Sample records for rf driven ion

  1. Ion energy spread and current measurements of the rf-driven multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  2. A 1D ion species model for an RF driven negative ion source

    NASA Astrophysics Data System (ADS)

    Turner, I.; Holmes, A. J. T.

    2017-08-01

    A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.

  3. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  4. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  5. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  6. rf improvements for Spallation Neutron Source H- ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  7. rf improvements for Spallation Neutron Source H- ion source.

    PubMed

    Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  8. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  9. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Barletta, William A [Oakland, CA

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  10. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvas, T.; Tarvainen, O.; Komppula, J.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity neededmore » at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.« less

  11. Development of a compact, rf-driven, pulsed ion source for neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-02-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.

  12. Pre-conditioning procedure suitable for internal-RF-antenna of J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H{sup −} ion source has been successfully operated for about 1 yr. By the world brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. Although no internal-RF-antenna failure, except for the once caused by an excess cesium due to a misoperation, occurred in the operation, many antennas failed in pre-conditionings for the first hundred days. The antenna failure rate was drastically decreased by using an antenna with coating thicker than a standard value and the pre-conditioning procedure repeating 15 min 25 kW RF-power operation and impurity-gasmore » evacuation a few times, before the full power (50 kW) operation.« less

  13. RF absorption and ion heating in helicon sources.

    PubMed

    Kline, J L; Scime, E E; Boivin, R F; Keesee, A M; Sun, X; Mikhailenko, V S

    2002-05-13

    Experimental data are presented that are consistent with the hypothesis that anomalous rf absorption in helicon sources is due to electron scattering arising from parametrically driven ion-acoustic waves downstream from the antenna. Also presented are ion temperature measurements demonstrating anisotropic heating (T( perpendicular)>T(parallel)) at the edge of the discharge. The most likely explanation is ion-Landau damping of electrostatic slow waves at a local lower-hybrid-frequency resonance.

  14. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion.

    PubMed

    Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J

    2014-02-01

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  15. a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-05-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.

  16. RF-driven ion source with a back-streaming electron dump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Joe; Ji, Qing

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heatingmore » of the window, which due to said heating, might otherwise cause window damage.« less

  17. Maintenance and operation procedure, and feedback controls of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The maintenance and operation procedure to minimize the plasma chamber (PCH) replacement time on the beam line, which is very important to maximize the J-PARC beam time especially for an antenna failure,more » is presented in this paper. The PCH preserved by filling argon (Ar) gas inside after pre-conditioning including pre-cesiation to produce the required beam at a test-stand successfully produced the required beam on the beam line with slight addition of cesium (Cs). The methods of the feedback controls of a 2MHz-RF-matching, an H{sup −} ion beam intensity and the addition of Cs are also presented. The RF-matching feedback by using two vacuum variable capacitors (VVCs) and RF-frequency shift produced the almost perfect matching with negligibly small reflected RF-power. The H{sup −} ion beam intensity was controlled within errors of ±0.1mA by the RF-power feedback. The amount of Cs was also controlled by remotely opening a Cs-valve to keep the RF-power lower than a settled value.« less

  18. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  19. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  20. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    PubMed

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  1. RF Negative Ion Source Development at IPP Garching

    NASA Astrophysics Data System (ADS)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wünderlich, D.

    2007-08-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.

  2. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  3. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  4. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  5. ORNL diagnostic and modeling development for LAPD ICRF experiments

    NASA Astrophysics Data System (ADS)

    Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.

    2017-10-01

    PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).

  6. Rod-filter-field optimization of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second-stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). Although rod-filter-field (RFF) is indispensable and one of the most beam performance dominative parameters for the RF-driven H{sup −} ion source with the internal-antenna, the procedure to optimize it is not established. Inmore » order to optimize the RFF and establish the procedure, the beam performances of the J-PARC source with various types of rod-filter-magnets (RFMs) were measured. By changing RFM’s gap length and gap number inside of the region projecting the antenna inner-diameter along the beam axis, the dependence of the H{sup −} ion beam intensity on the net 2MHz-RF power was optimized. Furthermore, the fine-tuning of RFM’s cross-section (magnetmotive force) was indispensable for easy operation with the temperature (T{sub PE}) of the plasma electrode (PE) lower than 70°C, which minimizes the transverse emittances. The 5% reduction of RFM’s cross-section decreased the time-constant to recover the cesium effects after an slightly excessive cesiation on the PE from several 10 minutes to several minutes for T{sub PE} around 60°C.« less

  7. Studies on the Extraction Region of the Type VI RF Driven H- Ion Source

    NASA Astrophysics Data System (ADS)

    McNeely, P.; Bandyopadhyay, M.; Franzen, P.; Heinemann, B.; Hu, C.; Kraus, W.; Riedl, R.; Speth, E.; Wilhelm, R.

    2002-11-01

    IPP Garching has spent several years developing a RF driven H- ion source intended to be an alternative to the current ITER (International Thermonuclear Experimental Reactor) reference design ion source. A RF driven source offers a number of advantages to ITER in terms of reduced costs and maintenance requirements. Although the RF driven ion source has shown itself to be competitive with a standard arc filament ion source for positive ions many questions still remain on the physics behind the production of the H- ion beam extracted from the source. With the improvements that have been implemented to the BATMAN (Bavarian Test Machine for Negative Ions) facility over the last two years it is now possible to study both the extracted ion beam and the plasma in the vicinity of the extraction grid in greater detail. This paper will show the effect of changing the extraction and acceleration voltage on both the current and shape of the beam as measured on the calorimeter some 1.5 m downstream from the source. The extraction voltage required to operate in the plasma limit is 3 kV. The perveance optimum for the extraction system was determined to be 2.2 x 10-6 A/V3/2 and occurs at 2.7 kV extraction voltage. The horizontal and vertical beam half widths vary as a function of the extracted ion current and the horizontal half width is generally smaller than the vertical. The effect of reducing the co-extracted electron current via plasma grid biasing on the H- current extractable and the beam profile from the source is shown. It is possible in the case of a silver contaminated plasma to reduce the co-extracted electron current to 20% of the initial value by applying a bias of 12 V. In the case where argon is present in the plasma, biasing is observed to have minimal effect on the beam half width but in a pure hydrogen plasma the beam half width increases as the bias voltage increases. New Langmuir probe studies that have been carried out parallel to the plasma grid (in the vicinity of the peak of the external magnetic filter field) and changes to source parameters as a function of power, and argon addition are reported. The behaviour of the electron density is different when the plasma is argon seeded showing a strong increase with RF power. The plasma potential is decreased by 2 V when argon is added to the plasma. The effect of the presence of unwanted silver sputtered from the Faraday screen by Ar+ ions on both the source performance and the plasma parameters is also presented. The silver dramatically downgraded source performance in terms of current density and produced an early saturation of current with applied RF power. Recently, collaboration was begun with the Technical University of Augsburg to perform spectroscopic measurements on the Type VI ion source. The final results of this analysis are not yet ready but some interesting initial observations on the gas temperature, disassociation degree and impurity ions will be presented.

  8. Status of the RF-driven H{sup −} ion source for J-PARC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, H., E-mail: oguri.hidetomo@jaea.go.jp; Ohkoshi, K.; Ikegami, K.

    2016-02-15

    For the upgrade of the Japan Proton Accelerator Research Complex linac beam current, a cesiated RF-driven negative hydrogen ion source was installed during the 2014 summer shutdown period, with subsequent operations commencing on September 29, 2014. The ion source has been successfully operating with a beam current and duty factor of 33 mA and 1.25% (500 μs and 25 Hz), respectively. The result of recent beam operation has demonstrated that the ion source is capable of continuous operation for approximately 1100 h. The spark rate at the beam extractor was observed to be at a frequency of less than oncemore » a day, which is an acceptable level for user operation. Although an antenna failure occurred during operation on October 26, 2014, no subsequent serious issues have occurred since then.« less

  9. Fine-tuning to minimize emittances of J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2016-02-15

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H{sup −} ion source has been successfully operated for about one year. By the world’s brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. In order to minimize the transverse emittances, the rod-filter-field (RFF) was optimized by changing the triple-gap-lengths of each of pairing five piece rod-filter-magnets. The larger emittance degradation seems to be caused by impurity-gases than the RFF. The smaller beam-hole-diameter of the extraction electrode caused the more than expected improvements on not only the emittances but also the peak beam intensity.

  10. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  11. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  12. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  13. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have beenmore » varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.« less

  14. Demonstrating the Principle of an rf Paul Ion Trap

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Rabchuk, James

    2008-03-01

    An rf ion trap uses a time-varying electric field to trap charged ions. This is useful in applications related to quantum computing and mass spectroscopy. There are several mechanical devices described in the literature which have attempted to provide illustrative demonstrations of the principle of rf ion traps, including a mechanically-rotating ``saddle trap'' and the vertically-driven, inverted pendulum^1,2. Neither demonstration, however, successfully demonstrates BOTH the sinusoidal variation in the electric potential of the rf trap AND the parametric stability of the ions in the trap described by Mathieu's equation. We have modified a design of a one-dimensional ponderomotive trap^3 so that it satisfies both criteria for demonstrating the principle of an rf Paul trap. Our studies indicate that trapping stability is highly sensitive to fluxuations in the driving frequency. Results from the demonstration apparatus constructed by the authors will be presented. ^1 Rueckner, W., et al., ``Rotating saddle Paul trap,'' Am. J. Phys., 63 (2), February 1995. ^2 Friedman, M.H., et al., ``The inverted pendulum: A mechanical analogue of a quadrupole mass filter,'' Am. J. Phys., 50 (10), October 1982. ^3 Johnson, A.K. and Rabchuk, J.A., ``A One-Dimensional Ponderomotive Trap,'' ISAAPT 2007 spring meeting, WIU, March 30, 2007.

  15. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  16. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  17. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  18. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  19. Dipole Excitation With A Paul Ion Trap Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacAskill, J. A.; Madzunkov, S. M.; Chutjian, A.

    Preliminary results are presented for the use of an auxiliary radiofrequency (rf) excitation voltage in combination with a high purity, high voltage rf generator to perform dipole excitation within a high precision Paul ion trap. These results show the effects of the excitation frequency over a continuous frequency range on the resultant mass spectra from the Paul trap with particular emphasis on ion ejection times, ion signal intensity, and peak shapes. Ion ejection times are found to decrease continuously with variations in dipole frequency about several resonant values and show remarkable symmetries. Signal intensities vary in a complex fashion withmore » numerous resonant features and are driven to zero at specific frequency values. Observed intensity variations depict dipole excitations that target ions of all masses as well as individual masses. Substantial increases in mass resolution are obtained with resolving powers for nitrogen increasing from 114 to 325.« less

  20. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility.

    PubMed

    Reza, Ashif; Banerjee, Kumardeb; Das, Parnika; Ray, Kalyankumar; Bandyopadhyay, Subhankar; Dam, Bivas

    2017-03-01

    This paper presents the design and implementation of an in situ measurement setup for the capacitance of a five electrode Penning ion trap (PIT) facility at room temperature. For implementing a high Q resonant circuit for the detection of trapped electrons/ions in a PIT, the value of the capacitance of the trap assembly is of prime importance. A tunable Colpitts oscillator followed by a unity gain buffer and a low pass filter is designed and successfully implemented for a two-fold purpose: in situ measurement of the trap capacitance when the electric and magnetic fields are turned off and also providing RF power at the desired frequency to the PIT for exciting the trapped ions and subsequent detection. The setup is tested for the in situ measurement of trap capacitance at room temperature and the results are found to comply with those obtained from measurements using a high Q parallel resonant circuit setup driven by a standard RF signal generator. The Colpitts oscillator is also tested successfully for supplying RF power to the high Q resonant circuit, which is required for the detection of trapped electrons/ions.

  1. First results of the ITER-relevant negative ion beam test facility ELISE (invited).

    PubMed

    Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D

    2014-02-01

    An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.

  2. Theory of ion Bernstein wave induced shear suppression of turbulence

    NASA Astrophysics Data System (ADS)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  3. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  4. Operation of large RF sources for H-: Lessons learned at ELISE

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.

    2017-08-01

    The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.

  5. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used for Associated Particle Imaging

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo

    2009-03-01

    We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.

  6. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  7. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  8. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  9. Deuterium results at the negative ion source test facility ELISE

    NASA Astrophysics Data System (ADS)

    Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.

    2018-05-01

    The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

  10. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitarin, G., E-mail: chitarin@igi.cnr.it; University of Padova, Dept. of Management and Engineering, Strad. S. Nicola 3, 36100 Vicenza; Agostinetti, P.

    2015-04-08

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids withinmore » tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids.« less

  11. Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry

    NASA Astrophysics Data System (ADS)

    Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.

    2018-02-01

    The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.

  12. Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST

    NASA Astrophysics Data System (ADS)

    Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.

    2017-08-01

    An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.

  13. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  14. RF low-level control for the Linac4 H{sup −} source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.

    2015-04-08

    The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less

  15. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-03-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.

  16. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunke, B.; Bora, D.; Hemsworth, R.

    2009-03-12

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D{sup -} and capable of delivering 16.5 MW of D{sup 0} to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H{sup -} to 100 keV will inject {approx_equal}15 A equivalent of H{sup 0} for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion sourcemore » as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D{sup -} and H{sup -} current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.« less

  17. Simulation of cesium injection and distribution in rf-driven ion sources for negative hydrogen ion generation.

    PubMed

    Gutser, R; Fantz, U; Wünderlich, D

    2010-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.

  18. MEMS-based, RF-driven, compact accelerators

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  19. Development Status of Ion Source at J-PARC Linac Test Stand

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.

    The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.

  20. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.

  1. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    NASA Astrophysics Data System (ADS)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  2. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  3. Emittance measurements for optimum operation of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The transverse emittances of the source were measured with various conditions to find out the optimum operation conditions minimizing the horizontal and vertical rms normalized emittances. The transverse emittances were most effectivelymore » reduced by operating the source with the plasma electrode temperature lower than 70°C. The optimum value of the cesium (Cs) density around the beam hole of the plasma electrode seems to be proportional to the plasma electrode temperature. The fine control of the Cs density is indispensable, since the emittances seem to increase proportionally to the excessiveness of the Cs density. Furthermore, the source should be operated with the Cs density beyond a threshold value, since the plasma meniscus shape and the ellipse parameters of the transverse emittances seem to be changed step-function-likely on the threshold Cs value.« less

  4. Operational Parameters, Considerations, and Design Decisions for Resource-Constrained Ion Trap Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Danell, Ryan M.; VanAmerom, Friso H. W.; Pinnick, Veronica; Cotter, Robert J.; Brickerhoff, William; Mahaffy, Paul

    2011-01-01

    Mass spectrometers are increasingly finding applications in new and unique areas, often in situations where key operational resources (i.e. power, weight and size) are limited. One such example is the Mars Organic Molecule Analyzer (MOMA). This instrument is a joint venture between NASA and the European Space Agency (ESA) to develop an ion trap mass spectrometer for chemical analysis on Mars. The constraints on such an instrument are significant as are the performance requirements. While the ideal operating parameters for an ion trap are generally well characterized, methods to maintain analytical performance with limited power and system weight need to be investigated and tested. Methods Experiments have been performed on two custom ion trap mass spectrometers developed as prototypes for the MOMA instrument. This hardware consists of quadrupole ion trap electrodes that are 70% the size of common commercial instrumentation. The trapping RF voltage is created with a custom tank circuit that can be tuned over a range of RF frequencies and is driven using laboratory supplies and amplifiers. The entire instrument is controlled with custom Lab VIEW software that allows a high degree of flexibility in the definition of the scan function defining the ion trap experiment. Ions are typically generated via an internal electron ionization source, however, a laser desorption source is also in development for analysis of larger intact molecules. Preliminary Data The main goals in this work have been to reduce the power required to generate the radio frequency trapping field used in an ion trap mass spectrometer. Generally minimizing the power will also reduce the volume and mass of the electronics to support the instrument. In order to achieve optimum performance, commercial instruments typically utilize RF frequencies in the 1 MHz range. Without much concern for power usage, they simply generate the voltage required to access the mass range of interest. In order to reduce the required RF voltage (and power), operation of the ion trap at lower RF frequencies has been investigated. Surprisingly, the performance of the instrument has only been slightly degraded at RF frequencies all the way down to 500 kHz. Mass resolution is relatively stable to this point and depending on the resonant ejection point used, the peak intensity is also quite stable. To date only masses up to m/z 200 have been fully investigated, however, additional studies are planned to verify the performance with higher mass ions. The lower frequency and voltage should reduce the pseudo potential well depth, eventually affecting the trapping efficiency of the instrument -- effect that could manifest itself in significantly limiting the mass range of trapped ions. Other methods to reduce the RF power while maintaining analytical performance are also under investigation. This includes ion ejection at lower q(sub z) values to access a given mass with a lower RF voltage. The loss of mass resolution at lower q(sub eject) points has been measured and current work is underway to leverage scan speed and the use of non-linear resonances in order to counter this trend. The overall trap performance under this range of operating conditions will be presented with a goal of identifying what trade-offs are acceptable.

  5. RF synchronized short pulse laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less

  6. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy.

    PubMed

    Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E

    2012-02-01

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  7. A compact ion source for intense neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, Luke Torrilhon

    Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.

  8. Apparatus and method of dissociating ions in a multipole ion guide

    DOEpatents

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  9. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    NASA Astrophysics Data System (ADS)

    Wu, Ying

    2009-11-01

    The development of a prototype compact neutron generator for the application of associated particle imaging (API) to be used for explosive and contraband detection will be presented. The API technique makes use of the 3.5 MeV alpha particles that are produced simultaneously with the 14 MeV neutrons in the deuterium-tritium (^2D(^3T,n)^4α) fusion reaction to determine the direction of the neutrons and reduce background noise. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. In this work an axial type neutron generator was designed and built with a predicted neutron yield of 10^8 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. It was shown that the measured yield for a D/D gas filled generator was 2x10^5n/s, which scales to 2x10^7 n/s if a D/T gas fill is used. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of > 80% can be obtained with only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the acceleration column, to suppress secondary backscattered electrons produced at the target. Initial measurements of the neutron generator performance including the beam spot size and neutron yield under sealed operation will be discussed, along with suggestions for future improvements.

  10. H(-) ion source developments at the SNS.

    PubMed

    Welton, R F; Stockli, M P; Murray, S N; Pennisi, T R; Han, B; Kang, Y; Goulding, R H; Crisp, D W; Sparks, D O; Luciano, N P; Carmichael, J R; Carr, J

    2008-02-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H(-) beam currents than can be produced from conventional ion sources such as the base line SNS source. H(-) currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35pi mm mrad and a approximately 7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al(2)O(3) plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H(-) ion source will also be presented.

  11. H- ion source developments at the SNSa)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Pennisi, T. R.; Han, B.; Kang, Y.; Goulding, R. H.; Crisp, D. W.; Sparks, D. O.; Luciano, N. P.; Carmichael, J. R.; Carr, J.

    2008-02-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H- beam currents than can be produced from conventional ion sources such as the base line SNS source. H- currents of 40-50mA (SNS operations) and 70-100mA (power upgrade project) with a rms emittance of 0.20-0.35πmmmrad and a ˜7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al2O3 plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H- ion source will also be presented.

  12. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  13. Transport of ions using RF Carpets in Helium Gas

    NASA Astrophysics Data System (ADS)

    Lambert, Keenan; Kelly, James; Brodeur, Maxime

    2017-09-01

    Radio-Frequency (RF) carpet are critical components of large volume gas cells used to thermalize radioactive ion beams produced at in-flight facilities. RF carpets are formed by a series of co-centric conductive rings on which an alternating potential (in the radio-frequency range) is applied with opposite polarity on adjacent rings. This results in a strong repelling force that keep the ions a certain distance from the carpet. The transport of ions using RF carpet is accomplished using either a potential gradient applied on the individual all strips or traveling wave (using the so-called `ion surfing method'). A test setup has been constructed at the University of Notre Dame to perform studies on the repelling of ions using RF carpets. This test setup has recently been improved by the addiction of circuitry elements allowing the transport of ions using the ion surfing method. The developed circuitry, together with transport results for various ion beam currents, electric force applied on the ions, and traveling wave amplitude and speed will be presented

  14. Ion manipulation device to prevent loss of ions

    DOEpatents

    Tolmachev, Aleksey; Smith, Richard D; Ibrahim, Yehia M; Anderson, Gordon A; Baker, Erin M

    2015-03-03

    An ion manipulation method and device to prevent loss of ions is disclosed. The device includes a pair of surfaces. An inner array of electrodes is coupled to the surfaces. A RF voltage and a DC voltage are alternately applied to the inner array of electrodes. The applied RF voltage is alternately positive and negative so that immediately adjacent or nearest neighbor RF applied electrodes are supplied with RF signals that are approximately 180 degrees out of phase.

  15. System integration of RF based negative ion experimental facility at IPR

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  16. Plasma ignition and steady state simulations of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.

    2014-02-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  17. Ion funnel with extended mass range and reduced conductance limit aperture

    DOEpatents

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2008-04-01

    An improved ion funnel design is disclosed that decreases the axial RF (parasite) fields at the ion funnel exit. This is achieved by addition of one or more compensation electrodes after the conductance limit electrode. Various RF voltage profiles may be applied to the various electrodes minimizing the parasite axial potential wells. The smallest RF aperture that serves as the conductance limiting electrode is further reduced over standard designs. Overall, the ion funnel improves transmission ranges of both low m/z and high m/z ions, reducing RF activation of ions and decreasing the gas load to subsequent differential pumping stages.

