Yip; Alias, Afishah; Rahman, Abu Bakar Abd; Anuar Mohamad, Khairul; Uesugi, Katsuhiro
2017-11-01
In this work, p-CuGaO2/n-ZnO heterojunction diodes were deposited by RF powered sputtering method on polyethylene terephthalate (PETP, PET) substrates. Structural, morphology, optical and electrical properties of CuGaO2/ZnO heterojunction was investigated as a function of annealing duration. The structural properties show the ZnO films (002) peak were stronger at the range of 34° while CuGaO2 (015) peak is not visible at 44°. The surface morphology revealed that RMS roughness become smoother as the annealing duration increase to 30 minutes and become rougher as the annealing duration is increased to 60 minutes. The optical properties of CuGaO2/ZnO heterojunction diode at 30 minutes exhibit approximately 75% optical transmittance in the invisible region. The diodes exhibited a rectifying characteristic and the maximum forward current was observed for the diode annealed for 30 minutes. The diodes show an ideality factor range from 43.69 to 71.29 and turn on voltage between 0.75 V and 1.05 V.
1993-09-30
speed of light in vac- ring within the first 5 min of exposure. In a separate ex- uum, and g(A) is the detected fraction of emitted radia- periment...fold: film growth by reactive sputter deposition, in situ discharge diagnostics, film charcterization. A radio frequency diode apparatus was used to...l-’ZrO, films is reported.)3 1) Films were grown on Supers!]I II fused silica in a hot-oil pumped rf diode sputter deposition system using a 13-cm
Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S.
2016-05-06
Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.
NASA Astrophysics Data System (ADS)
Jaya, T. P.; Pradyumnan, P. P.
2017-12-01
Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2018-05-01
This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.
NASA Astrophysics Data System (ADS)
Ohteki, Yusuke; Sugiyama, Mutsumi
2018-07-01
A high-transparency ZnO thin film of high carrier concentration was grown by conventional RF sputtering, where the carrier concentration was continuously varied from 1016 to 1019 cm‑3 by controlling the amounts of O2 and H2 sputtering gases. To prevent the formation of a Schottky junction at the contact with In–Zn–O, and to improve the fill factor of a visible-light-transparent solar cell, a Ag-paste/NiO/ZnO/ZnO:H/IZO p–n diode structure with the carrier concentration of the ZnO:H layer of 1019 cm‑3 was fabricated. It is possible to reduce the depletion width and inverse the rectification action around ZnO/IZO by controlling the carrier concentration of the ZnO layer while maintaining the high transparency.
Influence of sputtering power on the optical properties of ITO thin films
NASA Astrophysics Data System (ADS)
K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju
2014-10-01
Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.
NASA Astrophysics Data System (ADS)
Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop
2018-02-01
The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.
NASA Astrophysics Data System (ADS)
Parvathy Venu, M.; Shrisha B., V.; Balakrishna, K. M.; Naik, K. Gopalakrishna
2017-05-01
Undoped ZnO and Al doped ZnO thin films were deposited on glass and p-Si(100) substrates by RF magnetron sputtering technique at room temperature using homemade targets. ZnO target containing 5 at% of Al2O3 as doping source was used for the growth of Al doped ZnO thin films. XRD revealed that the films have hexagonal wurtzite structure with high crystallinity. Morphology and chemical composition of the films have been indicated by FESEM and EDAX studies. A blue shift of the band gap energy and higher optical transmittance has been observed in the case of Al doped ZnO (ZnO:Al) thin films with respect to the ZnO thin films. The as deposited films on p-Si were used to fabricate n-ZnO/p-Si(100) and n-ZnO:Al/p-Si(100) heterojunction diodes and their room temperature current-voltage characteristics were studied.
NASA Astrophysics Data System (ADS)
de Dieu Mugiraneza, Jean; Miyahira, Tomoyuki; Sakamoto, Akinori; Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Itoh, Taketsugu
2010-12-01
The microcrystalline phase obtained by adopting a two-step rapid thermal annealing (RTA) process for rf-sputtered silicon films deposited on thermally durable glass was characterized. The optical properties, surface morphology, and internal stress of the annealed Si films are investigated. As the thermally durable glass substrate allows heating of the deposited films at high temperatures, micro-polycrystalline silicon (micro-poly-Si) films of uniform grain size with a smooth surface and a low internal stress could be obtained after annealing at 750 °C. The thermal stress in the Si films was 100 times lower than that found in the films deposited on conventional glass. Uniform grains with an average grain size of 30 nm were observed by transmission electron microscopy (TEM) in the films annealed at 800 °C. These micro-poly-Si films have potential application for fabrication of uniform and reliable thin film transistors (TFTs) for large scale active-matrix organic light emitting diode (AMOLED) displays.
Current-voltage characteristics of n-AlMgZnO/p-GaN junction diodes
NASA Astrophysics Data System (ADS)
Hsueh, Kuang-Po; Cheng, Po-Wei; Cheng, Yi-Chang; Sheu, Jinn-Kong; Yeh, Yu-Hsiang; Chiu, Hsien-Chin; Wang, Hsiang-Chun
2013-03-01
This study investigates the temperature dependence of the current-voltage (I-V) characteristics of Al-doped MgxZn1-xO/p-GaN junction diodes. Specifically, this study reports the deposition of n-type Al-doped MgxZn1-xO (AMZO) films on p-GaN using a radio-frequency (RF) magnetron sputtering system followed by annealing at 700, 800, 900, and 1000 °C in a nitrogen ambient for 60 seconds, respectively. The AMZO/GaN films were thereafter analyzed using Hall measurement and the x-ray diffraction (XRD) patterns. The XRD results show that the diffraction angles of the annealed AMZO films remain the same as that of GaN without shifting. The n-AMZO/p-GaN diode with 900 °C annealing had the lowest leakage current in forward and reverse bias. However, the leakage current of the diodes did not change significantly with an increase in annealing temperatures. These findings show that the n-AMZO/p-GaN junction diode is feasible for GaN-based heterojunction bipolar transistors (HBTs) and UV light-emitting diodes (LEDs).
NASA Astrophysics Data System (ADS)
Dewan, Sheetal; Tomar, Monika; Tandon, R. P.; Gupta, Vinay
2017-06-01
Mixed transition metal oxide, zinc doped NiO, Z n x N i 1 - x O (x = 0, 0.01, 0.02, 0.05, and 0.10), thin films have been fabricated by the RF magnetron sputtering technique in an oxygen deficit ambience at a growth temperature of 400 °C. The present report highlights the effect of Zn doping in NiO thin films on its structural, optical, and electrical properties. Optical transmission enhancement and band gap engineering in a-axis oriented NiO films have been demonstrated via Zn substitution. Hall effect measurements of the prepared samples revealed a transition from p-type to n-type conductivity in NiO at 2% Zn doping. A NiO based transparent p-n homojunction diode has been fabricated successfully, and the conduction mechanism dominating the diode properties is reported in detail. Current-voltage (I-V) characteristics of the homojunction diode are found to obey the Space Charge Limited Conduction mechanism with non-ideal square law behaviour.
RF Sputtering for preparing substantially pure amorphous silicon monohydride
Jeffrey, Frank R.; Shanks, Howard R.
1982-10-12
A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.
Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun
2015-10-01
The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 °C to 500 °C for comparison. Among these samples, the sample annealed at 300 °C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 Ω/square and a high UV transmittance of 87.1% at 300 nm.
NASA Astrophysics Data System (ADS)
Sobri, M.; Shuhaimi, A.; Hakim, K. M.; Ganesh, V.; Mamat, M. H.; Mazwan, M.; Najwa, S.; Ameera, N.; Yusnizam, Y.; Rusop, M.
2014-06-01
Nickel (Ni)/indium tin oxide (ITO) nanostructures were deposited on glass and silicon (1 1 1) substrates by RF magnetron sputtering using nickel and ITO (In-Sn, 90-10%) targets. The post-deposition annealing has been performed for Ni/ITO films in air. The effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. We found the appearance of (6 2 2) peak in addition to (4 0 0) and (2 2 2) major peaks, which indicates an enhancement of the film crystallinity at high temperature annealing of 650 °C. The samples show higher transmittance of more than 90% at 470 nm after annealing which is suitable for blue light emitting diode (LED) application. The optical energy bandgap is shifted from 3.51 to 3.65 eV for the Ni/ITO film after annealing at 650 °C. In addition, increasing the annealing temperature improves the film electrical properties. The resistivity value decreases from 3.77 × 10-5 Ω cm to 1.09 × 10-6 Ω cm upon increasing annealing temperature.
RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride
Jeffery, F.R.; Shanks, H.R.
1980-08-26
A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.
Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung
2008-05-01
Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.
NASA Astrophysics Data System (ADS)
Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.
2017-12-01
Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.
Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo
2016-03-15
Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less
Optical plasma monitoring of Y-Ba-Cu-O rf sputter target transients
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.
1989-12-01
The plasma emission spectra resulting from rf sputtering Y-Ba-Cu-O targets were observed as a function of sputter time. Although most lines of the observed spectra are not attributable to target species, peaks associated with each of the cation elements were resolved. The Ba and Cu peaks can be used as tracking indicators of process conditions. For example, switching from an O2/Ar sputter atmosphere to pure Ar enhanced the Ba peak much more than that associated with Cu. The emission spectra from a newly fabricated target exhibited a slow first-order transient response in seeking equilibrium with the rf plasma. The transient response of a previously sputtered target is also first order but has a much shorter time constant.
NASA Astrophysics Data System (ADS)
Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.
2005-05-01
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.
ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO
NASA Technical Reports Server (NTRS)
Coutts, T. J.
1987-01-01
This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.
Composition of RF-sputtered refractory compounds determined by X-ray photoelectron spectroscopy
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Brainard, W. A.
1978-01-01
RF-sputtered coatings of CrB2, MoSi2, Mo2C, TiC, and MoS2 were examined by X-ray photoelectron spectroscopy (XPS). Data on stoichiometry, impurity content, and chemical bonding were obtained. The influences of sputtering target history, deposition time, RF power level, and substrate bias were studied. Significant deviations from stoichiometry and high oxide levels were related to target outgassing. The effect of substrate bias depended on the particular coating material studied.
Sputtered silicon nitride coatings for wear protection
NASA Technical Reports Server (NTRS)
Grill, A.; Aron, P. R.
1982-01-01
Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.
NASA Astrophysics Data System (ADS)
Zubizarreta, C.; G-Berasategui, E.; Ciarsolo, I.; Barriga, J.; Gaspar, D.; Martins, R.; Fortunato, E.
2016-09-01
Aluminum-doped zinc oxide (AZO) transparent conductor coating has emerged as promising substitute to tin-doped indium oxide (ITO) as electrode in optoelectronic applications such as photovoltaics or light emitting diodes (LEDs). Besides its high transmission in the visible spectral region and low resistivity, AZO presents a main advantage over other candidates such as graphene, carbon nanotubes or silver nanowires; it can be deposited using the technology industrially implemented to manufacture ITO layers, the magnetron sputtering (MS). This is a productive, reliable and green manufacturing technique. But to guarantee the robustness, reproducibility and reliability of the process there are still some issues to be addressed, such as the effect and control of the target state. In this paper a thorough study of the influence of the target erosion grade in developed coatings has been performed. AZO films have been deposited from a ceramic target by RF MS. Structure, optical transmittance and electrical properties of the produced coatings have been analyzed as function of the target erosion grade. No noticeable differences have been found neither in optoelectronic properties nor in the structure of the coatings, indicating that the RF MS is a stable and consistent process through the whole life of the target.
A blue optical filter for narrow-band imaging in endoscopic capsules
NASA Astrophysics Data System (ADS)
Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.
2014-05-01
This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2017-04-01
In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.
NASA Astrophysics Data System (ADS)
Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.
1999-01-01
We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.
Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen
2015-08-31
The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant ofmore » 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.« less
NASA Astrophysics Data System (ADS)
Sosnin, D.; Kudryashov, D.; Mozharov, A.
2017-11-01
Titanium nitride is a promising material due to its low resistivity, high hardness and chemical inertness. Titanium nitride (TiN) can be applied as an ohmic contact for n-GaN and rectifying contact for p-GaN and also as a part of perovskite solar cell. A technology of TiN low temperature reactive rf-magnetron sputtering has been developed. Electrical and optical properties of titanium nitride were studied as a function of the rf-power and gas mixture composition. Reflectance and transmittance spectra were measured. Cross-section and surface SEM image were obtained. 250 nm thin films of TiN with a resistivity of 23.6 μOm cm were obtained by rf-magnetron sputtering at low temperature.
AZO nanorods thin films by sputtering method
NASA Astrophysics Data System (ADS)
Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.
2018-05-01
Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.
NASA Astrophysics Data System (ADS)
Chaoumead, Accarat; Joo, Bong-Hyun; Kwak, Dong-Joo; Sung, Youl-Moon
2013-06-01
Transparent conductive titanium-doped indium oxide (ITiO) films were deposited on Corning glass substrates by RF magnetron sputtering method. The effects of RF sputtering power and Ar gas pressure on the structural and electrical properties of the films were investigated experimentally, using a 2.5 wt% TiO2-doped In2O3 target. The deposition rate was in the range of around 20-60 nm/min under the experimental conditions of 5-20 mTorr of gas pressure and 220-350 W of RF power. The lowest resistivity of 1.2 × 10-4 Ω cm, the average optical transmittance of 75%, the high hall mobility of 47.03 cm2/V s and the relatively low carrier concentration of 1.15E+21 cm-3 were obtained for the ITiO film, prepared at RF power of 300 W and Ar gas pressure of 15 mTorr. This resistivity of 1.2 × 10-4 Ω cm is low enough as a transparent conducting layer in various electro-optical devices and it is comparable with that of ITO or ZnO:Al conducting layer.
NASA Astrophysics Data System (ADS)
Chou, Ying-Hung; Yan, Jheng-Tai; Lee, Hsin-Ying; Lee, Ching-Ting
2008-02-01
The co-sputtering Al-doped ZnO (AZO) films with Al nano-particles were used to increase the extraction efficiency of GaN-based light-emitting diodes (LEDs). Fixing the ZnO radio frequency (RF) power of 100W and changing the Al DC power from 0 to 13W, the AZO films with various Al contents can be obtained. In the experimental results, the AZO films deposited with Al DC power of 0, 4.5 and 7W do not have Al segregation. However, the segregated Al nano-particles can be found in the AZO films deposited by Al DC power of 10W and 13W. The co-sputtering 170 nm-thick AZO films with and without Al nano-particles were deposited on the transparent area of LEDs and compared the light output intensity of conventional LEDs. The light intensity of LEDs with AZO films with Al DC power 0, 4.5 and 7W increased 10% than that of conventional LEDs. This was due to the AZO film played a role of anti-reflection coating (ARC) layer. The light intensity of LEDs with AZO film deposited using Al DC power of 10W and 13W increased about 35% and 30%, respectively. It can be deduced that the output light is scattered by the Al nano-particles existed in the AZO film.
Thin-film cadmium telluride photovoltaic cells
NASA Astrophysics Data System (ADS)
Compaan, A. D.; Bohn, R. G.
1994-09-01
This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.
Nam, Hanyeob; Kim, Hong-Seok; Han, Jae-Hee; Kwon, Sang Jik; Cho, Eou Sik
2018-09-01
As direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements. Process conditions for these WS2 thin films on sapphire substrate were optimized to low RF sputtering power and high temperature annealing.
NASA Technical Reports Server (NTRS)
1972-01-01
The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.
Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors
NASA Astrophysics Data System (ADS)
Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar
2017-12-01
In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.
NASA Astrophysics Data System (ADS)
How, Soo Ren; Nayan, Nafarizal; Khairul Ahmad, Mohd; Fhong Soon, Chin; Zainizan Sahdan, Mohd; Lias, Jais; Shuhaimi Abu Bakar, Ahmad; Arshad, Mohd Khairuddin Md; Hashim, Uda; Yazid Ahmad, Mohd
2018-04-01
The ion, electron density and electron temperature during formation of TiN films in reactive magnetron sputtering system have been investigated for various settings of radio frequency (RF) power and working pressure by using Langmuir probe measurements. The RF power and working pressure able to affect the densities and plasma properties during the deposition process. In this work, a working pressure (100 and 20 mTorr) and RF power (100, 150 and 200 W) have been used for data acquisition of probe measurement. Fundamental of studied on sputter deposition is very important for improvement of film quality and deposition rate. Higher working pressure and RF power able to produce a higher ion density and reduction of electron temperature.
Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate
NASA Astrophysics Data System (ADS)
Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.
1988-07-01
High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.
Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.
2016-01-01
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Brainard, W. A.
1977-01-01
Radiofrequency sputtered coatings of CRB2, MOSI2, and MOS2 were examined by X-ray photoelectron spectroscopy. The effects of sputtering target history, deposition time, RF power level, and substrate bias on film composition were studied. Friction tests were run on RF sputtered surfaces of 440-C steel to correlate XPS data with lubricating properties. Significant deviations from stoichiometry and high oxide levels for all three compounds were related to target outgassing. The effect of biasing on these two factors depended on the compound. Improved stoichiometry correlated well with good friction and wear properties.
Room-temperature fabrication of a Ga-Sn-O thin-film transistor
NASA Astrophysics Data System (ADS)
Matsuda, Tokiyoshi; Takagi, Ryo; Umeda, Kenta; Kimura, Mutsumi
2017-08-01
We have succeeded in forming a Ga-Sn-O (GTO) film for a thin-film transistor (TFT) using radio-frequency (RF) magnetron sputtering at room temperature without annealing process. It is achieved that the field-effect mobility is 0.83 cm2 V-1 s-1 and the on/off ratio is roughly 106. A critical process parameter is the deposition pressure during the RF magnetron sputtering, which determines a balance between competing mechanisms of sputtering damages and chemical reactions, because the film quality has to be enhanced solely during the sputtering deposition. This result suggests a possibility of rare-metal free amorphous metal-oxide semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.L.; Zheng, F.; Fei, W.D.
2006-01-15
Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.
NASA Astrophysics Data System (ADS)
Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong
2017-04-01
He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.
Dusty waves and vortices in rf magnetron discharge plasma
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Shugaev, F. V.
2018-01-01
The appearance and subsequent growth of metallic particles in plasma of planar rf magnetron sputter were observed. The origin of the particles is sputtering of the rf electrode by ion flux from the plasma. In some regions of formed dust cloud the particles were involved in the horizontal or vertical circular movement. The horizontal rotation along the sputtered track in the cyclotron drift direction was observed close to the main magnetron plasma. The torus-shaped dust vortex ring engirdled the secondary plasma of the discharge at height of a few centimeters over the electrode. Close to this region particle density waves propagated through the cloud. The possible role of discharge plasma azimuthal inhomogeneity and gas dynamics effects in the forming the observed structures was considered.
DETECTOR FOR MODULATED AND UNMODULATED SIGNALS
Patterson, H.H.; Webber, G.H.
1959-08-25
An r-f signal-detecting device is described, which is embodied in a compact coaxial circuit principally comprising a detecting crystal diode and a modulating crystal diode connected in parallel. Incoming modulated r-f signals are demodulated by the detecting crystal diode to furnish an audio input to an audio amplifier. The detecting diode will not, however, produce an audio signal from an unmodulated r-f signal. In order that unmodulated signals may be detected, such incoming signals have a locally produced audio signal superimposed on them at the modulating crystal diode and then the"induced or artificially modulated" signal is reflected toward the detecting diode which in the process of demodulation produces an audio signal for the audio amplifier.
Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.
2015-01-01
For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima; Tripathi, Shweta; Chakrabarti, P.
2016-03-01
In this paper, structural, electrical and ultraviolet photodetection parameters of RF sputtered-ZnO/Si heterojunction diodes are analyzed. In this work, ZnO thin film was deposited on bare Si substrate as well as Si substrate coated with ultrathin ZnO seed layer to exhibit the effect of seed layer on device performance. AFM image of as-grown ZnO films have exhibited the uniform growth ZnO film over the whole Si substrate with average roughness of 3.2 nm and 2.83 nm for ZnO with and without seed layer respectively. Stronger peak intensity along (002) direction, as shown in XRD spectra confirm that ZnO film grown on ZnO seed layer is having more stable wurtzite structure. Ti/Al point contacts were deposited on top of the ZnO film and a layer of Al was deposited on bottom of Si substrate for using as ohmic contacts for further device characterization at dark and under UV light of 365 nm wavelength. This process is repeated for both the films sequentially. The photo-responsivity of our proposed devices is calculated as 0.34 A/W for seed layer-mediated devices and 0.26 A/W for devices without seed layer. These values are very high as compare to the reported value of photo-responsivity for same kind of ZnO/Si heterojunction device prototypes prepared by other techniques.
NASA Astrophysics Data System (ADS)
Park, Sung Chang; Lim, Yeong Jin; Lee, Tae-Keun; Kim, Cheol Jin
MgB2/carbon fibers have been synthesized by the combination of RF-sputtering of B and thermal evaporation of Mg, followed by co-evaporation. First, boron layer was deposited by RF-sputtering on the carbon fiber with average diameter of 7.1 μm. Later this coated layer of B was reacted with Mg vapor to transform into MgB2. Since the MgB2 reaction proceed with Mg diffusion into the boron layer, Mg vapor pressure and the diffusion time had to be controlled precisely to secure the complete reaction. Also the deposition rate of each element was controlled separately to obtain stoichiometric MgB2, since Mg was evaporated by thermal heating and B by sputtering system. The sintered B target was magnetron sputtered at the RF-power of ~200 W, which corresponded to the deposition rate of ~3.6 Å/s. With the deposition rate of B fixed, the vapor pressure of Mg was controlled by varying the temperature of tungsten boat with heating element control unit between 100 and 900°C. The MgB2 layers with the thickness of 200-950 nm could be obtained and occasionally MgO appeared as a second phase. Superconducting transition temperatures were measured around ~38 K depending on the deposition condition.
Substrate dependent hierarchical structures of RF sputtered ZnS films
NASA Astrophysics Data System (ADS)
Chalana, S. R.; Mahadevan Pillai, V. P.
2018-05-01
RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.
Ultra-hard amorphous AlMgB14 films RF sputtered onto curved substrates
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Putrolaynen, V. V.; Yuzvyuk, M. H.
2017-03-01
Recently, hard AlMgB14 (BAM) coatings were deposited for the first time by RF magnetron sputtering using a single stoichiometric ceramic target. High target sputtering power and sufficiently short target-to-substrate distance were found to be critical processing conditions. They enabled fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth in 2 µm thick film (Grishin et al 2014 JETP Lett. 100 680). The narrow range of sufficiently short target-to-substrate distance makes impossible to coat non flat specimens. To achieve ultimate BAM films’ characteristics onto curved surfaces we developed two-step sputtering process. The first thin layer is deposited as a template at low RF power that facilitates a layered Frank van der Merwe mode growth of smooth film occurs. The next layer is grown at high RF target sputtering power. The affinity of subsequent flow of sputtered atoms to already evenly condensed template fosters the development of smooth film surface. As an example, we made BAM coating onto hemispherical 5 mm in diameter ball made from a hard tool steel and used as a head of a special gauge. Very smooth (6.6 nm RMS surface roughness) and hard AlMgB14 films fabricated onto commercial ball-shaped items enhance hardness of tool steel specimens by a factor of four.
NASA Astrophysics Data System (ADS)
Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen
2012-10-01
Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.
REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS
The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...
Growth and characterization of high quality ZnS thin films by RF sputtering
NASA Astrophysics Data System (ADS)
Mukherjee, C.; Rajiv, K.; Gupta, P.; Sinha, A. K.; Abhinandan, L.
2012-06-01
High optical quality ZnS films are deposited on glass and Si wafer by RF sputtering from pure ZnS target. Optical transmittance, reflectance, ellipsometry, FTIR and AFM measurements are carried out. Effect of substrate temperature and chamber baking for long duration on film properties have been studied. Roughness of the films as measured by AFM are low (1-2Å).
Advanced experimental study on giant magnetoresistance of Fe/Cr superlattices by rf-sputtering
NASA Astrophysics Data System (ADS)
Obi, Y.; Takanashi, K.; Mitani, Y.; Tsuda, N.; Fujimori, H.
1992-02-01
The study on MagnetoResistance (MR) has been performed for the Fe/Cr SuperLattice (SL) produced by the rf-sputtering method. Especially the effect of the preparation condition on MR has been investigated in detail. The MR oscillates with respect to the Cr layer thickness ( tCr) as was reported by Parkin et al. [1]. The characteristic experimental results is that the MR depends strongly on the Ar pressure. This indicates that the size of the MR is greatly affected by the interface roughness of the SL induced by the different Ar pressure during sputtering.
Enhancement of the performance of GaN IMPATT diodes by negative differential mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yang; Yang, Lin’an, E-mail: layang@xidian.edu.cn; Chen, Qing
2016-05-15
A theoretical analysis of high-efficiency punch-through operation GaN-based terahertz IMPATT diodes has been carried out in this paper. It is shown that the negative differential mobility (NDM) characteristics of GaN coupled with the space charge effect acting as a self-feedback system can markedly increase the drift velocity of injection carriers, and thereby enhance diode performance under appropriate external RF voltage. The behavior of traveling electrons in the transit zone is investigated in detail. It is found that the IMPATT diode with a punch-through structure operating in the NDM mode exhibits superior characteristics compared with the equivalent diode operating in themore » Si-like constant mobility mode. In particular, the NDM-mode diode can tolerate a larger RF voltage swing than that operating in constant mobility mode. Numerical simulation results reveal that the highest efficiency of 26.6% and maximum RF power of 2.29 W can be achieved for the NDM-mode diode at a frequency of 225 GHz. A highest efficiency of 19.0% and maximum RF power of 1.58 W are obtained for the diode with constant mobility.« less
Magnetic properties of LCMO deposited films
NASA Astrophysics Data System (ADS)
Park, Seung-Iel; Jeong, Kwang Ho; Cho, Young Suk; Kim, Chul Sung
2002-04-01
La-Ca-Mn-O films were deposited with various thickness (500, 1000 and 1500°C) by RF-magnetron sputtering at 700°C and by the spin coating of sol-gel method at 400°C on LaAlO 3(1 0 0) and Si(1 0 0) single-crystal substrates. The crystal structure and chemical composition of the film grown by RF sputtering method were orthorhombic and La 0.89Ca 0.11MnO 3, respectively, while the film prepared by sol-gel spin coating was cubic with La 0.7Ca 0.3MnO 3. The temperature dependence of the resistance for the film grown by RF sputtering method with the thickness of 1000°C shows that a semiconductor-metal transition occurs at 242 K. The relative maximum magnetoresistance is about 273% at 226 K.
Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films
NASA Astrophysics Data System (ADS)
Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.
2003-06-01
White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.
Formation and possible growth mechanism of bismuth nanowires on various substrates
NASA Astrophysics Data System (ADS)
Volkov, V. T.; Kasumov, A. Yu.; Kasumov, Yu. A.; Khodos, I. I.
2017-08-01
In this work, we report results of a study of bismuth nanowires growth on various substrates, including Fe, Ni, Co, W, Pt, Au thin films on oxidized Si, Si (111), oxidized Si (100), and fused quartz. The nanowires (NW) were prepared by RF diode sputtering of Bi onto a substrate heated to about 200 °C. The structure of the wires was studied by a scanning and transmission electron microscopy. The NWs are monocrystalline up to a length of several micrometers and possess a very thin (less than 2 nm) oxide layer. A major influence of the substrate type on the quantity and the length of the obtained nanowires is observed. Based on the above studies, we propose a possible mechanism of a bismuth nanowire growth.
[Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].
Tang, Xiaoshan; Li, Da
2010-12-01
Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.
Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method
NASA Astrophysics Data System (ADS)
Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza
2017-08-01
In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.
NASA Astrophysics Data System (ADS)
Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing
2012-09-01
In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.
Some magnetic and magnetoresistive properties of RF-sputtered thin NiFe-Si films.
NASA Astrophysics Data System (ADS)
Vatskicheva, M.; Vatskichev, Ly.; Dimitrov, I.; Kunev, B.
The galvanomagnetic properties and some structural peculiarities of rf-sputtered alloy films (NI80Fe20)100-xSix at 0 < x < 30 at. % were studied and compared with the corresponding properties of evaporated films of the same thickness and composition. The content of silicon increased with the increasing of the velocity of deposition and led to the amorphousation of the films. Coercivity decreased with the velocity of growth but it did not depend on the thickness and on the velocity of film deposition. The magnetoresistance ratio Dr/r of the sputtered films was about three times higher then that of the evaporated films.
Mustafa, Farahiyah; Hashim, Abdul Manaf
2014-01-01
We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector. PMID:24561400
Photovoltaic properties of ferroelectric BaTiO3 thin films RF sputter deposited on silicon
NASA Technical Reports Server (NTRS)
Dharmadhikari, V. S.; Grannemann, W. W.
1982-01-01
Ferroelectric thin films of BaTiO3 have been successfully deposited on n-type silicon substrates at temperatures above 500 C by RF sputtering in an O2/Ar atmosphere. Analysis by X-ray diffraction patterns show that films deposited at room temperature are amorphous. At temperatures above 500 C, crystalline BaTiO3 films with a tetragonal structure are obtained. The polarization-electric field (P-E) hysteresis loops and a broad peak in the dielectric constant versus temperature curve at Curie point indicate that the RF sputtered BaTiO3 films are ferroelectric. An anomalous photovoltaic effect is observed in these thin films which is related to the remanent polarization of the material. The results on open-circuit and short-circuit measurements provide an important basis for a better understanding of the role of photovoltaic field, photovoltaic current, and the pyroelectric properties in photoferroelectric domain switching.
NASA Astrophysics Data System (ADS)
Ohta, Takayuki; Inoue, Mari; Takota, Naoki; Ito, Masafumi; Higashijima, Yasuhiro; Kano, Hiroyuki; den, Shoji; Yamakawa, Koji; Hori, Masaru
2009-10-01
Transparent conductive Oxide film has been used as transparent conducting electrodes of optoelectronic devices such as flat panel display, solar cells, and so on. Indium-Zinc-Oxide (IZO) has been investigated as one of promising alternatives Indium Tin Oxide film, due to amorphous, no nodule and so on. In order to control a sputtering process with highly precise, RF magnetron sputtering plasma using IZO composite target was diagnosed by absorption and emission spectroscopy. We have developed a multi-micro hollow cathode lamp which can emit simultaneous multi-atomic lines for monitoring Zn and In densities simultaneously. Zn and In densities were measured to be 10^9 from 10^10 cm-3 at RF power from 40 to 100 W, pressure of 5Pa, and Ar flow rate of 300 sccm. The emission intensities of Zn, In, InO, and Ar were also observed.
Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings
NASA Astrophysics Data System (ADS)
Jafari, R.; Menini, R.; Farzaneh, M.
2010-12-01
A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.
NASA Astrophysics Data System (ADS)
Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda
2018-03-01
ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.
Structure of the metallic films deposited on small spheres trapped in the rf magnetron plasma
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.
2016-11-01
Metallic coatings were deposited onto glass spheres having diameters from several to one hundred micrometers by the magnetron sputtering. Two different experimental schemes were exploited. One of them had the traditional configuration where a magnetron sputter was placed at one hundred millimeters from particles. In this scheme, continuous mechanical agitation in a fluidized bed was used to achieve uniformity of coatings. In the second scheme the treated particles (substrates) levitated in a magnetron rf plasma over a sputtered rf electrode (target) at the distance d of few mm from it and at gas pressure p values of 30-100 mTorr. These parameters are essentially different from those in the traditional sputtering. Agitation due to the features of a particle confinement in dusty plasma was used here to obtain uniform coatings. Thickness and morphology of the obtained coatings were studied. As it is known, film growth rate and structure are determined by the substrate temperature, the densities of ion and neutral atom fluxes to the substrate surface, the radiation flux density, and the heat energy produced due to the surface condensation of atoms and recombination of electrons and ions. These parameters particularly depend on the product of p and d. In the case of magnetron rf dusty plasma, it is possible to achieve the pd value several times lower than the lowest value proper to the first traditional case. Completely different dependencies of the film growth rate and structure on the pd value in these sputtering processes were observed and qualitatively explained.
Ion beam sputter etching and deposition of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.
1978-01-01
Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.
Barium ferrite thin-film recording media
NASA Astrophysics Data System (ADS)
Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.
1996-03-01
Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.
Discontinuous model with semi analytical sheath interface for radio frequency plasma
NASA Astrophysics Data System (ADS)
Miyashita, Masaru
2016-09-01
Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.
Germanium detector passivated with hydrogenated amorphous germanium
Hansen, William L.; Haller, Eugene E.
1986-01-01
Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.
Semiconductor with protective surface coating and method of manufacture thereof. [Patent application
Hansen, W.L.; Haller, E.E.
1980-09-19
Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.
Growth dynamics controllable deposition of homoepitaxial MgO films on the IBAD-MgO substrates
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Lin-Fei; Yao, Yan-Jie; Lu, Sai-Dan; Wu, Xiang; Zheng, Tong; Liu, Shun-Fan; Li, Yi-Jie
2018-03-01
Homoepitaxial MgO (Homo-MgO) films, deposited by RF magnetic sputtering method in various experimental conditions, were systematically studied using growth dynamics in older to fully understand their growth mechanism. The results showed that high quality Homo-MgO films could be obtained at high oxygen partial pressure and the thickness of Homo-MgO films were seriously affected by the ratio of O2/Ar. Moreover, an interesting phenomenon we addressed was the growth mode changed with varying the sputtering power, leading to different surface morphology. Most importantly, apart from Homo-MgO films, our theory can also be appropriate for other oxide films grown by RF magnetic sputtering technology.
Copper deposition on fabrics by rf plasma sputtering for medical applications
NASA Astrophysics Data System (ADS)
Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.
2015-03-01
The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.
Sputtering. [as deposition technique in mechanical engineering
NASA Technical Reports Server (NTRS)
Spalvins, T.
1976-01-01
This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.
Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.
2016-05-01
V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
A Metamaterial-Inspired Approach to RF Energy Harvesting
NASA Astrophysics Data System (ADS)
Fowler, Clayton; Zhou, Jiangfeng
2016-03-01
We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits a high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.
A Metamaterial-Inspired Approach to RF Energy Harvesting
NASA Astrophysics Data System (ADS)
Fowler, Clayton; Zhou, Jiangfeng
We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.
Low Cost High Performance Phased Array Antennas with Beam Steering Capabilities
2009-12-01
characteristics of BSTO, the RF vacuum sputtering technique has been used and we investigated effects of sputtering parameters such as substrate...sputtering parameters , various sets of BSTO films have been deposited on different substrates and various size of CPW phase shifters have been fabricated...measurement of phase shifter 18 4. Optimization of the sputtering parameters for BSTO deposition 19 4.1 The first BSTO film sample 20 4.2 The second BSTO
Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan
2016-01-01
We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.
2016-05-01
A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakshi, M.; Perumal, P.; Sivakumar, R.
2016-05-23
V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
Characterization on RF magnetron sputtered niobium pentoxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, N.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching ofmore » Nb{sub 2}O{sub 5} films.« less
NASA Astrophysics Data System (ADS)
Naveen, A.; Krishnamurthy, L.; Shridhar, T. N.
2018-04-01
Tungsten (W) and Alumina (Al2O3) thin films have been developed using co-sputtering technique on SS304, Copper (Cu) and Glass slides using Direct Current magnetron sputtering (DC) and Radio Frequency (RF) magnetron sputtering methods respectively. Central Composite Design (CCD) method approach has been adopted to determine the number of experimental plans for deposition and DC power, RF power and Argon gas flow rate have been input parameters, each at 5 levels for development of thin films. In this research paper, study has been carried out determine the optimized condition of deposition parameters for thickness and surface roughness of the thin films. Thickness and average Surface roughness in terms of nanometer (nm) have been characterized by thickness profilometer and atomic force microscopy respectively. The maximum and minimum average thickness observed to be 445 nm and 130 respectively. The optimum deposition condition for W/Al2O3 thin film growth was determined to be at 1000 watts of DC power and 800 watts of RF power, 20 minutes of deposition time, and almost 300 Standard Cubic Centimeter(SCCM) of Argon gas flow. It was observed that average roughness difference found to be less than one nanometer on SS substrate and one nanometer on copper approximately.
NASA Astrophysics Data System (ADS)
Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.
2009-03-01
The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.
Rare-metal-free high-performance Ga-Sn-O thin film transistor
NASA Astrophysics Data System (ADS)
Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi
2017-03-01
Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.
Rare-metal-free high-performance Ga-Sn-O thin film transistor
Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi
2017-01-01
Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547
Rare-metal-free high-performance Ga-Sn-O thin film transistor.
Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi
2017-03-14
Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm 2 /Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.
Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures
NASA Astrophysics Data System (ADS)
Wang, Juan; Salev, Pavel; Grigoriev, Alexei
As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.
Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film
NASA Astrophysics Data System (ADS)
Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro
2007-04-01
Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.
Yohn, Gyu-Jae; Jeong, Soae; Kang, Soo-Hyun; Kim, Si-Won; Noh, Beom-Rae; Oh, Semi; Jeong, Bong-Yong; Kim, Kyoung-Kook
2018-09-01
We investigated the effect of the Ag interlayer thickness on the structural, electrical and optical properties of FTO/Ag/FTO structures designed for use in wide bandgap transparent conducting electrodes. The top and bottom FTO layers were deposited on α-Al2O3 (0001) substrates via RF magnetron sputtering at 300 °C and Ag interlayers were deposited using an e-beam evaporator system. We optimized the figure of merit by changing the thickness of the inserted Ag interlayer from 10 nm to 14 nm, achieving a maximum value of 2.46 × 10-3 Ω-1 and a resistivity of 6.4 × 10-4 Ω · cm using an FTO (70 nm)/Ag (14 nm)/FTO (40 nm) structure. Furthermore, the average optical transmittance in the deep UV range (300 to 330 nm) was 82.8%.
Carrender, Curtis Lee; Gilbert, Ronald W.
2007-02-20
A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.
Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma
NASA Astrophysics Data System (ADS)
Yan, Rong; Chen, Junling; Chen, Longwei; Ding, Rui; Zhu, Dahuan
2014-12-01
The stainless steel (SS) first mirror pre-exposed in the deposition-dominated environment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.
Electric tunable behavior of sputtered lead barium zirconate thin films
NASA Astrophysics Data System (ADS)
Wu, Lin-Jung; Wu, Jenn-Ming; Huang, Hsin-Erh; Bor, Hui-Yun
2007-02-01
Lead barium zirconate (PBZ) films were grown on Pt /Ti/SiO2/Si substrates by rf-magnetron sputtering. The sputtered PBZ films possess pure perovskite phase, uniform microstructure, and excellent tunable behaviors. The tunability and loss tangent of sputtered PBZ films depend greatly on the oxygen mixing ratio (OMR). The optimal dielectric tunable behavior occurs in the PBZ films sputtered at 10% OMR. The sputtered PBZ film (10% OMR) possesses a value of figure of merit of 60, promising for frequency-agile applications. Bulk acoustic waves induced by electromechanical coupling occur at 2.72GHz, which is useful in fabricating filters and related devices in the microwave range.
Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer
NASA Technical Reports Server (NTRS)
Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert
2010-01-01
This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows rightward to the diodes. Because the RF is in a quasi- TEM (suspended, microstrip-like) mode, it impinges on the diodes in an anti-parallel mode that does not couple to the waveguide mode. This isolates the LO and RF signals. This operation is similar to a cross-bar mixer used at low frequencies, except the RF signal enters through the back-short end of the waveguide rather than through the side. The RF probe also conveys the down-converted intermediate frequency (IF) signal out to an off-chip circuit board through a simple LC low-pass filter to the left as indicated. The bias is brought to the diodes through a bypass capacitor at the top.
NASA Astrophysics Data System (ADS)
Vrakatseli, V. E.; Amanatides, E.; Mataras, D.
2016-03-01
TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.
NASA Astrophysics Data System (ADS)
Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.
2017-05-01
The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.
Optimization of process parameters for RF sputter deposition of tin-nitride thin-films
NASA Astrophysics Data System (ADS)
Jangid, Teena; Rao, G. Mohan
2018-05-01
Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.
Fabrication of eco-friendly PNP transistor using RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.
2018-05-01
An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.
Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering
NASA Astrophysics Data System (ADS)
Miyazaki, H.; Yasui, I.
2006-05-01
Vanadium oxide VOx films were deposited by reactive RF magnetron sputtering by applying a substrate bias, in which the Ar ions in plasma impacted the growing film surface. The vanadium valence of the VOx film decreased when the substrate negative bias voltage was increased. The VO2 film was successfully deposited at a substrate temperature of 400 °C and with a bias voltage of -50 to -80 V. The transition temperatures of the VO2 films with a substrate bias of -50 and -80 V were about 56 °C and 44 °C, respectively.
ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor
Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung
2006-01-01
The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.
ICRF-edge and surface interactions
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.; Myra, J. R.
2011-08-01
This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066
NASA Astrophysics Data System (ADS)
Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi
2005-05-01
The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows <110> preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a <111> preferred orientation on a <001>-oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng
2018-04-01
Tin-doped indium oxide (ITO) nanowires are successfully fabricated using a radio frequency (RF) sputtering technique with a high RF power of 250 W. The fabrication of the ITO nanowires is optimized through the study of oxygen flow rates, temperatures and RF power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target is observed and the mechanism for the difference is discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method demonstrated good conductivity (15 Ω sq-1) and a transmittance of more than 64% at a wavelength longer than 550 nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices.
Fundamental and subharmonic excitation for an oscillator with several tunneling diodes in series
NASA Technical Reports Server (NTRS)
Boric-Lubecke, Olga; Pan, Dee-Son; Itoh, Tatsuo
1995-01-01
Connecting several tunneling diodes in series shows promise as a method for increasing the output power of these devices as millimeter-wave oscillators. However, due to the negative differential resistance (NDR) region in the dc I-V curve of a single tunneling diode, a circuit using several devices connected in series, and biased simultaneously in the NDR region, is dc unstable. Because of this instability, an oscillator with several tunneling diodes in series has a demanding excitation condition. Excitation using an externally applied RF signal is one approach to solving this problem. This is experimentally demonstrated using an RF source, both with frequency close to as well as with frequency considerably lower than the oscillation frequency. Excitation by an RF (radio frequency) source with a frequency as low as one sixth of the oscillation frequency was demonstrated in a proof-of-principle experiment at 2 GHz, for an oscillator with two tunnel diodes connected in series. Strong harmonics of the oscillation signal were generated as a result of the highly nonlinear dc I-V curve of the tunnel diode and a large signal oscillator design. Third harmonic output power comparable to that of the fundamental was observed in one oscillator circuit. If submillimeter wave resonant-tunneling diodes (RTD's) are used instead of tunnel diodes, this harmonic output may be useful for generating signals at frequencies well into the terahertz range.
Development of an inductively coupled impulse sputtering source for coating deposition
NASA Astrophysics Data System (ADS)
Loch, Daniel Alexander Llewellyn
In recent years, highly ionised pulsed plasma processes have had a great impact on improving the coating performance of various applications, such as for cutting tools and ITO coatings, allowing for a longer service life and improved defect densities. These improvements stem from the higher ionisation degree of the sputtered material in these processes and with this the possibility of controlling the flux of sputtered material, allowing the regulation of the hardness and density of coatings and the ability to sputter onto complex contoured substrates. The development of Inductively Coupled Impulse Sputtering (ICIS) is aimed at the potential of utilising the advantages of highly ionised plasma for the sputtering of ferromagnetic material. In traditional magnetron based sputter processes ferromagnetic materials would shunt the magnetic field of the magnetron, thus reducing the sputter yield and ionisation efficiency. By generating the plasma within a high power pulsed radio frequency (RF) driven coil in front of the cathode, it is possible to remove the need for a magnetron by applying a high voltage pulsed direct current to the cathode attracting argon ions from the plasma to initiate sputtering. This is the first time that ICIS technology has been deployed in a sputter coating system. To study the characteristics of ICIS, current and voltage waveforms have been measured to examine the effect of increasing RF-power. Plasma analysis has been conducted by optical emission spectroscopy to investigate the excitation mechanisms and the emission intensity. These are correlated to the set RF-power by modelling assumptions based on electron collisions. Mass spectroscopy is used to measure the plasma potential and ion energy distribution function. Pure copper, titanium and nickel coatings have been deposited on silicon with high aspect ratio via to measure the deposition rate and characterise the microstructure. For titanium and nickel the emission modelling results are in good agreement with the model expectations showing that electron collisions are the main excitation mechanism. The plasma potential was measured as 20 eV, this is an ideal level for good adatom mobility with reduced lattice defects. All surfaces in the via were coated, perpendicular column growth on the sidewalls indicates a predominantly ionised metal flux to the substrate and the deposition rates agree with the literature value of the sputter yield of the materials. The results of the studies show that ICIS is a viable process for the deposition of magnetic coatings with high ionisation in the plasma.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh
2018-04-01
In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.
2017-05-01
Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.
Metal-Insulator-Metal Diode Process Development for Energy Harvesting Applications
2010-04-01
Sputter Tool Dep Method: Sputtering (DC Magnetron ) Recipe: MC_Pt 1640A_TiO2 1000A_Ti 2000A_500C_1a MC_Pt 1640A_TiO2 1000A_Ti 2000A_300C_1a MC_Pt...thin films were sputtered onto silicon substrates with silicon dioxide overlayers. I-V measurements were taken using an electrical characterization...deposition of the entire MIM material stack to be done without breaking the vacuum within a multi-material system DC sputtering tool. A CAD layout of a MIM
On Both Spatial And Velocity Distribution Of Sputtered Particles In Magnetron Discharge
NASA Astrophysics Data System (ADS)
Vitelaru, C.; Pohoata, V.; Tiron, V.; Costin, C.; Popa, G.
2012-12-01
The kinetics of the sputtered atoms from the metallic target as well as the time-space distribution of the argon metastable atoms have been investigated for DC and high power pulse magnetron discharge by means of Tunable Diode - Laser Absorption Spectroscopy (TD-LAS) and Tunable Diode - Laser Induced Fluorescence (TD-LIF). The discharge was operated in argon (5-30 mTorr) with two different targets, tungsten and aluminum, for pulses of 1 to 20 μs, at frequencies of 0.2 to 1 kHz. Peak current intensity of ~100 A has been attained at cathode peak voltage of ~1 kV. The mean velocity distribution functions and particle fluxes of the sputtered metal atoms, in parallel and perpendicular direction to the target, have been obtained and compared for DC and pulse mode.
Synthesis and annealing study of RF sputtered ZnO thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.
2016-05-23
In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less
NASA Technical Reports Server (NTRS)
Dharmadhikari, V. S.; Grannemann, W. W.
1983-01-01
AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaram, K.; Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi-642001; Girija, K. G., E-mail: kgirija@barc.gov.in
2016-05-23
Tb{sup 3+} doped ZnGa{sub 2}O{sub 4} nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb{sup 3+} doped ZnGa{sub 2}O{sub 4} nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa{sub 2}O{sub 4} host emission band along with a strong terbium emission and the thin films showedmore » only broad host emission band and there was no terbium ion emission.« less
Singh, Mandeep; Singh, V N; Mehta, B R
2008-08-01
Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.
Effect of Ag Surfactant on Cu/Co Multilayers Deposited by RF-Ion Beam Sputtering
NASA Astrophysics Data System (ADS)
Amir, S. M.; Gupta, M.; Gupta, A.; Wildes, A.
2011-07-01
In this work, the effect of Ag surfactant in RF-ion beam sputtered Cu/Co multilayers was studied. It was found that when a sub-monolayer of Ag (termed as surfactant) is deposited prior to the deposition of Cu/Co multilayers, the asymmetry in the Cu/Co or Co/Cu interfaces becomes small. Low surface free energy of Ag helps Ag atoms to float when a Cu or Co layer is getting deposited. This balances the difference between the surface free energy of Cu and Co making the interfaces in the multilayers smoother as compared to the case when no Ag surfactant was used.
Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, Arun; Dhiman, Pooja; Singh, M.
2017-05-01
Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.
NASA Astrophysics Data System (ADS)
He, Bo; Zhao, Lei; Xu, Jing; Xing, Huaizhong; Xue, Shaolin; Jiang, Meng
2013-10-01
In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω•cm, while the carrier concentration and mobility are as high as 3.461 × 1021 atom/cm3 and 19.1 cm2/Vṡs, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.
Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters
Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M.
2012-01-01
This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance. PMID:23202014
Optimization of passive low power wireless electromagnetic energy harvesters.
Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M
2012-10-11
This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at -30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance.
Silicon carbide semiconductor device fabrication and characterization
NASA Technical Reports Server (NTRS)
Davis, R. F.; Das, K.
1990-01-01
A number of basic building blocks i.e., rectifying and ohmic contacts, implanted junctions, MOS capacitors, pnpn diodes and devices, such as, MESFETs on both alpha and beta SiC films were fabricated and characterized. Gold forms a rectifying contact on beta SiC. Since Au contacts degrade at high temperatures, these are not considered to be suitable for high temperature device applications. However, it was possible to utilize Au contact diodes for electrically characterizing SiC films. Preliminary work indicates that sputtered Pt or Pt/Si contacts on beta SiC films are someways superior to Au contacts. Sputtered Pt layers on alpha SiC films form excellent rectifying contacts, whereas Ni layers following anneal at approximately 1050 C provide an ohmic contact. It has demonstrated that ion implantation of Al in substrates held at 550 C can be successfully employed for the fabrication of rectifying junction diodes. Feasibility of fabricating pnpn diodes and platinum gated MESFETs on alpha SiC films was also demonstrated.
Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng
2017-01-01
We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166
NASA Astrophysics Data System (ADS)
Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo
2018-01-01
Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.
NASA Astrophysics Data System (ADS)
Zhang, Lei
Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.
NASA Astrophysics Data System (ADS)
Shin, Hyun-Su; Lee, Ju-Hyun; Kwak, Joon-Seop; Lee, Hyun Hwi; Kim, Han-Ki
2013-10-01
In this study, we reported on the plasma damage-free sputtering of epitaxial Ga-doped ZnO (GZO) films on the p-GaN layer for use as a transparent contact layer (TCL) for GaN-based light-emitting diodes (LEDs) using linear facing target sputtering (LFTS). Effective confinement of high-density plasma between faced GZO targets and the substrate position located outside of the plasma region led to the deposition of the epitaxial GZO TCL with a low sheet resistance of 25.7 Ω/s and a high transmittance of 84.6% on a p-GaN layer without severe plasma damage, which was found using the conventional dc sputtering process. The low turn-on voltage of the GaN-based LEDs with an LFTS-grown GZO TCL layer that was grown at a longer target-to-substrate distance (TSD) indicates that the plasma damage of the GaN-LED could be effectively reduced by adjusting the TSD during the LFTS process.
NASA Astrophysics Data System (ADS)
Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun
2011-12-01
Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.
Adaptation of ion beam technology to microfabrication of solid state devices and transducers
NASA Technical Reports Server (NTRS)
Topich, J. A.
1978-01-01
A number of areas were investigated to determine the potential uses of ion beam techniques in the construction of solid state devices and transducers and the packaging of implantable electronics for biomedical applications. The five areas investigated during the past year were: (1) diode-like devices fabricated on textured silicon; (2) a photolithographic technique for patterning ion beam sputtered PVC (polyvinyl chloride); (3) use of sputtered Teflon as a protective coating for implantable pressure sensors; (4) the sputtering of Macor to seal implantable hybrid circuits; and (5) the use of sputtered Teflon to immobilize enzymes.
NASA Astrophysics Data System (ADS)
Qi, Jianwei; Chen, Zhangbo; Han, Wenjun; He, Danfeng; Yang, Yiming; Wang, Qingliang
2017-09-01
Functionally graded HA/Ti coatings were deposited on silicon and Ti6Al4V substrate by radio-frequency (RF) magnetron sputtering. The effect of RF-power, negative bias and heat-treatment on the microstructure, mechanical and electrochemical properties of the coatings were characterized by SEM, XRD, FTIR, AFM Nanoindentation and electrochemical workstation. The obtained results showed that the as-deposited HA/Ti coatings were characteristic of amorphous structure, which transformed into a crystal structure after heat-treatment, and reformed O-H peak. The content of crystallization was increasing with the increase of negative bias. A dense, homogenous, smooth and featured surface, and columnar cross-section structure was observed in SEM observation. AFM results showed that the surface roughness became higher after heat-treatment, and increased with increasing RF-power. The mechanical test indicated that the coating had a higher nanohardness (9.1 GPa) in the case of -100 V and 250 W than that of Ti6Al4V substrate, and a critical load as high as 17 ± 3.5 N. The electrochemical test confirmed the HA/Ti coating served as a stable protecting barrier in improving the corrosion resistance, which the corrosion current density was 1.3% of Ti6Al4V, but it was significantly influenced by RF-power and negative bias. The contact angle test demonstrated that all the coatings exhibited favorable hydrophilic properties, and it decreased by 20-25% compared to that untreated samples. Thus all results indicated that magnetron sputtering is a promising way for fabricating a better biocompatible ceramic coating by adjusting deposition parameters and post-deposition heat treatments.
Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E
2011-01-01
The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.
The oxidation of TaBe sub 12 and NbBe sub 12 coatings on niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtright, E.L.
1990-01-01
The oxidation behavior of tantalum and niobium beryllide coatings on niobium were evaluated. Intermetallic bond layers consisting of Ir{sub 3}Ta and Ir{sub 3}Nb were used to butter the large thermal expansion mismatch between the beryllide coatings and underlying niobium substrate. All coatings were applied by Triode Sputtering except for a final environmental protection layer of stabilized zirconia deposited by RF Diode using a ceramic target. Severe delamination and spalling occurred during cyclic oxidation exposure, even at temperatures as low as 925{degrees}C, indicating that the bond layer did not prevent the differential expansion stresses from reaching the delamination failure threshold, particularlymore » at the edges and corners. Hot pressed samples of the two beryllide compounds were also exposed to a similar cyclic oxidation history, but, in contrast to the coatings, exhibited excellent oxidation resistance to temperatures as high as 1370{degrees}C. 9 refs., 8 figs., 1 tab.« less
FAST TRACK COMMUNICATION: Deposition of amino-rich thin films by RF magnetron sputtering of nylon
NASA Astrophysics Data System (ADS)
Kylián, O.; Hanuš, J.; Choukourov, A.; Kousal, J.; Slavínská, D.; Biederman, H.
2009-07-01
RF magnetron sputtering of a nylon target in different gas mixtures was studied in order to evaluate the capability of this process to deposit amino-rich coatings needed in a wide range of biomedical applications. It has been demonstrated that both the deposition rate of the coatings and the surface density of primary amino groups are strongly linked with working gas mixture composition. From this point of view, a sufficiently high deposition rate as well as the highest amine efficiency reaching a NH2/C value of 18% was observed in the N2/H2 discharge, which leads to the surface exhibiting a high rate of protein adsorption.
Kumar, Naveen; Wilkinson, Taylor M.; Packard, Corinne E.; ...
2016-06-08
The development of efficient and reliable large-area flexible optoelectronic devices demands low surface roughness-low residual stress-high optoelectronic merit transparent conducting oxide (TCO) thin films. Here, we correlate surface roughness-residual stress-optoelectronic properties of sputtered amorphous indium zinc oxide (a-IZO) thin films using a statistical design of experiment (DOE) approach and find a common growth space to achieve a smooth surface in a stress-free and high optoelectronic merit a-IZO thin film. The sputtering power, growth pressure, oxygen partial pressure, and RF/(RF+DC) are varied in a two-level system with a full factorial design, and results are used to deconvolve the complex growth space,more » identifying significant control growth parameters and their possible interactions. The surface roughness of a-IZO thin film varies over 0.19 nm to 3.97 nm, which is not in line with the general assumption of low surface roughness in a-IZO thin films. The initial regression model and analysis of variance reveal no single optimum growth sub-space to achieve low surface roughness (=0.5 nm), low residual stress (-1 to 0 GPa), and industrially acceptable electrical conductivity (>1000 S/cm) for a-IZO thin films. The extrapolation of growth parameters in light of the current results and previous knowledge leads to a new sub-space, resulting in a low residual stress of -0.52 +/- 0.04 GPa, a low surface roughness of 0.55 +/- 0.03 nm, and moderate electrical conductivity of 1962 +/- 3.84 S/cm in a-IZO thin films. Lastly, these results demonstrate the utility of the DOE approach to multi-parameter optimization, which provides an important tool for the development of flexible TCOs for the next-generation flexible organic light emitting diodes applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Naveen; Kumar, Mukesh, E-mail: mkumar@iitrpr.ac.in, E-mail: cpackard@mines.edu; Wilkinson, Taylor M.
2016-06-14
The development of efficient and reliable large-area flexible optoelectronic devices demands low surface roughness-low residual stress-high optoelectronic merit transparent conducting oxide (TCO) thin films. Here, we correlate surface roughness-residual stress-optoelectronic properties of sputtered amorphous indium zinc oxide (a-IZO) thin films using a statistical design of experiment (DOE) approach and find a common growth space to achieve a smooth surface in a stress-free and high optoelectronic merit a-IZO thin film. The sputtering power, growth pressure, oxygen partial pressure, and RF/(RF+DC) are varied in a two-level system with a full factorial design, and results are used to deconvolve the complex growth space,more » identifying significant control growth parameters and their possible interactions. The surface roughness of a-IZO thin film varies over 0.19 nm to 3.97 nm, which is not in line with the general assumption of low surface roughness in a-IZO thin films. The initial regression model and analysis of variance reveal no single optimum growth sub-space to achieve low surface roughness (≤0.5 nm), low residual stress (−1 to 0 GPa), and industrially acceptable electrical conductivity (>1000 S/cm) for a-IZO thin films. The extrapolation of growth parameters in light of the current results and previous knowledge leads to a new sub-space, resulting in a low residual stress of −0.52±0.04 GPa, a low surface roughness of 0.55±0.03 nm, and moderate electrical conductivity of 1962±3.84 S/cm in a-IZO thin films. These results demonstrate the utility of the DOE approach to multi-parameter optimization, which provides an important tool for the development of flexible TCOs for the next-generation flexible organic light emitting diodes applications.« less
NASA Astrophysics Data System (ADS)
Wahab, Q.; Karlsteen, M.; Nur, O.; Hultman, L.; Willander, M.; Sundgren, J.-E.