  18. Update on developments at SNIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.

    The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less

  19. Operation and development status of the J-PARC ion source

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Takagi, A.; Oguri, H.

    2014-02-01

    A cesium-free H- ion source driven with a LaB6 filament is being operated at the Japan Proton Accelerator Research Complex (J-PARC) without any serious trouble since the restoration from the March 2011 earthquake. The H- ion current from the ion source is routinely restricted approximately 19 mA for the lifetime of the filament. In order to increase the beam power at the linac beam operation (January to February 2013), the beam current from the ion source was increased to 22 mA. At this operation, the lifetime of the filament was estimated by the reduction in the filament current. According to the steep reduction in the filament current, the break of the filament was predicted. Although the filament has broken after approximately 10 h from the steep current reduction, the beam operation was restarted approximately 8 h later by the preparation for the exchange of new filament. At the study time for the 3 GeV rapid cycling synchrotron (April 2013), the ion source was operated at approximately 30 mA for 8 days. As a part of the beam current upgrade plan for the J-PARC, the front end test stand consisting of the ion source and the radio frequency quadrupole is under preparation. The RF-driven H- ion source developed for the J-PARC 2nd stage requirements will be tested at this test stand.

  20. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  1. New ion trap for atomic frequency standard applications

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Dick, G. J.; Maleki, L.

    1989-01-01

    A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.

  2. Ion tracking in photocathode rf guns

    NASA Astrophysics Data System (ADS)

    Lewellen, John W.

    2002-02-01

    Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  3. Saddle antenna radio frequency ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R.; Murray, S.

    Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA withmore » RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.« less

  4. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less

  5. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettry J.; Alessi J.; Faircloth, D.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible aftermore » extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.« less

  6. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettry, J.; Gerardin, A.; Pereira, H.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible aftermore » extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.« less

  7. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  8. Dipolar DC Collisional Activation in a "Stretched" 3-D Ion Trap: The Effect of Higher Order Fields on rf-Heating

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; McLuckey, Scott A.

    2012-04-01

    Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to `rf-heating' and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.

  9. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  10. Investigation of rf power absorption in the plasma of helicon ion source.

    PubMed

    Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V

    2008-02-01

    The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.

  11. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    PubMed

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  12. Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas

    NASA Astrophysics Data System (ADS)

    Rouse, I.; Willitsch, S.

    2017-04-01

    An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven dynamical system which has been found to develop a nonthermal energy distribution with a power law tail. The exact analytical form of this distribution is unknown, but has often been represented empirically by q -exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive analytic ion secular energy distributions from first principles both neglecting and including the effects of the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations. We show that the resulting distributions essentially depend on experimentally controllable parameters paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.

  13. Investigation of the RF efficiency of inductively coupled hydrogen plasmas at 1 MHz

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Mattei, S.; Briefi, S.; Fantz, U.; Hatayama, A.; Lettry, J.; Nishida, K.; Tran, M. Q.

    2017-08-01

    The power requirements of RF heated sources for negative hydrogen ions in fusion are substantial, which poses strong demands on the generators and components of the RF circuit. Consequently, an increase of the RF coupling efficiency would be highly beneficial. Fundamental investigations of the RF efficiency in inductively coupled hydrogen and deuterium discharges in cylindrical symmetry are conducted at the lab experiment CHARLIE. The experiment is equipped with several diagnostics including optical emission spectroscopy and a movable floating double probe to monitor the plasma parameters. The presented investigations are performed in hydrogen at a varying pressure between 0.3 and 10 Pa, utilizing a conventional helical ICP coil driven at a frequency of 1 MHz and a fixed power of 520 W for plasma generation. The coupling efficiency is strongly affected by the variation in pressure, reaching up to 85 % between 1 and 3 Pa while dropping down to only 50 % at 0.3 Pa, which is the relevant operating pressure for negative hydrogen ion sources for fusion. Due to the lower power coupling, also the measured electron density at 0.3 Pa is only 5 . 1016 m-3, while it reaches up to 2.5 . 1017 m-3 with increasing coupling efficiency. In order to gain information on the spatially resolved aspects of RF coupling and plasma heating which are not diagnostically accessible, first simulations of the discharge by an electromagnetic Particle-In-Cell Monte Carlo collision method have been conducted and are compared to the measurement data. At 1 Pa, the simulated data corresponds well to the results of both axially resolved probe measurements and radially resolved emission profiles obtained via OES. Thereby, information regarding the radial distribution of the electron density and mean energy is provided, revealing a radial distribution of the electron density which is well described by a Bessel profile.

  14. Review of ion energy and angular distributions in capacitively coupled RF plasma reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, E.; Lieberman, M.A.; Birdsall, C.K.

    1995-12-31

    The authors present a historical review and discussion of previous works on ion energy and angular distributions (IED and IAD) arriving at the target in the collisionless regime. This regime is of great interest to experimentalists and modelers studying the new generation of high density sources in which the sheath is much thinner than in the conventional RIE systems. The purpose of the review is to asses what has been done so far, and to clarify some issues about sheaths in high density systems. Having determined the important parameters, the authors show some particle-in-cell simulation results of a dually excitedmore » capacitively coupled plasma in which the sheath ions roughly see the scaling as in high density sources. The results show that when {tau}{sub ion}/{tau}{sub rf} < 1, the oscillating voltage and width of the rf sheath significantly affect the IEDs, where {tau}{sub ion} is the ion transit-time and {tau}{sub rf} is rf period.« less

  15. Experiments with planar inductive ion source meant for creation of H+ beams.

    PubMed

    Vainionpaa, J H; Kalvas, T; Hahto, S K; Reijonen, J

    2007-06-01

    In this article the effects of different engineering parameters of rf-driven ion sources with an external spiral antenna and a quartz rf window are studied. This article consists of three main topics: the effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species, and the effect of different antenna geometries on the extracted current density. The effect of source geometry was studied using three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum (Al) and alumina (Al(2)O(3)). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. The highest measured proton fractions were measured using Al(2)O(3) plasma chamber and no multicusp confinement. For the compared ion sources the source with multicusp confinement and Al(2)O(3) plasma chamber yields the highest current densities. Multicusp confinement increased the maximum extracted current by up to a factor of 2. Plasma production with different antenna geometries were also studied. The highest current density was achieved using 4.5 loop solenoid antenna with 6.0 cm diameter. A slightly lower current density with lower pressure was achieved using a tightly wound 3 loop spiral antenna with 3.3 cm inner diameter and 6 cm outer diameter.

  16. Novel particle and radiation sources and advanced materials

    NASA Astrophysics Data System (ADS)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  17. Novel particle and radiation sources and advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mako, Frederick

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently,more » as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.« less

  18. Nanoelectronics and Plasma Processing---The Next 15 Years and Beyond

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.

    2006-10-01

    The number of transistors per chip has doubled every 2 years since 1959, and this doubling will continue over the next 15 years as transistor sizes shrink. There has been a 25 million-fold decrease in cost for the same performance, and in 15 years a desktop computer will be hundreds of times more powerful than one today. Transistors now have 37 nm (120 atoms) gate lengths and 1.5 nm (5 atoms) gate oxide thicknesses. The smallest working transistor has a 5 nm (17 atoms) gate length, close to the limiting gate length, from simulations, of about 4 nm. Plasma discharges are used to fabricate hundreds of billions of these nano-size transistors on a silicon wafer. These discharges have evolved from a first generation of ``low density'' reactors capacitively driven by a single source, to a second generation of ``high density'' reactors (inductive and electron cyclotron resonance) having two rf power sources, in order to control independently the ion flux and ion bombarding energy to the substrate. A third generation of ``moderate density'' reactors, driven capacitively by one high and one low frequency rf source, is now widely used. Recently, triple frequency and combined dc/dual frequency discharges have been investigated, to further control processing characteristics, such as ion energy distributions, uniformity, and plasma etch selectivities. There are many interesting physics issues associated with these discharges, including stochastic heating of discharge electrons by dual frequency sheaths, nonlinear frequency interactions, powers supplied by the multi-frequency sources, and electromagnetic effects such as standing waves and skin effects. Beyond the 4 nm transistor limit lies a decade of further performance improvements for conventional nanoelectronics, and beyond that, a dimly-seen future of spintronics, single-electron transistors, cross-bar latches, and molecular electronics.

  19. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  20. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  1. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  2. The development of data acquisition and processing application system for RF ion source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Wang, Xiaoying; Hu, Chundong; Jiang, Caichao; Xie, Yahong; Zhao, Yuanzhe

    2017-07-01

    As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi-threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.

  3. Ion energy distributions and the density of CH3 radicals in a low pressure inductively coupled CH4/H2 plasma used for nanocrystalline diamond deposition

    NASA Astrophysics Data System (ADS)

    Okada, Katsuyuki; Komatsu, Shojiro; Matsumoto, Seiichiro

    2003-11-01

    Ion energy distributions (IEDs) and the density of CH3 radicals (n) in a 13.56 MHz radio frequency (rf) low pressure inductively coupled CH4/H2 plasma used for nanocrystalline diamond deposition have been investigated with a quadrupole mass spectrometer. The energy distributions of positive ions were measured in a CH4/H2 plasma with 50 mTorr of the gas pressure at 500 W of the plasma input power, and were compared with those of an Ar plasma. We have found that the IEDs of Ar+, CH4+, and C2H5+ have a nearly monoenergetic peak, and a hump due to a small degree of capacitive coupling. The plasma potentials obtained from the peaks are consistent with the previously reported values measured with a Langmuir probe. On the other hand, the IEDs of H+, H2+, and H3+ have a clear asymmetric double peak due to the modulation of rf driven glow discharge. The n monotonously increases with increasing pressure. The n indicates that CH3 radicals are main precursors for the growth of nanocrystalline diamond. The estimated sticking coefficient of the CH3 radical is comparable with the reported value.

  4. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less

  5. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not limited by space-charge effect as in the corona source.

  6. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  7. Non-linear lumped model circuit of capacitively coupled plasmas at the intermediate radio-frequencies

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed

    2018-06-01

    The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.

  8. Operating features of an ion-cyclotron-wave plasma apparatus running in the RF-sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.

    1972-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode. This is a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave-propagation and wave-damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of 5 times 10 to the 12th power per cubic centimeter and RF power of 90 kW. Coupling efficiency is 70 percent.

  9. RF sheaths for arbitrary B field angles

    NASA Astrophysics Data System (ADS)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  10. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  11. Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Kumar, Amit; Chandran, Achu; Rangra, Kamaljit

    2017-02-01

    Variation in actuation voltage for RF MEMS switches is observed as a result of stress-generated buckling of MEMS structures. Large voltage driven RF-MEMS switches are a major concern in space bound communication applications. In this paper, we propose a low voltage driven RF MEMS capacitive switch with the introduction of perforations and reinforcement. The performance of the fabricated switch is compared with conventional capacitive RF MEMS switches. The pull-in voltage of the switch is reduced from 70 V to 16.2 V and the magnitude of deformation is reduced from 8 µm to 1 µm. The design of the reinforcement frame enhances the structural stiffness by 46 % without affecting the high frequency response of the switch. The measured isolation and insertion loss of the reinforced switch is more than 20 dB and 0.4 dB over the X band range.

  12. Power matching between plasma generation and electrostatic acceleration in helicon electrostatic thruster

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.

    2017-10-01

    The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.

  13. Active stabilization of ion trap radiofrequency potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  14. An Rf Focused Interdigital Ion Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, D.A.

    2003-08-26

    An Rf Focused Interdigital (RFI) ion accelerating structure will be described. It represents an effective combination of the Wideroee (or interdigital) linac structure, used for many low frequency, heavy ion applications, and the rf electric quadrupole focusing used in the RFQ and RFD linac structures. As in the RFD linac structure, rf focusing is introduced into the RFI linac structure by configuring the drift tubes as two independent pieces operating at different electrical potentials as determined by the rf fields of the linac structure. Each piece (or electrode) of the RFI drift tube supports two fingers pointed inwards towards themore » opposite end of the drift tube forming a four-finger geometry that produces an rf quadrupole field along the axis of the linac for focusing the beam. However, because of the differences in the rf field configuration along the axis, the scheme for introducing rf focusing into the interdigital linac structure is quite different from that adopted for the RFD linac structure. The RFI linac structure promises to have significant size, efficiency, performance, and cost advantages over existing linac structures for the acceleration of low energy ion beams of all masses (light to heavy). These advantages will be reviewed. A 'cold model' of this new linac structure has been fabricated and the results of rf cavity measurements on this cold model will be presented.« less

  15. Effect of transverse nonuniformity of the rf field on the efficiency of microwave sources driven by linear electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, G.S.; Sinitsyn, O.V.

    This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.

  16. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  17. Self-consistent simulation of high-frequency driven plasma sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.

  18. Analysis of coupled-bunch instabilities for the NSLS-II storage ring with a 500MHz 7-cell PETRA-III cavity

    DOE PAGES

    Bassi, G.; Blednykh, A.; Cheng, W.; ...

    2015-12-11

    We present the NSLS-II storage ring that is designed to operate with superconducting RF-cavities with the aim to store an average current of 500 mA distributed in 1080 bunches, with a gap in the uniform filling for ion clearing. At the early stage of the commissioning (phase 1), characterized by a bare lattice without damping wigglers and without Landau cavities, a normal conducting 7-cell PETRA-III RF-cavity structure has been installed with the goal to store an average current of 25 mA. In this paper we discuss our analysis of coupled-bunch instabilities driven by the Higher Order Modes (HOMs) of themore » 7-cell PETRA-III RF-cavity. As a cure of the instabilities, we apply a well-known scheme based on a proper detuning of the HOMs frequencies based upon cavity temperature change, and the use of the beneficial effect of the slow head–tail damping at positive chromaticity to increase the transverse coupled-bunch instability thresholds. In addition, we discuss measurements of coupled-bunch instabilities observed during the phase 1 commissioning of the NSLS-II storage ring. In our analysis we rely, in the longitudinal case, on the theory of coupled-bunch instability for uniform fillings, while in the transverse case we complement our studies with numerical simulations with OASIS, a novel parallel particle tracking code for self-consistent simulations of collective effects driven by short and long-range wakefields.« less

  19. Numerical analysis of effects of ion-neutral collision processes on RF ICP discharge

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Mattei, S.; Lettry, J.; Hatayama, A.

    2018-01-01

    The discharge process of a radiofrequency (RF) inductively coupled plasma (ICP) has been modeled by an ElectroMagnetic Particle-in-Cell Monte Carlo Collision method (EM PIC-MCC). Although the simulation had been performed by our previous model to investigate the discharge mode transition of the RF ICP from a kinetic point of view, the model neglected the collision processes of ions (H+ and H2+) with neutral particles. In this study, the RF ICP discharge process has been investigated by the latest version of the model which takes the ion-neutral collision processes into account. The basic characteristics of the discharge mode transition provided by the previous model have been verified by the comparison between the previous and present results. As for the H-mode discharge regime, on the other hand, the ion-neutral collisions play an important role in evaluating the growth of the plasma. Also, the effect of the ion-neutral collisions on the kinetic feature of the plasma has been investigated, which has highlighted the importance of kinetic perspective for modeling the RF ICP discharge.

  20. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  1. Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunchmore » from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.« less

  2. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  3. Field-free junctions for surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Jordens, Robert; Schmied, R.; Blain, M. G.; Leibfried, D.; Wineland, D.

    2015-05-01

    Intersections between transport guides in a network of RF ion traps are a key ingredient to many implementations of scalable quantum information processing with trapped ions. Several junction architectures demonstrated so far are limited by varying radial secular frequencies, a reduced trap depth, or a non-vanishing RF field along the transport channel. We report on the design and progress in implementing a configurable microfabricated surface electrode Y-junction that employs switchable RF electrodes. An essentially RF-field-free pseudopotential guide between any two legs of the junction can be established by applying RF potential to a suitable pair of electrodes. The transport channel's height above the electrodes, its depth and radial curvature are constant to within 15%. Supported by IARPA, Sandia, NSA, ONR, and the NIST Quantum Information Program.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanova, M. A.; Zyryanov, S. M.; Faculty of Physics, Moscow State University, MSU, Moscow

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtualmore » IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization in the sheath on the origin and intensity of low-energy peaks in IED is discussed compared to ion charge-exchange collisions. Obviously, the extrapolation of the “virtual IED sensor” approach to higher pressures requires developing some other sheath models, taking into account both ion and electron collisions and probably including even a model of the whole plasma volume instead of plasma sheath one.« less

  5. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  6. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  7. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    PubMed

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  8. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  9. Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from Radio Frequency plasma) experiment: tests in BATMAN (BAvarian Test Machine for Negative ions).

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Pomaro, N; Taliercio, C; Dalla Palma, M; Pasqualotto, R; Schiesko, L

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  10. Ion extraction from a saddle antenna RF surface plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less

  11. Ion extraction from a saddle antenna RF surface plasma source

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.

    2015-04-01

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).

  12. Microfabricated linear Paul-Straubel ion trap

    DOEpatents

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  13. Inductive tuners for microwave driven discharge lamps

    DOEpatents

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  14. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  15. Performance of an ion-cyclotron-wave plasma apparatus operated in the radiofrequency sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.; Woollett, R. R.

    1973-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode, that is, a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave propagation and wave damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of five times 10 to the 12th power cu cm and RF power of 90 kW. Coupling efficiency is 70 percent.

  16. Magnetoplasmonic RF mixing and nonlinear frequency generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.

    2016-07-04

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less

  17. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution

    PubMed Central

    Ahmad, Iqbal; Sheraz, Muhammad Ali; Ahmed, Sofia; Kazi, Sadia Hafeez; Mirza, Tania; Aminuddin, Mohammad

    2011-01-01

    In the present investigation the photolysis of riboflavin (RF) in the presence of citrate species at pH 4.0–7.0 has been studied. A specific multicomponent spectrophotometric method has been used to assay RF in the presence of photoproducts during the reactions. The overall first-order rate constants (kobs) for the photolysis of RF range from 0.42 to 1.08×10–2 min−1 in the region. The values of kobs have been found to decrease with an increase in citrate concentration indicating an inhibitory effect of these species on the rate of reaction. The second-order rate constants for the interaction of RF with total citrate species causing inhibition range from 1.79 to 5.65×10–3 M−1 min−1 at pH 4.0–7.0. The log k–pH profiles for the reactions at 0.2–1.0 M citrate concentration show a gradual decrease in kobs and the value at 1.0 M is more than half compared to that of k0, i.e., in the absence of buffer, at pH 5.0. Divalent citrate ions cause a decrease in RF fluorescence due to the quenching of the excited singlet state resulting in a decrease in the rate of reaction and consequently leading to the stabilization of RF solutions. The greater quenching of fluorescence at pH 4.0 compared to that of 7.0 is in accordance with the greater concentration of divalent citrate ions (99.6%) at that pH. The trivalent citrate ions exert a greater inhibitory effect on the rate of RF photolysis compared to that of the divalent citrate ions probably as a result of excited triplet state quenching. The values of second-order rate constants for the interaction of divalent and trivalent citrate ions are 0.44×10–2 and 1.06×10–3 M–1 min–1, respectively, indicating that the trivalent ions exert a greater stabilizing effect, compared to the divalent ions, on RF solutions. PMID:25755977

  18. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    NASA Astrophysics Data System (ADS)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne < 1018 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  19. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.

    2014-11-15

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors’ holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation.more » No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.« less

  20. Initial experiments with a versatile multi-aperture negative-ion source and related improvements

    NASA Astrophysics Data System (ADS)

    Cavenago, M.

    2016-03-01

    A relatively compact ion source, named NIO1 (Negative-Ion Optimization 1), with 9 beam apertures for H- extraction is under commissioning, in collaboration between Consorzio RFX and INFN, to provide a test bench for source optimizations, for innovations, and for simulation code validations in support of Neutral Beam Injectors (NBI) optimization. NIO1 installation includes a 60kV high-voltage deck, power supplies for a 130mA ion nominal current, an X-ray shield, and beam diagnostics. Plasma is heated with a tunable 2MHz radiofrequency (rf) generator. Physical aspects of source operation and rf-plasma coupling are discussed. NIO1 tuning procedures and plasma experiments both with air and with hydrogen as filling gas are described, up to a 1.7kW rf power. Transitions to inductively coupled plasma are reported in the case of air (for a rf power of about 0.5kW and a gas pressure below 2Pa), discussing their robust signature in optical emission, and briefly summarized for hydrogen, where more than 1kW rf power is needed.

  1. RF-Trapped Chip Scale Helium Ion Pump (RFT-CHIP)

    DTIC Science & Technology

    2016-04-06

    14. ABSTRACT A miniaturized (~1 cc) magnet -less RF electron trap for a helium ion pump is studied, addressing challenges associated with active...pump, ion pump, electron trap, magnet -less, MEMS, radiofrequency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...scale ion pumps. The Penning cell structure consists of three electrodes (an anode and two cathodes) and a magnet . Planar titanium cathodes are

  2. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  3. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  4. Negative ion kinetics in RF glow discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottscho, R.A.; Gacbe, C.E.