1996-09-01
3C-SiC/Si heterojunction diodes were prepared by reactive magnetron sputtering of pure Si in CH4-Ar discharge on Si(111) substrates kept at temperatures (Ts) ranging from 800 to 1000°C. A good diode rectification process started for films grown at Ts≤900°C. Heterojunction diodes grown at Ts = 850°C showed the best performance with a saturation current density of 2.4 × 10-4 A cm-2. Diode reverse breakdown was obtained at a voltage of -110 V. The doping concentration (Nd) of the 3C-SiC films was calculated from 1/C2 vs V plot to be 3 × 1015 cm-3. Band offset values obtained were -0.27 and 1.35 eV for the conduction and valence band, respectively. X-ray diffraction analysis revealed the film grown at Ts = 850°C to be single-phase 3C-SiC. The full width at half maximum of the 3C-SiC(111) peak was only 0.25 degree. Cross-sectional transmission electron microscopy showed the film to be highly (111)-oriented with an epitaxial columnar structure of double positioning domain boundaries.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1984-01-01
An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.
NASA Astrophysics Data System (ADS)
Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki
2016-05-01
Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.
Cho, Seong Gook; Lee, Dong Uk; Kim, Eun Kyu
2013-09-01
We investigated the electrical and optical properties of n-ZnO/p-GaN hetero-junction diode fabricated by an ultra-high vacuum radio frequency magnetron sputter. A physical relationship between the rotation rate during deposition process and post annealing conditions after deposited ZnO layer on p-GaN layer was discussed. When the rotation rates during deposition process of n-ZnO layer were 5 rpm and 15 rpm, the full width at half maximum of photoluminescence spectra of ZnO layer on the p-GaN layer was about 106 and 133 meV, respectively. Also, the ratio of deep level emission to near band edge emission was dramatically increased as increasing the rotation rate from 5 to 15 rpm. The n-ZnO/p-GaN hetero-junction diode grown at 5 rpm has a higher ratio of forward to reverse currents than the diode grown at 15 rpm. Also, the 600 degrees C-annealed diodes with 5 rpm showed good rectifying behavior with the barrier height of 0.74 eV, the ideality factor of 12.2, and the forward to reverse current ratio of 614 at +/- 8 V.
Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.
2011-01-01
In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
NASA Astrophysics Data System (ADS)
Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.
2016-09-01
Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.
Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers
NASA Astrophysics Data System (ADS)
Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.
2018-03-01
Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.
NASA Astrophysics Data System (ADS)
Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu
2017-06-01
p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.
NASA Astrophysics Data System (ADS)
Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.
2017-07-01
Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.
NASA Astrophysics Data System (ADS)
Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan
2018-04-01
In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.
Flexible diodes for radio frequency (RF) electronics: a materials perspective
NASA Astrophysics Data System (ADS)
Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.
2017-12-01
Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2017-02-01
CaCu3Ti4O12 (CCTO) thin films have been deposited by RF magnetron sputtering on silicon substrates at room temperature. As-deposited thin films were subjected to rapid thermal annealing (RTA) at different temperatures ranging from 850°C to 1000°C. XRD and capacitance - voltage studies indicate that the structural and electrical properties of CCTO thin film strongly depend upon the annealing temperature. XRD pattern of CCTO thin film annealed at 950°C revealed the polycrystalline nature with evolutions of microstructures. Electrical properties of the dielectric films were investigated by fabricating Al/CCTO/Si metal oxide semiconductor structure. Electrical properties were found to be deteriorated with increasing in annealing temperature.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
NASA Astrophysics Data System (ADS)
Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann
2008-12-01
Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.
NASA Technical Reports Server (NTRS)
Bishop, W.; Mattauch, R. J.
1990-01-01
The following accomplishments were made towards the goal of an optimized whiskerless diode chip for submillimeter wavelength applications. (1) Surface channel whiskerless diode structure was developed which offers excellent DC and RF characteristics, reduced shunt capacitance and simplified fabrication compared to mesa and proton isolated structures. (2) Reliable fabrication technology was developed for the surface channel structure. The new anode plating technology is a major improvement. (3) DC and RF characterization of the surface channel diode was compared with whisker contacted diodes. This data indicates electrical performance as good as the best reported for similar whisker contacted devices. (4) Additional batches of surface channel diodes were fabricated with excellent I-V and reduced shunt capacitance. (5) Large scale capacitance modelinng was done for the planar diode structure. This work revealed the importance of removing the substrate gallium arsenide for absolute minimum pad capacitance. (6) A surface channel diode was developed on quartz substrate and this substrate was completely removed after diode mounting for minimum parasitic capacitance. This work continues with the goal of producing excellent quality submillimeter wavelength planar diodes which satisfy the requirements of easy handling and robustness. These devices will allow the routine implementation of Schottky receivers into space-based applications at frequencies as high as 1 THz, and, in the future, beyond.
Development of RF sputtered chromium oxide coating for wear application
NASA Technical Reports Server (NTRS)
Bhushan, B.
1979-01-01
The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.
NASA Astrophysics Data System (ADS)
Osipowicz, A.; Härting, M.; Hempel, M.; Britton, D. T.; Bauer-Kugelmann, W.; Triftshäuser, W.
1999-08-01
Platinum films, used in thin film technology, produced by radio-frequency sputter deposition on aluminium oxide substrates under different conditions, have been studied by positron beam and other techniques, before and after production annealing. The defect structure in the layers has been characterised using both positron lifetime and Doppler-broadening spectroscopy, and compared with X-ray studies of crystallinity and texture.
NASA Astrophysics Data System (ADS)
Sait, R. A.; Cross, R. B. M.
2017-12-01
A growing demand for chronically implantable electrodes has led to a search for the most suitable neural electrode interface material. Nobel metals such as platinum (Pt) are inadequate for electrode/neuron interfaces at small scales due to their poor electrochemical properties, low charge injection and high charge density per unit area. Titanium nitride (TiN) has been implemented in neural electrodes application due to its outstanding properties. In this work, TiNx films were deposited by non-reactive radio frequency (RF) magnetron sputtering towards the development of a novel TiN nanowires (NWs) neural interface. Although, there is substantial work on this material, its growth using non-reactive RF magnetron sputtering has not been reported previously and optimised towards the growth of TiN NWs and their use in neural interface applications. The sputtering parameters of RF power and argon (Ar) flow rate were varied in order to investigate their effects on the structural, electrical and electrochemical properties of the TiN films. A dense film morphology was observed in the scanning electron microscopy (SEM) images of TiN thin films showing a columnar structure. The film preferential orientation was changed between (200) and (111) with Ar flow rate due to the variation of the kinetic energy (KE) of the sputtered atoms. The crystallites size obtained were in the range of 13-95 nm. Surface roughness was found to increase from 0.69 to 1.95 nm as Ar flow rate increased. TiNx films showed a good electrical resistivity of 228 μΩ cm. Stoichiometry was found to vary with sputtering conditions in which the nitrogen content was found to deplete from the film at low Ar flow rate. The electrochemical behaviour of TiN films were characterised and the highest capacitance value obtained was 0.416 mF/cm2. From the results, it can be suggested that TiN thin film can be easily optimised to act as a nucleation layer for the growth of nanowires.
Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng
2018-02-15
ITO nanowires have been successfully fabricated using a radio-frequency sputtering technique with a high RF-power of 250W. The fabrication of the ITO nanowires has been optimized through the study of oxygen flow rates, temperatures and RF-power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target has been first observed and the mechanism for the difference has been discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method has demonstrated good conductivity (15Ω/sq) and a transmittance of more than 64% at a wavelength longer than 550nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices. © 2018 IOP Publishing Ltd.
Superconducting 500 MHz accelerating copper cavities sputter-coated with niobium films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuti, C.; Circelli, N.; Hauer, M.
Thermal breakdown induced either by electron loading or by local defects of enhanced RF losses limits the accelerating field of superconducting niobium cavities. Replacing niobium with a material of higher thermal conductivity would be highly desirable to increase the maximum field. Therefore, cavities made of OFHC copper were coated by D.C. bias sputtering with a thin niobium film (1.5 to 5 ..mu..). Accelerating fields up to 8.6 MVm/sup -1/ were obtained without observing any field breakdown, the limitation being due to the available rf power. The Q values achieved at 4.2 K and low field were similar to those ofmore » niobium sheet cavities (i.e. about 2 x 10/sup 9/), but a fast initial decrease of Q to about 10/sup 9/ was reproducibly experienced. Subsequent inspection of regions of enhanced rf losses revealed defects the origin of which is under study. The apparatus used for coating the cavities and the results obtained are presented and discussed.« less
Influence of the anisotropy on the performance of D-band SiC IMPATT diodes
NASA Astrophysics Data System (ADS)
Chen, Qing; Yang, Lin'an; Wang, Shulong; Zhang, Yue; Dai, Yang; Hao, Yue
2015-03-01
Numerical simulation has been made to predict the RF performance of <0001> direction and <> direction p+/n/n-/n+ (single drift region) 4H silicon carbide (4H-SiC) impact-ionization-avalanche-transit-time (IMPATT) diodes for operation at D-band frequencies. We observed that the output performance of 4H-SiC IMPATT diode is sensitive to the crystal direction of the one-dimensional current flow. The simulation results show that <0001> direction 4H-SiC IMPATT diode provides larger breakdown voltage for its lower electron and hole ionization rates and higher dc-to-rf conversion efficiency (η) for its higher ratio of drift zone voltage drop (VD) to breakdown voltage (VB) compared with those for <> direction 4H-SiC IMPATT diode, which lead to higher-millimeter-wave power output for <0001> direction 4H-SiC IMPATT compared to <> direction. However, the quality factor Q for the <> direction 4H-SiC IMPATT diode is lower than that of <0001> direction, which implies that the <> direction 4H-SiC IMPATT diode exhibits better stability and higher growth rate of microwave oscillation compared with <0001> direction 4H-SiC IMPATT diode.
NASA Astrophysics Data System (ADS)
Das, K. C.; Tripathy, N.; Ghosh, S. P.; Mohanta, S. K.; Nakamura, A.; Kar, J. P.
2017-11-01
Tantalum doped HfO2 gate dielectric thin films were deposited on silicon substrates using RF reactive co-sputtering by varying RF power of Ta target from 15 W to 90 W. The morphological, compositional and electrical properties of Hf1-x Ta x O2 films were systematically investigated. The Ta content was found to be increased up to 21% for a Ta target power of 90 W. The evolution of monoclinic phase of Hf1-x Ta x O2 was seen from XRD study upto RF power of 60 W and afterwards, the amorphous like behaviour is appeared. The featureless smooth surface with the decrease in granular morphology has been observed from FESEM micrographs of the doped films at higher RF powers of Ta. The flatband voltage is found to be shifted towards negative voltage in the capacitance-voltage plot, which was attributed to the enhancement in positive oxide charge density with rise in RF power. The interface charge density has a minimum value of 7.85 × 1011 eV-1 cm-2 for the film deposited at Ta RF power of 75 W. The Hf1-x Ta x O2 films deposited at Ta target RF power of 90 W has shown lower leakage current. The high on/off ratio of the current during the set process in Hf1-x Ta x O2 based memristors is found suitable for bipolar resistive switching memory device applications.
670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)
2014-01-01
A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade
NASA Astrophysics Data System (ADS)
ASDEX Upgrade Team Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.
2011-08-01
Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources.Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna.Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.
ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade
NASA Astrophysics Data System (ADS)
Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.; ASDEX Upgrade Team
2011-08-01
Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources. Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna. Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.
NASA Astrophysics Data System (ADS)
Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós
2017-11-01
Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1998-01-01
Concern over the interference of stray radiofrequency (RF) emissions with key aircraft avionics is evident during takeoff and landing of every commercial flight when the flight attendant requests that all portable electronics be switched off. The operation of key radio-based avionics (such as glide-slope and localizer approach instruments) depends on the ability of front-end RF receivers to detect and amplify desired information signals while rejecting interference from undesired RF sources both inside and outside the aircraft. Incidents where key navigation and approach avionics malfunction because of RF interference clearly represent an increasing threat to flight safety as the radio spectrum becomes more crowded. In an initial feasibility experiment, the U.S. Army Research Laboratory and the NASA Lewis Research Center recently demonstrated the strategic use of silicon carbide (SiC) semiconductor components to significantly reduce the susceptibility of an RF receiver circuit to undesired RF interference. A pair of silicon carbide mixer diodes successfully reduced RF interference (intermodulation distortion) in a prototype receiver circuit by a factor of 10 (20 dB) in comparison to a pair of commercial silicon-based mixer diodes.
NASA Astrophysics Data System (ADS)
Park, Seon-Yeong; Choe, Han-Cheol
2018-02-01
In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.
Shokrani, Mohammad Reza; Hamidon, Mohd Nizar B.; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin
2014-01-01
This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680
Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin
2014-01-01
This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.
Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi
2017-01-01
Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of −0.9 V, mobility of 0.884 cm2/Vs, on-off ratio of 5.5 × 105, and subthreshold swing of 0.41 V/dec. PMID:28672868
NASA Astrophysics Data System (ADS)
Mandal, Snehal; Mazumdar, Dipak; Das, I.
2018-04-01
Ultrathin film of Co0.4Fe0.4B0.2 was prepared on p-type Si (100) substrate by RF magnetron sputtering. X-Ray Reflectivity and Atomic Force Microscopy measurements were performed to estimate the thickness and surface roughness of the film. Electrical transport measurements were performed by four-probe method in a current-in-plane (CIP) geometry. Presence of non-linearity in the current-voltage (I-V) characteristics was observed at higher current range. The electrical resistivity was found to change by several orders of magnitude (105) by changing the bias current from nano-ampere (nA) to milli-ampere (mA) range. This bias current dependence of the resistivity has been explained by different transport mechanisms.
NASA Astrophysics Data System (ADS)
Liu, Shiu-Jen; Su, Yu-Tai; Hsieh, Juang-Hsin
2014-03-01
We report the fabrication of textured VO2-x films on c-cut sapphire substrates by postdeposition annealing of V2O3 films prepared by RF magnetron sputtering using V2O3 as the target. Although the prepared VO2-x films are expected to be oxygen-deficient, overoxidation on the film surface was revealed by X-ray photoelectron spectroscopy. The metal-insulator transition (MIT) characteristics of the VO2-x films were investigated. MIT parameters including the transition temperature, transition sharpness, and hysteresis width of the VO2-x films were manipulated by varying the oxygen pressure during postdeposition annealing. The suppression of optical transmittance in the near-infrared region was observed by increasing the temperature through the MIT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanunjaya, M.; Manikanthababu, N.; Pathak, A. P.
2016-05-23
Hafnium oxide (HfO{sub 2}) is the potentially useful dielectric material in both; electronics to replace the conventional SiO{sub 2} as gate dielectric and in Optics as anti-reflection coating material. In this present work we have synthesized polycrystalline HfO{sub 2} thin films by RF magnetron sputtering deposition technique with varying target to substrate distance. The deposited films were characterized by X-ray Diffraction, Rutherford Backscattering Spectrometry (RBS) and transmission and Reflection (T&R) measurements to study the growth behavior, microstructure and optical properties. XRD measurement shows that the samples having mixed phase of monoclinic, cubic and tetragonal crystal structure. RBS measurements suggest themore » formation of Inter Layer (IL) in between Substrate and film.« less
Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi
2017-06-26
Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Uk; Hong, Byungyou; Choi, Won Seok
2009-07-15
Antimony-doped tin oxide (ATO) films were prepared on 7059 Corning glass substrate by the radio frequency (rf) magnetron sputtering method using SnO{sub 2} target mixed with Sb of 6 wt % at room temperature. The working pressure was varied from 0.67 to 2 Pa in steps of 0.67 Pa, and the rf power was varied from 100 to 175 W in steps of 25 W at room temperature. The thickness of the deposited ATO films was about 150 nm. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the rf powermore » is increased. The spectra revealed that the deposited films were polycrystalline, retaining the tetragonal structure. The grain size was estimated from the XRD spectra using the Scherrer equation and found to decrease with a decrease in the working pressure and an increase in the rf power, while the surface roughness was observed to be smoothened. The ATO film that was deposited at a working pressure of 0.67 Pa with rf power of 175 W showed the lowest resistivity of 8.6x10{sup -3} {Omega} cm, and the optical transmittance was 86.5% in the visible wavelength range from 400 to 800 nm.« less
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
NASA Astrophysics Data System (ADS)
Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.
2018-02-01
The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.
Research and Development for Continued Performance Improvement in Flexible a-Si PV
2010-12-14
accomplished, however, at low temperatures silicides tend to form on the surface of the filament, which affected filament lifetime and deposition rate...considered. Titanium Nitride, sputtered As an alternative to the hot wire deposition of silicon, samples were prepared with various thicknesses of...Silicon 21 Insitu DC Sputtering Titanium Nitride 22 Metal Machine 2 ឈ> RF Oxygen Plasma Silicon Dioxide 20. Oxygen Etch Table A.4.1 Open circuit
Advanced Inertial Technologies. Volume 3
1975-06-01
carried out under all of the technical tasks by means of publication of reports, presentation of papers , attendance at symposia, etc., this task is...sputter deposition by conventional RF sputter techniques. This choice was indicated by past experience on other programs show- ing that solid spherical...through R3 are source resistors for th« op cimp LPF and, as such, are inversely proportional to gain. Equation (4-4) n.ust be solved by iteration
MEMS Gate Structures for Electric Propulsion Applications
2006-07-12
distance between gates of dual gate system V = grid voltage Dsheath = sheath thickness Va = anode voltage E = electric field Vemitter = emitter voltage Es...minutes. A hot pressed boron nitride target (4N) in the hexagonal phase (h- BN) was sputtered in a RF magnetron sputtering gun. To promote the nucleation...and nanoFETs. This paper concludes with a discussion on using MEMS gates for dual -grid electron field emission applications. II. Gate Design I I
NASA Astrophysics Data System (ADS)
Reinke, Matthew
2016-10-01
Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out within the framework of the EUROfusion Consortium and has received funding from Euratom under Grant Agreement No 633053.
Analog Techniques in CEBAF's RF Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovater, J.; Fugitt, Jock
1988-01-01
Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology.Diode-related devices are being replaced by analog IC's in the CEBAF RF control system.Complex phase modulators and attenuators have been successfully tested at 70 MHz.They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity.RF signal conditioning components and how to implement the new analog IC's will be covered in this paper.
NASA Astrophysics Data System (ADS)
Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas
2012-02-01
The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.
Substrate bias effects on composition and coercivity of CoCrTa/Cr thin films on canasite and glass
NASA Astrophysics Data System (ADS)
Deng, Y.; Lambeth, D. N.; Sui, X.; Lee, L.-L.; Laughlin, D. E.
1993-05-01
CoCrTa/Cr thin films were prepared by rf diode sputtering onto canasite and glass substrates at various bias voltages from two targets of different compositions (Co82.8Cr14.6Ta2.6 and Co86Cr12Ta2). While Auger depth profile analysis indicates that there is some broadening at the CoCrTa-Cr interface, x-ray fluorescence spectroscopy reveals that changes in alloy composition due to the resputtering processes are even more prominent. For both targets, as the substrate bias increases the Co content in the films declines, and the magnetization decreases. The maximum film coercivity appears to correlate to the final film composition. By investigating the results from both targets, it is concluded that the coercivity reaches a maximum when the film composition is in the neighborhood of Co84Cr13Ta3. Thus, to optimize the coercivity different bias voltages are required for each target. Excessive substrate bias, however, leads to films with low magnetization and coercivity.
Physical property improvement of IZTO thin films using a hafnia buffer layer
NASA Astrophysics Data System (ADS)
Park, Jong-Chan; Kang, Seong-Jun; Choi, Byeong-Gyun; Yoon, Yung-Sup
2018-01-01
Hafnia (HfO2) has excellent mechanical and chemical stability, good transmittance, high dielectric constant, and radiation resistance property; thus, it can prevent impurities from permeating into the depositing films. So, we deposited hafnia films with various thicknesses in the range of 0-60 nm on polyethylene naphthalate (PEN) substrates before depositing indium-zinc-tin oxide (IZTO) thin films on them using RF magnetron sputtering, and their structural, morphological, optical, and electrical properties were evaluated. All IZTO thin films were successfully deposited without cracks or pinholes and had amorphous structures. As the thickness of the hafnia film increased to 30 nm, the overall properties improved; a surface roughness of 2.216 nm, transmittance of 82.59% at 550 nm, resistivity of 5.66 × 10-4 Ω cm, sheet resistance of 23.60 Ω/sq, and figure of merit of 6.26 × 10-3 Ω-1 were realized. These results indicate that the structure and materials studied in this research are suitable for application in flexible transparent electronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, and solar cells.
Park, Jozeph; Kim, Yang Soo; Ok, Kyung-Chul; Park, Yun Chang; Kim, Hyun You; Park, Jin-Seong; Kim, Hyun-Suk
2016-01-01
High-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism. First-principles calculations indicate that excess vacant nitrogen sites (VN) in N-rich ZnON disrupt the local electron conduction paths, which may be restored by having oxygen anions inserted therein. The latter are anticipated to enhance the electron mobility, and the exact process parameters that induce such a phenomenon can only be found experimentally. Contour plots of the Hall mobility and carrier density with respect to the RF power and O2 to N2 gas flow rate ratio indicate the existence of an optimum region where maximum electron mobility is obtained. Using ZnON films grown under the optimum conditions, the fabrication of high-performance devices with field-effect mobility values exceeding 120 cm2/Vs is demonstrated based on simple reactive RF sputtering methods. PMID:27098656
Tribological characterization of TiN coatings prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.
Electronic safing of a diode laser arm-fire device
NASA Astrophysics Data System (ADS)
Willis, Kenneth E.; Chang, Suk T.
1993-06-01
The paper describes a rocket motor arm-fire device which uses a diode laser protected from unintentional function with a specially designed RF frequency attenuating coupler (RFAC). The RFAC transfers power into a Faraday cage via magnetic flux, thereby protecting the diode, its drive circuit, and the pyrotechnic from all electromagnetic and electrostatic hazards. Diagrams of the diode laser arm-fire device are presented together with a diagram illustrating the RFAC principle of operation.
NASA Astrophysics Data System (ADS)
Otsuka, Shintaro; Mori, Takahiro; Morita, Yukinori; Uchida, Noriyuki; Liu, Yongxun; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku; Matsukawa, Takashi
2017-04-01
We structurally and electrically characterize sub-10-nm-thick heteroepitaxial Ge films on Si(001), formed by heated sputtering and subsequent rapid thermal annealing (RTA). After RTA treatment at 720 °C, we find the heteroepitaxial Ge films to have smooth surfaces with a roughness root mean square value of 0.54 nm. Raman measurement reveals that the 720 °C RTA improves the crystallinity of Ge films while maintaining abrupt Ge/Si interfaces. Cross-sectional transmission electron microscopy confirms that the 720 °C RTA step effectively reduces stacking faults and dislocations in the Ge films. The Richardson plot of the TaN/Ge/n-Si diode indicates a Schottky barrier height (SBH) of 0.33 V, which is close to the height of 0.37 V measured from the capacitance-voltage measurement. These values are reasonable compared with the reported SBH of the TaN/bulk Ge Schottky barrier diode, indicating that the method involving heated sputtering and subsequent RTA provides adequate thin Ge films for Ge/Si heterostructures.
RF sputter deposition of SrS:Eu and ZnS:Mn thin film electroluminescent phosphors
NASA Astrophysics Data System (ADS)
Droes, Steven Roy
1998-09-01
The radio-frequency (rf) sputter deposition of thin film electroluminescent (TFEL) materials was studied. Thin films of strontium sulfide doped with europium (SrS:Eu) and zinc sulfide doped with manganese (ZnS:Mn) were RF sputter deposited at different conditions. Photoluminescent and electroluminescent behaviors of these films were examined. Photoluminescent active, crystalline films of SrS:Eu were deposited at temperatures from 300o C to 650o C. The best temperature was 400o C, where a PL efficiency of 35% was achieved. Films were deposited at two power levels (90 and 120 watts) and five H2S concentrations (0.6%, 1.3%, 2.4%, 4.0% and 5.3%). The H2S concentration affected the crystallinity of the films and the PL performance. Lower H2S concentrations resulted in films with smaller crystallite sizes and poorer PL performance. Increased H2S concentrations increased the PL intensity and the overall spectra resembled that of an efficient SrS:Eu powder. Although there was a correlation between crystallinity and PL performance other factors such as europium concentration, distribution, and local environment also influence PL performance. Analytical results suggested that, although a film may be crystalline and have the correct europium concentration, unless the europium is in the correct localized environment, optimum PL response will not be achieved. Increased H2S concentrations produced films with europium located in optimum locations. Contrary to vacuum or chemical vapor deposited films, the sputter deposited films showed no trailing edge emission during electroluminescence. A suggested reason for this lack of a trailing edge emission in these films is that the sputter deposition process produces phosphor- insulator interfaces without shallow trap states. A statistical design of experiments approach was implemented for the sputter deposition of ZnS:Mn. The effects of four factors (substrate temperature, chamber pressure, power to the target, and H2S concentration) on three responses (deposition rate, stoichiometry, and PL performance) were studied. A 1/2 fractional factorial showed that each of the factors had a significant influence on at least one response. A large experimental error with subsequent Box-Behnken experiments, however, indicated that some uncontrolled factor was influencing the quality of the films. The large experimental error prevented the development of reliable experimental models based on the Box-Behnken results.
NASA Astrophysics Data System (ADS)
Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.
2018-05-01
Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.
NASA Astrophysics Data System (ADS)
Kumar, B. Santhosh; Purvaja, K.; Harinee, N.; Venkateswaran, C.
2018-05-01
Zinc oxide thin films have been deposited on quartz substrate using RF magnetron sputtering. The deposited films were subjected to different annealing atmosphere at a fixed temperature of 500 °C for 5h. The X-ray diffraction (XRD) patterns reveals the shift in the peak of both normal annealed and vacuum annealed thin films when compared to as-deposited ZnO film. The crystallite size, intrinsic stress and other parameters were calculated from XRD data. The surface morphology of the obtained films were studied using Atomic force microscopy (AFM). From Uv-Visible spectroscopy, the peak at 374 nm of all the films is characteristics of ZnO. The structural, thermal stability and optical properties of the annealed ZnO films are discussed in detail.
SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system
2012-01-01
In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730
NASA Astrophysics Data System (ADS)
Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai
2016-12-01
Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.
Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir
2016-01-01
In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaolin; Zhang, Le; Hao, Xihong, E-mail: xhhao@imust.cn
2015-05-15
Highlights: • High-quality PMN-PT 90/10 RFE thin films were prepared by RF magnetron sputtering. • The maximum discharged density of 31.3 J/cm{sup 3} was obtained in the 750-nm-thick film. • PMN-PT RFE films might be a promising material for energy-storage application. - Abstract: 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} (PMN-PT 90/10) relaxor ferroelectric thin films with different thicknesses were deposited on the LaNiO{sub 3}/Si (100) by the radio-frequency (RF) magnetron sputtering technique. The effects of thickness and deposition temperature on the microstructure, dielectric properties and the energy-storage performance of the thin films were investigated in detail. X-ray diffraction spectra indicated thatmore » the thin films had crystallized into a pure perovskite phase with a (100)-preferred orientation after annealed at 700 °C. Moreover, all the PMN-PT 90/10 thin films showed the uniform and crack-free surface microstructure. As a result, a larger recoverable energy density of 31.3 J/cm{sup 3} was achieved in the 750-nm-thick film under 2640 kV/cm at room temperature. Thus, PMN-PT 90/10 relaxor thin films are the promising candidate for energy-storage capacitor application.« less
Effects on crystal structure of CZTS thin films owing to deionized water and sulfurization treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadi, Samia Ahmed; Chelvanathan, Puvaneswaran; Islam, M. A.
2015-05-15
To condense the cost and increase the production, using abundantly obtainable non-toxic elements, Cu{sub 2}ZnSnS{sub 4} (CZTS) seem to be a strong contender among the photovoltaic thin film technologies. Cu{sub 2}ZnSnS{sub 4} thin films were fabricated by RF magnetron sputtering system. CZTS were sputtered on Molybdenum (Mo) coated soda lime glass (SLG) using a single target sputtering technique. The sputtering parameters (base pressure, working pressure, Argon (Ar) flow rate, RF power and sputtering time) were kept same for all three types of films. For sulfurization, the temperature used was 500 °C. Finally, As-deposited film was immersed in DIW before undergoingmore » identical sulfurization profile. As-deposited film (Sample A), sulfurized films (Sample B) and sulfurized plus DIW treated (Sample C) were compared in terms of their structural properties by means of X-Ray Diffraction (XRD) measurement and Atomic Force Microscopy (AFM). Sample B and C showed peak of (1 1 2) planes of CZTS which are characteristics of stannite structure. Post deposition treatment on CZTS films proved to be beneficial as evident from the observed enhancement in the crystallinity and grain growth. Significant difference on grain size and area roughness could be observed from the AFM measurement. The roughness of Sample A, B and C increased from 5.007 nm to 20.509 nm and 14.183 nm accordingly. From XRD data secondary phases of Cu{sub x}MoS{sub x} could be observed.« less
Mali, Sawanta S; Hong, Chang Kook; Inamdar, A I; Im, Hyunsik; Shim, Sang Eun
2017-03-02
The development of hybrid organo-lead trihalide perovskite solar cells (PSCs) comprising an electron transporting layer (ETL), a perovskite light absorber and a hole transporting layer (HTL) has received significant attention for their potential in efficient PSCs. However, the preparation of a compact and uniform ETL and the formation of a uniform light absorber layer suffer from a high temperature processing treatment and the formation of unwanted perovskite islands, respectively. A low temperature/room temperature processed ETL is one of the best options for the fabrication of flexible PSCs. In the present work, we report the implementation of a room temperature processed compact TiO 2 ETL and the synthesis of extremely uniform flexible planar PSCs based on methylammonium lead mixed halides MAPb(I 1-x Br x ) 3 (x = 0.1) via RF-magnetron sputtering and a toluene dripping treatment, respectively. The compact TiO 2 ETLs with different thicknesses (30 to 100 nm) were directly deposited on a flexible PET coated ITO substrate by varying the RF-sputtering time and used for the fabrication of flexible PSCs. The photovoltaic properties revealed that flexible PSC performance is strongly dependent on the TiO 2 ETL thickness. The open circuit voltage (V OC ) and fill factor (FF) are directly proportional to the TiO 2 ETL thickness while the 50 nm thick TiO 2 ETL shows the highest current density (J SC ) of 20.77 mA cm -2 . Our controlled results reveal that the room temperature RF-magnetron sputtered 50 nm-thick TiO 2 ETL photoelectrode exhibits a power conversion efficiency (PCE) in excess of 15%. The use of room temperature synthesis of the compact TiO 2 ETL by RF magnetron sputtering results in an enhancement of the device performance for cells prepared on flexible substrates. The champion flexible planar PSC based on this architecture exhibited a promising power conversion efficiency as high as 15.88%, featuring a high FF of 0.69 and V OC of 1.108 V with a negligible hysteresis under AM 1.5 G illumination. Furthermore, the mechanical bending stability revealed that the fabricated devices show stable PCE up to 200 bending cycles. The interface properties revealed that the 50 nm thick TiO 2 ETL provides superior charge injection characteristics and low internal resistance. The present work provides a simplistic and reliable approach for the fabrication of highly efficient stable flexible perovskite solar cells.
Semiconducting boron carbide thin films: Structure, processing, and diode applications
NASA Astrophysics Data System (ADS)
Bao, Ruqiang
The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic performance and the accelerated lifetime test of betavoltaic devices. Structural analysis by X-ray diffraction and high resolution transmission electron microscopy showed that the prepared B4C thin films are amorphous. The presence of icosahedrons, which account for the radiation hardness of icosahedral boron rich solids, in the amorphous B4C thin films was supported by Fourier transform infrared spectroscopy. The pair distribution functions derived from selected area diffraction pattern of amorphous B 4C thin films showed that the short range order structure of amorphous B4C thin films is similar to beta-rhombohedral boron but with a shorter distance. The investigation of electrical properties of B4 C thin films showed that the resistivity of B4C thin films ranges from 695 O-cm to 9650 O-cm depending on the deposition temperature; the direct and indirect bandgaps for B4C thin films are 2.776 - 2.898 eV and 1.148 - 1.327 eV, respectively; the effective lifetime of excess charge carrier is close to 0.1 ms for B4C thin film deposited at room temperature and approximates to 1 ms for those deposited at 175 °C to 500 °C. Based on structural characterization and electrical properties of B4C thin films, a structural model of B4C thin films was proposed and supported by nanoindenter experiments, i.e., the hardness of thin films deposited at temperature in the range of 275 °C to 350 °C is lower than that of the films deposited at RT and 650 °C. Heterojunctions of B4C / n-Si (100) possessing photovoltaic response have been fabricated. The suitable deposition temperature for B 4C thin film to fabricate photovoltaic device is from 175 °C to 350 °C. When the Si substrate surface was not pre-cleaned before depositing B4C thin film, the B4C / n-Si (100) heterojunction has better photovoltaic responses, presumably because there were no sputter-produced defects on the surface of Si (100) substrate. Until now, the best achievable photovoltaic performance is B4C / n-Si (100) heterojunction with 200 nm thick B4C thin film when the Si (100) substrate surface was not pre-cleaned by RF sputtering. When this heterojunction was characterized using solar simulator with air mass 1.5 spectra, the short circuit current density is 1.484 mA/cm2, the open circuit voltage is about 0.389 V, and the power conversion efficiency is about 0.214 %. In addition, B5C thin films deposited by plasma enhanced chemical vapor deposition were used to make some of the devices studied in this dissertation. It was found that the Si-doped BC / n-Si (111) heterojunctions also demonstrates their photovoltaic and betavoltaic responses. Even after irradiated by a 120 keV electron beam to a fluence of 4.38x1017 electrons/cm 2, the heterojunctions still posses betavoltaic behavior and their responses to the incident irradiance density are similar to that before irradiation.
Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator
NASA Astrophysics Data System (ADS)
Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar
2018-06-01
This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.
2016-02-01
BST barium strontium titanate εr dielectric constant MIM metal /insulator/ metal MOSD metal organic spin deposition PtSi platinum silicide RF...improvement. In addition, BST films processed via solution metal organic spin deposition, which yield a lower dielectric range of 150–335, also...layers. This report details how we used solution and physical deposition to fabricate thin films via radio frequency (RF) sputtering and metal
Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop
2018-02-01
The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David
2016-10-01
Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.
Fabrication of Material and Devices for Very High Density Information Storage.
1986-11-24
IKawanishi, "Miagnetic anid opticeal propert I e of Co. I It substituted garnet films p~rep~ared by the lPE niethod and its ipplication to hlermtmt"Ile( i...medium. Highly Bi-substituted garnet films on glass and G( substrates were successfully RF sputtered and characterized by the group of M. Goni.1 The filns...writing due to the temperature dependence of the coercive force 11. Preparation of bismuth iron garnet films by ion bean sputtering onto GGG
NASA Astrophysics Data System (ADS)
Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong
2015-11-01
A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.
NASA Astrophysics Data System (ADS)
Li, Shi-na; Ma, Rui-xin; Ma, Chun-hong; Li, Dong-ran; Xiao, Yu-qin; He, Liang-wei; Zhu, Hong-min
2013-05-01
Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10-4Ω·cm-1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm-3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.
NASA Astrophysics Data System (ADS)
Wang, Chun; Laughlin, David E.; Kryder, Mark H.
2007-04-01
Epitaxial lead zirconium titanate (PZT) (001) thin films with a Pt bottom electrode were deposited by rf sputtering onto Si(001) single crystal substrates with a Ag buffer layer. Both PZT(20/80) and PZT(53/47) samples were shown to consist of a single perovskite phase and to have the (001) orientation. The orientation relationship was determined to be PZT(001)[110]‖Pt(001)[110]‖Ag(001)[110]‖Si(001)[110]. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer. The measured remanent polarization Pr and coercive field Ec of the PZT(20/80) thin film were 26μC /cm2 and 110kV/cm, respectively. For PZT(53/47), Pr was 10μC /cm2 and Ec was 80kV/cm.
NASA Astrophysics Data System (ADS)
Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.
2018-02-01
We report the integration of multilayer ferroelectric film deposited by RF magnetron sputtering and explore the electrical characteristics for its application as the gate of ferroelectric field effect transistor for non-volatile memories. PZT (Pb[Zr0.35Ti0.65]O3) and SBN (SrBi2Nb2O9) ferroelectric materials were selected for the stack fabrication due to their large polarization and fatigue free properties respectively. Electrical characterization has been carried out to obtain memory window, leakage current density, PUND and endurance characteristics. Fabricated multilayer ferroelectric film capacitor structure shows large memory window of 17.73 V and leakage current density of the order 10-6 A cm-2 for the voltage sweep of -30 to +30 V. This multilayer gate stack of PZT/SBN shows promising endurance property with no degradation in the remnant polarization for the read/write iteration cycles upto 108.
Microstructural Characteristics of GeSbTe Thin Films Grown by RF Sputtering
NASA Astrophysics Data System (ADS)
Nelson, M. J.; Inglefield, C. E.; Olson, J. K.; Li, H.; Taylor, P. C.
2004-10-01
Thin films of GeSbTe are of interest due to their potential use in rewritable optical data storage media and reconfigurable electronics. The amorphous and crystalline phases of GeSbTe exhibit very different reflectivity and electrical conductivity. Films of nominally amorphous Ge_2Sb_2Te5 were grown to various thicknesses using RF sputtering on quartz substrates. The surfaces of the films were analyzed using Atomic Force Microscopy (AFM) and surface roughness measurements were taken. The thicker films had a truly isotropic surface while the thinnest films displayed crystalline features, such as angular steps. Conductivity measurements of the films in both coplanar and sandwich geometries correlate with the AFM data and indicate a high degree of crystallinity during the initial stages of growth. This work was supported by the Air Force Research Laboratory under grant number F29601-03-01-0229 and by Weber State University through the Phyllis Crosby Gardner fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugazhvadivu, K. S.; Santhiya, M.; Tamilarasan, K., E-mail: dr.k.tamilarasan@gmail.com
2016-05-23
Bi{sub 1-x}Ca{sub x}MnO{sub 3} (0 ≤ X ≤ 0.4) thin films are deposited on n–type Si (100) substrate at 800 °C by RF magnetron sputtering. X-ray diffraction pattern shows that the films are crystallized in monoclinic structure with C2 space group. The crystallite size and induced strain in the prepared films are measured by W-H plot. The cell parameters and texture coefficient of the films are calculated. The surface morphology of the films is examined by atomic force microscope. The study confirms the optimum level of calcium doping is 20 at. % in Bi site of BiMnO{sub 3} film, thesemore » findings pave the way for further research in the Ca modified BiMnO{sub 3} films towards device fabrication.« less
Estimates of RF-Induced Erosion at Antenna-Connected Beryllium Plasma-Facing Components in JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodin, D.; Groth, M.; Airila, M.
2016-01-01
During high-power, ion cyclotron resonance heating (ICRH), RF sheath rectification and RF induced plasma-wall interactions (RF-PWI) can potentially limit long-pulse operation. With toroidally-spaced ICRH antennas, in an ITER-like wall (ILW) environment, JET provides an ideal environment for ITER-relevant, RF-PWI studies. JET pulses combining sequential toggling of the antennas with q95 (edge safety factor) sweeping were recently used to localize RF-enhanced Be I and Be II spectral line emission at outboard poloidal (beryllium) limiters. These measurements were carried out in the early stages of JET-ILW and in ICRF-only, L-mode discharges. The appearance of enhanced emission spots was explained by their magneticmore » connection to regions of ICRH antennas associated with higher RF-sheath rectification [1]. The measured emission lines were the same as those already qualified in ERO modelling of inboard limiter beryllium erosion in JET limiter plasmas [2]. In the present work, we revisit this spectroscopic study with the focus on obtaining estimates of the impact of these RF-PWI on sputtering and on net erosion of the affected limiter regions. To do this, the ERO erosion and re-deposition code [2] is deployed with the detailed geometry of a JET outboard limiter. The effect of RF-PWI on sputtering is represented by varying the surface negative biasing, which affects the incidence energy and the resulting sputtering yield. The observed variations in line emission, from [1], for JET pulse 81173 of about factor 3 can be reproduced with ~ 100 200 V bias. ERO simulations show that the influence of the respective E-field on the local Be transport is localized near the surface and relatively small. Still, the distribution of the 3D plasma parameters, shadowing and other geometrical effects are quite important. The plasma parameter simulated by Edge2D-EIRENE [3] are extrapolated towards the surface and mapped in 3D. These initial modelling results are consistent with the range of potentials anticipated through RF sheath rectification (see, e.g., [4]). Shortcomings from both the modelling and experimental side will be discussed, as will be plans for improvements in both areas method for the upcoming 2015 - 2016 JET campaign. [1] C.C. Klepper et al., J. Nucl. Mater. 438 (2013) S594 S598 [2] D. Borodin et al., Phys. Scr. T159 (2014) 014057 [3] M. Groth et al., Nucl. Fusion 53 (2013) 093016 [4] Jonathan Jacquot et al., Phys. Plasmas 21 (2014) 061509 *Corresponding author: presently at CCFE (UK) tel.: +44 1235 46 4304, e-mail: kleppercc@ornl.gov **See the Appendix of F. Romanelli et al., Proc. of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia Work supported, in part, by US DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.« less
Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors
2011-12-01
synthesis and texture analysis Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter...well textured (i.e. with preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre- treated substrates...and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT sol-gel thin film of thickness 65-85nm [1]. • Oean
NASA Astrophysics Data System (ADS)
Liu, Yang; Peng, Qian; Qiao, Yadong; Yang, Guang
2018-06-01
Nb and Ta co-doped anatase titanium dioxide (NTTO) nanocrystalline thin films were deposited on quartz and Si (100) substrates by RF magnetron sputtering. The influence of RF power on the growth, structure, morphology, and properties of the samples are discussed in detail. X-ray diffraction measurements show that the films are polycrystalline with anatase tetragonal structure, which is further confirmed by Raman spectroscopy analysis. Meanwhile, Raman spectroscopy results indicate that the peak width of E g(1) mode, which is directly correlated to the carrier density, changes obviously with RF power. It is found that the substitution of Nb5+ and Ta5+ at Ti site is significantly improved with the increase of RF power from 150 W to 210 W. For the sample deposited at 210 W, the optical transmittance is above 82% in the visible range and the electrical resistivity is as low as 1.3 × 10-3 Ω cm with carrier density of 1.1 × 1021 cm-3 and Hall mobility of 4.5 cm2 V-1 s-1. The optical and electrical properties of NTTO thin films can be compared to those of Nb or Ta doped anatase TiO2. However, co-doping with Nb and Ta gives a possible platform to complement the limitations of each individual dopant.
Thin film application device and method for coating small aperture vacuum vessels
Walters, Dean R; Este, Grantley O
2015-01-27
A device and method for coating an inside surface of a vessel is provided. In one embodiment, a coating device comprises a power supply and a diode in electrical communication with the power supply, wherein electrodes comprising the diode reside completely within the vessel. The method comprises reversibly sealing electrodes in a vessel, sputtering elemental metal or metal compound on the surface while maintaining the surface in a controlled atmosphere.
Banerjee, Bhadrani; Tripathi, Anvita; Das, Adrija; Singh, Kumari Alka; Banerjee, J. P.
2015-01-01
The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 〈111〉, 〈100〉, and 〈110〉 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 〈111〉 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 〈110〉 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies. PMID:27347524
New Analysis and Design of a RF Rectifier for RFID and Implantable Devices
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968
New analysis and design of a RF rectifier for RFID and implantable devices.
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.
Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng
The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less
High-efficiency, thin-film cadmium telluride photovoltaic cells
NASA Astrophysics Data System (ADS)
Compaan, A. D.; Bohn, R. G.; Rajakarunanayake, Y.
1995-08-01
This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.
Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme.
Jenkins, A S; Lebrun, R; Grimaldi, E; Tsunegi, S; Bortolotti, P; Kubota, H; Yakushiji, K; Fukushima, A; de Loubens, G; Klein, O; Yuasa, S; Cros, V
2016-04-01
It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.
High-power microstrip RF switch
NASA Technical Reports Server (NTRS)
Choi, S. D.
1971-01-01
A microstrip-type single-pole double-throw (SPDT) switch whose RF and bias portions contain only a metallized alumina substrate and two PIN diodes has been developed. A technique developed to eliminate the dc blocking capacitors needed for biasing the diodes is described. These capacitors are extra components and could lower the reliability significantly. An SPDT switch fabricated on a 5.08 x 5.08 x 0.127-cm (2 x 2 x 0.050-in.) substrate has demonstrated an RF power-handling capability greater than 50 W at S-band. The insertion loss is less than 0.25 db and the input-to-off port isolation is greater than 36 db over a bandwidth larger than 30 MHz. The input voltage standing-wave ratio is lower than 1.07 over the same bandwidth. Theoretical development of the switch characteristics and experimental results, which are in good agreement with theory, are presented.
NASA Astrophysics Data System (ADS)
Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik
2018-06-01
In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1979-01-01
Friction and wear experiments on 440C steel surfaces that were rf sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. Both X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that the small partial pressure of nitrogen (approximately 0.5 percent) markedly improves the adherence, friction, and wear properties when compared with coatings applied to sputter-etched surfaces, oxidized surfaces, or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.
NASA Astrophysics Data System (ADS)
Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.
2012-06-01
Thin films of VOx (1.3 ≤ x ≤ 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VOx samples. The resistivity of nanotwinned VOx films ranged from 4 mΩ.cm to 0.6 Ω.cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VOx samples using the Hooge-Vandamme relation. These VOx films are comparable or surpass commercial VOx films deposited by ion beam sputtering.
Sputtering of Metals by Mass-Analyzed N2(+) and N(+)
NASA Technical Reports Server (NTRS)
Bader, Michel; Witteborn, Fred C.; Snouse, Thomas W.
1961-01-01
Low-energy sputtering studies were conducted with the help of a specially designed ion accelerator. A high-intensity rf ion source was developed for use in conjunction with electrostatic acceleration and magnetic mass separation of ion beams in the 0 to 8 kev energy range. Beams of N(+) or N2(+) ions have been produced with intensities of 200 to 500 micro-a (approx. 1 sq cm in cross section) and energy half-widths of about 20 ev. The sputtering yields of five metals (Cu, Ni, Fe, Mo, and W) were obtained as a function of energy (0-8 kev), bombarding ion (N(+) and N2(+)), and angle of incidence (normal and 450). Results are presented and some of their theoretical implications are discussed.
Studies of EUV contamination mitigation
NASA Astrophysics Data System (ADS)
Graham, Samual, Jr.; Malinowski, Michael E.; Steinhaus, Chip; Grunow, Philip A.; Klebanoff, Leonard E.
2002-07-01
Carbon contamination removal was investigated using remote RF-O2, RF-H2, and atomic hydrogen experiments. Samples consisted of silicon wafers coated with 100 Angstrom sputtered carbon, as well as bare Si-capped Mo/Si optics. Samples were exposed to atomic hydrogen or RF plasma discharges at 100 W, 200 W, and 300 W. Carbon removal rate, optic oxidation rate, at-wavelength (13.4 nm) peak reflectance, and optic surface roughness were characterized. Data show that RF- O2 removes carbon at a rate approximately 6 times faster RF- H2 for a given discharge power. However, both cleaning techniques induce Mo/Si optic degradation through the loss of reflectivity associated with surface oxide growth for RF-O2 and an unknown mechanism with hydrogen cleaning. Atomic hydrogen cleaning shows carbon removal rates sufficient for use as an in-situ cleaning strategy for EUVoptics with less risk of optic degradation from overexposures than RF-discharge cleaning. While hydrogen cleaning (RF and atomic) of EUV optics has proven effective in carbon removal, attempts to dissociate hydrogen in co-exposures with EUV radiation have resulted in no detectable removal of carbon contamination.
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1993-01-01
A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.
Full-wave receiver architecture for the homodyne motion sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting ofmore » a RF signal received at the receiver input, thereby enhancing receiver sensitivity.« less
Full-wave receiver architecture for the homodyne motion sensor
Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E
2013-11-19
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.
Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films
2013-01-01
In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999
NASA Astrophysics Data System (ADS)
Surmenev, Roman A.; Surmeneva, Maria A.; Grubova, Irina Yu.; Chernozem, Roman V.; Krause, Bärbel; Baumbach, Tilo; Loza, Kateryna; Epple, Matthias
2017-08-01
A pure hydroxyapatite (HA) target was used to prepare the biocompatible coating of HA on the surface of a polytetrafluorethylene (PTFE) substrate, which was placed on the same substrate holder with technically pure titanium (Ti) in the single deposition runs by radio-frequency (RF) magnetron sputtering. The XPS, XRD and FTIR analyses of the obtained surfaces showed that for all substrates, instead of the HA coating deposition, the coating of a mixture of calcium carbonate and calcium fluoride was grown. According to SEM investigations, the surface of PTFE was etched, and the surface topography of uncoated Ti was preserved after the depositions. The FTIR results reveal no phosphate bonds; only calcium tracks were observed in the EDX-spectra on the surface of the coated PTFE substrates. Phosphate oxide (V), which originated from the target, could be removed using a vacuum pump system, or no phosphate-containing bonds could be formed on the substrate surface because of the severe substrate bombardment process, which prevented the HA coating deposition. The observed results may be connected with the surface re-sputtering effect of the growing film by high-energy negatively charged ions (most probably oxygen or fluorine), which are accelerated in the cathode dark sheath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodeux, Romain; Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac; Michau, Dominique, E-mail: dominique.michau@icmcb.cnrs.fr
2016-09-15
Highlights: • Synthesis of Ba{sub 2}NdFeNb{sub 4}O{sub 15}/BaFe{sub 12}O{sub 19} (BaM) heterostructures by RF magnetron sputtering. • Growth of TTB layer were retained regardless of the underlayer (Pt bottom electrode or BaM). • Dielectric and magnetic properties were obtained from the Pt/TTB/BaM/Pt stacks. - Abstract: Ba{sub 2}NdFeNb{sub 4}O{sub 15} tetragonal tungsten bronze (TTB)/BaFe{sub 12}O{sub 19} (BaM) hexaferrite bilayers have been grown by RF magnetron sputtering on Pt/TiO{sub 2}/SiO{sub 2}/Si (PtS) substrates. The BaM layer is textured along (0 0 1) while the TTB layer is multioriented regardless of the PtS or BaM/PtS substrate. Dielectric properties of TTB films are similarmore » to those of bulk, i.e., ε ∼ 150 and a magnetic hysteresis loop is obtained from TTB/BaM bilayers, thanks to the BaM component. This demonstrates the possibility of transferring to 2 dimensional structures the composite multiferroic system TTB/BaM previously identified in 3 dimensional bulk ceramics.« less
NASA Astrophysics Data System (ADS)
Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge
2010-02-01
Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.
NASA Astrophysics Data System (ADS)
Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.
2014-05-01
The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.
Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering
NASA Astrophysics Data System (ADS)
Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu
2018-02-01
A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.
Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2017-10-01
Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.
Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T.
Muftuler, L Tugan; Gulsen, Gultekin; Sezen, Kumsal D; Nalcioglu, Orhan
2002-03-01
We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. (c) 2002 Elsevier Science (USA).
PREPARATION AND ELECTRICAL PROPERTIES OF BiFeO3/La0.7Sr0.3MnO3 MULTILAYERS
NASA Astrophysics Data System (ADS)
Zhu, Huiwen; Wang, Shunli; Li, Xiaoyun
2013-07-01
(La0.7Sr0.3MnO3 12 nm/BiFeO3 12 nm)10 was grown on SrTiO3 (001) substrate using rf magnetron sputtering. The structure analysis indicated that BiFeO3/La0.7Sr0.3MnO3 multilayers were highly (001)-oriented. Compared with bottom La0.7Sr0.3MnO3 electrode, the top La0.7Sr0.3MnO3 electrode displayed a rougher surface. The electric transport characteristics of the sample were investigated mainly at low temperature, and it was found that the sample exhibited resistance-temperature curves similar to those of La0.7Sr0.3MnO3 with the exception of an upturn at lower temperature region. Furthermore, a nonlinear I-V curve, which is characteristic of a tunneling conduction mechanism, was observed at 50 K. At higher temperature, the I-V curves were found to be diode-like. When the temperature was further increased to 300 K, the sample showed a space charge limited conduction (SCLC) characteristic.
NASA Astrophysics Data System (ADS)
Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.
2018-03-01
A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.
RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications
NASA Astrophysics Data System (ADS)
Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul
2014-10-01
Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.
Highly textured and transparent RF sputtered Eu2O3 doped ZnO films
Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai
2015-01-01
Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728
NASA Technical Reports Server (NTRS)
Savich, Gregory R.; Simons, Rainee N.
2006-01-01
Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin
2014-12-28
In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s}more » of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)« less
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
NASA Astrophysics Data System (ADS)
Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato
2018-01-01
50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.
Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.
Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V
2016-10-01
The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.
2016-07-01
In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.
Yamashita, K; Matsuda, M; Arashi, T; Umegaki, T
1998-07-01
Using calcium phosphate glass targets with the CaO/P2O5 molar ratios of 1.50-0.50, much lower than the stoichiometric value of 3.3 for hydroxyapatite, thin films of stoichiometric hydroxy-, nonstoichiometric oxyhydroxy- and Ca-deficient oxyhydroxy-apatites were prepared on alumina ceramic substrates by rf-sputtering followed by post-annealing. Based on the present results, a phase diagram for CaO-P2O5 at low temperatures in the ambience of air was depicted for thin films. The ambient H2O vapor had an influence on the phase diagram: Tricalcium phosphate was changed to apatite in the presence of H2O vapor. Dense fluorohydroxyapatite thin films were prepared by fluoridation of those apatite thin films at a low temperature such as 200 degrees C. In the present report, some functional properties of thin films thus prepared were also shown.
Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.
Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar
2017-01-01
This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.
Ahn, In-Kyoung; Lee, Young-Joo; Na, Sekwon; Lee, So-Yeon; Nam, Dae-Hyun; Lee, Ji-Hoon; Joo, Young-Chang
2018-01-24
Despite the high theoretical specific capacity of Si, commercial Li-ion batteries (LIBs) based on Si are still not feasible because of unsatisfactory cycling stability. Herein, amorphous Si (a-Si)-coated nanocrystalline Si (nc-Si) formed by versatile radio frequency (RF) sputtering systems is proposed as a promising anode material for LIBs. Compared to uncoated nc-Si (retention of 0.6% and Coulombic efficiency (CE) of 79.7%), the a-Si-coated nc-Si (nc-Si@a-Si) anodes show greatly improved cycling retention (C 50th /C first ) of ∼50% and a first CE of 86.6%. From the ex situ investigation with electrochemical impedance spectroscopy (EIS) and cracked morphology during cycling, the a-Si layer was found to be highly effective at protecting the surface of the nc-Si from the formation of solid-state electrolyte interphases (SEI) and to dissipate the mechanical stress upon de/lithiation due to the high fracture toughness.
Investigation of semiconductor clad optical waveguides
NASA Technical Reports Server (NTRS)
Batchman, T. E.; Mcwright, G.
1981-01-01
The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.
An experimental approach of decoupling Seebeck coefficient and electrical resistivity
NASA Astrophysics Data System (ADS)
Muhammed Sabeer N., A.; Paulson, Anju; Pradyumnan, P. P.
2018-04-01
The Thermoelectrics (TE) has drawn increased attention among renewable energy technologies. The performance of a thermoelectric material is quantified by a dimensionless thermoelectric figure of merit, ZT=S2σT/κ, where S and σ vary inversely each other. Thus, improvement in ZT is not an easy task. So, researchers have been trying different parameter variations during thin film processing to improve TE properties. In this work, tin nitride (Sn3N4) thin films were deposited on glass substrates by reactive RF magnetron sputtering and investigated its thermoelectric response. To decouple the covariance nature of Seebeck coefficient and electrical resistivity for the enhancement of power factor (S2σ), the nitrogen gas pressure during sputtering was reduced. Reduction in nitrogen gas pressure reduced both sputtering pressure and amount of nitrogen available for reaction during sputtering. This experimental approach of combined effect introduced preferred orientation and stoichiometric variations simultaneously in the sputtered Sn3N4 thin films. The scattering mechanism associated with these variations enhanced TE properties by independently drive the Seebeck coefficient and electrical resistivity parameters.
NASA Astrophysics Data System (ADS)
Zhao, Lu; Zhang, Shuo; Zhang, Yun; Yan, Jianchang; Zhang, Lian; Ai, Yujie; Guo, Yanan; Ni, Ruxue; Wang, Junxi; Li, Jinmin
2018-01-01
We demonstrate AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) grown by metalorganic chemical vapor deposition (MOCVD) on sputter-deposited AlN templates upon sapphire substrates. An AlN/AlGaN superlattices structure is inserted as a dislocation filter between the LED structure and the AlN template. The full width at half maximum values for (0002) and (10 1 bar 2) X-ray rocking curves of the n-type Al0.56Ga0.44N layer are 513 and 1205 arcsec, respectively, with the surface roughness of 0.52 nm. The electron concentration and mobility measured by Hall measurement are 9.3 × 1017cm-3 and 54 cm2/V·s at room temperature, respectively. The light output power of a 282-nm LED reaches 0.28 mW at 20 mA with an external quantum efficiency of 0.32%. And the values of leakage current and forward voltage of the LEDs are ∼3 nA at -10 V and 6.9 V at 20 mA, respectively, showing good electrical performance. It is expected that the cost of the UV-LED can be reduced by using sputter-deposited AlN template.