    1986-04-01

    Using temporally and spatially resolved laser spectroscopy, the authors have determined the identities, approximate concentrations, effects on the local field, and kinetics of formation and loss of negative ions in RF discharges. CI/sup -/ and BCI/sub 3//sup -/ are the dominant negative ions found in low-frequency discharges through CI/sub 2/ and BCI/sub 3/, respectively. The electron affinity for CI is measured to be 3.6118 +- 0.0005 eV. Negative ion kinetics are strongly affected by application of the RF field. Formation of negative ions by attachment of slow electrons in RF discharges is governed by the extent and duration of electronmore » energy relaxation. Similarly, destruction of negative ions by collisional detachment and field extraction is dependent upon ion energy modulation. Thus, at low frequency, the anion density peaks at the beginning of the anodic and cathodic half-cycles after electrons have attached but before detachment and extraction have had time to occur. At higher frequencies, electrons have insufficient time to attach before they are reheated and the instantaneous anion density in the sheath is greatly reduced. When the negative ion density is comparable to the positive ion density, the plasma potential is observed to lie below the anode potential, double layers form between sheath and plasma, and anions and electrons are accelerated by large sheath fields to electrode surfaces.« less

  5. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  6. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  7. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less

  8. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    NASA Astrophysics Data System (ADS)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in skin depth with magnetic field and a damping of the effect of B with pressure. The flat coil geometry which launches waves more nearly parallel to B allows enhanced wave penetration at higher pressures than the standard helical coil.

  9. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    PubMed

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  10. H- Ion Sources for High Intensity Proton Drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H + and H - ion generation around 3 to 5 mA/cm 2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm 2 per kW of RF power at 13.56more » MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.« less

  11. Next Generation H- Ion Sources for the SNS

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.

    2009-03-01

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  12. The continued development of the Spallation Neutron Source external antenna H- ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Carmichael, J.; Desai, N. J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.

    2010-02-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H- ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ˜100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ˜35 mA (beam current required by the ramp up plan) with availability of ˜97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.

  13. Alternative RF coupling configurations for H{sup −} ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briefi, S.; Fantz, U.; AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg

    2015-04-08

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H{sup −} current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been setmore » up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.« less

  14. Alternative RF coupling configurations for H- ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Gutmann, P.; Fantz, U.

    2015-04-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H- current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.

  15. Density measurements in low pressure, weakly magnetized, RF plasmas: experimental verification of the sheath expansion effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Roderick W.

    2017-07-01

    This experimental study shows the validity of Sheridan's method in determining plasma density in low pressure, weakly magnetized, RF plasmas using ion saturation current data measured by a planar Langmuir probe. The ion density derived from Sheridan's method which takes into account the sheath expansion around the negatively biased probe tip, presents a good consistency with the electron density measured by a cylindrical RF-compensated Langmuir probe using the Druyvesteyn theory. The ion density obtained from the simplified method which neglects the sheath expansion effect, overestimates the true density magnitude, e.g., by a factor of 3 to 12 for the present experiment.

  16. 56. Building 105, close view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Building 105, close view of ion return RF balance tube adjustment controls. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-11

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF{sub 4} gas determined the presheath exit velocities of all significant positive ions: CF{sub 3}{sup +}, CF{sub 2}{sup +}, CF{sup +}, and F{sup +}. At higher bias voltages, we detectedmore » essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.« less

  18. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  19. Ion Source Development at the SNS

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Carr, J.; Carmichael, J.; Goulding, R. H.; Baity, F. W.

    2007-08-01

    The US Spallation Neutron Source (SNS) has recently begun producing neutrons and is currently on track to becoming a world-leading facility for material science based on neutron scattering. The facility is comprised of an H- ion source, a linear accelerator, an accumulator ring, a liquid-Hg target and a suite of neutron scattering instruments. Over the next several years the average H- current from the ion source will be increased in order to meet the baseline facility requirement of providing 1.4 MW of beam-power to the target and the SNS power upgrade power requirement of 2+ MW on target. Meeting the latter goal will require H- currents of 70-100 mA with an RMS emittance of 0.20-0.35 π mm mrad and a ˜7% duty-factor. To date, the RF-driven-multicusp SNS ion source has only been able to demonstrate sustained operation at 33 mA of beam current at a ˜7% duty-factor. This report details our efforts to develop variations of the current ion source which can meet these requirements. Designs and experimental results are presented for helicon plasma drivers, high-power external antennas, glow-discharge plasma guns and advanced Cs systems.

  20. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less

  1. Can we estimate plasma density in ICP driver through electrical parameters in RF circuit?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Chakraborty, A., E-mail: arunkc@iter-india.org

    2015-04-08

    To avoid regular maintenance, invasive plasma diagnostics with probes are not included in the inductively coupled plasma (ICP) based ITER Neutral Beam (NB) source design. Even non-invasive probes like optical emission spectroscopic diagnostics are also not included in the present ITER NB design due to overall system design and interface issues. As a result, negative ion beam current through the extraction system in the ITER NB negative ion source is the only measurement which indicates plasma condition inside the ion source. However, beam current not only depends on the plasma condition near the extraction region but also on the perveancemore » condition of the ion extractor system and negative ion stripping. Nevertheless, inductively coupled plasma production region (RF driver region) is placed at distance (∼ 30cm) from the extraction region. Due to that, some uncertainties are expected to be involved if one tries to link beam current with plasma properties inside the RF driver. Plasma characterization in source RF driver region is utmost necessary to maintain the optimum condition for source operation. In this paper, a method of plasma density estimation is described, based on density dependent plasma load calculation.« less

  2. Beam ion acceleration by ICRH in JET discharges

    NASA Astrophysics Data System (ADS)

    Budny, R. V.; Gorelenkova, M.; Bertelli, N.; JET Collaboration

    2015-11-01

    The ion Monte-Carlo orbit integrator NUBEAM, used in TRANSP has been enhanced to include an ``RF-kick'' operator to simulate the interaction of RF fields and fast ions. The RF quasi-linear operator (localized in space) uses a second R-Z orbit integrator. We apply this to analysis of recent JET discharges using ICRH with the ITER-like first wall. An example of results for a high performance Hybrid discharge for which standard TRANSP analysis simulated the DD neutron emission rate below measurements, re-analysis using the RF-kick operator results in increased beam parallel and perpendicular energy densities (~=40% and 15% respectively), and increased beam-thermal neutron emission (~= 35%), making the total rate closer to the measurement. Checks of the numerics, comparisons with measurements, and ITER implications will be presented. Supported in part by the US DoE contract DE-AC02-09CH11466 and by EUROfusion No 633053.

  3. FAST TRACK COMMUNICATION: Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Dedrick, J.; Boswell, R. W.; Charles, C.

    2010-09-01

    Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.

  4. Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Wyndham, E.; Maze, J.; Schulze, J.

    2018-01-01

    The behavior of a dual frequency capacitively coupled plasma (2f CCP) driven by 2.26 and 13.56 MHz radio frequency (rf) source is investigated using an approach that integrates a theoretical model and experimental data. The basis of the theoretical analysis is a time dependent dual frequency analytical sheath model that casts the relation between the instantaneous sheath potential and plasma parameters. The parameters used in the model are obtained by operating the 2f CCP experiment (2.26 MHz + 13.56 MHz) in argon at a working pressure of 50 mTorr. Experimentally measured plasma parameters such as the electron density, electron temperature, as well as the rf current density ratios are the inputs of the theoretical model. Subsequently, a convenient analytical solution for the output sheath potential and sheath thickness was derived. A comparison of the present numerical results is done with the results obtained in another 2f CCP experiment conducted by Semmler et al (2007 Plasma Sources Sci. Technol. 16 839). A good quantitative correspondence is obtained. The numerical solution shows the variation of sheath potential with the low and high frequency (HF) rf powers. In the low pressure plasma, the sheath potential is a qualitative measure of DC self-bias which in turn determines the ion energy. Thus, using this analytical model, the measured values of the DC self-bias as a function of low and HF rf powers are explained in detail.

  5. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  6. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    NASA Astrophysics Data System (ADS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  7. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less

  8. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements.

    PubMed

    Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  9. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  10. Simulation of plasma loading of high-pressure RF cavities

    NASA Astrophysics Data System (ADS)

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  11. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  12. POWER DENSITY, FIELD INTENSITY, AND CARRIER FREQUENCY DETERMINANTS OF RF-ENERGY-INDUCED CALCIUM-ION EFFLUX FROM BRAIN TISSUE

    EPA Science Inventory

    To explain a carrier frequency dependence reported for radiofrequency (RF)-induced calcium-ion efflux from brain tissue, a chick-brain hemisphere bathed in buffer solution is modeled as a sphere within the uniform field of the incident electromagnetic wave. Calculations on a sphe...

  13. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  14. A large-area RF source for negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-08-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.

  15. Production of high-density highly-ionized helicon plasmas in the ProtoMPEX

    NASA Astrophysics Data System (ADS)

    Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.

    2017-10-01

    High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  16. High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.

    1999-05-01

    A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.

  17. A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Ludewigt, B.

    2011-06-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less

  19. Cathode-less gridded ion thrusters for small satellites

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane

    2016-10-01

    Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm diameter unit well adapted for a CubeSat or SmallSat mission. This work was supported by Agence Nationale de la Recherche under contract ANR-11-IDEX-0004-02 (Plas@Par) and by SATT Paris-Saclay.

  20. Simulation of plasma loading of high-pressure RF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.; Samulyak, R.; Yonehara, K.

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  1. Radio-frequency response of single pores and artificial ion channels

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Ramachandran, S.; Stava, E.; van der Weide, D. W.; Blick, R. H.

    2011-09-01

    Intercellular communication relies on ion channels and pores in cell membranes. These protein-formed channels enable the exchange of ions and small molecules to electrically and/or chemically interact with the cells. Traditionally, recordings on single-ion channels and pores are performed in the dc regime, due to the extremely high impedance of these molecular junctions. This paper is intended as an introduction to radio-frequency (RF) recordings of single-molecule junctions in bilipid membranes. First, we demonstrate how early approaches to using microwave circuitry as readout devices for ion channel formation were realized. The second step will then focus on how to engineer microwave coupling into the high-impedance channel by making use of bio-compatible micro-coaxial lines. We then demonstrate integration of an ultra-broadband microwave circuit for the direct sampling of single α-hemolysin pores in a suspended bilipid membrane. Simultaneous direct current recordings reveal that we can monitor and correlate the RF transmission signal. This enables us to relate the open-close states of the direct current to the RF signal. Altogether, our experiments lay the ground for an RF-readout technique to perform real-time in vitro recordings of pores. The technique thus holds great promise for research and drug screening applications. The possible enhancement of sampling rates of single channels and pores by the large recording bandwidth will allow us to track the passage of single ions.

  2. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    NASA Astrophysics Data System (ADS)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  3. Bunch beam cooling

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.

    2017-07-01

    Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.

  4. Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)

    NASA Technical Reports Server (NTRS)

    Crimi, G. F.; Eckert, A. C.; Miller, D. B.

    1967-01-01

    A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.

  5. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    NASA Astrophysics Data System (ADS)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  6. Ion Source Development for a Compact Proton Beam Writing System III

    DTIC Science & Technology

    2013-06-28

    to yield ion beam with energies up to 3 keV. The electrical power required to operate multiple components (like RF Valve , Probe and Extraction...they are powered through an isolation transformer. The required gas, to be ionized in the RF ion source, is fed through a coarse needle valve ...connector, the system can be pumped down to 3×10-2 mbar using an oil roughing pump. Nitrogen gas is feed in by adjusting the gas regulating valve

  7. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  8. The application of "double isolation" in Fourier transform ion cyclotron resonance sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry to remove labile isobaric impurities.

    PubMed

    Gates, Paul J; Lopes, Norberto P; Pinto, Emani; Colepicolo, Pio; Cardozo, Karina H M

    2011-01-01

    This study reports the application of "double isolation" in sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry (SORI-CID-MS/MS) to remove radio- frequency (RF) fragment ions of very close mass isobaric ions (0.02 m/z apart). Analyses were performed with a fraction of a biological extract isolated from a macroalgae containing the mycosporine-like amino acid asterina-330. Direct isolation of the precursor ion by narrowing the isolation window proved ineffective as it impinged upon the required ion thus substantially reducing its intensity. By increasing the correlated sweep time, ejection efficiency of the isolation was improved, but caused the unwanted side-effect of RF fragmentation of labile ions. Finally, by skipping the ion activation step and performing a second isolation (in the MS(3) module) the RF fragments from the first isolation were removed leaving a very pure isolation of the required precursor ion and allowed a very clean CID fragmentation. We demonstrated that the m/z 272.1351 ion is derived from the loss of NH(3) from m/z 289.1620 isobaric impurity and is not related to asterina-330. This application represents a powerful tool to remove unwanted ions in the MS/MS spectrum that result from fragmentation of isobaric ions.

  9. Simulations of RF capture with barrier bucket in booster at injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C.J.

    2012-01-23

    As part of the effort to increase the number of ions per bunch in RHIC, a new scheme for RF capture of EBIS ions in Booster at injection has been developed. The scheme was proposed by M. Blaskiewicz and J.M. Brennan. It employs a barrier bucket to hold a half turn of beam in place during capture into two adjacent harmonic 4 buckets. After acceleration, this allows for 8 transfers of 2 bunches from Booster into 16 buckets on the AGS injection porch. During the Fall of 2011 the necessary hardware was developed and implemented by the RF and Controlsmore » groups. The scheme is presently being commissioned by K.L. Zeno with Au32+ ions from EBIS. In this note we carry out simulations of the RF capture. These are meant to serve as benchmarks for what can be achieved in practice. They also allow for an estimate of the longitudinal emittance of the bunches on the AGS injection porch.« less

  10. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupledmore » plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.« less

  11. Ion Cyclotron Resonant Heating (ICRH) system used on the Tandem Mirror Experiment-Upgrade (TMX-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, S.W.; Maxwell, T.M.; Antelman, D.R.

    1985-11-11

    Ion Cyclotron Resonant Heating (ICRH) is part of the plasma heating system used on the TMX-U experiment. Radio frequency (RF) energy is injected into the TMX-U plasma at a frequency near the fundamental ion resonance (2 to 5 MHz). The RF fields impart high velocities to the ions in a direction perpendicular to the TMX-U magnetic field. Particle collision then converts this perpendicular heating to uniform plasma heating. This paper describes the various aspects of the ICRH system: antennas, power supplies, computer control, and data acquisition. 4 refs., 10 figs.

  12. Orthogonal ion injection apparatus and process

    DOEpatents

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  13. Experimental observation of ion beams in the Madison Helicon eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2011-06-15

    Argon ion beams up to E{sub b} = 165 eV at P{sub rf} = 500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M = v{sub i}/c{sub s} up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate,more » rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eV{sub p} {approx} 5kT{sub e} for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies E{sub b} = e[V{sub beam} - V{sub plasma}] > 10kT{sub e}.« less

  14. Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer

    NASA Astrophysics Data System (ADS)

    Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.

    2015-11-01

    The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.

  15. The NIST 27 Al+ quantum-logic clock

    NASA Astrophysics Data System (ADS)

    Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David

    2016-05-01

    Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.

  16. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  17. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE PAGES

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  18. A Finite-Orbit-Width Fokker-Planck solver for modeling of RF Current Drive in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of constants-of-motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. A recent development is the capability to obtain solution simultaneously for FOW ions and Zero-Orbit-Width (ZOW) electrons. As a practical application, the code is used for simulation of alpha-particle heating by high-harmonic waves in ITER scenarios. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions such as alphas or NBI-produced deuterons, through finite Larmor-radius effects. Based on simulations, we formulate conditions where the fast ions absorb less than 10% of RF power. Supported by USDOE Grants ER54649, ER54744, and SC0006614.

  19. Plasma-Surface Interactions and RF Antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, D. N.; Beckwith, K.; Davidson, B. D.; Kruger, S. E.; Pankin, A. Y.; Roark, C. M.

    2015-11-01

    Implementation of recently developed finite-difference time-domain (FDTD) modeling techniques on high-performance computing platforms allows RF power flow, and antenna near- and far-field behavior, to be studied in realistic experimental ion-cyclotron resonance heating scenarios at previously inaccessible levels of resolution. We present results and 3D animations of high-performance (10k-100k core) FDTD simulations of Alcator C-Mod's field-aligned ICRF antenna on the Titan supercomputer, considering (a) the physics of slow wave excitation in the immediate vicinity of the antenna hardware and in the scrape-off layer for various edge densities, and (b) sputtering and impurity production, as driven by self-consistent sheath potentials at antenna surfaces. Related research efforts in low-temperature plasma modeling, including the use of proper orthogonal decomposition methods for PIC/fluid modeling and the development of plasma chemistry tools (e.g. a robust and flexible reaction database, principal path reduction analysis capabilities, and improved visualization options), will also be summarized. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501 and ALCC/OLCF.

  20. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  1. Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.

    2017-12-01

    A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.

  2. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  3. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  4. Modeling of surface-dominated plasmas: from electric thruster to negative ion source.

    PubMed

    Taccogna, F; Schneider, R; Longo, S; Capitelli, M

    2008-02-01

    This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.

  5. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    PubMed

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  6. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    PubMed

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  7. Particle simulations on transport control in divertors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Mieko; Ido, Shunji

    1995-04-01

    Particle orbit simulations are carried out to study the reflection of He ions recycled from a tokamak divertor by RF electric fields, which have the frequency close to ion cyclotron resonance frequency (ICRF). The performance of particle reflection and the requirement to the intensity of RF fields are studied. The control of He recycling by ICRF fields is found to be available. 4 refs., 4 figs.

  8. Ion funnel device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Chen, Tsung-Chi; Harrer, Marques B.

    2017-11-21

    An ion funnel device is disclosed. A first pair of electrodes is positioned in a first direction. A second pair of electrodes is positioned in a second direction. The device includes an RF voltage source and a DC voltage source. A RF voltage with a superimposed DC voltage gradient is applied to the first pair of electrodes, and a DC voltage gradient is applied to the second pair of electrodes.

  9. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, A. V., E-mail: Timofeev-AV@nrcki.ru

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma densitymore » profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.« less

  10. Pulse-Modulated Radio-Frequency Alternating-Current-Driven Atmospheric-Pressure Glow Discharge for Continuous-Flow Synthesis of Silver Nanoparticles and Evaluation of Their Cytotoxicity toward Human Melanoma Cells.

    PubMed

    Dzimitrowicz, Anna; Bielawska-Pohl, Aleksandra; diCenzo, George C; Jamroz, Piotr; Macioszczyk, Jan; Klimczak, Aleksandra; Pohl, Pawel

    2018-06-02

    An innovative and environmentally friendly method for the synthesis of size-controlled silver nanoparticles (AgNPs) is presented. Pectin-stabilized AgNPs were synthesized in a plasma-reaction system in which pulse-modulated radio-frequency atmospheric-pressure glow discharge (pm-rf-APGD) was operated in contact with a flowing liquid electrode. The use of pm-rf-APGD allows for better control of the size of AgNPs and their stability and monodispersity. AgNPs synthesized under defined operating conditions exhibited average sizes of 41.62 ± 12.08 nm and 10.38 ± 4.56 nm, as determined by dynamic light scattering and transmission electron microscopy (TEM), respectively. Energy-dispersive X-ray spectroscopy (EDS) confirmed that the nanoparticles were composed of metallic Ag. Furthermore, the ξ-potential of the AgNPs was shown to be -43.11 ± 0.96 mV, which will facilitate their application in biological systems. Between 70% and 90% of the cancerous cells of the human melanoma Hs 294T cell line underwent necrosis following treatment with the synthesized AgNPs. Furthermore, optical emission spectrometry (OES) identified reactive species, such as NO, NH, N₂, O, and H, as pm-rf-APGD produced compounds that may be involved in the reduction of the Ag(I) ions.

  11. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  12. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probea)

    NASA Astrophysics Data System (ADS)

    Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Störi, H.

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H- volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e- and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H- ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H- ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  13. A new compact structure for a high intensity low-energy heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng

    2013-12-01

    A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.

  14. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  15. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  16. Radical molecule and ion-molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in R.F. plasmas at low pressures (below 1.0 Torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  17. Radical and ion molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in RF plasmas at low pressures ( 1.0 torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  18. Mode conversion in three ion species ICRF heating scenario

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  19. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated by pulsed power and is nearly constant over the entire modulation period, but the density of SiH2 shows a detectable decline in the afterglow. However, because of a much smaller content of SiH2, the deposition rate hardly shows any variation under the selected waveform of the pulse.

  20. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  1. Ion acceleration in a helicon source due to the self-bias effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2012-05-15

    Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p{sub n} < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding E{sub i} Almost-Equal-To 7 kT{sub e} in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a sweptmore » emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V{sub p-p} Greater-Than-Or-Equivalent-To 140V, V{sub p-p}/V{sub p} Almost-Equal-To 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to 'neutralize' the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an insulating upstream boundary condition is enforced. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate.« less

  2. Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  3. Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.

    PubMed

    McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  4. Status and operation of the Linac4 ion source prototypes

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.

    2014-02-01

    CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  5. First experiments with the negative ion source NIO1.

    PubMed

    Cavenago, M; Serianni, G; De Muri, M; Agostinetti, P; Antoni, V; Baltador, C; Barbisan, M; Baseggio, L; Bigi, M; Cervaro, V; Degli Agostini, F; Fagotti, E; Kulevoy, T; Ippolito, N; Laterza, B; Minarello, A; Maniero, M; Pasqualotto, R; Petrenko, S; Poggi, M; Ravarotto, D; Recchia, M; Sartori, E; Sattin, M; Sonato, P; Taccogna, F; Variale, V; Veltri, P; Zaniol, B; Zanotto, L; Zucchetti, S

    2016-02-01

    Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW).

  6. Ion-neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Goodman, D. S.; Sivarajah, I.; Wells, J. E.; Narducci, F. A.; Smith, W. W.

    2012-09-01

    Long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections (e.g., ˜106a.u. for Na-Na+ or Na-Ca+ at cold and ultracold temperatures). This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present simion 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.

  7. Novel Ultrahigh Vacuum System for Chip-Scale Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Chen, Shaw-Pin; Trapped Team

    2011-05-01

    This presentation reports the experimental results of an ultrahigh vacuum (UHV) system as a scheme to implement scalable trapped-ion quantum computers that use micro-fabricated ion traps as fundamental building blocks. The novelty of this system resides in our design, material selection, mechanical liability, low complexity of assembly, and reduced signal interference between DC and RF electrodes. Our system utilizes RF isolation and onsite-filtering topologies to attenuate AC signals generated from the resonator. We use a UHV compatible printed circuit board (PCB) material to perform DC routing, while the RF high and RF ground received separated routing via wire-wrapping. The standard PCB fabrication process enabled us to implement ceramic-based filter components adjacent to the chip trap. The DC electrodes are connected to air-side electrical feed through using four 25D adaptors made with polyether ether ketone (PEEK). The assembly process of this system is straight forward and in-chamber structure is self-supporting. We report on initial testing of this concept with a linear chip trap fabricated by the Sandia National Labs.

  8. 57. Building 105, another view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Building 105, another view of ion return RF balance tube system, and beginning of waveguide return connections to right of photograph; note bottoms of waveguide systems around circumference of scanner switch in upper part of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  10. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  11. Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap.

    PubMed

    Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham

    2017-06-21

    A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

  12. Effect of working power and pressure on plasma properties during the deposition of TiN films in reactive magnetron sputtering plasma measured using Langmuir probe measurement

    NASA Astrophysics Data System (ADS)

    How, Soo Ren; Nayan, Nafarizal; Khairul Ahmad, Mohd; Fhong Soon, Chin; Zainizan Sahdan, Mohd; Lias, Jais; Shuhaimi Abu Bakar, Ahmad; Arshad, Mohd Khairuddin Md; Hashim, Uda; Yazid Ahmad, Mohd

    2018-04-01

    The ion, electron density and electron temperature during formation of TiN films in reactive magnetron sputtering system have been investigated for various settings of radio frequency (RF) power and working pressure by using Langmuir probe measurements. The RF power and working pressure able to affect the densities and plasma properties during the deposition process. In this work, a working pressure (100 and 20 mTorr) and RF power (100, 150 and 200 W) have been used for data acquisition of probe measurement. Fundamental of studied on sputter deposition is very important for improvement of film quality and deposition rate. Higher working pressure and RF power able to produce a higher ion density and reduction of electron temperature.

  13. Ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Adam Lewis

    Ion absorption of the high harmonic fast wave in a spherical torus is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent NSTX shots has revealed that under some conditions when neutral beam and RF power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the RF-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is an RF interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering is presented, along with results from the TRANSP transport analysis code, ray-tracing codes HPRT and CURRAY, full-wave code and AORSA, quasilinear code CQL3D, and ion loss codes EIGOL and CONBEAM.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.

    Data-dependent selective external ion ejection with improved resolution is demonstrated with a 3.5 tesla FTICR instrument employing DREAMS (Dynamic Range Enhancement Applied to Mass Spectrometry) technology. To correct for the fringing rf-field aberrations each rod of the selection quadrupole has been segmented into three sections, so that ion excitation and ejection was performed by applying auxiliary rf-only waveforms in the region of the middle segments. Two different modes of external ion trapping and ejection were studied with the mixtures of model peptides and a tryptic digest of bovine serum albumin. A mass resolution of about 100 has been attained formore » rf-only dipolar ejection in a quadrupole operating at a Mathieu parameter q of{approx} 0.45. LC-ESI-DREAMS-FTICR analysis of a 0.1 mg/mL solution of bovine serum albumin digest resulted in detection of 82 unique tryptic peptides with mass measurement errors lower than 5 ppm, providing 100% sequence coverage of the protein.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.

    Data-dependent selective external ion ejection with improved resolution is demonstrated with a 3.5 tesla FTICR instrument employing DREAMS (Dynamic Range Enhancement Applied to Mass Spectrometry) technology. To correct for the fringing rf-field aberrations each rod of the selection quadrupole has been segmented into three sections, so that ion excitation and ejection was performed by applying auxiliary rf-only waveforms in the region of the middle segments. Two different modes of external ion trapping and ejection were studied with the mixtures of model peptides and a tryptic digest of bovine serum albumin. A mass resolution of about 100 had been attained formore » rf-only dipolar ejection in a quadrupole operating at a Mathieu parameter q of ~0.45. LC-ESI-DREAMS-FTICR analysis of a 0.1 mg/mL solution of bovine serum albumin digest resulted in detection of 82 unique tryptic peptides with mass measurement errors lower than 5 ppm, providing 100 % sequence coverage of the protein.« less

  16. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    NASA Astrophysics Data System (ADS)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  17. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  18. Investigation of Helicon discharges as RF coupling concept of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2013-02-01

    The ITER reference source for H- and D- requires a high RF input power (up to 90 kW per driver). To reduce the demands on the RF circuit, it is highly desirable to reduce the power consumption while retaining the values of the relevant plasma parameters namely the positive ion density and the atomic hydrogen density. Helicon plasmas are a promising alternative RF coupling concept but they are typically generated in long thin discharge tubes using rare gases and an RF frequency of 13.56 MHz. Hence the applicability to the ITER reference source geometry, frequency and the utilization of hydrogen/deuterium has to be proved. In this paper the strategy of the approach for using Helicon discharges for ITER reference source parameters is introduced and the first promising measurements which were carried out at a small laboratory experiment are presented. With increasing RF power a mode transition to the Helicon regime was observed for argon and argon/hydrogen mixtures. In pure hydrogen/deuterium the mode transition could not yet be achieved as the available RF power is too low. In deuterium a special feature of Helicon discharges, the socalled low field peak, could be observed at a moderate B-field of 3 mT.

  19. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  20. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  1. Stopping and Coulomb explosion of energetic carbon clusters in a plasma irradiated by an intense laser field

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiu; Wang, Younian

    2015-09-01

    The interaction of a charged particle beam with a plasma is a very important subject of relevance for many fields of physics, such as inertial confinement fusion (ICF) driven by ion or electron beams, high energy density physics, and related astrophysical problems. Recently, a promising ICF scheme has been proposed, in which the plasma target is irradiated simultaneously by intense laser and ion beams. For molecular ion or cluster, slowing down process will company the Coulomb explosion phenomenon. In this paper, we present a study of the effects of intense radiation field (RF) on the interaction of energetic carbon clusters in a plasma. The emphasis is laid on the dynamic polarization and correlation effects of the constituent ions within the cluster in order to disclose the role of the vicinage effects on the Coulomb explosion and energy deposition of the clusters in plasma. On the other hand, affecting of a strong laser field on the cluster propagating in plasma is considered, the influence of a large range of laser parameters and plasma parameters on the Coulomb explosion and stopping power are discussed. This work is supported by the National Natural Science Foundation of China (11375034), and the Fundamental Research Funds for the Central Universities of China (3132015144, 3132014337).

  2. Modeling electronegative plasma discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenberg, A.J.; Lieberman, M.A.

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}=more » 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.« less

  3. Correlating ion energies and CF{sub 2} surface production during fluorocarbon plasma processing of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ina T.; Zhou Jie; Fisher, Ellen R.

    2006-07-01

    Ion energy distribution (IED) measurements are reported for ions in the plasma molecular beam source of the imaging of radicals interacting with surfaces (IRIS) apparatus. The IEDs and relative intensities of nascent ions in C{sub 3}F{sub 8} and C{sub 4}F{sub 8} plasma molecular beams were measured using a Hiden PSM003 mass spectrometer mounted on the IRIS main chamber. The IEDs are complex and multimodal, with mean ion energies ranging from 29 to 92 eV. Integrated IEDs provided relative ion intensities as a function of applied rf power and source pressure. Generally, higher applied rf powers and lower source pressures resultedmore » in increased ion intensities and mean ion energies. Most significantly, a comparison to CF{sub 2} surface interaction measurements previously made in our laboratories reveals that mean ion energies are directly and linearly correlated to CF{sub 2} surface production in these systems.« less

  4. Direct measurement of density oscillation induced by a radio-frequency wave.

    PubMed

    Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H

    2007-08-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected.

  5. Generation of X-rays and neutrons with a RF-discharge

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1982-01-01

    An experimental study concerning disk shaped plasma structures was performed. Such disk-shaped structures can be obtained using an rf discharge in hydrogen. The applied frequency was 1-2 Mhz. In case of operation in deuterium it was found that the discharge emits neutrons and X-rays, although the applied voltage is only 2 kV. This phenomenon was explained by assuming formation of plasma cavitons which are surrounded by high electric fields. The condition for formation of these cavitons is that the applied rf frequency is equal to the plasma frequency. The ions trapped in these resonance structures acquire sufficient energy that they can undergo fusion reactions with the ions in the surrounding gas.

  6. 4th Generation ECR Ion Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyneis, Claude M.; Leitner, D.; Todd, D.S.

    2008-12-01

    The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materialsmore » such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.« less

  7. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  8. Langmuir probe measurements in the intense RF field of a helicon discharge

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.

    2012-10-01

    Helicon discharges have extensively been studied for over 25 years both because of their intriguing physics and because of their utility in producing high plasma densities for industrial applications. Almost all measurements so far have been made away from the antenna region in the plasma ejected into a chamber where there may be a strong magnetic field (B-field) but where the radiofrequency (RF) field is much weaker than under the antenna. Inside the source region, the RF field distorts the current-voltage (I-V) characteristic of the probe unless it is specially designed with strong RF compensation. For this purpose, a thin probe was designed and used to show the effect of inadequate compensation on electron temperature (Te) measurements. The subtraction of ion current from the I-V curve is essential; and, surprisingly, Langmuir's orbital motion limited theory for ion current can be used well beyond its intended regime.

  9. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  10. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  11. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  12. Overview of ion source characterization diagnostics in INTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.

    2016-02-15

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less

  13. Overview of ion source characterization diagnostics in INTF

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  14. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    NASA Astrophysics Data System (ADS)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  15. Record productions establish RF-driven sources as the standard for generating high-duty-factor, high-current H- beams for accelerators (Winner of the ICIS 2017 Brightness Award)

    NASA Astrophysics Data System (ADS)

    Stockli, Martin P.; Welton, Robert F.; Han, Baoxi

    2018-05-01

    The Spallation Neutron Source operates reliably at 1.2 MW and will gradually ramp to 1.4 MW. This paper briefly recalls some of the struggles when the unprecedented project was started and ramped to 1 MW over a 3½ year period. This was challenging, especially for the H- ion source and the low-energy beam transport system, which make up the H- injector. It took several more years to push the H- injector to the 1.4 MW requirements, and even longer to reach close to 100% injector availability. An additional breakthrough was the carefully staged, successful extension of the H- source service cycle so that disruptive source changes became rare events. More than 7 A.h of extracted H- ions have been demonstrated with a single source without maintenance, more than twice the single-source quantity of ions produced by any other high-current H- accelerator facility. Achieving the 1.4 MW requirements with close to 100% availability and record-breaking source service cycles were the basis for the 2017 Brightness Award.

  16. Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi

    2017-10-01

    The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.

  17. RF Energy Interaction With Electro-Optic Materials (Single Investigator Award Proposed to Address Research Topic Area 6.4. Electromagnetics and RF Circuit Integration)

    DTIC Science & Technology

    2015-12-27

    demonstration vehicles. Test and measurement of fabricated structures will be conducted to experimentally quantify RF and optical performance. Measurement...the development of coupled RF and optical structures. Both the graduate student and the undergraduate student were trained in conducting precision...research conducted for this project. The journal paper citations are: 1. L. Chen, J. Nagy, and R. M. Reano, "Patterned ion-sliced lithium niobate for

  18. Pressurized rf cavities in ionizing beams

    DOE PAGES

    Freemire, B.; Tollestrup, A.  V.; Yonehara, K.; ...

    2016-06-20

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less

  19. Ferroelectric Emission Cathodes for Low-Power Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kovaleski, Scott D.; Burke, Tom (Technical Monitor)

    2002-01-01

    Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.

  20. Comparison between numerical and analytical results on the required rf current for stabilizing neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-04-01

    Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.

  1. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  2. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less

  3. An RF-only ion-funnel for extraction from high-pressure gases

    DOE PAGES

    Brunner, T.; Fudenberg, D.; Varentsov, V.; ...

    2015-01-27

    An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10 -6 mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting 136Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gasmore » time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas.« less

  4. RF Stabilization for Storage of Antiprotons

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Lewis, Raymond A.

    2005-01-01

    Portable storage of antimatter is an important step in the experimental exploration of antimatter in propulsion applications. The High Performance Antiproton Trap (HiPAT) at NASA Marshall Space Flight Center is a Penning-Malmberg ion trap being developed to trap and store low energy antiprotons for a period of weeks. The antiprotons can then be transported for use in experiments. HiPAT is being developed and evaluated using normal matter, before an attempt is made to store and transport antiprotons. Stortd ions have inherent instabilities that limit the storage lifetime. RF stabilization at cyclotron resonance frequencies is demonstrated over a period of 6 days for normal matter ion clouds. A variety of particles have been stored, including protons, C+ ions, and H2+ ions. Cyclotron resonance frequencies are defined and experimental evidence presented to demonstrate excitation of cyclotron waves in the plasma for all three species of ions.

  5. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  6. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Portal, S.; Pascual, E.; Polo, M. C.; Andújar, J. L.

    2011-02-01

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH4) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  7. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less

  8. Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.

    2017-10-01

    For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that this input can be provided reliably by the NINJA code.

  9. HIMAC RF system with a digital synthesizer

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Sato, K.; Itano, A.; Sudou, M.; Noda, K.; Takada, E.; Kumada, M.; Yamazaki, C.; Yamagishi, T.; Morii, Y.; Toyoda, E.; Tsuzuki, N.; Yagi, T.

    2000-04-01

    An RF acceleration system, in which digital control with a direct digital synthesizer (DDS) is applied, has been developed for the Heavy Ion Medical Accelerator in Chiba (HIMAC) synchrotron. This digital system allows us to obtain stable operation of the acceleration system over a wide frequency range from 1.04 to 7.9 MHz. In this paper the designed digital RF control system and its performance are described.

  10. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.

    2018-01-01

    Quasiclassical dynamics of trapped ions is characterized by applying the time dependent variational principle (TDVP) on coherent state orbits, in case of quadrupole and octupole combined (Paul and Penning) or radiofrequency (RF) traps. A dequantization algorithm is proposed, by which the classical Hamilton (energy) function associated to the system results as the expectation value of the quantum Hamiltonian on squeezed coherent states. We develop such method and particularize the quantum Hamiltonian for both combined and RF nonlinear traps, that exhibit axial symmetry. We also build the classical Hamiltonian functions for the particular traps we considered, and find the classical equations of motion.

  11. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  12. An electrostatic autoresonant ion trap mass spectrometer.

    PubMed

    Ermakov, A V; Hinch, B J

    2010-01-01

    A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution approximately 60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.

  13. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  14. Equivalent circuit of radio frequency-plasma with the transformer model

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Mochizuki, S.; Ohta, M.; Yasumoto, M.; Lettry, J.; Mattei, S.; Hatayama, A.

    2014-02-01

    LINAC4 H- source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H- source, to that of final amplifier. We model RF plasma inside the H- source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.

  15. Design of 1 MHz Solid State High Frequency Power Supply

    NASA Astrophysics Data System (ADS)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  16. Scheduled Feeding Alters the Timing of the Suprachiasmatic Nucleus Circadian Clock in Dexras 1-Deficient Mice

    PubMed Central

    Bouchard-Cannon, Pascale; Cheng, Hai-Ying M.

    2013-01-01

    Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1−/−) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1−/− mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1−/− mice by ~2 h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. PMID:22928915

  17. Electrical isolation, thermal stability and rf loss in a multilayer GaAs planar doped barrier diode structure bombarded by H+ and Fe+ ions

    NASA Astrophysics Data System (ADS)

    Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.

    2004-04-01

    Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.

  18. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  19. Numerical modeling of the SNS H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved inmore » order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report here on comparisons of simulated plasma parameters and code performance using more accurate physical models, such as two-temperature extended MHD models, for both a related benchmark system describing a inductively coupled plasma reactor, and for the SNS ion source. We also present results from scaling studies for mesh generation and solvers in the USim simulation code.« less

  20. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-07

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less

  1. Reaction chemistry and collisional processes in multiple devices for resolving isobaric interferences in ICP-MS.

    PubMed

    Bandura, D R; Baranov, V I; Tanner, S D

    2001-07-01

    A low-level review of the fundamentals of ion-molecule interactions is presented. These interactions are used to predict the efficiencies of collisional fragmentation, energy damping and reaction for a variety of neutral gases as a function of pressure in a rf-driven collision/reaction cell. It is shown that the number of collisions increases dramatically when the ion energies are reduced to near-thermal (< 0.1 eV), because of the ion-induced dipole and ion-dipole interaction. These considerations suggest that chemical reaction can be orders of magnitude more efficient at improving the analyte signal/background ratio than can collisional fragmentation. Considerations that lead to an appropriate selection of type of gas, operating pressure, and ion energies for efficient operation of the cell for the alleviation of spectral interferences are discussed. High efficiency (large differences between reaction efficiencies of the analyte and interference ions, and concomitant suppression of secondary chemistry) might be required to optimize the chemical resolution (determination of an analyte in the presence of an isobaric interference) when using ion-molecule chemistry to suppress the interfering ion. In many instances atom transfer to the analyte, which shifts the analytical m/z by the mass of the atom transferred, provides high chemical resolution, even when the efficiency of reaction is relatively low. Examples are given of oxidation, hydroxylation, and chlorination of analyte ions (V+, Fe+, As+, Se+, Sr+, Y+, and Zr+) to improve the capability of determination of complex samples. Preliminary results are given showing O-atom abstraction by CO from CaO+ to enable the determination of Fe in high-Ca samples.

  2. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  3. MODELING OF ION-EXCHANGE FOR CESIUM REMOVAL FROM DISSOLVED SALTCAKE IN SRS TANKS 1-3, 37 AND 41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F

    2007-08-15

    This report presents an evaluation of the expected performance of engineered Crystalline Silicotitanate (CST) and spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from dissolved saltcake in SRS Tanks 1-3, 37 and 41. The application presented in this report reflects the expected behavior of engineered CST IE-911 and spherical RF resin manufactured at the intermediate-scale (approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in RF resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary. As such,more » the predictions provided within this report should provide reasonable estimates of production-scale column performance. Two versions of the RF cesium isotherm were used. The older version provides a conservative estimate of the resin capacity while the newer version more accurately fits the most recent experimental data.« less

  4. Analysis of metallic impurity density profiles in low collisionality Joint European Torus H-mode and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.

    2006-04-01

    This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give ground to the idea that in ITER it should be possible to find conditions in which the risk of accumulation of metals such as nickel can be contained.

  5. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  6. Investigation of radiofrequency plasma sources for space travel

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Takahashi, K.

    2012-12-01

    Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (˜1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (˜1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT).

  7. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  8. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  9. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    PubMed

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  10. Method and apparatus for directing ions and other charged particles generated at near atmospheric pressures into a region under vacuum

    DOEpatents

    Smith, Richard D.; Shaffer, Scott A.

    2000-01-01

    A method and apparatus for focusing dispersed charged particles. More specifically, a series of elements within a region maintained at a pressure between 10.sup.-1 millibar and 1 bar, each having successively larger apertures forming an ion funnel, wherein RF voltages are applied to the elements so that the RF voltage on any element has phase, amplitude and frequency necessary to define a confinement zone for charged particles of appropriate charge and mass in the interior of the ion funnel, wherein the confinement zone has an acceptance region and an emmitance region and where the acceptance region area is larger than the emmitance region area.

  11. Radiofrequency antenna for suppression of parasitic discharges in a helicon plasma thruster experiment.

    PubMed

    Takahashi, Kazunori

    2012-08-01

    A radiofrequency (rf) antenna for helicon plasma thruster experiments is developed and tested using a permanent magnets helicon plasma source immersed in a vacuum chamber. A magnetic nozzle is provided by permanent magnets arrays and an argon plasma is produced by a 13.56 MHz radiofrequency helicon-wave or inductively-coupled discharge. A parasitic discharge outside the source tube is successfully suppressed by covering the rf antenna with a ceramic ring and a grounded shield; a decrease in the ion saturation current of a Langmuir probe located outside the source tube is observed and the ion saturation current on axis increases simultaneously, compared with the case of a standard uncovered rf antenna. It is also demonstrated that the covered antenna can yield stable operation of the source.

  12. Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET

    NASA Astrophysics Data System (ADS)

    Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.

    2018-04-01

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.

  13. Review of the High Performance Antiproton Trap (HiPAT) Experiment at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.