Friction and wear of radiofrequency-sputtered borides, silicides, and carbides
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.
Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu‐Jung; Oh, Seung Kyu; You, Shin‐Jae; Ryou, Jae‐Hyun
2017-01-01
Abstract The origin of plasma‐induced damage on a p‐type wide‐bandgap layer during the sputtering of tin‐doped indium oxide (ITO) contact layers by using radiofrequency‐superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light‐emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p‐GaN surface can reduce plasma‐induced damage to the p‐GaN. Furthermore, electron‐beam irradiation on p‐GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma‐induced damage to the p‐GaN. The plasma electrons can increase the effective barrier height at the ITO/deep‐level defect (DLD) band of p‐GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage‐free sputtered‐ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e‐beam‐evaporated ITO TCE. PMID:29619312
Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application
Welch, K.M.
1975-04-04
Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.
Fabrication and properties of Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Miao, Xiangshui; Yan, Junbing; Cheng, Xiaomin
2009-08-01
Light rare earth-heavy rare earth-transition metal films (LRE-HRE-TM)have large saturation magnetization (Ms) and are the promising media for hybrid recording. In this paper, Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy were successfully fabricated onto glass substrate by RF magnetron sputtering and the effects of sputtering technology parameters and Nd substitution for HRE atoms on the magnetic properties were investigated. It was found that when the sputtering power and sputtering time are 250W and 4min, respectively, the magnetic properties of Nd(Tb,Dy)Co/Cr films obtain optimization, perpendicular coercivity, Ms and remanence square ratio(S) of NdTbCo/Cr film reach 3.8kOe, 247emu/cm3 and 0.801, respectively. With the increasing of Nd concentration, Ms increases, while the coercivity (Hc)and the temperature stability of magnetic properties decrease distinctly. These results can be explained by the ferri-magnetic structure of the RE-TM alloy.
Deposition and characterization of vanadium oxide based thin films for MOS device applications
NASA Astrophysics Data System (ADS)
Rakshit, Abhishek; Biswas, Debaleen; Chakraborty, Supratic
2018-04-01
Vanadium Oxide films are deposited on Si (100) substrate by reactive RF-sputtering of a pure Vanadium metallic target in an Argon-Oxygen plasma environment. The ratio of partial pressures of Argon to Oxygen in the sputtering-chamber is varied by controlling their respective flow rates and the resultant oxide films are obtained. MOS Capacitor based devices are then fabricated using the deposited oxide films. High frequency Capacitance-Voltage (C-V) and gate current-gate voltage (I-V) measurements reveal a significant dependence of electrical characteristics of the deposited films on their sputtering deposition parameters mainly, the relative content of Argon/Oxygen in the plasma chamber. A noteworthy change in the electrical properties is observed for the films deposited under higher relative oxygen content in the plasma atmosphere. Our results show that reactive sputtering serves as an indispensable deposition-setup for fabricating vanadium oxide based MOS devices tailor-made for Non-Volatile Memory (NVM) applications.
NASA Technical Reports Server (NTRS)
Bill, R. C.; Sovey, J.; Allen, G. P.
1981-01-01
The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.
High transmittance hetero junctions based on n-ITO/p-CuO bilayer thin films
NASA Astrophysics Data System (ADS)
Jaya, T. P.; Pradyumnan, P. P.
2016-12-01
Oxide based bilayered n-ITO/p-CuO crystalline diodes were fabricated by plasma vapor deposition using radio frequency magnetron sputtering. The p-n hetero junction diodes were highly transparent in the visible region and exhibits rectifying I-V characteristics. The substrate temperature during fabrication of p-layer CuO was found to have a profound influence on I-V characteristics. The films deposited at substrate temperature of 150 °C and 230 °C exhibited diode ideality factors of (η value) 1.731 and 1.862 respectively. This high ideality factor, combined with an optical transparency of above 70% suggests the potential use of these bi-layers in optoelectronic applications.
NASA Astrophysics Data System (ADS)
Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.
2004-04-01
Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun
2010-06-01
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.
Tunnel injection transit-time diodes for W-band power generation
NASA Technical Reports Server (NTRS)
Kidner, C.; Eisele, H.; Haddad, G. I.
1992-01-01
GaAs p(+ +)n(+)n(-)n(+) single-drift tunnel injection transit-time (TUNNETT) diodes for W-band operation have been successfully designed and tested. An output power of 32 mW at 93.5 GHz with a dc to RF conversion efficiency of 2.6 percent was obtained. The oscillations have a clean spectrum in a conventional waveguide cavity.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang
2009-12-01
This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.
NASA Astrophysics Data System (ADS)
Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun
2013-02-01
For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.
III-N light emitting diodes fabricated using RF nitrogen gas source MBE
NASA Astrophysics Data System (ADS)
Van Hove, J. M.; Carpenter, G.; Nelson, E.; Wowchak, A.; Chow, P. P.
1996-07-01
Homo- and heterojunction III-N light emitting diodes using RF atomic nitrogen plasma molecular beam epitaxy have been grown. GaN films deposited on sapphire using this growth technique exhibited an extremely sharp X-ray diffraction with a full width half maximum of 112 arc sec. p-type doping of the nitride films was done with elemental Mg and resulted in as-grown p-type material with resistivities as low as 2 Ω · cm. Both homo- and heterojunction LEDs showed clear rectification. Emission from the GaN homojunction deposited on n-type SiC was peaked at 410 nm while the AlGaNGaN(Zn)AlGaN double heterojunction LEDs emission was centered about 520 nm.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Radio frequency discharge with control of plasma potential distribution.
Dudnikov, Vadim; Dudnikov, A
2012-02-01
A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.
Altering properties of cerium oxide thin films by Rh doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz; NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz
2015-07-15
Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffractionmore » techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.« less
Thermochromic VO2 Films Deposited by RF Magnetron Sputtering Using V2O3 or V2O5 Targets
NASA Astrophysics Data System (ADS)
Shigesato, Yuzo; Enomoto, Mikiko; Odaka, Hidehumi
2000-10-01
Thermochromic monoclinic-tetragonal VO2 films were successfully deposited on glass substrates with high reproducibility by rf magnetron sputtering using V2O3 or V2O5 targets. In the case of reactive sputtering using a V-metal target, the VO2 films could be obtained only under the very narrow deposition conditions of the “transition region” where the deposition rate decreases drastically with increasing oxygen gas flow rate. In the case of a V2O3 target, polycrystalline VO2 films with a thickness of 400 to 500 nm were obtained by the introduction of oxygen gas [O2/(Ar+O2)=1--1.5%], whereas hydrogen gas [H2/(Ar+H2)=2.5--10%] was introduced in the case of a V2O5 target. Furthermore, the VO2 films were successfully grown heteroepitaxially on a single-crystal sapphire [α-Al2O3(001)] substrate, where the epitaxial relationship was confirmed to be VO2(010)[100]\\parallelAl2O3(001)[100], [010], [\\bar{1}\\bar{1}0] by an X-ray diffraction pole figure measurement. The resistivity ratio between semiconductor and metal phases for the heteroepitaxial VO2 films was much larger than the ratio of the polycrystalline films on glass substrates under the same deposition conditions.
Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure
NASA Astrophysics Data System (ADS)
Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.
2016-04-01
Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.
NASA Astrophysics Data System (ADS)
El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.
2016-05-01
High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.
NASA Astrophysics Data System (ADS)
Menon, Rashmi; Sreenivas, K.; Gupta, Vinay
2008-05-01
Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.
The electrical properties of n-ZnO/p-SnO heterojunction diodes
NASA Astrophysics Data System (ADS)
Javaid, K.; Xie, Y. F.; Luo, H.; Wang, M.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Liang, L. Y.; Cao, H. T.
2016-09-01
In the present work, n-type zinc oxide (ZnO) and p-type tin monoxide (SnO) based heterostructure diodes were fabricated on an indium-tin-oxide glass using the radio frequency magnetron sputtering technique. The prepared ZnO/SnO diodes exhibited a typical rectifying behavior, with a forward to reverse current ratio about 500 ± 5 at 2 V and turn on voltage around 1.6 V. The built-in voltage of the diode was extracted to be 0.5 V based on the capacitance-voltage (C-V) measurement. The valence and conduction band offsets were deliberated through the band energy diagram of ZnO/SnO heterojunction, as 1.08 eV and 0.41 eV, respectively. The potential barrier-dependent carrier transportation mechanism across the space charge region was also investigated.
NASA Astrophysics Data System (ADS)
Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.
2015-08-01
Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.
NASA Astrophysics Data System (ADS)
Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond
2016-11-01
We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.
Förster, Arno; Stock, Jürgen; Montanari, Simone; Lepsa, Mihail Ion; Lüth, Hans
2006-01-01
GaAs-based Gunn diodes with graded AlGaAs hot electron injector heterostructures have been developed under the special needs in automotive applications. The fabrication of the Gunn diode chips was based on total substrate removal and processing of integrated Au heat sinks. Especially, the thermal and RF behavior of the diodes have been analyzed by DC, impedance and S-parameter measurements. The electrical investigations have revealed the functionality of the hot electron injector. An optimized layer structure could fulfill the requirements in adaptive cruise control (ACC) systems at 77 GHz with typical output power between 50 and 90 mW.
NASA Astrophysics Data System (ADS)
Santhosh Kumar, T.; Bhuyan, R. K.; Pamu, D.
2013-01-01
MgTiO3 (MTO) thin films have been deposited on to quartz and platinized silicon (Pt/TiO2/SiO2/Si) substrates by RF magnetron sputtering. The metal-MTO-metal (Ag-MTO-Pt/TiO2/SiO2/Si) thin film capacitors have been fabricated at different oxygen mixing percentage (OMP). The effects of OMP and post annealing on the structural, microstructural, optical and dielectric properties of MTO films were studied. The MTO target has been synthesized by mechanochemical synthesis method. The phase purity of the sputtering target was confirmed from X-ray diffraction pattern and refined to R3bar space group with lattice parameters a = b = 5.0557(12) Å, c = 13.9003(9) Å. The chemical composition of the deposited films was confirmed from EDS spectra and all the films exhibited the composition of the sputtering target. The XRD patterns of the as-deposited films are amorphous and annealing at 700 °C for 1 h induced nanocrystallinity with the improved optical and dielectric properties. The annealed films exhibit refractive index in the range of 2.12-2.19 at 600 nm with an optical bandgap value in between 4.11 and 4.19 eV. The increase in the refractive index and bandgap upon annealing can be attributed to the improvement in packing density, crystallinity, and decrease in porosity ratio. Both the dielectric constant and tan δ decrease with the increase in frequency and were in the range of 13.7-31.11 and 0.006-0.124, respectively. The improvement in dielectric properties with the increase in OMP has been correlated to the reduction in oxygen vacancies, increase in crystallinity and grain size of the films.
Dual beam organic depth profiling using large argon cluster ion beams
Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES
2014-01-01
Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830
Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Glenar, David A.; Jennings, Donald E.; Nadler, Shacher
1990-01-01
A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.
High-power direct-diode laser successes
NASA Astrophysics Data System (ADS)
Haake, John M.; Zediker, Mark S.
2004-06-01
Direct diode laser will become much more prevalent in the solar system of manufacturing due to their high efficiency, small portable size, unique beam profiles, and low ownership costs. There has been many novel applications described for high power direct diode laser [HPDDL] systems but few have been implemented in extreme production environments due to diode and diode system reliability. We discuss several novel applications in which the HPDDL have been implemented and proven reliable and cost-effective in production environments. These applications are laser hardening/surface modification, laser wire feed welding and laser paint stripping. Each of these applications uniquely tests the direct diode laser systems capabilities and confirms their reliability in production environments. A comparison of the advantages direct diode laser versus traditional industrial lasers such as CO2 and Nd:YAG and non-laser technologies such a RF induction, and MIG welders for each of these production applications is presented.
Shie, Je-Lueng; Lee, Chiu-Hsuan; Chiou, Chyow-San; Chen, Yi-Hung; Chang, Ching-Yuan
2014-01-01
This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination. Furthermore, related kinetic models are established and used to simulate the experimental data. The characteristic analysis results show that the RF plasma-calcination method enhanced the Brunauer Emmett Teller surface area of the modified photocatalysts effectively. For the elemental analysis, the mass percentages of N for the RF-modified photocatalyst are larger than those of MF by six times. The aerodynamic diameters of the RF-modifiedphotocatalyst are all smaller than those of MF. Photocatalytic decompositions of toluene are elucidated according to the Langmuir-Hinshelwood model. Decomposition efficiencies (eta) of toluene for RF-calcined methods are all higher than those of commercial TiO2 (P25). Reaction kinetics ofphoto-decomposition reactions using RF-calcined methods with WLED are proposed. A comparison of the simulation results with experimental data is also made and indicates good agreement. All the results provide useful information and design specifications. Thus, this study shows the feasibility and potential use of plasma modification via LED in photocatalysis.
Heterojunction photodiode on cleaved SiC
NASA Astrophysics Data System (ADS)
Solovan, Mykhailo M.; Farah, John; Kovaliuk, Taras T.; Brus, Viktor V.; Mostovyi, Andrii I.; Maistruk, Eduard V.; Maryanchuk, Pavlo D.
2018-01-01
Graphite/n-SiC Shottky diodes were prepared by means of the recently proposed technique based on the transferring of drawn graphite films onto the n-SiC single crystal substrate. Current-voltage characteristics were measured and analyzed. High quality ohmic contancts were prepared by the DC magnetron sputtering of Ni thin films onto cleaved n-type SiC single crystal substrates. The height of the potential barrier and the series resistance of the graphite/n-SiC junctions were measured and analysed. The dominant current transport mechanisms through the diodes were determined. There was shown that the dominant current transport mechanisms through the graphite/n-SiC Shottky diodes were the multi-step tunnel-recombination at forward bias and the tunnelling mechanisms at reverse bias.
Superconductivity in BiPbCaSrCuO thin films
NASA Astrophysics Data System (ADS)
Fu, S. M.; Yang, H. C.; Chen, F. C.; Horng, H. E.; Jao, J. C.
1989-12-01
Thin films of BiPbCaSrCuO sample were prepared by RF sputtering from sintered ceramic targets. Single crystal of MgO(100) was selected as substrate. The sputtering was held at room temperature. Different annealing conditions were carried out to obtain optimum conditions. High temperature resistivity was measured in air to study the thermodynamic reaction of the sintered films. An resistivity anomaly was found in the first heating cycle which suggests a thermodynamic reaction. A temperature dependence of I c was measured to study the coupling of grains in the granular films in different temperature ranges and the results will be discussed.
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M.
1977-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M.
1980-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Structural and optical properties of magnetron sputtered MgxZn1-xO thin films
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Gupte, Vinay; Sreenivas, K.
2006-04-01
MgxZn1-xO (MZO) thin films prepared by an rf magnetron sputtering technique are reported. The films were grown at room temperature and at relatively low rf power of 50 W. MZO thin films were found to possess preferred c-axis orientation and exhibited hexagonal wurtzite structure of ZnO up to a Mg concentration of 42 mol%. A small variation in the c-axis lattice parameter of around 0.3% was observed with increasing Mg composition, showing the complete solubility of Mg in ZnO. The band gap of the MZO films in the wurtzite phase varied linearly with the Mg concentration and a maximum band gap ~4.19 eV was achieved at x = 0.42. The refractive indices of the MgO films were found to decrease with increasing Mg content. The observed optical dispersion data are in agreement with the single oscillator model. A photoluminescence study revealed a blue shift in the near band edge emission peak with increasing Mg content in the MZO films. The results show the potential of MZO films in various opto-electronic applications.
NASA Astrophysics Data System (ADS)
Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad
2018-06-01
This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.
NASA Astrophysics Data System (ADS)
Kawamura, Kinya; Suzuki, Naoya; Tsuchiya, Takashi; Shimazu, Yuichi; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru
2016-06-01
Anatase TiO2-δ thin film was prepared by RF magnetron sputtering using oxygen radical and Ti-metal target. Degrees of the TiO2-δ crystal orientation in the thin film depends of the oxygen gas pressure (P\\text{O2}) in the radical gun. The (004)- and (112)-oriented TiO2-δ thin films crystallized without postannealing have the mixed valence Ti4+/Ti3+ state. The electrical conductivities, which corresponds to n-type oxide semiconductor, is higher in the case of (004)-oriented TiO2-δ thin film containing with high concentration of oxygen vacancy. The donor band of TiO2-δ thin film is observed at ˜1.0 eV from the Fermi level (E F). The density-of-state at E F is higher in (004)-oriented TiO2-δ thin film. The above results indicate that the oxygen vacancies can control by changing the P\\text{O2} of the oxygen radical.
NASA Astrophysics Data System (ADS)
Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru
2016-06-01
We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.
NASA Astrophysics Data System (ADS)
Ivanova, Anna A.; Surmeneva, Maria A.; Surmenev, Roman A.; Depla, Diederik
2017-12-01
The structural features of RF-magnetron sputter-deposited hydroxyapatite (HA) coatings are investigated in order to reveal the effect of the working gas composition and the sample position of the substrate relative to the target erosion zone. The film properties were observed to change as a result of bombardment with energetic ions. XRD analysis of the coated substrates indicates that with the increase of the ion-to-atom ratio, the fiber texture changes from a mixed (11 2 bar 2) + (0002) over (0002) orientation, finally reaching a (30 3 bar 0) out-of-plane orientation at high ion-to-atom ratios. TEM reveals that the microstructure of the HA coating consists of columnar grains and differs with the coating texture. The contribution of Ji/Ja to the development of microstructure and texture of the HA coating is schematically represented and discussed. The obtained results may contribute substantially to the progress of research into the development of HA coatings with tailored properties, and these coatings may be applied on the surfaces of metal implants used in bone surgery.
NASA Astrophysics Data System (ADS)
Jong, Chao-An; Gan, Jon-Yiew
2000-02-01
Strontium barium niobium (Sr0.5Ba0.5Nb2O6) (SBN) thin films are prepared on conductive-oxide LNO (LaNiO3) electrodes by the rf magnetron sputtering system. Instead of conventional furnace annealing, SBN thin films are crystallized by rapid thermal annealing (RTA) above 700°C for 5 min. The textured SBN films are crystallized with two orientations: one is the (001) or (310) direction, and the other is the (002) or (620) direction. Films compositions measured by the electron spectroscopy of chemical analysis (ESCA) quantitative analysis method show nearly the same stoichiometric ratio as the target. The depth profiles of SBN films and the target are examined by secondary ion mass spectrometer (SIMS). The concentrations of the films are quite uniform. After being heat treated at 800°C for 5 min by RTA, La and Ni diffuse into the SBN film. The diffusion coefficient of La in SBN films is also calculated.
NASA Astrophysics Data System (ADS)
Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju
2017-03-01
High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.
NASA Astrophysics Data System (ADS)
Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias
2014-10-01
A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, R. Subba; Sreedhar, A.; Uthanna, S., E-mail: uthanna@rediffmail.com
Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was inmore » the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.« less
Development of a Self Powered Vehicle Detector
1978-10-01
Low Power RFTelemetry Link, Audio Tone kncoder/Decoder, 9mn’dlrectional Microstrip Antenna, RF Oscillator , RF Transmitter, Battery/ Solar Cell Tests...tuned Colpitts oscillator using a fundamental mode crystal, a reactance modulator (varactor diode), and a collector tank circuit tuned to the second...papers discussing this type of VCXO. The basic Colpitts oscillator equivalent circuit is shown in Figure 29 having a collector tank tuned to the 2nd
Upgrades to the MARIA Helicon Experiment at UW-Madison
NASA Astrophysics Data System (ADS)
Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg; Winters, Victoria
2016-10-01
The MARIA helicon plasma device at UW Madison is setup to investigate the neutral particle fueling of helicon discharges. Following initial results from the 668.614nm diode laser LIF system, the active spectroscopy diagnostic suite was expanded by establishing a 1.4J pulsed Nd:YAG pumped dye laser. To verify the new laser system, a comparison of measured ion velocities near a target plate was made between the diode based and dye based LIF systems. Additionally, theory and further verification of a new technique for measuring ion velocities leveraging Zeeman splitting is presented. During a campaign with <= 750W RF power, densities in the range of 1x1018 m-3 and 2 eV electron temperature were achieved with 4.1 mTorr of argon and a magnetic field of 750G. To achieve higher densities and explore the physics of neutral depletion, the available RF power was increased from 750W to 2kW, with further expansion to 4kW on a single antenna planned. For both power levels a clear helicon mode can be reliably established and its extension increases with increasing RF power. Basic plasma characterization at the higher RF power, such as electron density vs magnetic field scans, will be presented. This work was funded by the NSF CAREER Award PHY-1455210.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less
NASA Astrophysics Data System (ADS)
Bobkov, V.; Bilato, R.; Braun, F.; Colas, L.; Dux, R.; Van Eester, D.; Giannone, L.; Goniche, M.; Herrmann, A.; Jacquet, P.; Kallenbach, A.; Krivska, A.; Lerche, E.; Mayoral, M.-L.; Milanesio, D.; Monakhov, I.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.
2009-11-01
W sputtering during ICRF on ASDEX Upgrade (AUG) and temperature rise on JET A2 antenna septa are considered in connection with plasma conditions at the antenna plasma facing components and E‖ near-fields. Large antenna-plasma clearance, high gas puff and low light impurity content are favorable to reduce W sputtering in AUG. The spatial distribution of spectroscopically measured effective W sputtering yields clearly points to the existence of strong E‖ fields at the antenna box ("feeder fields") which dominate over the fields in front of the antenna straps. The picture of E‖ fields, obtained by HFSS code, corroborates the dominant role of E‖ at the antenna box on the formation of sheath-driving RF voltages for AUG. Large antenna-plasma clearance and low gas puff are favorable to reduce septum temperature of JET A2 antennas. Assuming a linear relation between the septum temperature and the sheath driving RF voltage calculated by HFSS, the changes of the temperature with dipole phasing (00ππ, 0ππ0 or 0π0π) are well described by the related changes of the RF voltages. Similarly to the AUG antenna, the strongest E‖ are found at the limiters of the JET A2 antenna for all used dipole phasings and at the septum for the phasings different from 0π0π. A simple general rule can be used to minimize E‖ at the antenna: image currents can be allowed only at the surfaces which do not intersect magnetic field lines at large angles of incidence. Possible antenna modifications generally rely either on a reduction of the image currents, on their short-circuiting by introducing additional conducting surfaces or on imposing the E‖ = 0 boundary condition. On the example of AUG antenna, possible options to minimize the sheath driving voltages are presented.
2003-04-01
range filters implemented with traditional semiconductor varactor diodes can require complex series-parallel circuit constructions to achieve sufficient...filter slice of the AIU and the varactor array modules are shown in Fig. 6.2. The complexity of the varactor array is clearly apparent. Further, it is...38 Fig. 6.2: Schematic of F-22 AIU UHF tracking filter, 2-pole filter, and varactor diode assembly
Composite Material Aircraft Electromagnetic Properties and Design Guidelines
1981-01-01
Diode Characteristics for IN914 Diode at 220 MHz 7-6 7.5 Characteristics of a 2N2369A Transitor With and Without RF Interference on the Collector Lead...Analylsi Miser Reiponse Model Adjacent Channel Interference Summary 7. STATISTICAL AND NUMERICAL I. PROPAGATION MODELS ANALYSIS MASTER PROPAGATION SYSTEM...Propagation System lIPS) Simsulationst Smorothe Curve Smooth Earth (SCSIS) Oemtralltzd File Statistics Analyzer (Q63) flislance Free Space Spherical Raflectiot
670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta;
2012-01-01
GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.
RF Reference Switch for Spaceflight Radiometer Calibration
NASA Technical Reports Server (NTRS)
Knuble, Joseph
2013-01-01
The goal of this technology is to provide improved calibration and measurement sensitivity to the Soil Moisture Active Passive Mission (SMAP) radiometer. While RF switches have been used in the past to calibrate microwave radiometers, the switch used on SMAP employs several techniques uniquely tailored to the instrument requirements and passive remote-sensing in general to improve radiometer performance. Measurement error and sensitivity are improved by employing techniques to reduce thermal gradients within the device, reduce insertion loss during antenna observations, increase insertion loss temporal stability, and increase rejection of radar and RFI (radio-frequency interference) signals during calibration. The two legs of the single-pole double-throw reference switch employ three PIN diodes per leg in a parallel-shunt configuration to minimize insertion loss and increase stability while exceeding rejection requirements at 1,413 MHz. The high-speed packaged diodes are selected to minimize junction capacitance and resistance while ensuring the parallel devices have very similar I-V curves. Switch rejection is improved by adding high-impedance quarter-wave tapers before and after the diodes, along with replacing the ground via of one diode per leg with an open circuit stub. Errors due to thermal gradients in the switch are reduced by embedding the 50-ohm reference load within the switch, along with using a 0.25-in. (approximately equal to 0.6-cm) aluminum prebacked substrate. Previous spaceflight microwave radiometers did not embed the reference load and thermocouple directly within the calibration switch. In doing so, the SMAP switch reduces error caused by thermal gradients between the load and switch. Thermal issues are further reduced by moving the custom, highspeed regulated driver circuit to a physically separate PWB (printed wiring board). Regarding RF performance, previous spaceflight reference switches have not employed high-impedance tapers to improve rejection. The use of open-circuit stubs instead of a via to provide an improved RF short is unique to this design. The stubs are easily tunable to provide high rejection at specific frequencies while maintaining very low insertion loss in-band.
NASA Astrophysics Data System (ADS)
Gotti, Riccardo; Prevedelli, Marco; Kassi, Samir; Marangoni, Marco; Romanini, Daniele
2018-02-01
We apply a feed-forward frequency control scheme to establish a phase-coherent link from an optical frequency comb to a distributed feedback (DFB) diode laser: This allows us to exploit the full laser tuning range (up to 1 THz) with the linewidth and frequency accuracy of the comb modes. The approach relies on the combination of an RF single-sideband modulator (SSM) and of an electro-optical SSM, providing a correction bandwidth in excess of 10 MHz and a comb-referenced RF-driven agile tuning over several GHz. As a demonstration, we obtain a 0.3 THz cavity ring-down scan of the low-pressure methane absorption spectrum. The spectral resolution is 100 kHz, limited by the self-referenced comb, starting from a DFB diode linewidth of 3 MHz. To illustrate the spectral resolution, we obtain saturation dips for the 2ν3 R(6) methane multiplet at μbar pressure. Repeated measurements of the Lamb-dip positions provide a statistical uncertainty in the kHz range.
NASA Astrophysics Data System (ADS)
Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun
2016-07-01
Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.
NASA Astrophysics Data System (ADS)
Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.
2003-03-01
Calcium phosphate (CaP) coatings can be applied to improve the biological performance of polymeric medical implants. A strong interfacial bond between ceramic and polymer is required for clinical applications. Because the chemical structure of an interface plays an important role in the adhesion of a coating, we studied the formation of the interface between CaP and polystyrene (PS) and polytetrafluoroethylene (PTFE). The coating was deposited in a radio frequency (rf) magnetron sputtering deposition system. Prior to the deposition, some samples received an oxygen plasma pretreatment. We found that the two substrates show a strongly different reactivity towards CaP. On PS a phosphorus and oxygen enrichment is present at the interface. This is understood from POx complexes that are able to bind to the PS. The effects of the plasma pretreatment are overruled by the deposition process itself. On PTFE, a calcium enrichment and an absence of phosphorus is found at the interface. The former is the result of CaF2-like material being formed at the interface. The latter may be the result of phosphorus reacting with escaping fluorine to a PF3 molecule, which than escapes from the material as a gas molecule. We found that the final structure of the interface is mostly controlled by the bombardment of energetic particles escaping either from the plasma or from the sputtering target. The work described here can be used to understand and improve the adhesion of CaP coatings deposited on medical substrates.
NASA Astrophysics Data System (ADS)
Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua
2018-03-01
In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.
NASA Astrophysics Data System (ADS)
Partridge, J. G.; Mayes, E. L. H.; McDougall, N. L.; Bilek, M. M. M.; McCulloch, D. G.
2013-04-01
ZnO films have been reactively deposited on sapphire substrates at 300 °C using a high impulse power magnetron sputtering deposition system and characterized structurally, optically and electronically. The unintentionally doped n-type ZnO films exhibit high transparency, moderate carrier concentration (˜5 × 1018 cm-3) and a Hall mobility of 8.0 cm2 V-1 s-1, making them suitable for electronic device applications. Pt/ZnO Schottky diodes formed on the HiPIMS deposited ZnO exhibited rectification ratios up to 104 at ±2 V and sensitivity to UV light.
Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitelaru, Catalin; National Institute for Optoelectronics, Magurele-Bucharest, RO 077125; Lundin, Daniel
2013-09-02
The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.