  14. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  15. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  16. Numerical Study of HHFW Heating in FRC Plasmas

    NASA Astrophysics Data System (ADS)

    Ceccherini, Francesco; Galeotti, Laura; Brambilla, Marco; Dettrick, Sean; Yang, Xiaokang; TAE Team

    2017-10-01

    The TriAlpha Energy (TAE) code RF-Pisa is a Finite Larmor Radius (FLR) full wave code developed over the years to study RF heating in the Field Reversed Configuration (FRC) in both the ion and electron cyclotron regimes. The FLR approximation is perfectly adequate to address RF propagation and absorption at the fundamental and second harmonic frequencies (as in the minority heating scheme), but it is not able to describe higher order processes such as high-harmonic fast waves (HHFW). The latter ones have frequencies lying between the ion cyclotron and lower hybrid resonances and they may represent a viable path to develop an efficient method to deposit energy inside the FRC separatrix, as suggested by recent results obtained at NSTX. A significant upgrade of RF-Pisa to include HHFW has been undertaken. In particular, the so-called ``quasi local approximation'' originally proposed for toroidal geometries has been re-derived for the cylindrical geometry and a new HHFW version of RF-Pisa concurrent to the FLR version has been developed. Here we present the first results of the application of the new code to FRC equilibria and we discuss the features of the dispersion relations and the absorption processes which characterize this novel regime.

  17. Ag + reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant

    DOE PAGES

    Kondeti, V. S. Santosh K.; Gangal, Urvashi; Yatom, Shurik; ...

    2017-07-21

    Here, the involvement of plasma produced species in the reduction of silver ions at the plasma–liquid interface is investigated using a well-characterized radio-frequency driven atmospheric pressure plasma jet. The absolute gas phase H density was measured using two photon absorption laser induced fluorescence in the free jet. Broadband absorption and transmission electron microscopy were used to study the synthesis of silver nanoparticles (AgNPs). It is shown that fructose, an often used surfactant/stabilizer for AgNP synthesis, also acts as a reducing agent after plasma exposure. Nonetheless, surfactant free AgNP synthesis is observed. Several experimental findings indicate that H plays an importantmore » role in the reduction of silver ions for the plasma conditions in this study. Vacuum ultraviolet photons generated by the plasma are able to reduce silver ions in the presence of fructose. Adding H2 to the argon feed gas leads to the production of a large amount of AgNPs having a particle size distribution with a maximum at a diameter of 2–3 nm, which is not observed for argon plasmas. This finding is consistent with a smaller concentration of reducing species at the plasma–liquid interface for Ar with the H2 admixture plasma. The smaller flux of reactive species to the liquid is in this case due to a less strong interaction of the plasma with the liquid. The formation of the nanoparticles was observed even at a distance of 6–7 mm below the tip of the plasma plume, conditions not favoring the injection of electrons.« less

  18. Ag + reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondeti, V. S. Santosh K.; Gangal, Urvashi; Yatom, Shurik

    Here, the involvement of plasma produced species in the reduction of silver ions at the plasma–liquid interface is investigated using a well-characterized radio-frequency driven atmospheric pressure plasma jet. The absolute gas phase H density was measured using two photon absorption laser induced fluorescence in the free jet. Broadband absorption and transmission electron microscopy were used to study the synthesis of silver nanoparticles (AgNPs). It is shown that fructose, an often used surfactant/stabilizer for AgNP synthesis, also acts as a reducing agent after plasma exposure. Nonetheless, surfactant free AgNP synthesis is observed. Several experimental findings indicate that H plays an importantmore » role in the reduction of silver ions for the plasma conditions in this study. Vacuum ultraviolet photons generated by the plasma are able to reduce silver ions in the presence of fructose. Adding H2 to the argon feed gas leads to the production of a large amount of AgNPs having a particle size distribution with a maximum at a diameter of 2–3 nm, which is not observed for argon plasmas. This finding is consistent with a smaller concentration of reducing species at the plasma–liquid interface for Ar with the H2 admixture plasma. The smaller flux of reactive species to the liquid is in this case due to a less strong interaction of the plasma with the liquid. The formation of the nanoparticles was observed even at a distance of 6–7 mm below the tip of the plasma plume, conditions not favoring the injection of electrons.« less

  19. A trapped mercury 199 ion frequency standard

    NASA Technical Reports Server (NTRS)

    Cutler, L. S.; Giffard, R. P.; Mcguire, M. D.

    1982-01-01

    Mercury 199 ions confined in an RF quadrupole trap and optically pumped by mercury 202 ion resonance light are investigated as the basis for a high performance frequency standard with commercial possibilities. Results achieved and estimates of the potential performance of such a standard are given.

  20. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.

    PubMed

    Fazal, Sajid; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy

    2017-08-30

    This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl 2 , which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.

  1. Extraction of thermalized projectile fragments from a large volume gas cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, K.; Sumithrarachchi, C. S.; Morrissey, D. J.

    2014-11-01

    Experiments to determine the stopping and extraction efficiency of energetic (90 MeV/u) 76Ga fragments in a 1.2 m long gas cell filled with helium at 123 mbar are reported. The thermalized ions were transported by DC and RF fields as well as gas flow, then jetted through a supersonic nozzle into a RF quadrupole ion-guide and accelerated into an electrostatic beam line. The ions were collected in either a Faraday cup or a silicon beta-detector immediately after acceleration or after magnetic analysis. The range distributions of the ions and extraction efficiency of the system were measured for different implantation ratesmore » and compared with the theoretically calculated values. The singly charged 76Ga ions were observed as [ 76Ga(H 2O) n] + molecular ions with n=0, 1, and 2. The stopping efficiency and the extraction efficiency were obtained from the measured distributions and compared to previous results from other devices.« less

  2. Self-induced steady-state magnetic field in the negative ion sources with localized rf power deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivarova, A.; Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia-bg; Lishev, St.

    2016-02-15

    The study is in the scope of a recent activity on modeling of SPIDER (Source for Production of Ions of Deuterium Extracted from RF plasma) which is under development regarding the neutral beam injection heating system of ITER. The regime of non-ambipolarity in the source, established before, is completed here by introducing in the model the steady state magnetic field, self-induced in the discharge due to the dc current flowing in it. Strong changes in the discharge structure are reported.

  3. Rf system for the NSLS coherent infrared radiation source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, W.; Biscardi, R.; Keane, J.

    1995-05-01

    The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less

  4. Modelling of minority ion cyclotron current drive during the activated phase of ITER

    NASA Astrophysics Data System (ADS)

    Laxåback, M.; Hellsten, T.

    2005-12-01

    Neoclassical tearing modes, triggered by the long-period sawteeth expected in tokamaks with large non-thermal α-particle populations, may impose a severe β limit on experiments with large fusion yields and on reactors. Sawtooth destabilization by localized current drive could relax the β limit and improve plasma performance. 3He minority ion cyclotron current drive around the sawtooth inversion radius has been planned for ITER. Several ion species, including beam injected D ions and fusion born α particles, are however also resonant in the plasma and may represent a parasitic absorption of RF power. Modelling of minority ion cyclotron current drive in an ITER-FEAT-like plasma is presented, including the effects of ion trapping, finite ion drift orbit widths, wave-induced radial transport and the coupled evolution of wave fields and resonant ion distributions. The parasitic absorption of RF power by the other resonant species is concluded to be relatively small, but the 3He minority current drive is nevertheless negligible due to the strong collisionality of the 3He ions and the drag current by toroidally counter-rotating background ions and co-rotating electrons. H minority current drive is found to be a significantly more effective alternative.

  5. Design and Calibration of an RF Actuator for Low-Level RF Systems

    NASA Astrophysics Data System (ADS)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  6. Investigation of RF Emissions from Electric Field Dominated Plasmas

    DTIC Science & Technology

    1989-03-31

    David Rosenberg and Mr. Paul D. Spence, "RF Plasma Emissions Measured with Calibrated, Broadband Antenna". February 19 Mr. Antonino Carnevali, Fusion...plasma equipment exhibitors, and major Japanese i fusion facilities. November 20 Dr. Antonino Carnevalli, RPI and Fusion Energy Division, ORNL: "H av Ion

  7. Frequency-locked chaotic opto-RF oscillator.

    PubMed

    Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc

    2016-06-15

    A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.

  8. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  9. Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.

    2012-01-01

    A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.

  10. Evidence for electron-based ion generation in radio-frequency ionization.

    PubMed

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    NASA Astrophysics Data System (ADS)

    Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.

  12. RF plasma modeling of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.

    2013-02-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  13. Design of a cavity ring-down spectroscopy diagnostic for negative ion rf source SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualotto, R.; Alfier, A.; Lotto, L.

    2010-10-15

    The rf source test facility SPIDER will test and optimize the source of the 1 MV neutral beam injection systems for ITER. Cavity ring-down spectroscopy (CRDS) will measure the absolute line-of-sight integrated density of negative (H{sup -} and D{sup -}) ions, produced in the extraction region of the source. CRDS takes advantage of the photodetachment process: negative ions are converted to neutral hydrogen atoms by electron stripping through absorption of a photon from a laser. The design of this diagnostic is presented with the corresponding simulation of the expected performance. A prototype operated without plasma has provided CRDS reference signals,more » design validation, and results concerning the signal-to-noise ratio.« less

  14. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.

    PubMed

    Kerdtongmee, P; Srinoum, D; Nisoa, M

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  15. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering

    NASA Astrophysics Data System (ADS)

    Kerdtongmee, P.; Srinoum, D.; Nisoa, M.

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  16. Progress towards the Advanced Cryogenic Gas Stopper at NSCL

    NASA Astrophysics Data System (ADS)

    Lund, Kasey; Bollen, Georg; Villiari, Antonio; Lawton, Don; Morrissey, Dave; Otterson, Jack; Ringle, Ryan; Schwarz, Stefan; Sumithrarachchi, Chandana; Yurkon, John; Advanced Cryogenic Gas Stopper Design Team

    2016-09-01

    Beam stopping is the key to performing experiments with low-energy beams of rare isotopes produced by projectile fragmentation. Linear gas stoppers filled with helium have become reliable tools to accomplish this task. Further developments are underway to maximize efficiency and beam rate capability in order to increase scientific reach. Improvements include increasing extraction efficiency, lowering decay losses due to slow transport time, reducing molecular combination of the isotope of interest with background impurity gases, and minimizing space charge effects. The ACGS under construction at NSCL is designed to increase performance by overcoming some of the more common issues. The use of a 4-phase RF wire carpet to generate an electrical traveling wave speeds up the ion transport times. Cryogenic cooling of the helium gas chamber reduces molecular ion information. A geometry that puts the RF carpet in the mid-plane of the gas stopper alleviates space charge effects. Prototype testing of important ACGS components has been completed, specifically ion transport tests of the newly designed RF wire carpets. Transport efficiencies up to 95% were demonstrated as well as transport speeds up to 100 m/s. RC104100.7301.

  17. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    NASA Astrophysics Data System (ADS)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  18. Noninvasive radio frequency for skin tightening and body contouring.

    PubMed

    Weiss, Robert A

    2013-03-01

    The medical use of radio frequency (RF) is based on an oscillating electrical current forcing collisions between charged molecules and ions, which are then transformed into heat. RF heating occurs irrespective of chromophore or skin type and is not dependent on selective photothermolysis. RF can be delivered using monopolar, bipolar, and unipolar devices, and each method has theoretical limits of depth penetration. A variant of bipolar delivery is fractional RF delivery. In monopolar configurations, RF will penetrate deeply and return via a grounding electrode. Multiple devices are available and are detailed later in the text. RF thermal stimulation is believed to result in a microinflammatory process that promotes new collagen. By manipulating skin cooling, RF can also be used for heating and reduction of fat. Currently, the most common uses of RF-based devices are to noninvasively manage and treat skin tightening of lax skin (including sagging jowls, abdomen, thighs, and arms), as well as wrinkle reduction, cellulite improvement, and body contouring.

  19. Phase-locking dynamics in optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath

    2018-05-01

    This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.

  20. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  1. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  2. Development of fundamental power coupler for C-ADS superconducting elliptical cavities

    NASA Astrophysics Data System (ADS)

    Gu, Kui-Xiang; Bing, Feng; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo

    2017-06-01

    5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven sub-critical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper. Supported by China ADS Project (XDA03020000) and National Natural Science Foundation of China (11475203)

  3. Leakage current evaluation for pn junctions formed in DC and RF MeV ion implanted wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagisawa, Yasunobu; Honda, Mitsuharu; Ogasawara, Makota

    1996-12-31

    The leakage current of pn junctions formed in DC and RF MeV implanted wells have been evaluated. There is no substantial difference in the leakage current levels between the continuous and pulsive beam implantations. However, the leakage current, so called diffusion current, for RF implanted wells is slightly higher than that for DC implanted wells on some condition. This suggests a possibility that relatively higher density of residual defects remains in the case of RIF implant.

  4. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  5. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  6. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less

  7. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  8. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  9. Stimulated Motion Suppression (STMS): a New Approach to Break the Resolution Barrier for Ion Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyu; Liu, Xinwei; Chiang, Spencer; Cao, Wenbo; Li, Ming; Ouyang, Zheng

    2018-05-01

    Ion trap is an excellent platform to perform tandem mass spectrometry (MS/MS), but has an intrinsic drawback in resolving power. Using ion resonant ejection as an example, the resolution degradation can be largely attributed to the broadening of the resonant frequency band (RFB) between ion motion and driving alternative-current (AC). To solve this problem, stimulated motion suppression (STMS) was developed. The key idea of STMS is the use of two suppression alternative-current (SAC) signals, which both have reversed initial phases to the main AC. The SACs can block the unexpected sideband ion resonances (or ejections), therefore playing a key role in sharpening the RFB. The proof-of-concept has been demonstrated through ion trajectory simulations and validated experimentally. STMS provides a new and versatile means for the improvement of the ion trap resolution, which for a long time has reached the bottleneck through conventional methods, e.g., increasing the radio-frequency (RF) voltage and decreasing the mass scan rate. At the end, it is worth noting that the idea of STMS is very general and principally can be applied in any RF device for the purposes of high-resolution mass analysis and ion isolation.

  10. Imaging of the native inversion layer in Silicon-On-Insulator wafers via Scanning Surface Photovoltage: Implications for RF device performance

    NASA Astrophysics Data System (ADS)

    Dahanayaka, Daminda; Wong, Andrew; Kaszuba, Philip; Moszkowicz, Leon; Slinkman, James; IBM SPV Lab Team

    2014-03-01

    Silicon-On-Insulator (SOI) technology has proved beneficial for RF cell phone technologies, which have equivalent performance to GaAs technologies. However, there is evident parasitic inversion layer under the Buried Oxide (BOX) at the interface with the high resistivity Si substrate. The latter is inferred from capacitance-voltage measurements on MOSCAPs. The inversion layer has adverse effects on RF device performance. We present data which, for the first time, show the extent of the inversion layer in the underlying substrate. This knowledge has driven processing techniques to suppress the inversion.

  11. Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.

  12. Electron cyclotron resonance sources: Historical review and future prospects (invited)

    NASA Astrophysics Data System (ADS)

    Geller, R.

    1998-03-01

    Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.

  13. Electron cyclotron resonance sources: Historical review and future prospects (invited)

    NASA Astrophysics Data System (ADS)

    Geller, R.

    1998-02-01

    Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.

  14. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less

  15. Mitigation of Parallel RF Potentials by an Appropriate Antenna Design Using TOPICA

    NASA Astrophysics Data System (ADS)

    Maggiora, R.; Milanesio, D.

    2011-12-01

    A substantial effort has been devoted in recent years to the optimization of the ITER Ion Cyclotron (IC) launcher [1], above all with the aim of maximizing the coupling performances of the antenna; good improvements have been documented by using TOPICA code [2], a predictive tool for the design and optimization of RF launchers in front of a plasma region. Despite the progresses in the mentioned topic, this is not the only issue related to the design of IC antennas: a second crucial aspect is the impurities production, which is driven by the parallel RF potentials generated by the antenna itself and by the surrounding structures. The goal of this work is to analyze a set of innovative solutions that could be implemented in the next generation of IC antennas in order to mitigate the parallel RF potentials without reducing the power delivered to plasma. To achieve this challenging task, the TOPICA code has been adopted, taking advantage of recently introduced features. In particular, the code permits to compute the electric field distribution everywhere inside the antenna enclosure and in the plasma column, allowing to determine not only the magnitude and shape of the fields in front of the antenna, but also to evaluate their radial decay. Provided the electric field map, it is then possible to determine the parallel RF potentials and, even more important, to directly verify the impact of geometrical modifications of the front elements of the antenna on the RF potentials themselves. Furthermore, the capability to simulate the full 3D antenna with a high geometrical accuracy (as the one provided by commercial codes) and to account for an accurate plasma model indicates in TOPICA code a perfect candidate for this specific task. To lower the parallel RF potentials, two complementary approaches are outlined in the paper: the first one acts on the reduction of the electric field values, the second works on the minimization of the geometrical asymmetries. Pros and cons of the adopted solutions are discussed in detail. Two realistic cases have been taken into account in this work. Firstly, an ITER-like IC launcher has been adopted as a reference and optimized, then few solutions have been proposed for the ASDEX Upgrade experiment, with the final goal of testing the most promising concept for the machine in the coming years. This second activity has been carried out in collaboration with IPP-Garching and ENEA-Frascati.

  16. Power supply system for negative ion source at IPR

    NASA Astrophysics Data System (ADS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low & high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.

  17. Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazzini, Tommaso, E-mail: tommaso.brazzini@bristol.ac.uk; Sun, Huarui; Uren, Michael J.

    2015-05-25

    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line.more » However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.« less

  18. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  19. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    PubMed

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  20. Spatial distribution of the RF power absorbed in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Aleksenko, O. V.; Miroshnichenko, V. I.; Mordik, S. N.

    2014-08-01

    The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.

  1. Numerical study of the inductive plasma coupling to ramp up the plasma density for the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.

    2014-02-01

    In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.

  2. Improved RF Measurements of SRF Cavity Quality Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzbauer, J. P.; Contreras, C.; Pischalnikov, Y.

    SRF cavity quality factors can be accurately measured using RF-power based techniques only when the cavity is very close to critically coupled. This limitation is from systematic errors driven by non-ideal RF components. When the cavity is not close to critically coupled, these systematic effects limit the accuracy of the measurements. The combination of the complex base-band envelopes of the cavity RF signals in combination with a trombone in the circuit allow the relative calibration of the RF signals to be extracted from the data and systematic effects to be characterized and suppressed. The improved calibration allows accurate measurements tomore » be made over a much wider range of couplings. Demonstration of these techniques during testing of a single-spoke resonator with a coupling factor of near 7 will be presented, along with recommendations for application of these techniques.« less

  3. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    NASA Astrophysics Data System (ADS)

    Menshawy, S.; Jenkins, A. S.; Merazzo, K. J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ebels, U.; Bortolotti, P.; Kermorvant, J.; Cros, V.

    2017-05-01

    Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf) detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs). In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  4. Recent Development of IMP ECR Ion Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.W.; Zhang, Z.M.; Sun, L.T.

    2005-03-15

    Great efforts have been made to develop highly charged ECR ion sources for application of heavy ion accelerator and atomic physics research at IMP in the past few years. The latest development of ECR ion sources at IMP is briefly reviewed. Intense beams with high and intermediate charge states have been produced from IMP LECR3 by optimization of the ion source conditions including rf frequency extended up to 18GHz. 1.1 emA of Ar8+ and 325 e{mu} A of Ar11+ were produced. Dependence of beam emittance on those key parameters of ECR ion source, beam extraction and space charge compensation weremore » experimentally studied at LECR3. Furthermore, an advanced superconducting ECR ion source named SECRAL is being constructed. SECRAL is designed to operate at rf frequency 18-28GHz with axial mirror magnetic fields 3.6-4.0 Tesla at injection, 2.2 Tesla at extraction and sextupole field 2.0 Tesla at the wall. The superconducting magnet with sextupole and three solenoids was tested in a test-cryostat and 95% of designed fields were reached. Construction status and planed schedule of SECRAL are presented.« less

  5. Discrimination of ionic species from broad-beam ion sources

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.

    1993-01-01

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.

  6. Miniaturized magnet-less RF electron trap. II. Experimental verification

    DOE PAGES

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...

    2017-06-15

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  7. The effects of an ion-thruster exhaust plume on S-band carrier transmission

    NASA Technical Reports Server (NTRS)

    Ackerknecht, W. E., III; Stanton, P. H.

    1976-01-01

    The magnitude of the effects of an ion thruster plume on S-band signals is measured. Modeling techniques are developed to predict the effects. Results show that the RF signal transmitted through an ion thruster plume is reduced in amplitude and shifted in phase. An increase in noise is also experienced.

  8. Effect of Ag Surfactant on Cu/Co Multilayers Deposited by RF-Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Amir, S. M.; Gupta, M.; Gupta, A.; Wildes, A.

    2011-07-01

    In this work, the effect of Ag surfactant in RF-ion beam sputtered Cu/Co multilayers was studied. It was found that when a sub-monolayer of Ag (termed as surfactant) is deposited prior to the deposition of Cu/Co multilayers, the asymmetry in the Cu/Co or Co/Cu interfaces becomes small. Low surface free energy of Ag helps Ag atoms to float when a Cu or Co layer is getting deposited. This balances the difference between the surface free energy of Cu and Co making the interfaces in the multilayers smoother as compared to the case when no Ag surfactant was used.

  9. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  10. Virtual IED sensor at an rf-biased electrode in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bogdanova, Maria; Lopaev, Dmitry; Zyryanov, Sergey; Rakhimov, Alexander

    2016-09-01

    The majority of present-day technologies resort to ion-assisted processes in rf low-pressure plasma. In order to control the process precisely, the energy distribution of ions (IED) bombarding the sample placed on the rf-biased electrode should be tracked. In this work the ``Virtual IED sensor'' concept is considered. The idea is to obtain the IED ``virtually'' from the plasma sheath model including a set of externally measurable discharge parameters. The applicability of the ``Virtual IED sensor'' concept was studied for dual-frequency asymmetric ICP and CCP discharges. The IED measurements were carried out in Ar and H2 plasmas in a wide range of conditions. The calculated IEDs were compared to those measured by the Retarded Field Energy Analyzer. To calibrate the ``Virtual IED sensor'', the ion flux was measured by the pulsed self-bias method and then compared to plasma density measurements by Langmuir and hairpin probes. It is shown that if there is a reliable calibration procedure, the ``Virtual IED sensor'' can be successfully realized on the basis of analytical and semianalytical plasma sheath models including measurable discharge parameters. This research is supported by Russian Science Foundation (RSF) Grant 14-12-01012.

  11. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    NASA Astrophysics Data System (ADS)

    Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira

    2018-03-01

    High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  12. Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined alphas and tritons on TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.; Duong, H.H.; Fisher, R.K.

    1996-05-01

    Radially-resolved energy and density distributions of the energetic confined alpha particles in D-T experiments on TFTR are being measured by active neutral particle analysis using low-Z impurity pellet injection. When injected into a high temperature plasma, an impurity pellet (e.g. Lithium or Boron) rapidly ablates forming an elongated cloud which is aligned with the magnetic field and moves with the pellet. This ablation cloud provides a dense target with which the alpha particles produced in D-T fusion reactions can charge exchange. A small fraction of the alpha particles incident on the pellet ablation cloud will be converted to helium neutralsmore » whose energy is essentially unchanged by the charge transfer process. By measuring the resultant helium neutrals escaping from the plasma using a mass and energy resolving charge exchange analyzer, this technique offers a direct measurement of the energy distribution of the incident high-energy alpha particles. Other energetic ion species can be detected as well, such as tritons generated in D-D plasmas and H or He{sup 3} RF-driven minority ion tails. The diagnostic technique and its application on TFTR are described in detail.« less

  13. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed Central

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  14. Determination of plasma density from data on the ion current to cylindrical and planar probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models weremore » used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.« less

  15. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The QMA-based instrument will thus give way to substantial reductions of the mass of flight instruments.

  16. Cleaning techniques for intense ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menge, P.R.; Cuneo, M.E.; Bailey, J.E.

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE.more » The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O{sub 2} can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated.« less

  17. Study of selective heating at ion cyclotron resonance for the plasma separation process

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  18. Dynamic Data Driven Applications Systems (DDDAS)

    DTIC Science & Technology

    2013-03-06

    INS •  Chip-scale atomic clocks •  Ad hoc networks •  Polymorphic networks •  Agile networks •  Laser communications •  Frequency-agile RF...atomi clocks •  Ad hoc networks •  Polymorphic networks •  Agile networks •  Laser co munications •  Frequency-agile RF systems...Real-Time Doppler Wind Wind field Sensor observations Energy Estimation Atmospheric Models for On-line Planning Planning and Control

  19. Power supply with air core transformer and seperated power supplies for high dynamic range

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor)

    2001-01-01

    A power supply for a quadrupole mass spectrometer which operates using an RF signal. The RF signal is controllable via a feedback loop. The feedback loop is from the output, through a comparator, and compared to a digital signal. An air core transformer is used to minimize the weight. The air core transformer is driven via two out of phase sawtooth signals which drive opposite ends of the transformer.

  20. Development of a helicon ion source: Simulations and preliminary experiments.

    PubMed

    Afsharmanesh, M; Habibi, M

    2018-03-01

    In the present context, the extraction system of a helicon ion source has been simulated and constructed. Results of the ion source commissioning at up to 20 kV are presented as well as simulations of an ion beam extraction system. Argon current of more than 200 μA at up to 20 kV is extracted and is characterized with a Faraday cup and beam profile monitoring grid. By changing different ion source parameters such as RF power, extraction voltage, and working pressure, an ion beam with current distribution exhibiting a central core has been detected. Jump transition of ion beam current emerges at the RF power near to 700 W, which reveals that the helicon mode excitation has reached this power. Furthermore, measuring the emission line intensity of Ar ii at 434.8 nm is the other way we have used for demonstrating the mode transition from inductively coupled plasma to helicon. Due to asymmetrical longitudinal power absorption of a half-helix helicon antenna, it is used for the ion source development. The modeling of the plasma part of the ion source has been carried out using a code, HELIC. Simulations are carried out by taking into account a Gaussian radial plasma density profile and for plasma densities in range of 10 18 -10 19 m -3 . Power absorption spectrum and the excited helicon mode number are obtained. Longitudinal RF power absorption for two different antenna positions is compared. Our results indicate that positioning the antenna near to the plasma electrode is desirable for the ion beam extraction. The simulation of the extraction system was performed with the ion optical code IBSimu, making it the first helicon ion source extraction designed with the code. Ion beam emittance and Twiss parameters of the ellipse emittance are calculated at different iterations and mesh sizes, and the best values of the mesh size and iteration number have been obtained for the calculations. The simulated ion beam extraction system has been evaluated using optimized parameters such as the gap distance between electrodes, electrodes aperture, and extraction voltage. The gap distance, ground electrode aperture, and extraction voltage have been changed between 3 and 9 mm, 2-6.5 mm, and 10-35 kV in the simulations, respectively.

  1. Development of a helicon ion source: Simulations and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Afsharmanesh, M.; Habibi, M.

    2018-03-01

    In the present context, the extraction system of a helicon ion source has been simulated and constructed. Results of the ion source commissioning at up to 20 kV are presented as well as simulations of an ion beam extraction system. Argon current of more than 200 μA at up to 20 kV is extracted and is characterized with a Faraday cup and beam profile monitoring grid. By changing different ion source parameters such as RF power, extraction voltage, and working pressure, an ion beam with current distribution exhibiting a central core has been detected. Jump transition of ion beam current emerges at the RF power near to 700 W, which reveals that the helicon mode excitation has reached this power. Furthermore, measuring the emission line intensity of Ar ii at 434.8 nm is the other way we have used for demonstrating the mode transition from inductively coupled plasma to helicon. Due to asymmetrical longitudinal power absorption of a half-helix helicon antenna, it is used for the ion source development. The modeling of the plasma part of the ion source has been carried out using a code, HELIC. Simulations are carried out by taking into account a Gaussian radial plasma density profile and for plasma densities in range of 1018-1019 m-3. Power absorption spectrum and the excited helicon mode number are obtained. Longitudinal RF power absorption for two different antenna positions is compared. Our results indicate that positioning the antenna near to the plasma electrode is desirable for the ion beam extraction. The simulation of the extraction system was performed with the ion optical code IBSimu, making it the first helicon ion source extraction designed with the code. Ion beam emittance and Twiss parameters of the ellipse emittance are calculated at different iterations and mesh sizes, and the best values of the mesh size and iteration number have been obtained for the calculations. The simulated ion beam extraction system has been evaluated using optimized parameters such as the gap distance between electrodes, electrodes aperture, and extraction voltage. The gap distance, ground electrode aperture, and extraction voltage have been changed between 3 and 9 mm, 2-6.5 mm, and 10-35 kV in the simulations, respectively.

  2. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    DOE PAGES

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less

  3. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    PubMed

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  4. Mass-selective isolation of ions stored in a quadrupole ion trap. A simulation study

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Londry, Frank A.; Alfred, Roland L.; Franklin, Anthony M.; Todd, John F. J.

    1992-01-01

    Trajectories of single ions stored in the quadrupole ion trap have been calculated using a simulation program described as the specific program for quadrupolar resonance (SPQR). Previously, the program has been used for the investigation of quadrupolar resonance excitation of ions with a static working point (or co-ordinates) in the stability diagram. The program has been modified to accommodate continuous d.c. and/or r.f. voltage ramps so as to permit calculation of ion trajectories while the working point is being changed. The modified program has been applied to the calculation of ion trajectories during ion isolation, or mass-selective storage, in the ion trap. The quadrupolar resonance excitation aspect of SPQR was not used in this study. Trajectories are displayed as temporal variations of ion kinetic energy, and axial and radial excursions from the centre of the ion trap. The working points of three ion species (m/z 144, 146 and 148), located initially on the qz, axis with qz [approximate] 0.12, were moved to the vicinity of the upper apex by a combination of r.f. and d.c. voltages applied in succession. Stable trajectories were maintained only for the ion species of m/z 146 for which the working point lay within this apex; the other ion species were ejected either radially or axially. The d.c. voltage was then reduced to zero so as to restore the working point of the isolated ion species to the qz axis. The amplitude of the r.f voltage was reduced to its initial value so as to retrieve the initial working point for m/z 146. The process extended over a real time of 2.9 ms, and was collision-free. The trajectory of the isolated ion was stable during this process; the ion species with m/z value lower than that of the target ion, that is, m/z 144, was ejected axially at the [beta]z = 1 boundary, while that with higher m/z value, that is, m/z 148, was ejected radially at the [beta]r = 0 boundary, as expected. The moderating effects of buffer gas were not taken into consideration and ion kinetic energies during the sorting period were found to be sufficiently great that dissociative losses may be appreciable in a collisional system. A possible strategy for reducing kinetic energy during this process has been proposed.

  5. Design and simulation of ion optics for ion sources for production of singly charged ions

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  6. Studies of ion kinetic effects in OMEGA shock-driven implosions using fusion burn imaging

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Seguin, F. H.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Meyerhofer, D. D.; Atzeni, S.; Nikroo, A.

    2014-10-01

    Ion kinetic effects have been inferred in a series of shock-driven implosions at OMEGA from an increasing yield discrepancy between observations and hydrodynamic simulations as the ion-ion mean free path increases. To more precisely identify the nature and impact of ion kinetic effects, spatial burn profile measurements of DD and D3He reactions in these D3He-filled shock-driven implosions are presented and contrasted to both purely hydrodynamic models and models that include ion kinetic effects. It is shown that in implosions where the ion mean free path is equal to or greater than the size of the fuel region, purely hydrodynamic models fail to capture the observed burn profiles, while a model that includes ion diffusion is able to recover the observed burn profile shape. These results further elucidate the ion kinetic mechanisms that are present under long mean-free-path conditions after shock convergence in both shock-driven and ablatively-driven implosions. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  7. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  8. Modeling of neutrals in the Linac4 H- ion source plasma: Hydrogen atom production density profile and Hα intensity by collisional radiative model

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Shibata, T.; Ohta, M.; Yasumoto, M.; Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.; Sawada, K.; Fantz, U.

    2014-02-01

    To control the H0 atom production profile in the H- ion sources is one of the important issues for the efficient and uniform surface H- production. The purpose of this study is to construct a collisional radiative (CR) model to calculate the effective production rate of H0 atoms from H2 molecules in the model geometry of the radio-frequency (RF) H- ion source for Linac4 accelerator. In order to validate the CR model by comparison with the experimental results from the optical emission spectroscopy, it is also necessary for the model to calculate Balmer photon emission rate in the source. As a basic test of the model, the time evolutions of H0 production and the Balmer Hα photon emission rate are calculated for given electron energy distribution functions in the Linac4 RF H- ion source. Reasonable test results are obtained and basis for the detailed comparisons with experimental results have been established.

  9. RF H-minus ion source development in China spallation neutron source

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ouyang, H.; Xiao, Y.; Liu, S.; Lü, Y.; Cao, X.; Huang, T.; Xue, K.

    2017-08-01

    China Spallation Neutron Source (CSNS) phase-I project currently uses a Penning surface plasma H- ion source, which has a life time of several weeks with occasional sparks between high voltage electrodes. To extend the life time of the ion source and prepare for the CSNS phase-II, we are trying to develop a RF negative hydrogen ion source with external antenna. The configuration of the source is similar to the DESY external antenna ion source and SNS ion source. However several changes are made to improve the stability and the life time. Firstly, Si3N4 ceramic with high thermal shock resistance, and high thermal conductivity is used for plasma chamber, which can endure an average power of 2000W. Secondly, the water-cooled antenna is brazed on the chamber to improve the energy efficiency. Thirdly, cesium is injected directly to the plasma chamber if necessary, to simplify the design of the converter and the extraction. Area of stainless steel exposed to plasma is minimized to reduce the sputtering and degassing. Instead Mo, Ta, and Pt coated materials are used to face the plasma, which makes the self-cleaning of the source possible.

  10. RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna

    NASA Astrophysics Data System (ADS)

    Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.

    2016-07-01

    In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.

  11. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less

  12. Ion sources for electric propulsion

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1971-01-01

    Ion systems, which accelerate ions of Cs, Hg, or colloid particles by electrostatic fields, are furthest advanced and ready for application. Four kinds of ion sources have been developed: The contact ionization source for Cs as propellants, the electron bombardment source for Cs or Hg, the RF ionization source for Hg, and the hollow needle spray nozzle for colloidal glycerol particles. In each case, the ion beam must be neutralized by injection of electrons shortly behind the exit orifice to avoid adverse space charge effects.

  13. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  14. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  15. DLC Film Formation Technologies by Applying Pulse Voltage Coupled with RF Voltage to Complicated 3-dimensional Substrates and Industrial Application

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuo

    A uniform plasma-based ion implantation and DLC film formation technologies on the surface of complicated 3-dimensional substrates have been developed by applying pulse voltage coupled with RF voltage to the substrates such as plastics, rubber as well as metals with the similar deposition rate. These technologies are widely applicable to both ion implantation and DLC film formation onto the automobile parts, mechanical parts and metal molds. A problem to be solved is reducing cost. The deposition rate of DLC films is expected to increase to around 10μm/hr, which is ten times larger than that of the conventional method, by hybridizing the ICP (Induction Coupling Plasma) with a plus-minus voltage source. This epoch-making technology will be able to substitute for the electro-plating method in the near future. In this paper, the DLC film formation technology by applying both RF and pulse voltage, its applications and its prospect are presented.

  16. Reactive ion etching effects on carbon-doped Ge2Sb2Te5 phase change material in CF4/Ar plasma

    NASA Astrophysics Data System (ADS)

    Shen, Lanlan; Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Liu, Bo; Wu, Liangcai; Cheng, Yan; Feng, Songlin

    2016-10-01

    Recently, carbon-doped Ge2Sb2Te5 (CGST) has been proved to be a high promising material for future phase change memory technology. In this article, reactive ion etching (RIE) of phase change material CGST films is studied using CF4/Ar gas mixture. The effects on gas-mixing ratio, RF power, gas pressure on the etch rate, etch profile and roughness of the CGST film are investigated. Conventional phase change material Ge2Sb2Te5 (GST) films are simultaneously studied for comparison. Compared with GST film, 10 % more CF4 is needed for high etch rate and 10% less CF4 for good anisotropy of CGST due to more fluorocarbon polymer deposition during CF4 etching. The trends of etch rates and roughness of CGST with varying RF power and chamber pressure are similar with those of GST. Furthermore, the etch rate of CGST are more easily to be saturated when higher RF power is applied.

  17. Suppressing Loss of Ions in an Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2010-01-01

    An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.

  18. Optimization of L-lactic Acid Production of Rhizopus Oryzae Mutant RLC41-6 by Ion Beam Implantation at Low-Energy

    NASA Astrophysics Data System (ADS)

    Zhou, Xiuhong; Ge, Chunmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-10-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L-137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88%-91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.

  19. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  20. S180 cell growth on low ion energy plasma treated TiO 2 thin films

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna

    2008-03-01

    X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.

  1. Device simulation of GeSn/GeSiSn pocket n-type tunnel field-effect transistor for analog and RF applications

    NASA Astrophysics Data System (ADS)

    Wang, Suyuan; Zheng, Jun; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2017-11-01

    We present the device simulations of analog and radio frequency (RF) performances of four double-gate pocket n-type tunneling field-effect transistors (NTFETs). The direct current (DC), analog and RF performances of the Ge-homo, GeSn-homo, GeSn/Ge and GeSn/GeSiSn NTFETs, are compared. The GeSn NTFETs greatly improve the on-state current (ION) and average subthreshold slope (SS), when compared with the Ge NTFET. Moreover, the GeSn/GeSiSn NTFET has the largest intrinsic gain (Av), and exhibits a suppressed ambipolar behavior, improved cut-off frequency (fT), and gain bandwidth product (GBW), according to the analyzed analog and RF figures of merit (FOM). Therefore, it can be concluded that the GeSn/GeSiSn NTFET has great potential as a promising candidate for the realization of future generation low-power analog/RF applications.

  2. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhuwen, E-mail: zzwwdxy@gznc.edu.cn; Key Laboratory of Photoelectron Materials Design and Simulation in Guizhou Province, Guiyang 550018; Scientific Research Innovation Team in Plasma and Functional Thin Film Materials in Guizhou Province, Guiyang 550018

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, themore » IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.« less

  3. Atomic ion clock with two ion traps, and method to transfer ions

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  4. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  5. Experiments with trapped ions and ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing, and 3D imaging of atoms from static to higher frequency motion. These ultrafast atomic qubit manipulation tools demonstrate inherent advantages over conventional techniques, offering a fundamentally distinct regime of control and speed not previously achievable.

  6. Preliminary results from the Small Negative Ion Facility (SNIF) at CCFE

    NASA Astrophysics Data System (ADS)

    Zacks, J.; McAdams, R.; Booth, J.; Flinders, K.; Holmes, A. J. T.; Simmonds, M.; Stevens, B.; Stevenson, P.; Surrey, E.; Warder, S.; Whitehead, A.; Young, D.

    2013-02-01

    At Culham Centre for Fusion Energy, a new beam extraction test facility has been built with the purpose of studying and enhancing negative ion beam production and transport. The multipole hydrogen ion source is based on a RF generated plasma using a continuous 5kW power supply operating at the industrial standard frequency of 13.56MHz. The cylindrical source has a diameter of 30cm and a depth of 20cm, with a flat spiral antenna driving the source through a quartz window. The magnet configuration is arranged to produce a dipole filter field across the ion source close to the plasma grid. The plasma load is matched to the RF generator using a Pi matching network. The accelerator uses a single extraction aperture of 14mm diameter, with a biased insert for electron suppression. The accelerator is a triode design with a beam energy of up to 30kV. The beamline consists of a turbomolecular pumped vacuum tank with an instrumented beam dump and ports for additional diagnostics. The ITER Neutral Beam source operates with the enhancement of caesium, which, when scaled up to a reactor, will be heavily consumed. The small size of SNIF allows for fast turn around of modifications and alternative materials to caesium can be tested. A full description of the facility and planned diagnostics is given. Initial results are presented, including measurements and calculations of the plasma load on the RF generator, and beam extraction measurements.

  7. Trapping Mode Dipolar DC Collisional Activation in the RF-Only Ion Guide of a Linear Ion Trap/Time-of-Flight Instrument for Gaseous Bio-Ion Declustering

    PubMed Central

    Webb, Ian K.; Gao, Yang; Londry, Frank A.; McLuckey, Scott A.

    2013-01-01

    The application of dipolar DC (DDC) to the RF-only ion guide (Q0) of a hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collision activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of non-covalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer collisional activation. The key experimental variables in the DDC experiment are the dipolar DC voltage (VDDC), VRF, and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper mass-to-charge limit for ion storage. The VDDC/VRF ratio affects ion temperatures and upper m/z limit in opposing directions. That is, as the ratio increases, ion temperature increases whereas the upper m/z storage limit decreases. However, for a given VDDC/VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to the higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions. PMID:24078247

  8. JLEIC SRF cavity RF Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaoheng; Guo, Jiquan; Wang, Haipeng

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the firstmore » phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.« less

  9. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  10. Development and experimental study of large size composite plasma immersion ion implantation device

    NASA Astrophysics Data System (ADS)

    Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN

    2018-01-01

    Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  12. Detection of radio frequency perturbations using an ion beam diagnostic (abstract)

    NASA Astrophysics Data System (ADS)

    Howard, S.; Si, J.; Crowley, T. P.; Connor, K. A.; Schoch, P. M.; Schatz, J. G.

    2001-01-01

    Presently, experiments are underway at the Plasma Dynamics Laboratory at Rensselaer Polytechnic Institute to demonstrate that the techniques developed for heavy ion beam probe diagnostics (HIBP) can be used to measure radio frequency (rf) fluctuations in plasmas. We hope to measure fluctuations in plasma density and magnetic and electric fields. This will provide a direct measurement of the electric and magnetic fields in the plasma during ICRF heating and thereby improve understanding of heating deposition and wave physics. In addition, the field and the density measurements will be used to determine the plasma reaction to the heating experiments. It is expected that the density measurements will be easiest to interpret, while the electric field measurement will be the most difficult to interpret. The diagnostic issues that will be important in taking data at rf frequencies include faster electronics, signal levels, and path effects. We have used a current to voltage amplifier design to measure 0-500 kHz fluctuations in several previous experiments. By reducing the gain and changing some components, a very similar design is capable of operation at rf frequencies. The modified circuit has been tested up to 15 MHz and worked well. The number of beam ions striking the detector plate in one rf period will be too small to obtain good enough statistics for fluctuation measurements, and therefore, averages over many cycles will be required. We expect to be able to achieve millisecond time resolution in the experiments. The global nature of the modes will tend to make path effects important in the HIBP signals. On the other hand, since the beam will take more than one period to cross the plasma, phase shifts may cancel some of these effects. In addition, a path effect term due to dA/dt will be much more important relative to the electric potential than in lower frequency experiments. The initial experimental plan is to do a series of measurements in which a lithium ion beam passes through an argon helicon plasma. The helicon plasma was chosen because its high density (of order 1019 m-3) will produce a larger HIBP signal than can be obtained from other small plasmas. The helicon plasma is formed within a solenoidal magnetic field of 1 kG on axis. The plasma is excited by an rf antenna that is a modification of the type used in Boswell's experiments.1 The rf power source is presently a 500 W, 13.56 MHz generator. From calculation of final trajectories we have determined that 16-29 keV Li ions can be used to probe a plasma with 1 kG magnetic field on axis. If the signal levels with a lithium beam are too small, a molecular hydrogen source will be used. For testing the basic operation of the ion beam probe we will use a simple plate detector mounted on the output flange. These preliminary experiments will be used to determine the feasibility of measuring density and magnetic field fluctuations. A second set of experiments using a more traditional HIBP energy analyzer as a detector is also planned. This detector will also be able to measure electric field effects on the probing ions. It will also be less sensitive to UV noise from the plasma.