NASA Technical Reports Server (NTRS)
Hecht, R. J.; Mullaly, J. R.
1975-01-01
Bulk-sputtered OFHC Cu and Cu-0.15 Zr used as inner walls of advanced regeneratively cooled thrust chambers are evaluated as to microstructure, surface topography, and fractography. It is found that under conditions of low substrate temperature, crystallite size and openness of the structure increase with increasing deposition rate for both materials. At elevated temperatures, an equiaxed ductile structure of OFHC Cu is produced only at low deposition rates; at higher deposition rate, open structures are observed with recrystallized equiaxed grains within large poorly bonded crystallites. The Cu-0.15 Zr alloy sputtered from the hollow cathode using a diode discharge shows open-type structures for all conditions evaluated. The use of a triode discharge in generating a dense non-voided structure of Cu-0.15 Zr is discussed.
Thin films of the Bi2Sr2Ca2Cu3O(x) superconductor
NASA Technical Reports Server (NTRS)
Mei, YU; Luo, H. L.; Hu, Roger
1990-01-01
Using RF sputtering technique, thin films of near single phase Bi2Sr2Ca2Cu3O(x) were successfully prepared on SrTiO3(100), MgO(100), and LaAlO3(012) substrates. Zero resistance of these films occurred in the range of 90-105 K.
2018-01-01
conditions (pending input from University of California San Diego (UCSD)/Nano3). After dose testing, resist development and bake SF6 etching is done...conditions. After the resist development and bake , a 2-second descum oxygen-plasma exposure is performed followed by RF sputtering at 100 watts in argon of
Variable range hopping in ZnO films
NASA Astrophysics Data System (ADS)
Ali, Nasir; Ghosh, Subhasis
2018-04-01
We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.
Advanced technology component derating
NASA Astrophysics Data System (ADS)
Jennings, Timothy A.
1992-02-01
A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.
Design and Varactors: Operational Considerations. A Reliability Study for Robust Planar GaAs
NASA Technical Reports Server (NTRS)
Maiwald, Frank; Schlecht, Erich; Ward, John; Lin, Robert; Leon, Rosa; Pearson, John; Mehdi, Imran
2003-01-01
Preliminary conclusions include: Limits for reverse currents cannot be set. Based on current data we want to avoid any reverse bias current. We know 1 micro-A is too high. Leakage current gets suppressed when operated at 120K. Migration and verification: a) Reverse Bias Voltage will be limited; b) Health check with I/V curve: 1) Minimal reverse voltage shall be x0.75 of the calculated voltage breakdown Vbr; 2) Degradation of the Reverse Bias voltage at given current will be used as indication of ESD incidents or other Damages (high RF power, heat); 3) Calculation of diodes parameter to verify initial health check result in forward direction. RF output power starts to degrade when diode I/V curve is very strongly degraded only. Experienced on 400GHz doubler and 200GHz doubler
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui
2011-09-01
The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.
Coatings for wear and lubrication
NASA Technical Reports Server (NTRS)
Spalvins, T.
1978-01-01
Recent advances in the tribological uses of rf-sputtered and ion plated films of solid film lubricants (laminar solids, soft metals, organic polymers) and wear resistant refractory compounds (carbides, nitrides, silicides) are reviewed. The sputtering and ion plating potentials and the corresponding coatings formed were evaluated relative to the friction coefficient, wear endurance life and mechanical properties. The tribological and mechanical properties for each kind of film are discussed in terms of film adherence, coherence, density, grain size, morphology, internal stresses, thickness, and substrate conditions such as temperature, topography, chemistry and dc-biasing. The ion plated metallic films in addition to improved tribological properties also have better mechanical properties such as tensile strength and fatigue life.
Optical and interfacial electronic properties of diamond-like carbon films
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.
1984-01-01
Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.
Reversible phase transition in vanadium oxide films sputtered on metal substrates
NASA Astrophysics Data System (ADS)
Palai, Debajyoti; Carmel Mary Esther, A.; Porwal, Deeksha; Pradeepkumar, Maurya Sandeep; Raghavendra Kumar, D.; Bera, Parthasarathi; Sridhara, N.; Dey, Arjun
2016-11-01
Vanadium oxide films, deposited on aluminium (Al), titanium (Ti) and tantalum (Ta) metal substrates by pulsed RF magnetron sputtering at a working pressure of 1.5 x10-2 mbar at room temperature are found to display mixed crystalline vanadium oxide phases viz., VO2, V2O3, V2O5. The films have been characterized by field-emission scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy, and their thermo-optical and electrical properties have been investigated. Studies of the deposited films by DSC have revealed a reversible-phase transition found in the temperature range of 45-49 °C.
Effectiveness of BaTiO 3 dielectric patches on YBa 2Cu 3O 7 thin films for MEM switches
Vargas, J.; Hijazi, Y.; Noel, J.; ...
2014-05-12
A micro-electro-mechanical (MEM) switch built on a superconducting microstrip filter will be utilized to investigate BaTiO 3 dielectric patches for functional switching points of contact. Actuation voltage resulting from the MEM switch provokes static friction between the bridge membrane and BaTiO 3 insulation layer. Furthermore, the dielectric patch crystal structure and roughness affect the ability of repetitively switching cycles and lifetime. We performed a series of experiments using different deposition methods and RF magnetron sputtering was found to be the best deposition process for the BaTiO 3 layer. The effect examination of surface morphology will be presented using characterization techniquesmore » as x-ray diffraction, SEM and AFM for an optimum switching device. The thin film is made of YBa 2Cu 3O 7 deposited on LaAlO 3 substrate by pulsed laser deposition. In our work, the dielectric material sputtering pressure is set at 9.5x10 -6 Torr. The argon gas is released through a mass-flow controller to purge the system prior to deposition. RF power is 85 W at a distance of 9 cm. The behavior of Au membranes built on ultimate BaTiO 3 patches will be shown as part of the results. These novel surface patterns will in turn be used in modelling other RF MEM switch devices such as distributed-satellite communication system operating at cryogenic temperatures.« less
Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE
NASA Astrophysics Data System (ADS)
Meyers, Cedric J. G.; Freeze, Christopher R.; Stemmer, Susanne; York, Robert A.
2017-12-01
Voltage-tunable, interdigital capacitors (IDCs) were fabricated on Ba0.29Sr0.71TiO3 grown by hybrid molecular beam epitaxy (MBE). In this growth technique, we utilize the metal-organic precursor titanium tetraisopropoxide rather than solid-source Ti as with conventional MBE. Two samples of varying BaxSr(1-x)TiO3 (BST) thicknesses were fabricated and analyzed. High-quality, epitaxial Pt electrodes were deposited by sputtering from a high-purity Pt target at 825 °C. The Pt electrodes were patterned and etched by argon ion milling, passivated with reactively sputtered SiO2, and then metallized with lift-off Ti/Au. The fabricated devices consisted of two-port IDCs embedded in ground-signal-ground, coplanar waveguide (CPW) transmission lines to enable radio-frequency (RF) probing. The sample included open and thru de-embedding structures to remove pad and CPW parasitic impedances. Two-port RF scattering (S) parameters were measured from 100 MHz to 40 GHz while DC bias was stepped from 0 V to 100 V. The IDCs exhibit a high zero-bias radio-frequency (RF) quality factor (Q) approaching 200 at 1 GHz and better than 2.3:1 capacitance tuning for the 300-nm-thick sample. Differences in the Q(V) and C(V) response with varying thicknesses indicate that unknown higher order material phenomena are contributing to the loss and tuning characteristics of the material.
NASA Astrophysics Data System (ADS)
Tripathi, S.; De, Rajnarayan; Maidul Haque, S.; Divakar Rao, K.; Misal, J. S.; Prathap, C.; Das, S. C.; Patidar, Manju M.; Ganesan, V.; Sahoo, N. K.
2018-01-01
Present communication focuses on a relatively less explored direction of producing rough polytetrafluoroethylene (PTFE) surfaces for possible hydrophobic applications. The experiments were carried out to make rough PTFE films without losing much of the transmission, which is an important factor while designing futuristic solar cell protection covers. After annealing temperature optimization, as grown RF magnetron sputtered PTFE films (prepared at 160 W RF power) were subjected to vacuum annealing at 200 °C for different time durations ranging from 1 to 4 h. The films show morphological evolution exhibiting formation and growth of columnar nanostructures that are responsible for roughening of the films due to annealing induced molecular migration and rearrangement. In agreement with this, qualitative analysis of corresponding x-ray reflectivity data shows modification in film thickness, which may again be attributed to the growth of columns at the expense of the atoms of remaining film molecules. However, the observations reveal that the film annealed at 200 °C for 2 h gives a combination of patterned columnar structures and reasonable transmission of >85% (in 500-1000 nm wavelength range), both of which are deteriorated when the films are annealed either at high temperature beyond 200 °C or for long durations >3 h. In addition, attenuated total reflection-Fourier transform infrared spectroscopy results reveal that the molecular bonds remain intact upon annealing at any temperature within the studied range indicating the stable nature of the films.
Ji, Yiyi; Hoffmann, Werner; Pham, Michal; Dunn, Alexander E; Han, Haopeng; Özerdem, Celal; Waiczies, Helmar; Rohloff, Michael; Endemann, Beate; Boyer, Cyrille; Lim, May; Niendorf, Thoralf; Winter, Lukas
2018-04-01
To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B 0 = 7 T) to examine the characteristics and applicability of the switch. The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org. © 2018 International Society for Magnetic Resonance in Medicine.
Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector
NASA Astrophysics Data System (ADS)
Menshawy, S.; Jenkins, A. S.; Merazzo, K. J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ebels, U.; Bortolotti, P.; Kermorvant, J.; Cros, V.
2017-05-01
Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf) detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs). In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.
Wright Laboratory Research and Development Facilities Handbook
1992-08-01
properties o. superconductors SPECIAL/UNIQUE CAPABILITIES: Two superconducting coils: 3-inch bore, 10 Tesla coil. 20 kilojoule repetitively pulsed coil 7 inch...bore, cryogenically cooled 14 Tesla coil INSTRUMENTATION: Computer Controlled Variable Temperature (2-400K) and Field (0-5 Tesla ) Squid Susceptometer...Variable Temperature (10-80K) and Field (0-10 Tesla ) Transport Current Measurement Apparatus RF Source Sputtering Rig, Optical Microscope, Furnaces
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2016-11-01
Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Gowthami, V.; Perumal, P.; Sanjeeviraja, C.
2014-10-01
Thin films of WO3 and V2O5 doped WO3 were coated on glass substrates using sputtering targets of diameter 50mm and thickness 5mm with RF power of 100 W and source to substrate distance of 60mm at room temperature for various V2O5 compositions (1, 2, 4, 6 and 10 %). XRD studies revealed that as deposited films were amorphous for all compositions. Morphological studies like Laser Raman and SEM too confirmed this amorphous nature of films. Refractive index (n) and the extinction coefficient (k) were calculated from the optical spectra such as transmittance and absorbance measured over the wavelength range of 200 to 2500nm. The films exhibited transmittance in the range of 80 to 90% in the UV-Vis-NIR region. Optical band gaps were calculated for both direct and indirect transitions. The optical parameters such as optical dispersion energies Eo and Ed, the average dielectric constant (ɛ), average values of the oscillator strength (So), wavelength of single oscillator (λo), and plasma frequency (ωp) were also calculated.
NASA Astrophysics Data System (ADS)
Schifano, R.; Riise, H. N.; Domagala, J. Z.; Azarov, A. Yu.; Ratajczak, R.; Monakhov, E. V.; Venkatachalapathy, V.; Vines, L.; Chan, K. S.; Wong-Leung, J.; Svensson, B. G.
2017-01-01
Homoepitaxial ZnO growth is demonstrated from conventional RF-sputtering at 400 °C on both Zn and O polar faces of hydrothermally grown ZnO substrates. A minimum yield for the Rutherford backscattering and channeling spectrum, χmin, equal to ˜3% and ˜12% and a full width at half maximum of the 00.2 diffraction peak rocking curve of (70 ± 10) arc sec and (1400 ± 100) arc sec have been found for samples grown on the Zn and O face, respectively. The structural characteristics of the film deposited on the Zn face are comparable with those of epilayers grown by more complex techniques like molecular beam epitaxy. In contrast, the film simultaneously deposited on the O-face exhibits an inferior crystalline structure ˜0.7% strained in the c-direction and a higher atomic number contrast compared with the substrate, as revealed by high angle annular dark field imaging measurements. These differences between the Zn- and O-face films are discussed in detail and associated with the different growth mechanisms prevailing on the two surfaces.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
NASA Astrophysics Data System (ADS)
Nupangtha, W.; Boonyawan, D.
2017-09-01
Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.
NASA Astrophysics Data System (ADS)
Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.
2015-04-01
The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.
NASA Astrophysics Data System (ADS)
Surmeneva, M. A.; Tyurin, A. I.; Teresov, A. D.; Koval, N. N.; Pirozhkova, T. S.; Shuvarin, I. A.; Surmenev, R. A.
2015-11-01
The morphology, elemental, phase composition, nanohardness, and Young's modulus of the hydroxyapatite (HA) coating deposited via radio frequency (RF) magnetron sputtering onto the AZ31 surface were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and nanoindentationtechniques. The calcium phosphate (Ca/P) molar ratio of the HA coating deposited via RF-magnetron sputtering onto AZ31 substrates according to EDX was 1.57+0.03. The SEM experiments revealed significant differences in the morphology of the HA film deposited on untreated and treated with the pulsed electron beam (PEB) AZ31 substrate. Nanoindentation studies demonstrated significant differences in the mechanical responses of the HA film deposited on the initial and PEB-modified AZ31 substrates. The nanoindentation hardness and the Young's modulus of the HA film on the magnesium alloy modified using the PEB treatment were higher than that of the HA layer on the untreated substrate. Moreover, the HA film fabricated onto the PEB-treated surface was more resistant to plastic deformation than the same film on the untreated AZ31 surface.
NASA Astrophysics Data System (ADS)
Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee
1993-06-01
Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
Fabrication of oriented hydroxyapatite film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami
2017-08-01
Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.
Sputtering, Plasma Chemistry, and RF Sheath Effects in Low-Temperature and Fusion Plasma Modeling
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Kruger, Scott E.; McGugan, James M.; Pankin, Alexei Y.; Roark, Christine M.; Smithe, David N.; Stoltz, Peter H.
2016-09-01
A new sheath boundary condition has been implemented in VSim, a plasma modeling code which makes use of both PIC/MCC and fluid FDTD representations. It enables physics effects associated with DC and RF sheath formation - local sheath potential evolution, heat/particle fluxes, and sputtering effects on complex plasma-facing components - to be included in macroscopic-scale plasma simulations that need not resolve sheath scale lengths. We model these effects in typical ICRF antenna operation scenarios on the Alcator C-Mod fusion device, and present comparisons of our simulation results with experimental data together with detailed 3D animations of antenna operation. Complex low-temperature plasma chemistry modeling in VSim is facilitated by MUNCHKIN, a standalone python/C++/SQL code that identifies possible reaction paths for a given set of input species, solves 1D rate equations for the ensuing system's chemical evolution, and generates VSim input blocks with appropriate cross-sections/reaction rates. These features, as well as principal path analysis (to reduce the number of simulated chemical reactions while retaining accuracy) and reaction rate calculations from user-specified distribution functions, will also be demonstrated. Supported by the U.S. Department of Energy's SBIR program, Award DE-SC0009501.
THz impulse radar for biomedical sensing: nonlinear system behavior
NASA Astrophysics Data System (ADS)
Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.
2014-03-01
The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.
Characterization of simple wireless neurostimulators and sensors.
Gulick, Daniel W; Towe, Bruce C
2014-01-01
A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.
NASA Astrophysics Data System (ADS)
Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi
2009-05-01
Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Feng, E-mail: fangfeng@seu.edu.cn; Zhang, Yeyu; Wu, Xiaoqin
2015-08-15
Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical propertiesmore » of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.« less
Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Mahadik, Nadeemullah A.; Freitas, Jaime A.; Glaser, Evan R.; Koehler, Andrew D.; Luna, Lunet E.; Feigelson, Boris N.; Hobart, Karl D.; Kub, Fritz J.; Kuramata, A.
2018-02-01
We present novel approaches for the development of Ga2O3 Schottky barrier and heterojunction diodes. Samples of β- Ga2O3 were first annealed in N2 and O2 to demonstrate the effect of annealing on the carrier concentration. Cathodoluminescence and electron spin resonance measurements were also performed. Schottky barrier diodes on asgrown and O2-annealed epitaxial Ga2O3 films were fabricated and breakdown voltages were compared. Lower reverse current and a breakdown voltage of about 857 V were measured on the O2-annealed device. Finally, we report preliminary results from the development of anisotype heterojunctions between n-type Ga2O3 with a sputtered NiO layer. Rectifying current-voltage characteristics were obtained when the NiO was deposited both at room temperature and at 450 °C.
Effects of deposition temperature on the electrical properties of Ti/SiC Schottky barrier diodes
NASA Astrophysics Data System (ADS)
Oder, Tom N.; Kundeti, Krishna C.; Borucki, Nicholas; Isukapati, Sundar B.
2017-12-01
Ti Schottky contacts were deposited on n-type 4H-SiC at different temperatures ranging from 28 oC to 900 oC using a magnetron sputtering deposition system to fabricate Schottky barrier diodes. Post deposition annealing at 500 oC for up to 60 hours in vacuum was carried to further improve the contact properties. Optimum barrier height of 1.13 eV and ideality factor of 1.04 was obtained in contacts deposited at 200 oC and annealed for 60 hours. Under a reverse voltage bias of 400 V, the average leakage current on these set of diodes was 6.6 x 10-8 A. Based on the x-ray diffraction analysis, TiC, Ti5Si3 and Ti3SiC2 were formed at the Ti/SiC interface. These results could be beneficial to improving the performance of 4H-SiC Schottky diodes for high power and high temperature applications.
The 20 GHz solid state transmitter design, impatt diode development and reliability assessment
NASA Technical Reports Server (NTRS)
Picone, S.; Cho, Y.; Asmus, J. R.
1984-01-01
A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.
Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping
2018-04-01
In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.
Discharge Characteristic of VHF-DC Superimposed Magnetron Sputtering System
NASA Astrophysics Data System (ADS)
Toyoda, Hirotaka; Fukuoka, Yushi; Fukui, Takashi; Takada, Noriharu; Sasai, Kensuke
2014-10-01
Magnetron plasmas are one of the most important tools for sputter deposition of thin films. However, energetic particles from the sputtered target such as backscattered rare gas atoms or oxygen negative ions from oxide targets sometimes induce physical and chemical damages as well as surface roughening to the deposited film surface during the sputtering processes. To suppress kinetic energy of such particles, superposition of RF or VHF power to the DC power has been investigated. In this study, influence of the VHF power superposition on the DC target voltage, which is important factor to determine kinetic energy of high energy particles, is investigated. In the study, 40 MHz VHF power was superimposed to an ITO target and decrease in the target DC voltage was measured as well as deposited film deposition properties such as deposition rate or electrical conductivity. From systematic measurement of the target voltage, it was revealed that the target voltage can be determined by a very simple parameter, i.e., a ratio of VHF power to the total input power (DC and VHF powers) in spite of the DC discharge current. Part of this work was supported by ASTEP, JST.
A post-processing method to simulate the generalized RF sheath boundary condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myra, James R.; Kohno, Haruhiko
For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less
A post-processing method to simulate the generalized RF sheath boundary condition
Myra, James R.; Kohno, Haruhiko
2017-10-23
For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less
Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream
NASA Astrophysics Data System (ADS)
Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia
2018-05-01
The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.
NASA Astrophysics Data System (ADS)
Sul, Woo Suk; Kwon, Soon Hyeong; Choi, Eunmi; Cui, Yinhua; Lee, Kang Won; Shim, Ho Jae; Gao, Yuan; Hahn, Sang June; Pyo, Sung Gyu
2017-05-01
We report the analysis of the radiofrequency (RF) characteristics according to the size, area, and shape of TaN thin-film resistor (TFR) layers. As the TFR size increased, its characteristics were degraded with increasing frequency owing to the increased capacitive parasitic components. As the frequency increased from 1 MHz to 10 GHz, the effective resistance decreased by approximately 12.5%, 16.4%, and 37.8% when the resistor widths and lengths were 0.5 × 20, 1 × 40, and 2 × 80 μm, respectively. To optimize the performance of the high-frequency TFR, ensuring RF isolation via sufficient separation from the silicon substrates was crucial. To realize this RF isolation, methods for minimizing the effect of lossy Si substrates by using TFRs with a smaller area or by forming a patterned ground shield should be introduced. [Figure not available: see fulltext.
Borodkina, I.; Borodin, D.; Brezinsek, S.; ...
2017-04-12
For simulation of plasma-facing component erosion in fusion experiments, an analytical expression for the ion velocity just before the surface impact including the local electric field and an optional surface biasing effect is suggested. Energy and angular impact distributions and the resulting effective sputtering yields were produced for several experimental scenarios at JET ILW mostly involving PFCs exposed to an oblique magnetic field. The analytic solution has been applied as an improvement to earlier ERO modelling of localized, Be outer limiter, RF-enhanced erosion, modulated by toggling of a remote, however magnetically connected ICRH antenna. The effective W sputtering yields duemore » to D and Be ion impact in Type-I and Type-III ELMs and inter-ELM conditions were also estimated using the analytical approach and benchmarked by spectroscopy. The intra-ELM W sputtering flux increases almost 10 times in comparison to the inter-ELM flux.« less
Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R
2015-10-14
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
NASA Astrophysics Data System (ADS)
Krawczak, Ewelina; Agata, Zdyb; Gulkowski, Slawomir; Fave, Alain; Fourmond, Erwann
2017-11-01
Transparent Conductive Oxides (TCOs) characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO) is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology) as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.
Electron Heating Mode Transitions in Nitrogen (13.56 and 40.68) MHz RF-CCPs
NASA Astrophysics Data System (ADS)
Erozbek Gungor, Ummugul; Bilikmen, Sinan Kadri; Akbar, Demiral
2015-09-01
Capacitively coupled radio frequency plasmas (RF-CCPs) are commonly used in plasma material processing. Parametrical structure of the plasma determines the demands of processing applications. For example; high density plasmas in gamma mode are mostly preferred for etching applications while stabile plasmas in gamma mode are usually used in sputtering applications. For this reason, characterization of the plasma is very essential before surface modification of the materials. In this work, analysis of electron heating mode transition in high frequency (40.68 MHz) RF-CCP was deeply investigated. The plasma was generated in a home-made (500 × 400 mm2) stainless steel cylindrical reactor in which two identical (200 mm in diameter) electrodes were placed with 40 mm interval. In addition, L-type automatic matching network system was connected to the 40.68 MHz RF generator to get high accuracy. Moreover, the pure (99.995 %) nitrogen was used as an activation gas on account of having an appreciable impression in plasma processing applications. Furthermore, diagnostic measurements of the plasma were done by using the Impedans Langmuir single and double probe systems. It was found that two transition points; α- γ (pressure dependent) and γ- α (RF power dependent) were observed in both medium and high RF-CCPs. As a result, the α- γ pressure transition increased, whereas the γ- α power transition remained constant by changing the RF frequency sources.
Experimental Study of RF Sheath Formation on a Fast Wave Antenna and Limiter in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy
2015-11-01
Ion cyclotron resonance heating (ICRH) will be an essential component of heating power in ITER. During ICRH, radio frequency (RF) sheaths may form both at the exciting antenna and further away, e.g. in the divertor region, and may cause wall material sputtering and decreased RF power coupling to the plasma. It is important to do detailed laboratory experiments that fully diagnose the sheaths and wave fields. This is not possible in fusion devices. A new RF system has recently been constructed for performing such studies in the LAPD plasma column (ne ~1012 -1013cm-3 , Te ~ 1 - 10 eV ,B0 ~ 400 - 2000 G , diameter ~ 60cm , length ~ 18 m) . The RF system is capable of pulsing at the 1 Hz rep. rate of the LAPD plasma and operating between 2-6 MHz (1st - 9th harmonic of fci in H) with a power output of 200 kW. First results of this system driving a single-strap fast wave antenna will be presented. Emissive and Langmuir probe measurements in the vicinity of both the antenna and a remote limiter and wave coupling measured by magnetic pickup loops will be presented.
NASA Astrophysics Data System (ADS)
Park, C. H.; Im, Seongil; Yun, Jungheum; Lee, Gun Hwan; Lee, Byoung H.; Sung, Myung M.
2009-11-01
We report on the fabrication of transparent top-gate ZnO nonvolatile memory thin-film transistors (NVM-TFTs) with 200 nm thick poly(vinylidene fluoride/trifluoroethylene) ferroelectric layer; semitransparent 10 nm thin AgOx and transparent 130 nm thick indium-zinc oxide (IZO) were deposited on the ferroelectric polymer as gate electrode by rf sputtering. Our semitransparent NVM-TFT with AgOx gate operates under low voltage write-erase (WR-ER) pulse of ±20 V, but shows some degradation in retention property. In contrast, our transparent IZO-gated device displays very good retention properties but requires anomalously higher pulse of ±70 V for WR and ER states. Both devices stably operated under visible illuminations.
Enhanced tunability of magnetron sputtered Ba0.5Sr0.5TiO3 thin films on c-plane sapphire substrates
NASA Astrophysics Data System (ADS)
Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Reichart, P.
2006-07-01
Thin films of Ba0.5Sr0.5TiO3 (BST) were deposited on c-plane (0001) sapphire by rf magnetron sputtering and investigated by complementary materials analysis methods. Microwave properties of the films, including tunability and Q factor were measured from 1to20GHz by patterning interdigital capacitors (IDCs) on the film surface. The tunability is correlated with texture, strain, and grain size in the deposited films. An enhanced capacitance tunability of 56% at a bias field of 200kV/cm and total device Q of more than 15 (up to 20GHz) were achieved following postdeposition annealing at 900°C.
Optical properties of zinc titanate perovskite prepared by reactive RF sputtering
NASA Astrophysics Data System (ADS)
Müllerová, Jarmila; Šutta, Pavol; Medlín, Rostislav; Netrvalová, Marie; Novák, Petr
2017-12-01
In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of ZnTiO3 perovskite thin films deposited on glass by reactive magnetron co-sputtering. The members of the series differ by the titanium content that was revealed as an origin of the changes not only in structure but also in dispersive optical properties. Low porosity has been discovered and calculated using the Bruggeman effective medium approximation. An apparent blue-shift of the optical band gap energies with increasing titanium content was observed. The observed band gap engineering is a good prospective for eg optoelectronic and photocatalytic applications of ZnTiO3.
Nylon-sputtered nanoparticles: fabrication and basic properties
NASA Astrophysics Data System (ADS)
Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H.
2012-12-01
Nylon-sputtered nanoparticles were prepared using a simple gas aggregation cluster source based on a planar magnetron (Haberland type) and equipped with a nylon target. Plasma polymer particles originated in an aggregation chamber and travelled to a main (deposition) chamber with a gas flow through an orifice. The deposited nanoparticles were observed to have a cauliflower-like structure. The nanoparticles were found to be nitrogen-rich with N/C ratio close to 0.5. An increase in rf power from 60 to 100 W resulted in a decrease in mean particle size from 210 to 168 nm whereas an increase in their residence time in the cluster source from 0.7 to 4.6 s resulted in an increase in the size from 73 to 231 nm.
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshkin, V. Ya.; Dikareva, N. V.; Dubinov, A. A., E-mail: sanya@ipm.sci-nnov.ru
2015-02-15
A light-emitting diode structure based on GaAs with eight narrow Ge quantum wells is grown by laser sputtering. An electroluminescence line polarized predominately in the plane parallel to the constituent layers of the structure is revealed. The line corresponds to the direct optical transitions in momentum space in the Ge quantum wells.
NASA Astrophysics Data System (ADS)
Tian, Lifei; Cheng, Guoan; Wang, Hougong; Wu, Yulong; Zheng, Ruiting; Ding, Peijun
2017-01-01
The indium tin oxide (ITO) films are prepared by the direct current magnetron sputtering technology with an ITO target in a mixture of argon and nitrogen gas at room temperature. The blue transmittance at 455 nm rises from 63% to 83% after nitrogen doping. The resistivity of the ITO film reduces from 4.6 × 10-3 (undoped film) to 5.7 × 10-4 Ω cm (N-doped film). The X-ray photoelectron spectroscopy data imply that the binding energy of the In3d5/2 peak is declined 0.05 eV after nitrogen doping. The high resolution transmission electron microscope images show that the nitrogen loss density of the GaN/ITO interface with N-doped ITO film is smaller than that of the GaN/ITO interface with undoped ITO film. The forward turn-on voltage of gallium nitride light emitting diode reduces by 0.5 V after nitrogen doping. The fabrication of the N-doped ITO film is conducive to modify the N component of the interface between GaN and ITO layer.
Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi
2017-05-18
GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.