  13. Method of making radio frequency ion source antenna

    DOEpatents

    Ehlers, Kenneth W.; Leung, Ka-Ngo

    1988-01-01

    In the method, the radio frequency (RF) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200.degree. C. to boil off the water from the binder, and then to about 750.degree. C.-850.degree. C. to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the RF antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the RF antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains apprxoimately 45% lead oxide.

  14. Hybrid Modeling of SiH4/Ar Discharge in a Pulse Modulated RF Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Xi-Feng, Wang; Yuan-Hong, Song; You-Nian, Wang; PSEG Team

    2015-09-01

    Pulsed plasmas have offered important advantages in future micro-devices, especially for electronegative gas plasmas. In this work, a one-dimensional fluid and Monte-Carlo (MC) hybrid model is developed to simulate SiH4/Ar discharge in a pulse modulated radio-frequency (RF) capacitively coupled plasma (CCP). Time evolution densities of different species, such as electrons, ions, radicals, are calculated, as well as the electron energy probability function (EEPF) which is obtained by a MC simulation. By pulsing the RF source, the electron energy distributions and plasma properties can be modulated by pulse frequency and duty cycle. High electron energy tails are obtained during power-on period, with the SiHx densities increasing rapidly mainly by SiH4 dissociation. As the RF power is off, the densities in the bulk region decrease rapidly owing to high energy electrons disappear, but increase near electrodes since diffusion without the confinement of high electric field, which can prolong the time of radials deposition on the plate. Especially, in the afterglow, the increase of negative ions near the electrodes results from cool electron attachment, which are good for film deposition. This work was supported by the National Natural Science Foundation of China (Grant No. 11275038).

  15. Method of making radio frequency ion source antenna and such antenna

    DOEpatents

    Ehlers, K.W.; Leung, K.N.

    1985-05-22

    In the method, the radio frequency (rf) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200/sup 0/C to boil off the water from the binder, and then to about 750 to 850/sup 0/C to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the rf antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the rf antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains approximately 45% lead oxide.

  16. Upgrades to the MARIA Helicon Experiment at UW-Madison

    NASA Astrophysics Data System (ADS)

    Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg; Winters, Victoria

    2016-10-01

    The MARIA helicon plasma device at UW Madison is setup to investigate the neutral particle fueling of helicon discharges. Following initial results from the 668.614nm diode laser LIF system, the active spectroscopy diagnostic suite was expanded by establishing a 1.4J pulsed Nd:YAG pumped dye laser. To verify the new laser system, a comparison of measured ion velocities near a target plate was made between the diode based and dye based LIF systems. Additionally, theory and further verification of a new technique for measuring ion velocities leveraging Zeeman splitting is presented. During a campaign with <= 750W RF power, densities in the range of 1x1018 m-3 and 2 eV electron temperature were achieved with 4.1 mTorr of argon and a magnetic field of 750G. To achieve higher densities and explore the physics of neutral depletion, the available RF power was increased from 750W to 2kW, with further expansion to 4kW on a single antenna planned. For both power levels a clear helicon mode can be reliably established and its extension increases with increasing RF power. Basic plasma characterization at the higher RF power, such as electron density vs magnetic field scans, will be presented. This work was funded by the NSF CAREER Award PHY-1455210.

  17. Novel techniques and devices for in-situ film coatings of long, small diameter tubes or elliptical and other surface contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael

    In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the cathodes that can adapt to various curved surface contours was developed and successfully used for depositing optical coating on aircraft canopies. The techniques can be utilized for in situ coating of elliptical and other surface contour RF cavities and long beam pipes with thick superconducting films. Plans are to incorporate ion assisted deposition in those techniques for attaining dense, adherent and defect free coatings.« less

  18. Novel techniques and devices for in-situ film coatings of long, small diameter tubes or elliptical and other surface contours

    DOE PAGES

    Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael; ...

    2015-07-30

    In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the cathodes that can adapt to various curved surface contours was developed and successfully used for depositing optical coating on aircraft canopies. The techniques can be utilized for in situ coating of elliptical and other surface contour RF cavities and long beam pipes with thick superconducting films. Plans are to incorporate ion assisted deposition in those techniques for attaining dense, adherent and defect free coatings.« less

  19. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  20. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  1. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    NASA Astrophysics Data System (ADS)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  2. Systems and Methods for Ejection of Ions from an Ion Trap

    NASA Technical Reports Server (NTRS)

    Cooks, Robert Graham (Inventor); Snyder, Dalton (Inventor)

    2018-01-01

    The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.

  3. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    NASA Astrophysics Data System (ADS)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  4. Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher

    2012-01-01

    Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.

  5. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    PubMed

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Fast separation of two trapped ions (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2015-09-17

    of quantum states and separation of ions in a dual rf ion trapQuantum Inf. Comput . 2 257 [10] KaufmannH, Ruster T, SchmiegelowCT, Schmidt-Kaler F...Ruschhaupt et al. Shortcuts to adiabaticity for an ion in a rotating radially-tight trap M Palmero, Shuo Wang, D Guéry-Odelin et al. Optimal shortcuts for...Kiely, J P L McGuinness, J G Muga et al. Quantum simulations with cold trapped ions Michael Johanning, Andrés F Varón and Christof Wunderlich Quantum

  7. Method and device for ion mobility separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.

    2017-07-11

    Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.

  8. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    DTIC Science & Technology

    2015-11-17

    34Imprintable, Bendable, and Shape-Conformable Polymer Electrolytes for Versatile-Shaped Lithium - Ion Batteries ," Advanced Materials, vol. 25, pp. 1395-1400...center; and (d) close-up of light aperture etched with a focused ion beam [104] ............ 22 Figure 16: (a) Conformal antenna patterned by...where the features are defined using focused ion beam milling (e.g. fishnet patterns) [20], standard micro-/nano- lithography processes that are

  9. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  10. Quantum Information Experiments with Trapped Ions at NIST

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  11. Ion-trajectory analysis for micromotion minimization and the measurement of small forces

    NASA Astrophysics Data System (ADS)

    Gloger, Timm F.; Kaufmann, Peter; Kaufmann, Delia; Baig, M. Tanveer; Collath, Thomas; Johanning, Michael; Wunderlich, Christof

    2015-10-01

    For experiments with ions confined in a Paul trap, minimization of micromotion is often essential. In order to diagnose and compensate micromotion we have implemented a method that allows for finding the position of the radio-frequency (rf) null reliably and efficiently, in principle, without any variation of direct current (dc) voltages. We apply a trap modulation technique and focus-scanning imaging to extract three-dimensional ion positions for various rf drive powers and analyze the power dependence of the equilibrium position of the trapped ion. In contrast to commonly used methods, the search algorithm directly makes use of a physical effect as opposed to efficient numerical minimization in a high-dimensional parameter space. Using this method we achieve a compensation of the residual electric field that causes excess micromotion in the radial plane of a linear Paul trap down to 0.09 Vm-1 . Additionally, the precise position determination of a single harmonically trapped ion employed here can also be utilized for the detection of small forces. This is demonstrated by determining light pressure forces with a precision of 135 yN. As the method is based on imaging only, it can be applied to several ions simultaneously and is independent of laser direction and thus well suited to be used with, for example, surface-electrode traps.

  12. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  13. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  14. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  15. Ion Energy and Ion Flux Distributions of CF4/Ar/O2 Inductively Coupled Plasmas in a GEC Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Knowledge of ion kinetics in plasma processing gas mixtures, such as CF4:Ar:O2, is important for understanding plasma assisted etching and deposition of materials. Ion energies and ion fluxes were measured in this mixture for 80:10:10, 60:20:20, and 40:30:30 mixture ratios in the pressure range of 10-50 mTorr, and at 200 and 300 W of RF power. Ions from plasma, sampled through a 10 micron orifice in the center of the lower plane electrode, were energy and mass analyzed by a combination of electrostatic energy and quadrupole mass filters. CFx(+) (x = 1 - 3), F2(+), F(+), C(+) from CF4, Ar(+) from Ar, and O2(+) and O(+) from O2, and by-product ions SiFx(+)(x = 1 - 3) from etching of quartz coupling window, COFx(+)(x = 1 - 3), CO(+), CO2(+), and OF(+) were detected. In all conditions ion flux decreases with increase of pressure but increase with increase of RF power. Ar(+) signal decreases with increase of pressure while CF3(+), which is the dominant ion at all conditions, increases with increase in pressure. The loss mechanism for Ar(+) and increase of CF3(+) is due to large cross section for Ar(+) + CF4 yields Ar + CF3(+) + F. Ion energies, which range from 15-25 eV depending on plasma operating conditions, are nearly Gaussian. By-product ion signals are higher at lower pressures indicating stronger plasma interaction with quartz window.

  16. Ion plating with an induction heating source

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  17. Test measurement on ion-molecule reactions in a ringelectrode ion trap

    NASA Astrophysics Data System (ADS)

    Savic, I.; Lukic, S. R.; Guth, I.; Gerlich, D.

    2006-05-01

    Very recently a new experimental setup has been developed allowing studies of astrophysically relevant collisions between neutral atoms and small pure carbon molecules from one side and ions from the other side and first results are obtained (Savić et al., 2005). The ions are stored in a radio- frequency (rf) ring-electrode trap and during reaction time exposed to the effusive carbon beam. In this paper, one of the final tests of the experimental setup is presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less

  19. BROADENING OF THE RF POWER-DENSITY WINDOW FOR CALCIUM-ION EFFLUX FROM BRAIN TISSUE

    EPA Science Inventory

    Blackman, et. al. have reported enhanced efflux of calcium ions from chicken forebrains, exposed in vitro in a 50 ohm stripline to 147 MHz radiation, modulated sinusoidally at 16 Hz. When the spacing between the sample tubes was 3.8 cm on center, enhancement occurred at an incide...

  20. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  1. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less

  2. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  3. Investigation of plasma parameters at BATMAN for variation of the Cs evaporation asymmetry and comparing two driver geometries

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.; Aza, E.; Jovović, J.; Kraus, W.; Mimo, A.; Schiesko, L.

    2017-08-01

    The Neutral Beam Injection (NBI) system for fusion devices like ITER and, beyond ITER, DEMO requires large scale sources for negative hydrogen ions. BATMAN (Bavarian Test Machine for Negative ions) is a test facility attached with the prototype source for the ITER NBI (1/8 source size of the ITER source), dedicated to physical investigations due to its flexible access for diagnostics and exchange of source components. The required amount of negative ions is produced by surface conversion of hydrogen atoms or ions on caesiated surfaces. Several diagnostic tools (Optical Emission Spectroscopy, Cavity Ring-Down Spectroscopy for H-, Langmuir probes, Tunable Diode Laser Absorption Spectroscopy for Cs) allow the determination of plasma parameters in the ion source. Plasma parameters for two modifications of the standard prototype source have been investigated: Firstly, a second Cs oven has been installed in the bottom part of the back plate in addition to the regularly used oven in the top part of the back plate. Evaporation from the top oven only can lead to a vertically asymmetric Cs distribution in front of the plasma grid. Using both ovens, a symmetric Cs distribution can be reached - however, in most cases no significant change of the extracted ion current has been determined for varying Cs symmetry if the source is well-conditioned. Secondly, BATMAN has been equipped with a much larger, racetrack-shaped RF driver (area of 32×58 cm2) instead of the cylindrical RF driver (diameter of 24.5 cm). The main idea is that one racetrack driver could substitute two cylindrical drivers in larger sources with increased reliability and power efficiency. For the same applied RF power, the electron density is lower in the racetrack driver due to its five times higher volume. The fraction of hydrogen atoms to molecules, however, is at a similar level or even slightly higher, which is a promising result for application in larger sources.

  4. Influence of the configuration of the magnetic filter field on the discharge structure in the RF driven negative ion source prototype for fusion

    NASA Astrophysics Data System (ADS)

    Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.

  5. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  6. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  7. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  8. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  9. Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source.

    PubMed

    Gaubert, G; Bieth, C; Bougy, W; Brionne, N; Donzel, X; Leroy, R; Sineau, A; Vallerand, C; Villari, A C C; Thuillier, T

    2012-02-01

    The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T(max) = 1400 °C) installed with an angle of 5° with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B(inj) and 1.32 T radial field in the wall, variable B(min) with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.

  10. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  11. Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system.

    PubMed

    Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels

    2012-09-01

    A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.

  12. Unified Model of the rf Plasma Sheath, Part II

    NASA Astrophysics Data System (ADS)

    Riley, Merle

    1996-10-01

    By developing an approximation to the first integral of the Poisson equation, one can obtain solutions for the current-voltage characteristics of an rf plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current. (M.E.Riley, 1995 GEC, abstract QA5, published in Bull. Am. Phys. Soc., 40, 1587 (1995).) The theory has been shown to adequately reproduce current-voltage characteristics of two extreme cases (M.A. Lieberman, IEEE Trans. Plasma Sci. 16, 638 (1988). A. Metze, D.W. Ernie, and H.J.Oskam, J.Appl.Phys., 60, 3081 (1986).) of ion response. In this work I show the effect of different conventions for connecting the sheath model to the bulk plasma. Modifications of the Mach number and a finite electric field at the Bohm point are natural choices. The differences are examined for a sheath in a high density Ar plasma and are found to be insignificant. A theoretical argument favors the electric field modification. *Work performed at Sandia National Labs and supported by US DoE under contract DE-AC04-94AL85000.

  13. Particle model of a cylindrical inductively coupled ion source

    NASA Astrophysics Data System (ADS)

    Ippolito, N. D.; Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.

    2017-08-01

    In spite of the wide use of RF sources, a complete understanding of the mechanisms regulating the RF-coupling of the plasma is still lacking so self-consistent simulations of the involved physics are highly desirable. For this reason we are developing a 2.5D fully kinetic Particle-In-Cell Monte-Carlo-Collision (PIC-MCC) model of a cylindrical ICP-RF source, keeping the time step of the simulation small enough to resolve the plasma frequency scale. The grid cell dimension is now about seven times larger than the average Debye length, because of the large computational demand of the code. It will be scaled down in the next phase of the development of the code. The filling gas is Xenon, in order to minimize the time lost by the MCC collision module in the first stage of development of the code. The results presented here are preliminary, with the code already showing a good robustness. The final goal will be the modeling of the NIO1 (Negative Ion Optimization phase 1) source, operating in Padua at Consorzio RFX.

  14. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE PAGES

    Myra, J. R.

    2017-07-07

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  15. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  16. Measurements and modeling of radio frequency field structures in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. A.; Chen, Guangye; Arefiev, A. V.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less

  17. Hollow cathode startup using a microplasma discharge

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  18. Refined beam measurements on the SNS H- injector

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.

    2017-08-01

    The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.

  19. Observation of a Discrete Time Crystal

    NASA Astrophysics Data System (ADS)

    Kyprianidis, A.; Zhang, J.; Hess, P.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potter, A.; Vishwanath, A.; Potirniche, I.-D.; Yao, N.; Monroe, C.

    2017-04-01

    Spontaneous symmetry breaking is a key concept in the understanding of many physical phenomena, such as the formation of spatial crystals and the phase transition from paramagnetism to magnetic order. While the breaking of time translation symmetry is forbidden in equilibrium systems, it is possible for non-equilibrium Floquet driven systems to break a discrete time translation symmetry, and we present clear signatures of the formation of such a discrete time crystal. We apply a time periodic Hamiltonian to a chain of interacting spins under many-body localization conditions and observe the system's sub-harmonic response at twice that period. This spontaneous doubling of the periodicity is robust to external perturbations. We represent the spins with a linear chain of trapped 171Yb+ ions in an rf Paul trap, generate spin-spin interactions through spin-dependent optical dipole forces, and measure each spin using state-dependent fluorescence. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  20. Axial plasma detachment in helicon plasmas during a global transition due to spontaneous self organization: instabilities, bifurcation and the helicon core formation

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; Hong, Rongjie; Tynan, George

    2017-10-01

    We observe axial plasma detachment in a helicon plasma device that occurs simultaneously along with a spontaneous, self-organized global transition in the plasma dynamics via a transport bifurcation with strong hysteresis, at a certain B_crit. For B B_crit, the plasma exhibits steepened density and ion temperature gradients, strong shearing in the azimuthal and parallel velocities, and multiple, simultaneously present, radially separated plasma instabilities. The axial detachment also follows the same hysteresis curves associated with the transport bifurcation that led to the transition. The value of B_crit depends on the source parameters (pressure, gas flow rate, rf power etc.). This study allows access to new regimes to study plasma turbulence and transport as well as plasma detachment and helicon core formation. We find that the plasma can exist in more than one type of helicon modes.

  1. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.

    PubMed

    Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W

    2018-05-28

    We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.

  2. Analytical & Experimental Study of Radio Frequency Cavity Beam Profile Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcazar, Mario D.; Yonehara, Katsuya

    The purpose of this analytical and experimental study is multifold: 1) To explore a new, radiation-robust, hadron beam profile monitor for intense neutrino beam applications; 2) To test, demonstrate, and develop a novel gas-filled Radio-Frequency (RF) cavity to use in this monitoring system. Within this context, the first section of the study analyzes the beam distribution across the hadron monitor as well as the ion-production rate inside the RF cavity. Furthermore a more effecient pixel configuration across the hadron monitor is proposed to provide higher sensitivity to changes in beam displacement. Finally, the results of a benchtop test of themore » tunable quality factor RF cavity will be presented. The proposed hadron monitor configuration consists of a circular array of RF cavities located at a radial distance of 7cm { corresponding to the standard deviation of the beam due to scatering { and a gas-filled RF cavity with a quality factor in the range 400 - 800.« less

  3. Interaction force in a vertical dust chain inside a glass box.

    PubMed

    Kong, Jie; Qiao, Ke; Matthews, Lorin S; Hyde, Truell W

    2014-07-01

    Small number dust particle clusters can be used as probes for plasma diagnostics. The number of dust particles as well as cluster size and shape can be easily controlled employing a glass box placed within a Gaseous Electronics Conference (GEC) rf reference chamber to provide confinement of the dust. The plasma parameters inside this box and within the larger plasma chamber have not yet been adequately defined. Adjusting the rf power alters the plasma conditions causing structural changes of the cluster. This effect can be used to probe the relationship between the rf power and other plasma parameters. This experiment employs the sloshing and breathing modes of small cluster oscillations to examine the relationship between system rf power and the particle charge and plasma screening length inside the glass box. The experimental results provided indicate that both the screening length and dust charge decrease as rf power inside the box increases. The decrease in dust charge as power increases may indicate that ion trapping plays a significant role in the sheath.

  4. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion source development for ITER NBI and of the PIC method. Different PIC codes for the extraction region are introduced as well as the coupling to codes describing the whole source (PIC codes or fluid codes). Presented and discussed are different physical and numerical aspects of applying PIC codes to negative hydrogen ion sources for fusion as well as selected code results. The main focus of future calculations will be the meniscus formation and identifying measures for reducing the co-extracted electrons, in particular for deuterium operation. The recent results of the 3D PIC code ONIX (calculation domain: one extraction aperture and its vicinity) for the ITER prototype source (1/8 size of the ITER NBI source) are presented.

  5. Origin of high carrier mobility and low residual stress in RF superimposed DC sputtered Al doped ZnO thin film for next generation flexible devices

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh

    2018-04-01

    In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M. R.; Herman, D. T.; Restivo, M. L.

    Experiments at several different scales were performed to understand the removal of spherical resorcinol formaldehyde (sRF) ion exchange resin using a gravity drain system with a valve located above the resin screen in the ion exchange column (IXC). This is being considered as part of the design for the Low Activity Waste Pretreatment System (LAWPS) to be constructed at the DOE Hanford Site.

  7. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research

    NASA Astrophysics Data System (ADS)

    Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  8. 2D modeling of electromagnetic waves in cold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombé, K.; Van Eester, D.; Koch, R.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was feltmore » as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.« less

  9. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research.

    PubMed

    Pandey, Arun; Bandyopadhyay, M; Sudhir, Dass; Chakraborty, A

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  10. Nanostructured Crystals of Fluorite Phases Sr1 - x R x F2 + x and Their Ordering: 12. Influence of Structural Ordering on the Fluorine-Ion Conductivity of Sr0.667 R 0.333F2.333 Alloys ( R = Tb or Tm) at Their Annealing

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Sul'yanova, E. A.; Sobolev, B. P.

    2018-01-01

    The ionic conductivity of Sr0.667 R 0.333F2.333 alloys (rational Sr2 RF7 compositions) in SrF2- RF3 systems ( R = Tb or Tm), prepared by spontaneous crystallization, has been investigated for the "as-grown" state and after annealing in CF4 at 900 ± 20°C for 96 h. As-grown samples of both compositions, prepared by fast (200°C/min) melt crystallization, exhibit partial (nonequilibrium) ordering, which increases from Tb to Tm. Annealing of Sr0.667 R 0.333F2.333 alloys yields strong ordering (equilibrium for the annealing temperatures) of the fluorite structure (CaF2 type, sp. gr. Fm3̅ m, Z = 4) at the formation of t-Sr2 RF7 tetragonal compound (sp. gr. I4/ m, Z = 30). It is established that ordering of the alloy fluorite structure reduces the fluorine-ion conductivity. After the annealing, the conductivity of Sr0.667R0.333F2.333 alloys with the initial (nonequilibrium) ordering stage of t-Sr2 RF7 phases with almost complete (equilibrium) ordering decreases by a factor of 3-4.5.

  11. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Akira; Iwashita, Yoshihisa; Souda, Hikaru

    A phase rotation scheme of laser-produced ions from a solid target by the application of a synchronized RF electric voltage with a pulsed laser has been experimentally investigated with the use of a 100 TW laser, J-KAREN at JAEA, KPSI. Up to now, energy peaks of up to around 2.0 MeV have been created with a FWHM of 2.6% with good reproducibility using a two-gap resonator of a quarter wave length with the same frequency as the source laser (approx80 MHz). It is also found that the position of the peak can be well controlled by adjusting the relative phasemore » between the RF electric field and the laser, which is very promising for real applications of such laser-produced protons. In order to also apply such a phase rotation system for higher energy protons (<200 MeV), a scheme to use a small linear accelerator (LINAC) with multi-gaps is proposed as a phase rotator. With multi-gap structure, alternating focusing between longitudinal and transverse degrees of freedoms can be realized. From the point of compactness and realizing a small focused spot, however, a scheme combining separate quadrupole magnets just before and after the RF cavity excited with the Wideroee mode, might be more effective. The scheme presented here will realize laser-produced ions (protons) with good reproducibility by combining with RF technology.« less

  13. Optimization of reactive-ion etching (RIE) parameters for fabrication of tantalum pentoxide (Ta2O5) waveguide using Taguchi method

    NASA Astrophysics Data System (ADS)

    Muttalib, M. Firdaus A.; Chen, Ruiqi Y.; Pearce, S. J.; Charlton, Martin D. B.

    2017-11-01

    In this paper, we demonstrate the optimization of reactive-ion etching (RIE) parameters for the fabrication of tantalum pentoxide (Ta2O5) waveguide with chromium (Cr) hard mask in a commercial OIPT Plasmalab 80 RIE etcher. A design of experiment (DOE) using Taguchi method was implemented to find optimum RF power, mixture of CHF3 and Ar gas ratio, and chamber pressure for a high etch rate, good selectivity, and smooth waveguide sidewall. It was found that the optimized etch condition obtained in this work were RF power = 200 W, gas ratio = 80 %, and chamber pressure = 30 mTorr with an etch rate of 21.6 nm/min, Ta2O5/Cr selectivity ratio of 28, and smooth waveguide sidewall.

  14. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  15. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  16. Shaped saturation with inherent radiofrequency-power-efficient trajectory design in parallel transmission.

    PubMed

    Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef

    2014-10-01

    A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.

  17. Model for a transformer-coupled toroidal plasma source

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken

    2012-01-01

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.

  18. Application of the Physics of Wave-Particle Interactions in the Auroral Upward Current Region for Use in the VASIMR° Deep Space Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Olsen, C.; Longmier, B.; Ballenger, M.; Giambusso, M.; Carter, M.; Cassady, L.; Chang Diaz, F.; Glover, T.; McCaskill, G.; Squire, J.

    2011-12-01

    This paper will describe the laboratory application of the lessons learned from the study of wave particle interactions in the auroral upward current region to the industrial development problem of electric spacecraft propulsion. The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR°) has been developed by using the results of space plasma experiments in laboratory plasma studies that will ultimately enable further space exploration. VASIMR° is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power. The VASIMR° uses a helicon discharge to generate plasma. The plasma is leaked though a strong magnetic mirror to the second stage. In this stage, this plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 0.5-0.7 MHz waves with up to 170 kW of power. The single pass ion cyclotron heating (ICH) produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR°. Results from high power Helicon only and Helicon with ICH experiments are presented from the VX-200 using argon propellant. A two-axis translation stage has been used to survey the spatial structure of plasma parameters, momentum flux and magnetic perturbations in the VX-200 exhaust plume. These recent measurements were made within a new 150 cubic meter cryo-pumped vacuum chamber and are presented in the context of plasma detachment. For the first time, the thruster efficiency and thrust of a high-power VASIMR° prototype have been measured with the thruster installed inside a vacuum chamber with sufficient volume and pumping to simulate the vacuum conditions of space. Using an ion flux probe array and a plasma momentum flux sensor (PMFS), the exhaust of the VX-200 engine was characterized as a function of the coupled RF power and as a function of the radial and axial position within the exhaust plume. The ionization cost of argon propellant was determined to be 87 eV for optimized values of RF power and propellant flow rate. Recent results at 200 kW coupled RF power have shown a thruster efficiency of 72% at a specific impulse of 5000 s and a thrust of 5.7 N.

  19. An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdwell Jr, Joseph F; Lee, Denise L; Taylor, Paul Allen

    2010-09-01

    A small column ion exchange (SCIX) system has been proposed for removal of cesium from caustic, supernatant, and dissolved salt solutions stored or generated from high-level tank wastes at the US Department of Energy (DOE) Hanford Site and Savannah River Sites. In both instances, deployment of SCIX systems, either in-tank or near-tank, is a means of expediting waste pretreatment and dispositioning with minimal or no new infrastructure requirements. Conceptually, the treatment approach can utilize a range of ion exchange media. Previously, both crystalline silicotitanate (CST), an inorganic, nonelutable sorbent, and resorcinol-formaldehyde (RF), an organic, elutable resin, have been considered formore » cesium removal from tank waste. More recently, Pacific Northwest National Laboratory (PNNL) evaluated use of SuperLig{reg_sign} 644, an elutable ion exchange medium, for the subject application. Results of testing indicate hydraulic limitations of the SuperLig{reg_sign} resin, specifically a high pressure drop through packed ion exchange columns. This limitation is likely the result of swelling and shrinkage of the irregularly shaped (granular) resin during repeated conversions between sodium and hydrogen forms as the resin is first loaded then eluted. It is anticipated that a similar flow limitation would exist in columns packed with conventional, granular RF resin. However, use of spherical RF resin is a likely means of mitigating processing limitations due to excessive pressure drop. Although size changes occur as the spherical resin is cycled through loading and elution operations, the geometry of the resin is expected to effectively mitigate the close packing that leads to high pressure drops across ion exchange columns. Multiple evaluations have been performed to determine the feasibility of using spherical RF resin and to obtain data necessary for design of an SCIX process. The work performed consisted of examination of radiation effects on resin performance, quantification of cesium adsorption performance as a function of operating temperature and pH, and evaluation of sodium uptake (titration) as function of pH and counteranion concentration. The results of these efforts are presented in this report. Hydraulic performance of the resin and the use of eluant alternatives to nitric acid have also been evaluated and have been reported elsewhere (Taylor 2009, Taylor and Johnson 2009).« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less

  1. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    NASA Astrophysics Data System (ADS)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  2. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner

    PubMed Central

    Bollinger, Lance M.; Witczak, Carol A.; Houmard, Joseph A.

    2014-01-01

    Muscle-specific RING finger-1 (MuRF-1), a ubiquitin ligase and key regulator of proteasome-dependent protein degradation, is highly expressed during skeletal muscle atrophy. The transcription factor forkhead box O3 (FoxO3) induces MuRF-1 expression, but the direct role of other major atrophy-related transcription factors, such as SMAD3, is largely unknown. The goal of this study was to determine whether SMAD3 individually regulates, or with FoxO3 coordinately regulates, MuRF-1 expression. In cultured myotubes or human embryonic kidney cells, MuRF-1 mRNA content and promoter activity were increased by FoxO3 but not by SMAD3 overexpression. However, FoxO3 and SMAD3 coexpression synergistically increased MuRF-1 mRNA and promoter activity. Mutation of the SMAD-binding element (SBE) in the proximal MuRF-1 promoter or overexpression of a SMAD3 DNA-binding mutant attenuated FoxO3-dependent MuRF-1 promoter activation, showing that SMAD binding to DNA is required for optimal activation of FoxO3-induced transcription of MuRF-1. Using chromatin immunoprecipitation, SMAD3 DNA binding increased FoxO3 abundance and SBE mutation reduced FoxO3 abundance on the MuRF-1 promoter. Furthermore, SMAD3 overexpression dose-dependently increased FoxO3 protein content, and coexpression of FoxO3 and SMAD3 synergistically increased FoxO-dependent gene transcription [assessed with a FoxO response element (FRE)-driven reporter]. Collectively, these results show that SMAD3 regulates transcription of MuRF-1 by increasing FoxO3 binding at a conserved FRE-SBE motif within the proximal promoter region, and by increasing FoxO3 protein content and transcriptional activity. These data are the first to indicate that two major transcription factors regulating protein degradation, FoxO3 and SMAD3, converge to coordinately and directly regulate transcription of MuRF-1. PMID:24920680

  3. Studies of RF sheaths and diagnostics on IShTAR

    NASA Astrophysics Data System (ADS)

    Crombé, K.; Devaux, S.; D'Inca, R.; Faudot, E.; Faugel, H.; Fünfgelder, H.; Heuraux, S.; Jacquot, J.; Louche, F.; Moritz, J.; Ochoukov, R.; Tripsky, M.; Van Eester, D.; Wauters, T.; Noterdaeme, J.-M.

    2015-12-01

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  4. Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, Scott; Held, Eric

    2013-10-01

    Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.

  5. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Aakash A.

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  6. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE PAGES

    Sahai, Aakash A.

    2017-08-23

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  7. RF cavity design and qualification for proton accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti

    Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulationsmore » are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)« less

  8. UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal

    NASA Astrophysics Data System (ADS)

    Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.

    2016-05-01

    This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.

  9. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    NASA Astrophysics Data System (ADS)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  10. On an Aerodynamic Mechanism to Enhance Ion Transmission and Sensitivity of FAIMS for Nano-Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prasad, Satendra; Belford, Michael W.; Dunyach, Jean-Jacques; Purves, Randy W.

    2014-12-01

    Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3-10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms ± 3.9 ms) and enables the use of a helium free transport gas (100% nitrogen).

  11. Electronic drive and acquisition system for mass spectrometry

    NASA Technical Reports Server (NTRS)

    Schaefer, Rembrandt Thomas (Inventor); Chutjian, Ara (Inventor); Tran, Tuan (Inventor); Madzunkov, Stojan M. (Inventor); Thomas, John L. (Inventor); Mojarradi, Mohammad (Inventor); MacAskill, John (Inventor); Blaes, Brent R. (Inventor); Darrach, Murray R. (Inventor); Burke, Gary R. (Inventor)

    2010-01-01

    The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns.

  12. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.

  13. High power fast wave experiments in LAPD: interaction with density fluctuations and status/plans for ICRH

    NASA Astrophysics Data System (ADS)

    Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel

    2016-10-01

    The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.

  14. Glass antenna for RF-ion source operation

    DOEpatents

    Leung, Ka Ngo; Lee, Yung-Hee Yvette; Perkins, Luke T.

    2000-01-01

    An antenna comprises a plurality of small diameter conductive wires disposed in a dielectric tube. The number and dimensions of the conductive wires is selected to improve the RF resistance of the antenna while also facilitating a reduction in thermal gradients that may create thermal stresses on the dielectric tube. The antenna may be mounted in a vacuum system using a low-stress antenna assembly that cushions and protects the dielectric tube from shock and mechanical vibration while also permitting convenient electrical and coolant connections to the antenna.

  15. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  16. Ion-mobility study of two functionalized pentacene structural isomers using a modified electrospray/triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.

    2007-03-01

    We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.

  17. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  18. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out within the framework of the EUROfusion Consortium and has received funding from Euratom under Grant Agreement No 633053.

  19. An overview of recent physics results from NSTX

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Abrams, T.; Ahn, J.-W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J.; Berry, L.; Bertelli, N.; Beiersdorfer, P.; Bialek, J.; Bilato, R.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyer, M. D.; Boyle, D.; Brennan, D.; Breslau, J.; Brooks, J.; Buttery, R.; Capece, A.; Canik, J.; Chang, C. S.; Crocker, N.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; D'Ippolito, D.; Domier, C.; Ebrahimi, F.; Ethier, S.; Evans, T.; Ferraro, N.; Ferron, J.; Finkenthal, M.; Fonck, R.; Fredrickson, E.; Fu, G. Y.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gorelenkova, M.; Goumiri, I.; Gray, T.; Green, D.; Guttenfelder, W.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Jaeger, E. F.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Kaita, R.; Kessel, C.; Kim, K.; Koel, B.; Kolemen, E.; Kramer, G.; Ku, S.; Kubota, S.; LaHaye, R. J.; Lao, L.; LeBlanc, B. P.; Levinton, F.; Liu, D.; Lore, J.; Lucia, M.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Mueller, D.; Munsat, T.; Muscatello, C.; Myra, J.; Nelson, B.; Nichols, J.; Ono, M.; Osborne, T.; Park, J.-K.; Peebles, W.; Perkins, R.; Phillips, C.; Podesta, M.; Poli, F.; Raman, R.; Ren, Y.; Roszell, J.; Rowley, C.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S. A.; Schuster, E.; Scotti, F.; Sechrest, Y.; Shaing, K.; Sizyuk, T.; Sizyuk, V.; Skinner, C.; Smith, D.; Snyder, P.; Solomon, W.; Sovenic, C.; Soukhanovskii, V.; Startsev, E.; Stotler, D.; Stratton, B.; Stutman, D.; Taylor, C.; Taylor, G.; Tritz, K.; Walker, M.; Wang, W.; Wang, Z.; White, R.; Wilson, J. R.; Wirth, B.; Wright, J.; Yuan, X.; Yuh, H.; Zakharov, L.; Zweben, S. J.

    2015-10-01

    The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Two Alfvén eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.

  20. An overview of recent physics results from NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S. M.; Abrams, T.; Ahn, J. -W.

    Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Finally, two Alfven eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.« less

  1. An overview of recent physics results from NSTX

    DOE PAGES

    Kaye, S. M.; Abrams, T.; Ahn, J. -W.; ...

    2015-03-27

    Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Finally, two Alfven eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.« less

  2. Radio Frequency (RF) Trap for Confinement of Antimatter Plasmas Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Pearson, J. Boise

    2004-01-01

    Perturbations associated with a rotating wall electric field enable the confinement of ions for periods approaching weeks. This steady state confinement is a result of a radio frequency manipulation of the ions. Using state-of-the-art techniques it is shown that radio frequency energy can produce useable manipulation of the ion cloud (matter or antimatter) for use in containment experiments. The current research focuses on the improvement of confinement systems capable of containing and transporting antimatter.

  3. Magnetic Compensation for Second-Order Doppler Shift in LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2008-01-01

    The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.

  4. Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Lara, B.M.; Moya-Cessa, H.; Klimov, A.B.

    2005-02-01

    We show that, if one combines the Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser, additional series of collapses and revivals of the vibrational state of the ion can be generated.

  5. Review of the High Performance Antiproton Trap (HiPAT) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan

    2003-01-01

    Many space propulsion concepts exist that use matter-antimatter reactions. Current antiproton production rates are enough to conduct proof-of-principle evaluation of these concepts. One enabling technology for such experiments is portable storage of low energy antiprotons, to transport antiprotons to experimental facilities. To address this need, HiPAT is being developed, with a design goal of containing 10(exp 12) particles for up to 18 days. HiPAT is a Penning-Malmberg trap with a 4 Tesla superconductor, 20kV electrodes, radio frequency (RF) network, and 10(exp -13) Torr vacuum. 'Normal' matter is being used to evaluate the system. An electron beam ionizes background gas in situ, and particle beams are captured dynamically. The experiment examines ion storage lifetimes, RF plasma diagnostics, charge exchange with background gases, and dynamic ion beam capture.

  6. Discontinuous model with semi analytical sheath interface for radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Miyashita, Masaru

    2016-09-01

    Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.

  7. ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor

    NASA Astrophysics Data System (ADS)

    Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun

    2017-10-01

    Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.

  8. Sawtooth-wave prebuncher with dual-gaps in Linac injector for HIRFL-SSC

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohu; Yuan, Youjin; Xia, Jiawen; Yin, Xuejun; Jin, Peng; Xu, Zhe; Du, Heng; Li, Zhongshan; Qiao, Jian; Wang, Kedong

    2018-01-01

    An RFQ structure is normally composed of radial matcher, shaper, gentle buncher and accelerator section with changing cell geometry. Bunching is started in the shaper, and adiabatic bunching is done in gentle buncher section. The beam preforms from DC beam to bunch beam through the RFQ and the longitudinal emittance for the ions linacs is defined initially in the RFQ, in which the beam bunch has been shaped. In the present SSC-Linac injector, an RFQ has been designed to accelerate the continuous beam from 3.728 keV/u to 143 keV/u. The heavy ions beam is injected into the SSC (Separated Sector Cyclotron) with the kinetic energy of 1.025 MeV/u after four IH DTLs. The rf frequency of the SSC is 13.417 MHz, and the frequency of the heavy ions RFQ is set to four times of the rf frequency of the SSC. In order to increase the longitudinal capture efficiency of the SSC and suppress the longitudinal emittance at the exit of RFQ, an external MHB (Multi-Harmonics Buncher) is proposed in front of the RFQ. The fundamental frequency of the MHB is the same as the rf frequency of the cyclotron. The scheme of dual-gaps prebuncher with the sawtooth waveform is firstly carried out through multi-harmonics synthetic technology. The multi-particle beam dynamic simulations of the MHB have been done by the BEAMPATH code.

  9. Radio frequency discharge with control of plasma potential distribution.

    PubMed

    Dudnikov, Vadim; Dudnikov, A

    2012-02-01

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  10. Dusty waves and vortices in rf magnetron discharge plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Shugaev, F. V.

    2018-01-01

    The appearance and subsequent growth of metallic particles in plasma of planar rf magnetron sputter were observed. The origin of the particles is sputtering of the rf electrode by ion flux from the plasma. In some regions of formed dust cloud the particles were involved in the horizontal or vertical circular movement. The horizontal rotation along the sputtered track in the cyclotron drift direction was observed close to the main magnetron plasma. The torus-shaped dust vortex ring engirdled the secondary plasma of the discharge at height of a few centimeters over the electrode. Close to this region particle density waves propagated through the cloud. The possible role of discharge plasma azimuthal inhomogeneity and gas dynamics effects in the forming the observed structures was considered.

  11. Ion shaking in the 200 MeV XLS-ring

    NASA Astrophysics Data System (ADS)

    Bozoki, E.; Kramer, S. L.

    1992-03-01

    It has been shown that ions, trapped inside the beam's potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 MeV XLS ring. The design of the ion clearing system for the ring and the first results obtained were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H2 to CO2) bounce frequencies in the ring (1-10 MHz). The response of the beam size, vertical betatron tune, and lifetime was studied.

  12. Ionization source utilizing a multi-capillary inlet and method of operation

    DOEpatents

    Smith, Richard D.; Kim, Taeman; Udseth, Harold R.

    2004-10-12

    A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.

  13. Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform

    NASA Astrophysics Data System (ADS)

    Anand, Sunny; Sarin, R. K.

    2016-09-01

    In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.

  14. Plasma flow around and charge distribution of a dust cluster in a rf discharge

    NASA Astrophysics Data System (ADS)

    Schleede, J.; Lewerentz, L.; Bronold, F. X.; Schneider, R.; Fehske, H.

    2018-04-01

    We employ a particle-in-cell Monte Carlo collision/particle-particle particle-mesh simulation to study the plasma flow around and the charge distribution of a three-dimensional dust cluster in the sheath of a low-pressure rf argon discharge. The geometry of the cluster and its position in the sheath are fixed to the experimental values, prohibiting a mechanical response of the cluster. Electrically, however, the cluster and the plasma environment, mimicking also the experimental situation, are coupled self-consistently. We find a broad distribution of the charges collected by the grains. The ion flux shows on the scale of the Debye length strong focusing and shadowing inside and outside the cluster due to the attraction of the ions to the negatively charged grains, whereas the electron flux is characterized on this scale only by a weak spatial modulation of its magnitude depending on the rf phase. On the scale of the individual dust potentials, however, the electron flux deviates in the vicinity of the cluster strongly from the laminar flow associated with the plasma sheath. It develops convection patterns to compensate for the depletion of electrons inside the dust cluster.

  15. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    NASA Astrophysics Data System (ADS)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  16. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  17. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.

    2017-12-01

    An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  18. Evaluation of laser-driven ion energies for fusion fast-ignition research

    NASA Astrophysics Data System (ADS)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  19. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulsesmore » at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.« less

  20. Ion dynamics in a trapped ion mobility spectrometer†

    PubMed Central

    Hernandez, Diana Rosa; DeBord, John Daniel; Ridgeway, Mark E.; Kaplan, Desmond A.; Park, Melvin A.; Fernandez-Lima, Francisco

    2014-01-01

    In the present paper, theoretical simulations and experimental observations are used to describe the ion dynamics in a trapped ion mobility spectrometer. In particular, the ion motion, ion transmission and mobility separation are discussed as a function of the bath gas velocity, radial confinement, analysis time and speed. Mobility analysis and calibration procedure are reported for the case of sphere-like molecules for positive and negative ion modes. Results showed that a maximal mobility resolution can be achieved by optimizing the gas velocity, radial confinement (RF amplitude) and ramp speed (voltage range and ramp time). The mobility resolution scales with the electric field and gas velocity and R = 100–250 can be routinely obtained at room temperature. PMID:24571000

Top