Effect of Si in reactively sputtered Ti-Si-N films on structure and diffusion barrier performance
NASA Astrophysics Data System (ADS)
Sun, X.; Kolawa, E.; Im, S.; Garland, C.; Nicolet, M.-A.
Two ternary films about 100 nm thick, Ti34Si23N43 (b3) and Ti35Si13N52 (c3), are synthesized by reactively sputtering a Ti5Si3 or a Ti3Si target, respectively. The silicon-lean film (c3) has a columnar structure closely resembling that of TiN. As a diffusion barrier between a shallow Si n+p junction diode and a Cu overlayer, this material is effective up to 700 °C for 30 min annealing in vacuum, a performance similar to that for TiN. The silicon-rich (b3) film contains nanocrystals of TiN, randomly oriented and embedded in an amorphous matrix. A film of (b3) maintains the stability of the same diode structure up to 850 °C for 30 min in vacuum. This film (b3) is clearly superior to TiN or to (c3). Similar experiments performed with Al instead of Cu overlayers highlight the importance of the thermodynamic stability of a barrier layer and demonstrate convincingly that for stable barriers the microstructure is a parameter that directly determines the barrier performance.
Detection mechanism and characteristics of ZnO-based N2O sensors operating with photons
NASA Astrophysics Data System (ADS)
Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Youn, C. J.; Hong, K. J.
2013-11-01
N2O sensors made with ZnO-based ZnCdO films were grown on Pyrex substrates by using the RF co-sputtering method. The structure of the N2O sensor was electrode/sensor/glass/illuminant. The mechanism of the photo-assisted oxidation and reduction process on the surface of the N2O sensors was investigated using light from a UV lamp and violet light emitting diode (LED). For photon exposure wavelengths of 365 and 405 nm, the sensitivity of the ZnO-based ZnCdO sensors was measured. From these measurements, the values of the sensitivity of the sensors with x = 0, 0.01, and 0.05 were found to be S = 1.44, 1.39, and 1.33 under LED light with a wavelength of 405 nm, respectively. These sensitivities were compared to those of SnO2 and WO3 materials measured at operating temperatures of 300-600 °C. Also, under exposure with UV light, the response times were observed to be 130 to 270 sec. These response times were slightly slower than that for the traditional method of thermal heating. However, they indicate that the described photon exposure method for N2O detection can replace the conventional heating mode. Consequently, we demonstrated that portable N2O sensors for room-temperature operation could be fabricated without thermal heating.
Tunable diode-laser heterodyne spectrometer for remote observations near 8 microns
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Buhl, D.; Mumma, M. J.
1982-01-01
A diode-laser-based, ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microns. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N2O, O3, and CH4 between 1170 and 1200/cm, using both a single-frequency swept IF channel and a 64-channel RF spectral line receiver with a total IF coverage of 1600 MHz.
NASA Astrophysics Data System (ADS)
Sharma, Saumya
Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at +/-200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd). The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or +/-1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz. Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter. Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.
NASA Astrophysics Data System (ADS)
Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki
2010-11-01
We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.
Oxide Based Transistor for Flexible Displays
2014-09-15
thin film transistors (TFTs) for next generation display technologies. A detailed and comprehensive study was carried out to ascertain the process...Box 12211 Research Triangle Park, NC 27709-2211 Thin film transistors , flexible electronics, RF sputtering, Transparent amorphous oxide semiconductors...NC A&T and RTI, International investigated In free GaSnZnO (GSZO) material system, as the active channel in thin film transistors (TFTs) for next
Advances and challenges in the field of plasma polymer nanoparticles
Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847
Advances and challenges in the field of plasma polymer nanoparticles.
Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maaloul, L.; Gangwar, R. K.; Stafford, L., E-mail: luc.stafford@umontreal.ca
2015-07-15
A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over themore » whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.« less
Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering
NASA Astrophysics Data System (ADS)
Nose, M.; Chiou, W. A.; Zhou, M.; Mae, T.; Meshii, M.
2002-05-01
ZrN and ZrSiN films were prepared in an rf sputtering apparatus that has a pair of targets facing each other (referred to as the facing target-type rf sputtering). Films were deposited on silicon wafers without bias application or substrate heating in order to examine only the effect of silicon addition to the transition metal nitride films. The contents of zirconium, nitrogen, and silicon of the films were determined with an electron probe microanalyzer. The transmission electron microscopy studies were carried out in addition to x-ray diffraction. For the high resolution transmission electron microscopy observation, the field emission type transmission electron microscope was used, which provides a point-to-point resolution of 0.1 nm. The samples were observed both parallel and perpendicular to the film surface, which were plane and cross sectional views, respectively. In order to investigate the relationship between the mechanical properties and microstructure of films, the hardness was measured by a nanoindentation system at room temperature. The load was selected to keep the impression depth below 60 nm (not more than 5% of film thickness) so that the influence from the substrate can be neglected. The hardness of the films increases with small Si additions reaching the maximum value of 35 GPa at around 3 at. % Si. The tendency to grow columnar grains was strongest around this composition, while grains became equiaxial above 5 at. % of Si. The films containing 12.8% Si, which showed the lowest hardness of 18 GPa, consist of nanocrystal grains. The presence of ZrN nanocrystals embedded in Si3N4 was not observed in the present study. The hardening mechanism due to the addition of small amounts of Si in ZrN can not be determined at this time. The grain size and residual stress can make minor contributions to the hardening. A possibility of solid solution hardening due to atomistic strain, such as nitrogen atoms at interstitial sites or other point defects is postulated and should be examined further.
Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source.
Gaubert, G; Bieth, C; Bougy, W; Brionne, N; Donzel, X; Leroy, R; Sineau, A; Vallerand, C; Villari, A C C; Thuillier, T
2012-02-01
The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T(max) = 1400 °C) installed with an angle of 5° with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B(inj) and 1.32 T radial field in the wall, variable B(min) with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.
Nanoionics-Based Switches for Radio-Frequency Applications
NASA Technical Reports Server (NTRS)
Nessel, James; Lee, Richard
2010-01-01
Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications
NASA Astrophysics Data System (ADS)
Giri, Pushpa; Chakrabarti, P.
2016-05-01
Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.
Synthesis and characterization of delafossite thin films by reactive RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Asmat Uceda, Martin Antonio
This work presents a comparative study on optical and electrical properties of CuAlO2 thin films on sapphire (0001) substrates deposited with two different growth conditions using reactive RF-magnetron sputtering technique from metallic Cu and Al targets. CuAlO2 is a very promising material for transparent electronic applications, it is intended that comparison of results obtained from both approaches, could lead to optimization and control of the physical properties of this material, namely its electrical conductivity and optical transmittance. All samples were heat treated at 1100°C using rapid thermal annealing with varying time and rate of cooling. The effect of sputtering conditions and different annealing time on phase formation and evolution is studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that for most of the samples CuAlO2 phase is formed after 60 min of annealing time, but secondary phases were also present that depend on the deposition conditions. However, pure CuAlO2 phase was obtained for annealed CuO on sapphire films with annealing time of 60 min. The optical properties obtained from UV-Visible spectroscopic measurement reveals indirect and direct optical band gaps for CuAlO2 films and were found to be 2.58 and 3.72 eV respectively. The films show a transmittance of about 60% in the visible range. Hall effect measurements indicate p-type conductivity. Van der Pauw technique was used to measure resistivity of the samples. The highest electrical conductivity and charge carrier concentration obtained were of 1.01x10-1S.cm -1 and 3.63 x1018 cm-3 respectively.
NASA Astrophysics Data System (ADS)
Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko
2013-09-01
Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.
Structure and Electrical Properties of RF Sputter Deposited Indium Antimonide Thin Films
1975-12-01
Figure 6b is from the dark area in the upper right-hand corner of the micrograph. A plot of the average grain size of InSb films grown on p-a CaF2 as...1966). 29. R. F. Potter, Phys. Rev. 103, 47 (1956). 30. D. B. Holt, J. Phys. Chem. Solids 27, 1053 (1966). 31. H. F. Matare ’, Defect Electronics in
Silicon Oxycarbide Waveguides for Photonic Applications
NASA Astrophysics Data System (ADS)
Memon, Faisal Ahmed; Morichetti, Francesco; Melloni, Andrea
2018-01-01
Silicon oxycarbide thin films deposited with rf reactive magnetron sputtering a SiC target are exploited to demonstrate photonic waveguides with a high refractive index of 1.82 yielding an index contrast of 18% with silica glass. The propagation losses of the photonic waveguides are measured at the telecom wavelength of 1.55 μm by cut-back technique. The results demonstrate the potential of silicon oxycarbide for photonic applications.
Ordered Magnetic Nanoparticle Arrays on Tunable Substrates for RF Applications
2010-09-24
the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation...15. “ Sensor applications and spin transport measurements in carbon nanotube composites” –J. Sanders, J. Gass, H. Srikanth, F. K. Perkins and E. S...Research highlights: 1. Magnetron sputtering, characterization and optimization of film growth parameters 2. Design and set up of a dedicated
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.
2010-01-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615
NASA Astrophysics Data System (ADS)
Kana, J. B. Kana; Ndjaka, J. M.; Manyala, N.; Nemraoui, O.; Beye, A. C.; Maaza, M.
2008-09-01
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO2) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 °C to 600 °C. The X-ray diffraction results demonstrated that the Au and VO2 were well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 °C to 100 °C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at ˜57 nm for substrate temperature higher than 500 °C.
Novel β-TCP Coated Titanium Nanofiber Surface for Enhanced Bone Growth.
Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin
2018-02-01
In this study, we examined the effect of β-tricalcium phosphate (β-TCP) coating on alkali-treated CP Grade II titanium surface via RF magnetron sputtering on osteoblast like cell (MC3T3-E1) viability and bone formation in rat tibia. The specimens were divided into three groups; commercially pure titanium (control group), alkali-treated titanium with nanofiber structure (NF group) and β-TCP coating on alkali-treated titanium with nanofiber structure (TNF group). The surface characteristics of specimens were observed under a field emission scanning electron microscope (FE-SEM), and contact angle was measured. The cell viability was assessed in vitro after 1 day, 3 days and 7 days. Implants of 2.0 mm diameter and 5.0 mm length were inserted into the tibia of rats. After 4 wks, the histomorphometric analysis was performed. Group NF and group TNF showed improved hydrophilicity of Ti. Group TNF showed significantly higher cell viability (P < 0.05) after 7 days. The bone to implant contact (BIC) ratio of the control group, NF group, and TNF group were 32.3%, 35.5%, and 63.9%, respectively. The study results suggested that β-TCP coated alkali-treated titanium surface via RF magnetron sputtering might be effective in implant dentistry due to enhanced hydrophilicity, improved cell response, and better osseointegration.
Biocompatibility of GaSb thin films grown by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi
2017-07-01
GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.
NASA Astrophysics Data System (ADS)
Aikawa, Shinya
2017-12-01
The effect of Ti doping in an indium oxide (InOx)-based semiconductor is investigated for the thin-film transistor (TFT) property and crystal structure of the film. InOx and Ti-doped InOx (InTiOx) films deposited by RF magnetron sputtering under the same O2 partial pressure conditions were systematically compared. The TFT behavior of the InOx showed higher conductivity than that of the InTiOx and was drastically changed to metallic conduction after annealing at 150 °C. Under the annealing conditions when the electrical transition to the metallic behavior occurred, the InOx film was crystallized. The X-ray diffraction analysis revealed that the shrinkage of the In2O3 unit cell is pronounced in the case of InOx films. Thus, Ti dopants may play the role as a suppressor for shrinkage of the unit cell, i.e. maintaining neighboring In-In distances, in addition to suppression of oxygen vacancies. The In-In distance, which is related to the overlapping of In 5 s orbitals, is considered to be one of the key factor for which InOx-based materials are utilized as conducting films or semiconducting channels.
NASA Astrophysics Data System (ADS)
Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.
2013-01-01
Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.
A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less
NASA Technical Reports Server (NTRS)
Busch, R.
1978-01-01
Thermal barrier coatings of yttria stabilized zirconia and zirconia-ceria mixtures were deposited by RF reactive sputtering. Coatings were 1-2 mils thick, and were deposited on copper cylinders intended to simulate the inner wall of a regeneratively cooled thrust chamber. Coating stoichiometry and adherence were investigated as functions of deposition parameters. Modest deposition rates (approximately 0.15 mil/hr) and subambient sustrate temperatures (-80 C) resulted in nearly stoichiometric coatings which remained adherent through thermal cycles between -196 and 400 C. Coatings deposited at higher rates or substrates temperatures exhibited greater oxygen deficiences, while coatings deposited at lower temperatures were not adherent. Substrate bias resulted in structural changes in the coating and high krypton contents; no clear effect on stoichiometry was observed.
Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films
Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; ...
2009-01-01
Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less
The effect of initial pressure on growth of FeNPs in amorphous carbon films
NASA Astrophysics Data System (ADS)
Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, S. Ali; Darabi, Elham
2018-04-01
Iron nanoparticles in amorphous hydrogenated carbon films (FeNPs@a-C:H) were prepared with RF-sputtering and RFPECVD methods by acetylene gas and Fe target. In this paper, deposition and sputtering process were carried out under influence of different initial pressure gas. The morphology and roughness of surface of samples were studied by AFM technique and also TEM images show the exact size of FeNPs and encapsulated FeNPs@a-C:H. The localized surface plasmon resonance peak (LSPR) of FeNPs was studied using UV-vis absorption spectrum. The results show that the intensity and position of LSPR peak are increased by increasing initial pressure. Also, direct energy gap of samples obtained by Tauc law is decreased with respect to increasing initial pressure.
Electrochemical properties of magnetron sputtered WO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhavi, V.; Kondaiah, P.; Hussain, O. M.
2013-02-05
Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly inmore » the first few cycles and stabilized at a lesser stage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com
A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less
Studies on nickel-tungsten oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, K. S.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created duemore » to the addition of tungsten, respectively.« less
Influence of the deposition conditions on radiofrequency magnetron sputtered MoS2 films
NASA Technical Reports Server (NTRS)
Steinmann, Pierre A.; Spalvins, Talivaldis
1990-01-01
By varying the radiofrequency (RF) power, the Ar pressure, and the potential on the substrates, MoS(x) films of various stoichiometry, density, adhesion, and morphology were produced. An increase of RF power increased the deposition rate and density of the MoS2 films as well as improved adhesion. However, the stoichiometry remained constant. An increase of Ar pressure increased the deposition rate but decreased the density, wheras both stoichiometry and adhesion were maximized at around 20 mtorr Ar pressure. Furthermore, a transition from compact film growth to columnar film growth was observed when the pressure was varied from 5 to 15 mtorr. Substoichiometric films were grown when a negative (bias) voltage was applied to the substrates.
Optical and structural properties of sputtered CdS films for thin film solar cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Donguk; Park, Young; Kim, Minha
2015-09-15
Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity,more » surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.« less
NASA Astrophysics Data System (ADS)
Ivanova, A. A.; Surmeneva, M. A.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Prymak, O.; Epple, M.; Chaikina, M. V.; Surmenev, R. A.
2016-01-01
As a measure of the prevention of implant associated infections, a number of strategies have been recently applied. Silver-containing materials possessing antibacterial activity as expected might have wide applications in orthopedics and dentistry. The present work focuses on the physico-chemical characterization of silver-containing hydroxyapatite (Ag-HA) coating obtained by radio frequency (RF) magnetron sputtering. Mechanochemically synthesized Ag-HA powder (Ca10xAgx(PO4)6(OH)2x, x = 1.5) was used as a precursor for sputtering target preparation. Morphology, composition, crystallinity, physico-mechanical features (Young's modulus and nanohardness) of the deposited Ag-HA coatings were investigated. The sputtering of the nanostructured multicomponent target at the applied process conditions allowed to deposit crystalline Ag-HA coating which was confirmed by XRD and FTIR data. The SEM results revealed the formation of the coating with the grain morphology and columnar cross-section structure. The EDX analysis confirmed that Ag-HA coating contained Ca, P, O and Ag with the Ca/P ratio of 1.6 ± 0.1. The evolution of the mechanical properties allowed to conclude that addition of silver to HA film caused increase of the coating nanohardness and elastic modulus compared with those of pure HA thin films deposited under the same deposition conditions.
Monolithic control components for high power mm-waves
NASA Astrophysics Data System (ADS)
Armstrong, A.; Goodrich, J.; Moroney, W.; Wheeler, D.
1985-09-01
Monolithic PIN diode arrays are shown to provide significant advances in switching ratios, bandwidth, and high-power capability for millimeter control applications The PIN diodes are arranged in a series/parallel configuration and form an electronically controlled window for switching RF power by applying DC voltage. At Ka band, an SPST switch using the window array (WINAR) design typically has 0.6 dB insertion loss and 22 dB isolation over the 26.5 to 40.0 GHz band. The switch has over 500 W peak power and 25 W average power capability.
Frequency chirped light at large detuning with an injection-locked diode laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, K.; Disla, M.; Dellatto, J.
2015-04-15
We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generatemore » a 1 GHz frequency chirp in 5 ns.« less
NASA Astrophysics Data System (ADS)
Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.
2018-03-01
N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.
NASA Astrophysics Data System (ADS)
Perumal, R.; Hassan, Z.
2016-06-01
Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.
High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.
Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan
2008-09-01
Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.
Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Li, Chih-Wei; Li, Jyun-Yi; Lin, Chih-Chien
2018-05-01
In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.
NASA Astrophysics Data System (ADS)
Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.; Gorokhovsky, V. I.
2009-03-01
The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800° C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.
Advances in all-sputtered CdTe solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Wieland, Kristopher; Mahabaduge, Hasitha; Vasko, Anthony; Compaan, Alvin
2010-03-01
The University of Toledo II-VI semiconductor group has developed magnetron sputtering (MS) for the deposition of thin films of CdS, CdTe, and related materials for photovoltaic applications. On glass superstrates, we have reached air mass 1.5 efficiencies of 14%.[1] Recently we have studied the use of MS for the fabrication of thin-film CdS/CdTe cells on flexible polyimide superstrates. This takes advantage of the high film quality that can be achieved at substrate temperatures below 300 C when RF MS is used. Our recent CdS/CdTe solar cells have reached 10.5% on flexible polyimide substrates. [2] This all-sputtered cell (except for back contact) has a structure of polyimide/ZnO:Al/ZnO/CdS/CdTe/Cu/Au. The physics of this device will be discussed through the use of spectral quantum efficiency and current-voltage measurements as a function of CdTe layer thickness. Pathways toward further increases in device efficiencies will also be discussed. [1] Appl. Phys. Lett. 85, 684 (2004) [2] Phys. Stat. Sol. (B) 241, No. 3, 779--782 (2004)
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
Radio frequency sputtering was used to deposit refractory carbide, silicide, and boride coatings on 440-C steel substrates. Both sputter etched and pre-oxidized substrates were used and the films were deposited with and without a substrate bias. The composition of the coatings was determined as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. Friction and wear tests were conducted to evaluate coating adherence. In the interfacial region there was evidence that bias may produce a graded interface for some compounds. Biasing, while generally improving bulk film stoichiometry, can adversely affect adherence by removing interfacial oxide layers. Oxides of all film constituents except carbon and iron were present in all cases but the iron oxide coverage was only complete on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 films. In the case of mixed oxides, preoxidation enhanced film adherence. In the layered case it did not.
NASA Astrophysics Data System (ADS)
Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.
2013-10-01
A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.
An extraordinary tabletop speed of light apparatus
NASA Astrophysics Data System (ADS)
Pegna, Guido
2017-09-01
A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
Study of the photovoltaic effect in thin film barium titanate
NASA Technical Reports Server (NTRS)
Grannemann, W. W.; Dharmadhikari, V. S.
1982-01-01
The basic mechanism associated with the photovoltaic phenomena observed in the R.F. sputtered BaTiO3/silicon system is presented. Series of measurements of short circuit photocurrents and open circuit photovoltage were made. The composition depth profiles and the interface characteristics of the BaTiO3/silicon system were investigated for a better understanding of the electronic properties. A Scanning Auger Microprobe combined with ion in depth profiling were used.
Exploratory Phase Transition-Based Switches Using Functional Oxides
2011-02-02
TECHNICAL REPORT Abstract Vanadium dioxide ( VO2 ) undergoes a sharp metal-insulator transition (MIT) in the vicinity of room temperature and there is...18 The mechanisms governing metal-insulator transition (MIT) in vanadium dioxide ( VO2 ) is an intensively explored subject in condensed matter...textured vanadium dioxide films were grown on single crystal Al2O3 (0001) substrates by RF-sputtering from a VO2 target (99.5%, AJA International Inc
Electromagnetic properties of thin-film transformer-coupled superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finnegan, T.F.; Lacquaniti, V.; Vaglio, R.
1981-09-01
Multisection superconducting microstrip transformers with designed output impedances below 0.1 ..cap omega.. have been fabricated via precise photolithographic techniques to investigate the electromagnetic properties of Nb-Nb oxide-Pb tunnel junctions. The low-impedance transformer sections incorporate a rf sputtered thin-film Ta-oxide dielectric, and the reproducible external coupling achievable with this type of geometry makes possible the systematic investigation of electromagnetic device parameters as a function of tunneling oxide thickness.
Room temperature ferromagnetism in Cu doped ZnO
NASA Astrophysics Data System (ADS)
Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis
2018-05-01
We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.
NASA Astrophysics Data System (ADS)
Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel
2017-08-01
Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.
Highly ionized physical vapor deposition plasma source working at very low pressure
NASA Astrophysics Data System (ADS)
Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.
2012-04-01
Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.
NASA Astrophysics Data System (ADS)
Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan
2016-10-01
In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.
Structural and morphological properties of ITO thin films grown by magnetron sputtering
NASA Astrophysics Data System (ADS)
Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.
2015-10-01
Physical properties of transparent and conducting indium tin oxide (ITO) thin films grown by radiofrequency (RF) magnetron sputtering are studied systematically by changing deposition time. The X-ray diffraction (XRD) data indicate polycrystalline thin films with grain orientations predominantly along the (2 2 2) and (4 0 0) directions. From atomic force microscopy (AFM) it is found that by increasing the deposition time, the roughness of the film increases. Scanning electron microscopy (SEM) images show a network of a high-porosity interconnected nanoparticles, which approximately have a pore size ranging between 20 and 30 nm. Optical measurements suggest an average transmission of 80 % for the ITO films. Sheet resistances are investigated using four-point probes, which imply that by increasing the film thickness the resistivities of the films decrease to 2.43 × 10-5 Ω cm.
UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.
Huang, Jinyu; Du, Yu; Wang, Quan; Zhang, Hao; Geng, Youfu; Li, Xuejin; Tian, Xiaoqing
2017-12-26
ZnO film was deposited by the magnetron sputtering method. The thickness of ZnO film is approximately 2 μm. The influence of UV light illumination on C₂H₅OH sensing properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated ZnO film displays excellent C₂H₅OH characteristics in terms of high sensitivity, excellent selectivity, rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light, high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and porous surface.
Highland, Matthew J.; Fong, Dillon D.; Ju, Guangxu; ...
2015-08-28
In-situ synchrotron x-ray scattering has been used to monitor and control the synthesis of LaGaO 3 epitaxial thin films by 90° off-axis RF-magnetron sputtering. We compared films deposited from a single LaGaO 3 source with those prepared by alternating deposition from separate La 2O 3 and Ga 2O 3 sources. The conditions for growth of stoichiometric films were determined by real-time monitoring of secondary phase formation as well as from features in the diffuse scatter from island formation during synthesis. Our results provide atomic-scale insight into the mechanisms taking place during reactive epitaxial growth and demonstrate how in-situ techniques canmore » be utilized to achieve stoichiometric control in ultrathin films.« less
Optimum Design of Millimeter-Wave Impatt Diode Oscillators.
1983-10-01
assumed to be a quasi-sinusoid of the form v(t) a Vej"t (2.1) where V = V(t) and w = w(t) are real slowly varying functions of time . Slowly varying can be...are used: i dVF = 1 HF (3.12) RF dt 4 and 6 = w- i. (3.13) Therefore, the RF voltage and phase at different times can be calculated: VRF(t + dt ) = VF...15 2.2.2 The Circuit Model 18 2.2.3 Thermal Resistance 21 2.2.4 Thermal- Time Constant 23 2.3 Usefulness and Limitations of the Oscillator Model 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malini, D. Rachel; Sanjeeviraja, C., E-mail: sanjeeviraja@rediffmail.com
Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.
Chen, Kai-Huang; Tsai, Tsung-Ming; Cheng, Chien-Min; Huang, Shou-Jen; Chang, Kuan-Chang; Liang, Shu-Ping; Young, Tai-Fa
2017-01-01
In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage (I-V) characteristics of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons’ switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic filament forming process of the gadolinium oxide thin film RRAM devices for low resistance state (LRS)/high resistance state (HRS) was described and explained in a simulated physical diagram model. PMID:29283368
RF models for plasma-surface interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter
2013-09-01
Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
The 30 GHz solid state amplifier for low cost low data rate ground terminals
NASA Technical Reports Server (NTRS)
Ngan, Y. C.; Quijije, M. A.
1984-01-01
This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.
NASA Astrophysics Data System (ADS)
Falub, Claudiu V.; Rohrmann, Hartmut; Bless, Martin; Meduňa, Mojmír; Marioni, Miguel; Schneider, Daniel; Richter, Jan H.; Padrun, Marco
2017-05-01
Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8" Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100) nm thick magnetic layers and (2-20) nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ˜(7-120) Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency), while the coercivity was kept low, ˜(0.05-0.9) Oe. The alignment of the easy axis (EA) on the 8" wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM), X-ray reflectivity (XRR) with reciprocal space mapping (RSM) and magneto-optical Kerr effect (MOKE) measurements.
Metal Induced Growth of Si Thin Films and NiSi Nanowires
2010-02-25
Zinc Oxide Over MIG Silicon- We have been studying the formation of ZnO films by RF sputtering. Part of this study deals with...about 50 nm. 15. SUBJECT TERMS Thin film silicon, solar cells, thin film transistors , nanowires, metal induced growth 16. SECURITY CLASSIFICATION...to achieve, µc-Si is more desirable than a-Si due to its increased mobility. Thin film µc-Si is also a popular material for thin film transistors
Magneto-optical properties of PdCo based multilayered films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Tsunashima, S.; Iwata, S.
1989-09-01
Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kana, J. B. Kana; Department of physics, University of Yaounde I, P.O. Box 812 Yaounde; Ndjaka, J. M.
2008-09-23
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO{sub 2}) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 deg. C to 600 deg. C. The X-ray diffraction results demonstrated that the Au and VO{sub 2} weremore » well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 deg. C to 100 deg. C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at {approx}57 nm for substrate temperature higher than 500 deg. C.« less
NASA Astrophysics Data System (ADS)
Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.
2007-08-01
Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.
Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida
NASA Astrophysics Data System (ADS)
Angelov, O.; Stoyanova, D.; Ivanova, I.
2016-10-01
Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.
2018-06-01
Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.
NASA Astrophysics Data System (ADS)
Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.
2012-10-01
Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.
Sinnarasa, Inthuga; Thimont, Yohann; Presmanes, Lionel; Barnabé, Antoine; Tailhades, Philippe
2017-01-01
P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 µV·K−1. The calculated power factor (PF = σS²) was 6 µW·m−1·K−2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 µW·m−1·K−2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed. PMID:28654011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.
2016-06-17
AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less
UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal
NASA Astrophysics Data System (ADS)
Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.
2016-05-01
This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.
Switchable diode effect in oxygen vacancy-modulated SrTiO3 single crystal
NASA Astrophysics Data System (ADS)
Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Zeng, Huizhong; Bai, Xiaoyuan; Gong, Chaoguan; Jian, Ke; Zhang, Lu; Guo, Hongliang; Tian, Benlang; Zhang, Wanli
2017-09-01
SrTiO3 (STO) single crystal wafer was annealed in vacuum, and co-planar metal-insulator-metal structure of Pt/Ti/STO/Ti/Pt were formed by sputtering Pt/Ti electrodes onto the surface of STO after annealing. The forming-free resistive switching behavior with self-compliance property was observed in the sample. The sample showed switchable diode effect, which is explained by a simple model that redistribution of oxygen vacancies (OVs) under the external electric field results in the formation of n-n+ junction or n+-n junction (n donated n-type semiconductor; n+ donated heavily doped n-type semiconductor). The self-compliance property is also interpreted by the formation of n-n+/n+-n junction caused by the migration of the OVs under the electric field.
Suppression of the Transit -Time Instability in Large-Area Electron Beam Diodes
NASA Astrophysics Data System (ADS)
Myers, Matthew C.; Friedman, Moshe; Swanekamp, Stephen B.; Chan, Lop-Yung; Ludeking, Larry; Sethian, John D.
2002-12-01
Experiment, theory, and simulation have shown that large-area electron-beam diodes are susceptible to the transit-time instability. The instability modulates the electron beam spatially and temporally, producing a wide spread in electron energy and momentum distributions. The result is gross inefficiency in beam generation and propagation. Simulations indicate that a periodic, slotted cathode structure that is loaded with resistive elements may be used to eliminate the instability. Such a cathode has been fielded on one of the two opposing 60 cm × 200 cm diodes on the NIKE KrF laser at the Naval Research Laboratory. These diodes typically deliver 600 kV, 500 kA, 250 ns electron beams to the laser cell in an external magnetic field of 0.2 T. We conclude that the slotted cathode suppressed the transit-time instability such that the RF power was reduced by a factor of 9 and that electron transmission efficiency into the laser gas was improved by more than 50%.
Superconducting structure with layers of niobium nitride and aluminum nitride
Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.
1989-01-01
A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.
Integration of P-CuO Thin Sputtered Layers onto Microsensor Platforms for Gas Sensing
Presmanes, Lionel; Thimont, Yohann; el Younsi, Imane; Chapelle, Audrey; Blanc, Frédéric; Talhi, Chabane; Bonningue, Corine; Barnabé, Antoine; Menini, Philippe; Tailhades, Philippe
2017-01-01
P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins. Because the microheaters were designed on a membrane, it was then possible to generate very rapid temperature variations (from room temperature to 550 °C in only 50 ms) and a rapid temperature cycling mode could be applied. This measurement mode allowed a significant improvement of the sensor response under 2 and 5 ppm of acetaldehyde. PMID:28621738
New Recording Layer of Recordable Digital Versatile Disc with CrOx Film Using Red Laser
NASA Astrophysics Data System (ADS)
Liu, Chung Ping; Hung, Yao Ti
2006-03-01
In this study, CrOx film deposited by rf magnetron reactive sputtering was used as a new recording layer for a recordable digital versatile disc (DVD-R) with a red laser. X-ray photoelectron spectroscopy (XPS) indicated the films have three major components: CrO2, CrO3, and Cr2O3. From disc dynamic tests and atomic force microscope (AFM) images of a polycarbonate (PC) substrate, a DVD-R structure of PC/ZnS-SiO2 (30 nm)/CrOx (120 nm)/ZnS-SiO2 (40 nm)/Ag (50 nm), deposited by sputtering at an O2/Ar flow rate ratio of 0.4, had an improved carrier-to-noise ratio (CNR). The principle of recording depends primarily on the explosive pressure of the O2 released due to laser heating of the annealed CrOx film.
Superconducting structure with layers of niobium nitride and aluminum nitride
Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.
1989-07-04
A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.
Hall effect of copper nitride thin films
NASA Astrophysics Data System (ADS)
Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.
2005-08-01
The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.
Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi
For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
NASA Astrophysics Data System (ADS)
Garratt, E.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; AlFaify, S.; Gao, X.; Kayani, A.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.
2009-11-01
The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 oC. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.
Research on the electrical characteristics of the Pt/CdS Schottky diode
NASA Astrophysics Data System (ADS)
Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng
2013-08-01
With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.
Miniaturized magnet-less RF electron trap. II. Experimental verification
Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...
2017-06-15
Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less
A High Efficiency Multiple-Anode 260-340 GHz Frequency Tripler
NASA Technical Reports Server (NTRS)
Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran
2006-01-01
We report on the fabrication at the Jet Propulsion Laboratory of a fixed-tuned split-block waveguide balanced frequency tripler working in the 260-340 GHz band. This tripler will be the first stage of a x3x3x3 multiplier chain to 2.7 THz (the last stages of which are being fabricated at JPL) and is therefore optimized for high power operation. The multiplier features six GaAs Schottky planar diodes in a balanced configuration integrated on a GaAs membrane. Special attention was put on splitting the input power as evenly as possible among the diodes in order to ensure that no diode is overdriven. Preliminary RF tests indicate that the multiplier covers the expected bandwidth and that the efficiency is in the range 1.5-7.5 % with 100 mW of input power.
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.
2010-01-01
This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.
Method of depositing a high-emissivity layer
Wickersham, Charles E.; Foster, Ellis L.
1983-01-01
A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.
A Novel Variable Wide Bandgap Material for High Power, High Frequency Devices
2011-01-13
temperature above 1300 °C caused the back side of the Si substrates to soften and form molybdenum silicides with the holder or to simply sublime...copper while Figures 7b, 7d, and 7f show the measured impurity levels of aluminum and sodium in the 4H-SiC substrate, RF sputtered film, and DC... sodium which are completely absent in the 4H- SiC substrate. These impurities are also attributed to the aluminum silicate shell that is evidently
MBE System for Antimonide Based Semiconductor Lasers
1999-01-31
selectivity are reported as a function of plasma chemistry and DC self-bias. Experiment The samples used in this study are undoped bulk GaSb, InSb...Phys. Lett. 64(13), 1673-1675 (1994). 8. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, Plasma Chemistry and...AlGaAsSb are reported as functions of plasma chemistry , ICP power, RF self-bias, and chamber pressure. It is found that physical sputtering desorption of
2015-08-05
to increased doping levels in indirect semiconductors [84]. The slope, and magnitude of the transmission curves continue to decrease alongside UL...periodically aluminium- doped zinc oxide thin films, Thin Solid Films 519 (2011) 2280–2286. [2] T. Minami, H. Nanto, S. Takata, Highly conductive and...transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys. 23 (1984) L280. [3] T. Minami, Present status of
Properties of planar structures based on Policluster films of diamond and AlN
NASA Astrophysics Data System (ADS)
Belyanin, A. F.; Luchnikov, A. P.; Nalimov, S. A.; Bagdasarian, A. S.
2018-01-01
AlN films doped with zinc were grown on Si substrates by RF magnetron reactive sputtering of a compound target. Policluster films of diamond doped with boron were formed on layered Si/AlN substrates from the gas phase hydrogen and methane, activated arc discharge. By electron microscopy, X-ray diffraction and Raman spectroscopy the composition and structure of synthetic policluster films of diamond and AlN films were studied. Photovoltaic devices based on the AlN/PFD layered structure are presented.
NASA Astrophysics Data System (ADS)
Wang, Sea-Fue; Lu, His-Chuan; Hsu, Yung-Fu; Hu, Yi-Xuan
2015-05-01
In this study, solid oxide fuel cells (SOFCs) containing a high quality La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) film deposited on anode supported substrate using RF magnetron sputtering are successfully prepared. The anode substrate is composed of two functional NiO/Sm0.2Ce0.8O2-δ (SDC) composite layers with ratios of 60/40 wt% and 50/50 wt% and a current collector layer of pure NiO. The as-deposited LSGM film appears to be amorphous in nature. After post-annealing at 1000 °C, a uniform and dense polycrystalline film with a composition of La0.87Sr0.13Ga0.85Mg0.15O3-δ and a thickness of 3.8 μm is obtained, which was well adhered to the anode substrate. A composite LSGM/La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) layer, with a ratio of 30/70 wt%, is used as the cathode. The SOFC prepared reveals a good mechanical integrity with no sign of cracking, delamination, or discontinuity among the interfaces. The total cell resistance of a single cell with LSGM electrolyte film declines from 0.60 to 0.10 Ω cm2 as the temperature escalates from 600 to 800 °C and the open circuit voltage (OCV) ranges from 0.85 to 0.95 V. The maximum power density (MPD) of the single cell is reported as 0.65, 1.02, 1.30, 1.42, and 1.38 W cm-2 at 600, 650, 700, 750, and 800 °C, respectively. The good cell performance leads to the conclusion that RF magnetron sputtering is a feasible deposition method for preparing good quality LSGM films in SOFCs.
CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media
NASA Astrophysics Data System (ADS)
Szívós, János; Pothorszky, Szilárd; Soltys, Jan; Serényi, Miklós; An, Hongyu; Gao, Tenghua; Deák, András; Shi, Ji; Sáfrán, György
2018-03-01
CoPt thin films as possible candidates for Bit Patterned magnetic Media (BPM) were prepared and investigated by electron microscopy techniques and magnetic measurements. The structure and morphology of the Direct Current (DC) sputtered films with N incorporation were revealed in both as-prepared and annealed state. Nanopatterning of the samples was carried out by means of Radio Frequency (RF) plasma etching through a Langmuir-Blodgett film of silica nanospheres that is a fast and high throughput technique. As a result, the samples with hexagonally arranged 100 nm size separated dots of fct-phase CoPt were obtained. The influence of the order of nanopatterning and anneling on the nanostructure formation was revealed. The magnetic properties of the nanopatterned fct CoPt films were investigated by Vibrating Sample Magnetometer (VSM) and Magnetic Force Microscopy (MFM). The results show that CoPt thin film nanopatterned by means of the RF plasma etching technique is promising candidate to a possible realization of BPM. Furthermore, this technique is versatile and suitable for scaling up to technological and industrial applications.
Fabrication and deformation behaviour of multilayer Al2O3/Ti/TiO2 nanotube arrays.
Baradaran, S; Basirun, W J; Zalnezhad, E; Hamdi, M; Sarhan, Ahmed A D; Alias, Y
2013-04-01
In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method of making radio frequency ion source antenna
Ehlers, Kenneth W.; Leung, Ka-Ngo
1988-01-01
In the method, the radio frequency (RF) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200.degree. C. to boil off the water from the binder, and then to about 750.degree. C.-850.degree. C. to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the RF antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the RF antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains apprxoimately 45% lead oxide.
Method of making radio frequency ion source antenna and such antenna
Ehlers, K.W.; Leung, K.N.
1985-05-22
In the method, the radio frequency (rf) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200/sup 0/C to boil off the water from the binder, and then to about 750 to 850/sup 0/C to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the rf antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the rf antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains approximately 45% lead oxide.
Graphene rectenna for efficient energy harvesting at terahertz frequencies
NASA Astrophysics Data System (ADS)
Dragoman, Mircea; Aldrigo, Martino
2016-09-01
In this paper, we propose a graphene rectenna that encompasses two distinct functions in a single device, namely, antenna and rectifier, which till now were two separate components. In this way, the rectenna realizes an efficient energy harvesting technique due to the absence of impedance mismatch between antenna and diode. In particular, we have obtained a maximum conversion efficiency of 58.43% at 897 GHz for the graphene rectenna on n-doped GaAs, which is a very good value, close to the performance of an RF harvesting system. A comparison with a classical metallic antenna with an HfO2-based metal-insulator-metal diode is also provided.
Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C
2010-01-01
The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.
TaN resistor process development and integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Kathleen; Martinez, Marino John; Clevenger, Jascinda
This paper describes the development and implementation of an integrated resistor process based on reactively sputtered tantalum nitride. Image reversal lithography was shown to be a superior method for liftoff patterning of these films. The results of a response surface DOE for the sputter deposition of the films are discussed. Several approaches to stabilization baking were examined and the advantages of the hot plate method are shown. In support of a new capability to produce special-purpose HBT-based Small-Scale Integrated Circuits (SSICs), we developed our existing TaN resistor process, designed for research prototyping, into one with greater maturity and robustness. Includedmore » in this work was the migration of our TaN deposition process from a research-oriented tool to a tool more suitable for production. Also included was implementation and optimization of a liftoff process for the sputtered TaN to avoid the complicating effects of subtractive etching over potentially sensitive surfaces. Finally, the method and conditions for stabilization baking of the resistors was experimentally determined to complete the full implementation of the resistor module. Much of the work to be described involves the migration between sputter deposition tools - from a Kurt J. Lesker CMS-18 to a Denton Discovery 550. Though they use nominally the same deposition technique (reactive sputtering of Ta with N{sup +} in a RF-excited Ar plasma), they differ substantially in their design and produce clearly different results in terms of resistivity, conformity of the film and the difference between as-deposited and stabilized films. We will describe the design of and results from the design of experiments (DOE)-based method of process optimization on the new tool and compare this to what had been used on the old tool.« less
Retention of Sputtered Molybdenum on Ion Engine Discharge Chamber Surfaces
NASA Technical Reports Server (NTRS)
Sovey, James S.; Dever, Joyce A.; Power, John L.
2001-01-01
Grit-blasted anode surfaces are commonly used in ion engines to ensure adherence of sputtered coatings. Next generation ion engines will require higher power levels, longer operating times, and thus there will likely be thicker sputtered coatings on their anode surfaces than observed to date on 2.3 kW-class xenon ion engines. The thickness of coatings on the anode of a 10 kW, 40-centimeter diameter thruster, for example, may be 22 micrometers or more after extended operation. Grit-blasted wire mesh, titanium, and aluminum coupons were coated with molybdenum at accelerated rates to establish coating stability after the deposition process and after thermal cycling tests. These accelerated deposition rates are roughly three orders of magnitude more rapid than the rates at which the screen grid is sputtered in a 2.3 kW-class, 30-centimeter diameter ion engine. Using both RF and DC sputtering processes, the molybdenum coating thicknesses ranged from 8 to 130 micrometers, and deposition rates from 1.8 micrometers per hour to 5.1 micrometers per hour. In all cases, the molybdenum coatings were stable after the deposition process, and there was no evidence of spalling of the coatings after 20 cycles from about -60 to +320 C. The stable, 130 micrometer molybdenum coating on wire mesh is 26 times thicker than the thickest coating found on the anode of a 2.3 kW, xenon ion engine that was tested for 8200 hr. Additionally, this coating on wire mesh coupon is estimated to be a factor of greater than 4 thicker than one would expect to obtain on the anode of the next generation ion engine which may have xenon throughputs as high as 550 kg.
In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory.
Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong
2018-04-01
The programming characteristics of charge trap flash memory device adopting amorphous In 2 Ga 2 ZnO 7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO 2 (blocking oxide)/p ++ -Si (control gate) substrate, where 3 nm thick atomic layer deposited Al 2 O 3 (tunneling oxide) and 5 nm thick low-pressure CVD Si 3 N 4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F ) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.
Co-sputtered amorphous Ge-Sb-Se thin films: optical properties and structure
NASA Astrophysics Data System (ADS)
Halenkovič, Tomáš; Němec, Petr; Gutwirth, Jan; Baudet, Emeline; Specht, Marion; Gueguen, Yann; Sangleboeuf, J.-C.; Nazabal, Virginie
2017-05-01
The unique properties of amorphous chalcogenides such as wide transparency in the infrared region, low phonon energy, photosensitivity and high linear and nonlinear refractive index, make them prospective materials for photonics devices. The important question is whether the chalcogenides are stable enough or how the photosensitivity could be exacerbated for demanded applications. Of this view, the Ge-Sb-Se system is undoubtedly an interesting glassy system given the antinomic behavior of germanium and antimony with respect to photosensitivity. The amorphous Ge-Sb-Se thin films were fabricated by a rf-magnetron co-sputtering technique employing the following cathodes: GeSe2, Sb2Se3 and Ge28Sb12Se60. Radio-frequency sputtering is widely used for film fabrication due to its relative simplicity, easy control, and often stoichiometric material transfer from target to substrate. The advantage of this technique is the ability to explore a wide range of chalcogenide film composition by means of adjusting the contribution of each target. This makes the technique considerably effective for the exploration of properties mentioned above. In the present work, the influence of the composition determined by energy-dispersive X-ray spectroscopy on the optical properties was studied. Optical bandgap energy Egopt was determined using variable angle spectroscopic ellipsometry. The morphology and topography of the selenide sputtered films was studied by scanning electron microscopy and atomic force microscopy. The films structure was determined using Raman scattering spectroscopy.
In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory
NASA Astrophysics Data System (ADS)
Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong
2018-04-01
The programming characteristics of charge trap flash memory device adopting amorphous In2Ga2ZnO7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO2 (blocking oxide)/p++-Si (control gate) substrate, where 3 nm thick atomic layer deposited Al2O3 (tunneling oxide) and 5 nm thick low-pressure CVD Si3N4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.
Self-aligning LED-based optical link
NASA Astrophysics Data System (ADS)
Shen, Thomas C.; Drost, Robert J.; Rzasa, John R.; Sadler, Brian M.; Davis, Christopher C.
2016-09-01
The steady advances in light-emitting diode (LED) technology have motivated the use of LEDs in optical wireless communication (OWC) applications such as indoor local area networks (LANs) and communication between mobile platforms (e.g., robots, vehicles). In contrast to traditional radio frequency (RF) wireless communication, OWC utilizes electromagnetic spectrum that is largely unregulated and unrestricted. OWC communication may be especially useful in RF-denied environments, in which RF communication may be prohibited or undesirable. However, OWC does present some challenges, including the need to maintain alignment between potentially moving nodes. We describe a novel system for link alignment that is composed of a hyperboloidal mirror, camera, and gimbal. The experimental system is able to use the mirror and camera to detect an LED beacon of a neighboring node and estimate its bearing (azimuth and elevation), point the gimbal towards the beacon, and establish an optical link.
Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho
2013-11-01
12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.
NASA Astrophysics Data System (ADS)
Bociaga, Dorota; Sobczyk-Guzenda, Anna; Szymanski, Witold; Jedrzejczak, Anna; Jastrzebska, Aleksandra; Olejnik, Anna; Jastrzebski, Krzysztof
2017-09-01
In this study silicon doped diamond-like carbon (Si-DLC) coatings were synthesized on two substrates: silicon and AISI 316LVM stainless steel using a multi-target DC-RF magnetron sputtering method. The Si content in the films ranged between 4 and 16 at.%, and was controlled by the electrical power applied in RF regime to Si cathode target. The character of the chemical bonds was revealed by FTIR analysis. With the addition of silicon the hydroxyl absorption (band in the range of 3200-3600 cm-1) increased what suggests more hydrophilic character of the coating. There were also observed significant changes in bonding of Si atoms. For low content of dopant, Si-O-Si bond system is predominant, while for the highest content of silicon there is an evidence of the shift to Si-C bonds in close proximity to methyl groups. The Raman spectroscopy revealed that the G peak position is shifted to a lower wavenumber and the ID/IG ratio decreased with increasing Si content, which indicates an increase in the C-sp3 content. Regardless of the coatings' composition, the improvement of hardness in comparison to pure substrate material (AISI 316 LVM) was observed. Although the reduction of the level of hardness from the level of 10.8 GPa for pure DLC to about 9.4 GPa for the silicon doped coatings was observed, the concomitant improvement of films adhesion with higher amount of Si was revealed. Although incorporation of the dopant to DLC coatings increases the number of E. coli cells which adhered to the examined surfaces, the microbial colonisation remains on the level of substrate material. The presented results prove the potential of Si-DLC coatings in biomedical applications from the point of view of their mechanical properties.
Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors
NASA Astrophysics Data System (ADS)
Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre
2018-03-01
NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.
H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering
NASA Astrophysics Data System (ADS)
Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar
2017-06-01
Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.
NASA Astrophysics Data System (ADS)
Cao Van, Phuoc; Surabhi, Srivathsava; Dongquoc, Viet; Kuchi, Rambabu; Yoon, Soon-Gil; Jeong, Jong-Ryul
2018-03-01
We report high-quality yttrium-iron-garnet (YIG; Y3Fe5O12) ultrathin films grown on {111} gadolinium-gallium-garnet (GGG; Gd3Ga5O12) substrates using RF sputtering deposition on an off-stoichiometric target and optimized thermal treatments. We measured a narrow peak-to-peak ferromagnetic resonance linewidth (ΔH) whose minimum value was 1.9 Oe at 9.43 GHz for a 60-nm-thick YIG film. This value is comparable to the most recently published value for a YIG thin film grown by pulsed laser deposition. The temperature dependence of the ΔH was investigated systematically, the optimal annealing condition for our growing condition was 875 °C. Structural analysis revealed that surface roughness and crystallinity played an important role in the observed ΔH broadening. Furthermore, the thickness dependence of the ΔH, which indicated that 60 nm thickness was optimal to obtain narrow ΔH YIG films, was also investigated. The thickness dependence of ΔH was understood on the basis of contributions of surface-associated magnon scattering and magnetic inhomogeneities to the ΔH broadening. Other techniques such as transmission electron microscopy, scanning electron microscopy, and X-ray diffraction were used to study the crystalline structure of the YIG films. The high quality of the films in terms of their magnetic properties was expressed through a very low coercivity and high saturation magnetization measured using a vibration sample magnetometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. F.; Chua, S. J.; Hu, G. X.
2007-10-15
X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate whilemore » a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)« less
He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao
2017-12-13
It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.
Process for preparing schottky diode contacts with predetermined barrier heights
Chang, Y. Austin; Jan, Chia-Hong; Chen, Chia-Ping
1996-01-01
A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.
NASA Astrophysics Data System (ADS)
Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad
2018-03-01
Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie
A transparent p-type thin film CuGaO{sub 2} was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10{sup −2} Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. Themore » details of the results will be discussed in the conference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smylie, M. P.; Claus, H.; Welp, U.
2016-11-01
The low-temperature variation of the London penetration depth lambda(T) in the candidate topological superconductor NbxBi2Se3 (x = 0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (H-rf || c and H-rf || ab planes). All samples exhibited power-law behavior at low temperatures (Delta lambda similar to T-2) clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are consistent with a nematic odd-parity spin-triplet E-u pairing state in NbxBi2Se3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.
Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less
NASA Astrophysics Data System (ADS)
Mertin, Stefan; Länzlinger, Tony; Sandu, Cosmin S.; Scartezzini, Jean-Louis; Muralt, Paul
2018-03-01
Deposition of nano-composite Mg-F-Si-O films on optical grade silica glass was studied employing RF magnetron co-sputtering from magnesium fluoride (MgF2) and fused silica (SiO2) targets. The aim was to obtain a stable and reliable sputtering process for optical coatings exhibiting a refractive index lower than the one of quartz glass (1.46 at 550 nm) without adding gaseous fluorine to the deposition process. The two magnetrons were installed in a confocal way at 45° off-axis with respect to a static substrate, thus creating a lateral gradient in the thin-film composition. The deposited Mg-F-Si-O coatings were structurally analysed by electron dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The obtained films consist of MgF2 nanocrystals embedded in a SiO2-rich amorphous matrix. Spectroscopic ellipsometry and spectrophotometry measurements showed that they are highly transparent exhibiting a very-low extinction coefficient k and a refractive index n in the desired range between the one of MgF2 (1.38) and SiO2 (1.46). Films with n = 1.424 and 1.435 at 550 nm were accomplished with absorption below the detection threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kampwirth, R.T.; Gray, K.E.; Andersen, P.H.
1989-01-01
Composite target rf magnetron sputtering has previously been successfully employed to make superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} in-situ at substrate temperatures T{sub s} < 700{degree}C. We report the successful growth of superconducting films of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} on single crystal MgO substrates by a low-temperature process using dc magnetron sputtering from a Bi-enriched composite target. Using a substrate temperature T{sub s} {approx} 645{degree}C, metallic films with a superconducting onset of 90--100K and an extrapolated T{sub c0} = 56K have been obtained. X-ray diffraction shows the films to be c-axis oriented. Electron microscopy reveals that the filmsmore » are not significantly smoother than films which were post-annealed at 865{degree}C, and that some segregation into nonsuperconducting phases had occurred. The exact mechanism by which crystallization and superconductivity occurs at such low temperatures is not yet known, but it can be speculated that the surface atoms are less constrained and thus have a smaller energy barrier to overcome in forming a crystal structure. 9 refs., 4 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu
2018-07-01
The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.
120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs
NASA Astrophysics Data System (ADS)
Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara
2018-05-01
HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.
Highly sensitive H2 gas sensor of Co doped ZnO nanostructures
NASA Astrophysics Data System (ADS)
Bhati, Vijendra Singh; Ranwa, Sapana; Kumar, Mahesh
2018-04-01
In this report, the hydrogen gas sensing properties based on Co doped ZnO nanostructures are explored. The undoped and Co doped nanostructures were grown by RF magnetron sputtering system, and its structural, morphological, and hydrogen sensing behavior are investigated. The maximum relative response was occurred by the 2.5% Co doped ZnO nanostructures among undoped and other doped sensors. The enhancement of relative response might be due to large chemisorbed sites formation on the ZnO surface for the reaction to hydrogen gas.
NASA Astrophysics Data System (ADS)
Ren, Yong; Li, Jiachen; Zhang, Weifeng; Jia, Caihong
2017-10-01
Epitaxial ZnO thin films were grown on SrTiO3:Nb (NSTO) substrates by rf magnetron sputtering method. The multi-level resistance states were observed by applying different amplitudes and/or polarities of voltage pulses, which is supposed to be related to the drift of oxygen vacancies. Furthermore, the decay of retention is also corresponding to the migration of oxygen vacancies. The retention and cycle stability implies that the ZnO/Nb:SrTiO3 heterojunctions are promising for high density memory application.
MgO buffer layers on rolled nickel or copper as superconductor substrates
Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.
2001-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.
Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates
Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.
2002-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.
Impurity migration pattern under RF sheath potential in tokamak and the response of Plasma to RMP
NASA Astrophysics Data System (ADS)
Xiao, Xiaotao; Gui, Bin; Xia, Tianyang; Xu, Xueqiao; Sun, Youwen
2017-10-01
The migration pattern of impurity sputtered from RF guarder limiter, is simulated by a test particle module. The electric potential with RF sheath boundary condition on the guard limiter and the thermal sheath boundary condition on the divertor surface are used. The turbulence transport is implemented by random walk model. It is found the RF sheath potential enhances the impurity percentage lost at low filed side middle plane, and decreases impurity percentage drifting into core region. This beneficial effect is stronger when sheath potential is large. When turbulence transport is strong enough, their migration pattern will be dominated by transport, not by sheath potential. The Resonant Magnetic field Perturbation (RMP) is successfully applied in EAST experiment and the suppression and mitigation effect on ELM is obtained. A two field fluid model is used to simulate the plasma response to RMP in EAST geometry. The current sheet on the resonance surface is obtained initially and the resonant component of radial magnetic field is suppressed there. With plasma rotation, the Alfven resonance occurs and the current is separated into two current sheets. The simulation result will be integrated with the ELM simulations to study the effects of RMP on ELM. Prepared by LLNL under Contract DE-AC52-07NA27344 and the China Natural Science Foundation under Contract No. 11405215, 11505236 and 11675217.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.
1988-01-01
The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.
Modeling RF-induced Plasma-Surface Interactions with VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.
Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions
NASA Astrophysics Data System (ADS)
Ling, Bo; Zhao, Jun Liang; Sun, Xiao Wei; Tan, Swee Tiam; Kyaw, Aung Ko Ko; Divayana, Yoga; Dong, Zhi Li
2010-07-01
Wide-range color tuning from red to blue was achieved in phosphor-free p+-Si/p-CuAlO2/n-ZnO nanorod light-emitting diodes at room temperature. CuAlO2 films were deposited on p+-Si substrates by sputtering followed by annealing. ZnO nanorods were further grown on the annealed p+-Si/p-CuAlO2 substrates by vapor phase transport. The color of the p-CuAlO2/n-ZnO nanorod array heterojunction electroluminescence depended on the annealing temperature of the CuAlO2 film. With the increase of the annealing temperature from 900 to 1050 °C, the emission showed a blueshift under the same forward bias. The origin of the blueshift is related to the amount of Cu concentration diffused into ZnO.
Er3+ phosphate glass optical waveguide amplifiers at 1.5 μm on silicon
NASA Astrophysics Data System (ADS)
Yan, Yingchao; Faber, Anne J.; de Waal, Henk
1996-01-01
RF-sputtering techniques were employed to produce Er-doped phosphate glass films on thermally oxidized silicon wafers. Film compositions were characterized by X-ray photoelectron spectroscopy. As-deposited films showed very low Er luminescence lifetimes. By postannealing of deposited films in pure oxygen, Er photoluminescence emission lifetime of the 4I13/2 - 4I15/2 transition could be increased from 1 - 2 ms to 8 - 9 ms. The long Er lifetime of the deposited films is very promising for achieving an optical gain. A dependence of measured lifetimes on pump power was observed which are related to a up-conversion quenching process. After postannealing, the sputtered waveguides showed relatively low attenuation loss at the potential pumping and signaling wavelengths. The loss spectrum from 700 nm to 1600 nm was measured by two-prism coupling. The films were easy to be patterned by lithography and ridge channel waveguides were developed by argon plasma etching.
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Zhang, Weiyuan; Su, Ranran; Tu, Hanjun; Shi, Liqun; Hu, Jiansheng
2018-04-01
Deuterated carbon-silicon layers co-deposited on graphite and silicon substrates by radio frequency magnetron sputtering in pure D2 plasma were produced to study deuterium trapping and characteristics of the C-Si layers. The C-Si co-deposited layers were examined by ion beam analysis (IBA), Raman spectroscopy (RS), infrared absorption (IR) spectroscopy, thermal desorption spectroscopy (TDS) and scanning electron microscopy (SEM). It was found that the growth rate of the C-Si co-deposition layer decreased with increasing temperature from 350 K to 800 K, the D concentration and C/Si ratios increased differently on graphite and silicon substrates. TDS shows that D desorption is mainly as D2, HD, HDO, CD4, and C2D4 and release peaks occurred at temperatures of less than 900 K. RS and IR analysis reveal that the structure of the C-Si layers became more disordered with increasing temperatures. Rounded areas of peeling with 1-2 μm diameters were observed on the surface.
NASA Astrophysics Data System (ADS)
Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.
2010-01-01
The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.